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Abstract

The increasing fragmentation of mobile devices market has created the problem
of supporting all the possible mobile platforms to reach the highest number
of potential users. One possible solution is to use cross-platform frameworks,
that let develop only one application that is then deployed to all the supported
target platforms. Currently available cross-platform frameworks follow different
approaches to deploy the final application, and all of them has pros and cons.
In this paper, we evaluate and compare together the current frameworks for
cross-platform mobile development considering one of the most important aspect
when dealing with mobile devices: energy consumption. Our analysis shows
and measure how the adoption of cross-platform frameworks impacts energy
consumption with respect to the native mobile development, identifies which
are the most consuming tasks, and tries to define a final rank among all the
different approaches. Moreover, we highlight future development necessary to
improve performances of cross-platform frameworks to reach native development
performances.

Keywords: Energy consumption, mobile development, performance
measurement, web technologies, cross-platform frameworks

1. Introduction

Smartphones are rapidly becoming more and more present in everyday life
of users. Thanks to their increasing computing capabilities and an ample set of
different sensors, e.g., accelerometer, barometer, environmental thermometer,
etc., smartphones play both the role of mobile workstations and of augmented5

devices, able to sense the environment and monitor user activities. Smartphones
can be used for context awareness [1], user activity recognition [2, 3], health
monitoring [4], etc.
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The variety of smartphones available on the market, in terms of, for example,
models, vendors, cost, target users and available sensors, has accelerated the10

diffusion of these devices, since they reach all user needs. All these devices do
not share the same operating system [5], so, if market fragmentation introduced
by vendors is a positive aspect from the consumer point of view, reducing the
final cost for the users, it is a huge problem for developers.

Developers of mobile applications aim for a, as wide as possible, set of target15

users, i.e., customers. Considering a business application that has to be paid,
a wider set of paying customers means higher earnings. Moreover, since several
applications have medical purposes, e.g., ambulatory treatment of particular
diseases [6, 7, 8], excluding a set of possible patients depending on the operating
system of their smartphone is a strong limitation.20

Since all the operating systems currently used on mobile devices, i.e., An-
droid, Apple, Windows Phone, Blackberry, etc., do not share any API or IDE or
programming language, mobile development imposes a critical decision. Given
that developers aim for the highest number of users, the choice to support only
one particular mobile operating system, discarding the others, can dramatically25

reduce the target users of the application. On the other hand, supporting all
the available operating systems deeply increases development costs, in terms of
required time, people working on the application, required programming skills,
etc.

To solve this problem, in the last few years, particular attention has been30

posed to frameworks for cross-platform mobile development. Many differences
exist, and will be discussed in Section 3, but the underlying idea is to develop
the application only once, using a framework specific language, e.g., Javascript
or C++, and to deploy this application to all the operating systems supported
by the framework. It is clear that, in this way, the required development time,35

skills and costs are drastically reduced.
Several authors analyzed these frameworks and highlighted the main dif-

ferences. They used different criteria, as the supported devices and operating
system, native APIs, accessibility of the created application, native user inter-
face, etc. [9, 10, 11, 12, 13, 14, 15, 16]. Considering all these analysis, one of40

the most important aspect when dealing with mobile computing and devices is
completely missing, which is the main motivation of this work: the evaluation
of energy consumption issues.

Energy consumption is one of the most important aspects that has to be con-
sidered when dealing with mobile development and applications [17, 18, 19, 20].45

In fact, if we consider for example the definition of ubiquitous computing by
Mike Weiser [21], one of the fundamental aspects is that technology must be in-
visible. Smartphones can be considered part of the so-called invisible technology,
since they are always present in individuals’ every day life. But this invisible
technology can become visible and even annoying if it requires to recharge the50

device several times during the day, interfering with people’s habits and lifestyle.
Moreover, Wilke et al. [22] have shown that mobile applications which drain
device’s battery are soon rejected by the users.

The aim of this study is to analyze currently available cross-platform frame-
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works and to measure how their architecture impact energy consumption. The55

proposal and development of a new cross-platform framework is out of the scope
of our research, but combining together experimental results and cross-platform
framework architectures, we will highlight critical aspects on which future de-
velopment should focus to increase framework performances.

The first result of this paper is the testbed applications used in the experi-60

ments1. We measured the energy consumed by a set of very simple applications
which cover all the features available in the most common applications. We
created therefore two complete sets of applications (one for the Apple plat-
form and one for the Android platform) which can be used as a benchmark
to measure and compare performance of cross-platform frameworks. In par-65

ticular, we measured energy consumed while retrieving and showing (or not)
data from different sensors. Despite the results related to energy consumption,
the developed applications can be used to analyze other interesting data about
frameworks performance, e.g., response time, memory/disk usage, etc.

We used an external power monitor during the experiments, the Monsoon70

PowerMonitor, since it avoids problems caused by possible unknown and not
measurable overhead, that could be generated by applications running in back-
ground on the smartphone and monitoring energy consumption, e.g., Power-
Scope [11].

As discussed in Section 3, cross-platform frameworks for mobile development75

are very different in the way they produce the final application. Indeed, cross-
platform applications can be very different from native applications. The main
contribution of this paper is to investigate how the choice of a cross-platform
framework affects energy consumption of the final application, comparing appli-
cations developed with different frameworks and native applications developed80

from scratch. In particular, we investigated the consumption of retrieving data
from different sensors, e.g., accelerometer, light sensor, GPS, etc., since they are
becoming very important in many mobile applications, and the consumption of
updating (or not) the user interface.

The analysis identifies which are the most consuming tasks, and defines85

a final rank among all the different approaches. Moreover, both Android and
Apple devices were considered, and several interesting results showed differences
in performances of the same framework in the two different environments.

In particular, the main results showed by this analysis are:

• applications developed using a cross-platform framework lead to an higher90

energy consumption, even if the framework generates real native applica-
tions;

• to update the user interface represents the most expensive task, and it is
the main cause of the increased energy consumption;

1Test applications are freely available at https://github.com/wizard88mc/

EnergyConsumptionCrossPlatformFrameworks.
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• the same framework and application can have different performances de-95

pending on the platform where the application is deployed, meaning that
it is not possible to derive a general ranking of the considered frameworks
and approaches among all the mobile platforms;

• the update frequency of data retrieved by sensors and their visualization
heavily affects energy consumption, meaning that it is really important to100

take into consideration this aspect when dealing with sensor data.

However, in this paper we do not assert that the development of a good
cross-platform framework is not possible, but current development of these
frameworks is only at the beginning, and energy consumption improvement
is a milestone for future development. This paper makes a step further in this105

direction, identifying which are the components, according to each particular
class of framework, that have the highest impact on energy consumption, and
therefore need to be improved.

Preliminary ideas about the analysis of power consumption due to the in-
troduction of frameworks for cross-platform development appeared in [23], but110

this paper contains a very limited discussion: the paper does not consider the
Apple platform but only one Android device, and it tested only Phonegap and
Titanium frameworks.

The paper is organized as follows: Section 2 explores the related works and
the state of the art, Section 3 describes cross-platform frameworks classification,115

highlighting pros and cons of each approach. Section 4 describes experiments
setup, whose results are reported in Section 5. Section 6 discusses the results
obtained with the experiments and proposes some guideline for the development
of more efficient frameworks. We finally conclude in Section 7.

2. Related Works120

Many research papers [12, 13, 10, 14, 24] analyzed the development of mo-
bile applications based on cross-platform frameworks. Heitkotter et al. [10]
evaluated frameworks considering licensing, documentation and support, learn-
ing success and the possibility to customize user interfaces. Palmieri et al. [14]
proposed a set of evaluation criteria, containing the programming environment125

and the APIs provided by each considered framework.
Charlan and Leroux [24] evaluated performances of cross-platform frame-

works. They stated that frameworks based on web technologies usually experi-
ence worse performances when implementing games, in particular if they need
animation effects like fading, scrolling, transition effects, etc. However, this loss130

of performances usually is unnoticeable when implementing business applica-
tions where all the aforementioned effects are not used. Analysis and compari-
son of different cross-platform frameworks is also reported in [12], where authors
discuss positive and negative aspects of each cross-platform framework, consid-
ering marketplace deployment, adopted technologies, hardware access, native135

look and feel and perceived performances. They finally pointed out the main
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important aspects that should be followed to develop the most promising cross-
platform framework. Finally, a survey of several “write once, run everywhere”
tools, i.e., Phonegap, Titanium and Sencha Touch, is performed in [13]. They
examined performances in terms of CPU, memory usage and power consump-140

tion for Android test applications. They concluded that Phonegap is the less
expensive framework in terms of memory, CPU and energy consumption.

Although many authors analyzed framework for cross-platform mobile de-
velopment, to the best of our knowledge authors do not address the problem of
energy consumption, considering frameworks only from a static point of view,145

i.e., from a developer point of view. Considering the user point of view, energy
consumption of mobile native applications is extremely important and it has
been investigated in [25, 26, 27], to find a way to correctly measure it.

Since the usage of an external power monitor is tedious and expensive, [25],
several researchers focused on the development of an accurate models of energy150

consumption. For example WattsOn [25] is an energy emulation tool which
allows the developers to estimate energy consumed by their apps using their
workstation. Caroll and Heiser [26] performed an analysis of power consump-
tion of a particular smartphone and tried to design a model of energy con-
sumption in different scenarios, or Hao et al. [28] combined program analysis155

and per-instruction energy modeling to estimate energy consumption of mobile
application. [29, 30] proposed a model of energy consumption of each single
hardware component of a mobile device to identifiy when its behavior differs
from the standard one, to identify malicius behavior of Wifi hardaware compoe-
nents. In this way, it is easy to associate an energy consumption signature to160

each hardware componend and understand when a suspect behavior is taking
place. However, further analysis showed how the consumption estimation of
these approaches could suffer of an error that could reach even 10%. Different
is the approach followed by PowerScope [11], which is an Android application
that runs in background and analyze energy consumption of applications. How-165

ever, in this case it is not possible to estimate the overhead introduced by the
application itself, thus understanding how it influence energy consumption of
all the other tasks and applications running on the smarpthone. The use of an
external monitor is therefore more accurate than all these approaches.

Thiagarajan et al. in [31] analyzed energy consumption of popular websites170

like Facebook, Apple, Youtube, etc., when rendered using a mobile browser
and an Android device. Using a digital power multimeter, they were able to
understand and analyze energy consumption of different elements of a web page,
like Javascript code, CSS style rendering, image downloading, etc. The main
result of their work is that Javascript code or CSS stylesheet should be page175

specific, meaning that eliminating unnecessary code helps in saving even more
than 30% of battery energy.

Berrocal et al. [32] compared resources consumption of different software
architectures and they created a conceptual framework with which it is possible
to analyse the consumption of an application in the early development phases.180

They estimated power consumption of an application by composing the power
consumption of a set of primitives of which they already know the cost in terms
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of battery usage in different software architectures. In particular, they analysed
“server-centric” and “client-centric” architectures.

Friedman et al. [33] analyzed power and throughput performances of Blue-185

tooth and WiFi communication on smartphones, measuring the voltage across
a resistor connected to the smartphone. They tested different scenarios and
setups, considering both performances and power consumption. The results
showed that in several conditions WiFi performances are better than the ones
using Bluetooth, contradicting previous researches.190

As discussed in Section 1, we analyzed energy consumption of different
frameworks in [23], using only an Android device, and Phonegap and Titanium
as test frameworks. These very initial results pointed out that the adoption
of cross-platform frameworks increases energy consumption. The comparison
of data acquisition and display from different sensors showed that Phonegap195

consumed less energy than Titanium in most cases.

3. Frameworks classification

Frameworks for cross-platform development can be divided into four classes
[15]: the Web Approach, the Hybrid Approach, the Interpreted Approach and
the Cross-Compiled Approach. This classification is very useful to understand200

the final results of the experiments, since each framework class deeply influences
the performances of the deployed application.

Figure 1: Architecture of an application using the WA.

The Web Approach (WA) consists of developing a web application, using
HTML, CSS and Javascript, which can be accessed through the browser on the
smartphone. New features provided by HTML5, as the possibility of acquiring205

data from different smartphone’s sensors, i.e., accelerometer, gyroscope, etc.,
allows the creation of rich and complex web applications, that can be compared
to normal smartphone applications in terms of functionality and acquired data.
Moreover, it is possible to have access to user and device specific information,
like contacts.210

One strong limitation of this approach derives from the different implementa-
tion of the features provided by the different mobile browser. Since the current
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Figure 2: Hybrid approach application architecture.

HTML5 features are still under development by the W3C, different browsers
can implement or not the different recommendations, or not completely follow
the standards, e.g., using different update frequencies. This means that the215

adoption of recent features must be carefully considered, since it could reduce
the set of possible users due to compatibility reasons. Figure 1 shows this ap-
proach. jQuery Mobile2 and Sencha Touch3 are examples of frameworks using
this approach.

The Hybrid Approach (HA) relies on a WebKit rendering engine to show on220

the smartphone a web application. On one side, the framework itself provides
APIs and access to device hardware and features, while the WebKit engine is re-
sponsible to display controls, buttons and animations, and to draw and manage
user interface objects. In this case, the application can be distributed and in-
stalled on the user device as native mobile application, but the performances are225

often lower than native solution, since its execution requires to run the browser
rendering engine. Figure 2 shows the architecture of the deployed application
using this approach. An example of this class of frameworks is PhoneGap, also
known as Apache Cordova4.

The third class, called the Interpreted Approach (InA), gives developers the230

possibility to write the code of the application using a language which is different
from languages natively supported by the different platforms, e.g., Javascript.
This approach allows developers to use languages they already know and to learn
how to use the APIs provided by the framework. The application installed on
the device contains also a dedicated interpreter which is used to execute the non-235

native code. Even if this approach provides access to device features (how many
and which features depend on the chosen framework) through an abstraction
layer, this additional layer negatively influences the performance. This approach
allows the developer to design a final user interface that is identical to the native
one without any additional line of code. This kind of frameworks allows an high240

level of reusable code. Titanium5 is an example of this class, and Figure 3 shows
the architecture of the framework.

2jQuery Mobile: http://jquerymobile.com
3Sencha Touch: http://www.sencha.com/products/touch/
4Phonegap: http://phonegap.com/
5Titanium Appcelerator: http://www.appcelerator.com/titanium/
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Figure 3: Interpreted Approach architecture.

Figure 4: Cross-compiled Approach.

Finally, the Cross-Compiled Approach (CCA) is similar to the previous one,
since it lets the developer write only one application using a common program-
ming language, e.g., C#, but the final application does not contain an inter-245

preter, but the framework generates, after compilation, different native appli-
cations for each mobile platform. The final application uses native language,
therefore can be considered a native mobile application to all intents and pur-
poses. However, our tests have shown that for complex applications the native
solution remains better since the generated code gives worst performances, com-250

pared to code written by a developer. An example of this framework are Mono6

or MoSync7, and how it works is depicted in Figure 4.
Table 1 provides a final resume of this classification, highlighting pros and

cons of each approach.
Considering the final application that each framework produces, and how255

much this application is similar to a real native one, some issues arise. Starting
from the Web Approach, it is clear that in this case there is not a native ap-
plication at all. The Hybrid Approach provides a final application that can be
installed on the device, but does not use native UI. The Interpreted Approach

6Mono: http://www.mono-project.com/
7MoSync: http://www.mosync.com/
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Approach Programming
Language

Supported
Platforms

Pros Cons Example

Web HTML, CSS,
Javascript

Android,
iOS, Win-
dows, Black-
Berry (*)

- Easy to update

- No installation

- Same UI over dif-
ferent devices

- No access to Ap-
plication Store

- Network delays

- Expensive test-
ing

- No native UI

jQuery
mobile,
Sencha
Touch

Hybrid HTML, CSS,
Javascript

Android,
iOS, Win-
dows, Black-
berry,

- Access to Appli-
cation Store (**)

- Support to most
smartphone
hardware

- No native Look
and Feel

PhoneGap

Interpreted Javascript Android,
iOS, Black-
berry

- Access to Appli-
cation Store

- Native Look and
Feel

- Platform branch-
ing

- Interpretation
step

Titanium

Cross-Compiled C#, C++,
Javascript

Android,
iOS, Sym-
bian

- Native UI

- Real native ap-
plication

- UI non reusable

- High code con-
version complex-
ity for complex
applications

Mono,
MoSync

Table 1: Resume of different cross platform approaches. (*): Support depends on the browser
chosen by the user. (**) Apple Store usually tends to refuse applications developed with this
approach [34].
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starts to introduce some native components, i.e., the user interface, while using260

the interpretation step for the application code. Finally, the Cross-Compiled
Approach produces a real native application, where no extraneous component
is used and only native code is executed.

4. Methodology

In this Section we provide details about the hardware and software setup265

used during the experiments described in this paper. In order to cover the
wider set of devices and possible users, applications were deployed both for the
Apple and the Android platforms. These two operating systems together cover
about 96% of the mobile devices market [5].

4.1. Hardware setup270

The test devices, used during the experiments to measure performance in
terms of consumed energy, were two Android and two Apple smartphones. Even
if the number of considered devices can appear low, different previous works,
[35, 36, 32, 37], have proved that the consumption information provided is ac-
curate enough to create consumption models and estimations. For the Android275

platform, we used a Samsung Galaxy Nexus i9250 and a Samsung Galaxy S5.
The Galaxy Nexus i9250 is equipped with a Dual-core 1.2GHz CPU, 1GB RAM
and a 720x1280px display with 16M colors. The Galaxy S5 is equipped with
a Quad-core 2.5Ghz CPU, 2GB RAM and a 1080x1920px display with 16M
colors.280

Considering the Apple platform, the test devices were an iPhone 4 and an
iPhone 5. The iPhone 4 is equipped with a 1GHz Cortex CPU, 512MB RAM
and a 640x960px display with 16M colors. The iPhone 5 is equipped with a
Dual-core 1.3GHz CPU, 1GB RAM and a 640x1136px display with 16M colors.

We decided to use these devices because the use an external PowerMonitor285

requires to have direct access to the battery. For this reason, the possibility of
easily opening the devices was a fundamental requirement. Each single compo-
nent of each device, e.g., brand of each sensor, was not considered, since possible
energy consumption differences between different brands can be considered neg-
ligible for the final results.290

To measure the energy consumed by each application, we did not use soft-
ware tools installed on the smartphone, but the Monsoon PowerMonitor8. The
main function of the PowerMonitor is to measure the energy requested by the
smartphone (or other devices that use a single lithium battery). The necessary
circuit is created isolating the Voltage (positive) terminal of the battery and295

creating a bypass between the PowerMonitor Vout to the device. The circuit
is finally closed connecting directly to the Ground (negative) terminal on the
battery. An example of the hardware setup for the Android device is provided
in Figure 5.

8Monsoon PowerMonitor, https://www.msoon.com/LabEquipment/PowerMonitor/
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Figure 5: Hardware setup with one of the Android device

Moonson PowerMonitor does not provide an estimation or creates a model300

of the energy consumption, [25, 26, 28, 11], but it provides the actual amount
of energy requested by the smartphone, i.e., the amount of energy requested
to the battery. In fact, during the experiments, smartphones do not use the
energy provided by the battery, but the energy provided by the PowerMonitor.
This means that, even if the battery is connected to the device, it is not able to305

provide energy (due to the isolation of the positive terminal), and the Power-
Monitor provides (and measures) the requested energy. This permits to measure
the precise amount of consumed energy, avoiding errors due to estimations or
models. Moreover, even the problem of battery performance deterioration due
to usage is removed, since it is isolated during measurements.310

We did not choose a software monitor (some examples are discussed in Sec-
tion 2) since, running on the device, it wastes energy in its turn, and it may
influence the measurements, which are then affected by an error very difficult
to predict; [25] estimated this error between 4% and 9%, so it affects, in a
significant way, the provided results.315

The Moonson PowerMonitor is provided with a software interface which
reports several information like consumed energy (measured in µAh), average
power (measured in mW), average current (measured in mA), average voltage
(measured in V) and expected battery life (hrs). The most important measure
for our purposes is the consumed energy: comparing two different tasks along320

the same time interval and in the same test conditions, the more a task is
energy expensive, the more the energy consumption will be higher. This permits
a comparison between different frameworks and sensors. Even if interesting,
the expected battery life value is a software estimation and cannot supply an
objective information about the real energy consumption. It is calculated by325

the software using the value of the battery capacity with which the smartphone
is normally equipped, and the consumed energy of the considered task. It is
basically an estimation of how much the battery would last executing constantly
the analyzed task/application. Clearly, it is a simple estimation, and do not
consider for example battery deterioration due to usage, and cannot provide330

useful and precise results. For this reason, we do not further consider this
measure in the paper.
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The use of PowerMonitor is very simple if the smartphone provides access
to the lithium battery, so we chose two Android devices with this features (not
always present in modern devices). Some difficulties raised with Apple devices.335

Opening an iPhone 4 and an iPhone 5 was necessary to access the battery,
but even in this case, the terminals of the battery were unreachable. So, we
created the necessary circuits using the connectors between the battery and the
smartphone.

We created an application, and therefore a test, for each considered frame-340

work and for each sensor. Each test lasted 2 minutes and has been repeated
three times. The final results for each test have low standard deviation, meaning
that the recorded data is very informative and is not affected by underground
noise. To have comparable results among all the tests, it was necessary to define
a “base” smartphone condition that could be used during all the experiments,345

avoiding that external factors could affect the measurements and the energy
consumption. For this reason, all devices were used in “Airplane mode” (with-
out mobile or WiFi network), with the luminosity of the screen set to the lowest
value and, when not tested, with GPS disabled.

4.2. Software setup350

The experiments compared together the four different cross-platform ap-
proaches: a web application for the Web Approach, Phonegap for the Hybrid
Approach, Titanium for the Interpreted Approach and MoSync for the Cross-
Compiled approach, considering both the C++ and the Javascript implementa-
tion. Despite the fact that there are different frameworks for each approach, we355

chose these four different frameworks for the experiments because they actually
are the most used frameworks for each category, so we considered them good
candidate for the experiments. It is true that differences in the implementations
can affect the obtained results, as we will discuss in Section 6 for the MoSync
framework, but the architecture followed by these frameworks is the same for360

all frameworks in the same category, thus results can be considered valid even
in presence of small differences in the implementation.

The very important issue for software setup is to be able to reproduce the
same test conditions among different frameworks. As an example, in [31] the
authors reported that the usage of support libraries when working with HTML5365

and Javascript applications, e.g., jQuery, increases the final energy consumption
of the application. Therefore, we defined as baseline used to build our test
applications the following conditions:

• use only Javascript and not any supporting libraries to manipulate the
DOM when developing test application for the Web and the Hybrid Ap-370

proach;

• the background of each application is black, the foreground color for the
text is white and the font size 15px.

We used black and white as background and foreground colors because colors
representation are standard (e.g., RGB), but how colors are rendered in screen375
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can change according to the device. This means that brightness of a particular
color can be different, and so the amount of consumed energy [38]. For this
reason, black pixels, which roughly correspond to OFF state of pixels, consume
the same energy in all the devices, i. e., around 0 since the pixels are turned
off. White pixels are pixels turned on, with the maximum level of brightness380

according to the brightness of the devices, which is set to minimum in all the
devices during the experiments. Therefore, the white pixels consumes the max-
imum amount of energy for that particular level of brightness, and this is true
in all the device. The situation is different for other colors, since the same color
code can be represented with different colors and brightness in different devices,385

and thus requires different amount of energy.
The choice of the font size is arbitrary and could be different, what is im-

portant is that the selected conditions are reproducible on all the tested appli-
cations. However, this configuration can be considered the lowest expensive one
in terms of energy consumption, since most of the screen is black, which is the390

less expensive configuration.
Since the purpose of this paper is to explore how cross-platform frameworks

influence battery consumption when acquiring data from mobile sensors, the
conditions mentioned above are sufficient to assure the same testing conditions
for all the frameworks when analyzing energy consumption without updating395

the User Interface (UI), but only acquiring data from a particular sensor.
When updating the User Interface, the situation is more complex, as for

example with the light sensor. In this case, it is clear that even the minimum
change in the environment, e.g., a movement of a person, influences the data
acquired from the sensor and so if the application updates or not the interface.400

This makes quite impossible to reproduce the same test conditions among all the
frameworks, since it is not possible to fully control the environmental conditions,
unless closing the smartphone inside an opaque box, but in this case the UI is
not updated at all since data acquired never changes. Therefore, for some
sensors, i.e., light, proximity sensor and GPS, we decided to analyze only the405

case when the user interface is not updated, to best guarantee equity between
tests. For the audio test, the application records audio from the microphone, and
no user Interface is updated during this test. For the GPS test, the application
constantly requires the position to the GPS sensor, keeping it constantly active
and avoiding that the operating system could disable it until a movement is410

detected.
Despite the native solution, that supports the access to all the native device

features and sensors, this is not true for the cross-platform frameworks. The
support offered by each framework to a particular device feature depends on the
framework itself and, sometimes, on the chosen platform for deployment. This415

means that, for the most common features like the accelerometer or the GPS,
the support is almost complete, while many frameworks do not provide support
for other features like light sensor or the device orientation.

Moreover, even the way a framework provides support to a particular feature
can change between frameworks, e.g., the update frequency of a sensor value.420

For example, the updating frequency of the accelerometer value could be the

13



Sensor Web App. Hybrid Interpreted Cross-platform
App. App. App.

Chrome Firefox Opera Phonegap Titanium MoSync MoSync
(C++) (Javascript)

Accelerometer Yes Yes Yes Yes (FC) Yes Yes (FC) Yes
Device orientation No Yes No No No Yes (FC) No
Compass No No No Yes (FC) Yes No Yes
Proximity Yes No No No No No No
Light Yes No No No No No No
GPS Yes Yes Yes Yes Yes Yes No
Camera Yes Yes Yes Yes Yes Yes Yes
Audio Record Yes Yes Yes Yes No No No

Table 2: Features supported by the cross-platform frameworks considering the Android plat-
form. By “FC” we mean that the framework lets the developer choose the update frequency.

same between the Web Approach and the Interpreted Approach or, a framework
could not allow the developer to change the updating frequency from the default
value. The tests followed this policy:

• if the framework allows to change the value of the updating frequency,425

we test different fixed updating frequencies to understand how energy
consumption changes in relation with the update frequency;

• otherwise, we recorded data only at the supported frequency.

Table 2 (for the Android platform) and Table 3 (for the iOS platform) pro-
vide a resume of the supported features for each framework. We can note, for430

example, that the sets of available browsers are different, i.e., Chrome, Firefox
and Opera for the Android platform and Chrome and Safari for the iOS plat-
form. Moreover, Titanium support the proximity sensor and audio recording
only for iOS devices.

Another frequent task performed with mobile applications is usually send435

or retrieve data from a server. In this case, energy consumption is affected by
the state of the cellular network or of the WiFi conditions, thus not assuring
the same test conditions for all the experiments. Moreover, other papers in
literature already address this issue, e.g., [31] and [33].

During the tests, the devices were equipped with Android 5.1.1 (Samsung440

Galaxy S5) and Android 4.4 (Samsung Galaxy i9250), while for the Apple plat-
form we tested the iPhone 4 with iOS 7.3 and the iPhone 5 with iOS 8. Software
used during the tests were Chrome v. 41.0, Firefox v. 31, Opera v. 22.0, MoSync
v. 3.8, Titanium v. 3.2.3 and Phonegap v. 3.2. The first idea was to provide
the same ambient for the tests in the different devices, i.e., the same operating445

systems and software. Unfortunately, it was not possible neither to update the
iPhone 4 to iOS 8 since Apple does not allow it, nor to downgrade the iPhone 5
to iOS 7.3 for the same reason. The same situation takes place for the Android
devices. differently from the iOS platform, the downgrade of Android could be
done using other distributions, e.g., cyanogenmod. However, we preferred to450

use the standard distribution of the platform, to avoid that some differences
between the official and the unofficial distribution could change (or influence)
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Sensor Web App. Hybrid Interpreted Cross-platform
App. App. App.

Chrome Safari Phonegap Titanium MoSync MoSync
(C++) (Javascript)

Accelerometer Yes Yes Yes (FC) Yes Yes (FC) Yes
Device orientation Yes Yes No No Yes (FC) No
Compass No No Yes (FC) Yes Yes (*) Yes
Proximity No No No Yes Yes No
Light No No No No No No
GPS Yes Yes Yes Yes Yes No
Camera No No Yes Yes Yes Yes
Audio Record No No Yes Yes No No

Table 3: Features supported by the cross-platform frameworks considering the iOS platform.
By “FC” we mean that the framework lets the developer choose the update frequency. Frame-
work marked by (*) retrieves 3 values for the coordinates x, y and z. Other frameworks provide
only a value which is a combination of the coordinates.

the results of the tests. For this reason, tests were performed using the most
updated operating system according to the device in use.

5. Experimental Results455

In this Section, we report the results of the experiments. As already dis-
cussed, each experiment runs the application for two minutes, and each test
was repeated three times. We then calculated the mean value of the “Consumed
Energy” of the three runs and the standard deviation, denoted by ± n where
n ∈ N. The “Consumed Energy” value returned by the PowerMonitor interface460

is measured in µAh and is the most representative value of power consumption,
so it can be used to compare performances of the different frameworks.

Tables 4, 5, 6, 7, 8, 9, 10 and 11 report details about data recorded during
each single experiment.

Tables 4 and 5 present the results obtained with the two Android smart-465

phones when the user interface is updated with sensor values. The results are
expressed as additional percentage of consumed energy with respect to the quiet
state of the smartphone. The update frequency is 64ms for frameworks that al-
low to define the update frequency.

Tables 8 and 9 present the results with the Android device without updating470

the User Interface, i.e., the application only retrieves data from the considered
sensors. Tables 6 and 7 present data obtained with Apple devices, updating the
User Interface with sensors’ data and Tables 10 and 11 present data recorded
with the iPhone devices when the User Interface is not updated.

5.1. Basic energy consumption475

To evaluate the effective cost of each framework, in terms of power consump-
tion, a reference value as baseline is required. The ideal baseline value would
be the smartphone on, without any other application or background process
running, and where the “computational workload” is the lowest possible. To
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Web App. Hybrid Interpreted Cross-compiled
App. App. App.

Sensor Native Chrome Firefox Opera PhoneGap Titanium MoSync MoSync
(C++) (Javascript)

Only App. +0,06% +3,69% +2,51% +3,74% +3,03% +1,06% +0,38% +1,72%

Accelerometer +36,58% +115,38% (50) +168,01% +123,74% (50) +75,01% +79,29% +240,88% +74,07%
Device orient. +45,84% - +180,15% - - - +250,12% -
Compass +30,87% - - - +47,72% - - +31,69%

Table 4: Amount of energy consumed recorded during tests using the Galaxy Nexus, updating
the User Interface with sensor data, expressed in term of percentage of increase. (x) indicates
the different update frequency.

Web App. Hybrid Interpreted Cross-compiled
App. App. App.

Sensor Native Chrome Firefox Opera PhoneGap Titanium MoSync MoSync
(C++) (Javascript)

Only App. +0,09% +3,17% +2,11% +3,67% +2,74% +1,28% +1,01% +1,98%

Accelerometer +115,08% +675,37% (50) +764,25% +691,59% (50) +159,62% +334,59% +774,04% + 129,87%
Device orient. +123,17% - +485,78% - - - +686,24% -
Compass +120,61% - - - +162,31% - - +143,47%

Table 5: Percentage of increase in the amount of energy consumend recorded during tests
using the Galaxy S5, updating the User Interface with sensor data. (x) indicates the different
update frequency.

reach this lowest value as closely as possible, we put the smartphones in “Air-480

plane Mode”, without any application running, with the lowest luminosity of
the screen and black background of the home screen. Moreover, we minimized
the number of graphical elements on the screen, i.e., the icons. For the An-
droid devices, we were able to remove all the graphical elements on the screen
(despite some small icons and the time in the top right of the screen), and the485

measured consumption was 5126±11 µAh for the Galaxy Nexus and 2213±15

µAh for the Samsung S5. For the Apple devices, we created this ideal “quiet
state” by setting a black background of the screen, and choosing a black icon
for an application, since it is not possible to remove all the graphical elements
from the Home screen (the “quiet state” of the iOS system has at least one icon490

in the upper part of the screen). The consumption values for the Apple devices
were 2777±10 µAh for the iPhone 4 and 2558±6 µAh for the iPhone 5.

We must note here that the Apple devices has similar baseline, while the
Android devices have not. Even if this is an interesting aspect to notice, this
difference in energy consumption does not affect the results and the conclusions495

derived for the frameworks, since the energy consumption increase is calculated
using this reference value that is the same for all the tested frameworks given the
same device. All figures in this section report the consumed energy expressed
in terms of percentage increase, with respect to the correct baseline. For this
reason, even the native solution does not report a zero value since also a basic500

application has an energy consumption superior, by definition, to the baseline.

5.2. Energy consumption for a simple cross-platform application

The first experiment aims at measuring the energy consumed only by the
usage of a particular framework to create an application without any particular
behavior. Therefore, for each considered framework, we developed a basic ap-505
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Web App. Hybrid Interpreted Cross-compiled
App. App. App.

Sensor Native Chrome Safari PhoneGap Titanium MoSync MoSync
(C++) (Javascript)

Only App. +0,78% +2,91% +2,06% +2,5% +1,53% +2,49% +3,49%

Accelerometer +8,68% +94,48% (50) +94,47% (50) +79,10% +26,38% (100) +190,94% +25,38% (150)

Device orient. +15,21% +950,4% (50) +49,98% (50) - - +180,05% -

Compass +51,98% - - +69,51% - - +42,79% (140)

Table 6: Amount of consumed energy, recorded during tests using the iPhone 4, updating the
User Interface with sensor data, in term of percentage of increase. (x) indicates the different
update frequency.

Web App. Hybrid Interpreted Cross-compiled
App. App. App.

Sensor Native Chrome Safari PhoneGap Titanium MoSync MoSync
(C++) (Javascript)

Only App. +1,69% +2,17% +3,85% +3,88% +3,26% +4,83% +5,34%

Accelerometer +5,34% +86,78% (50) +144,84% (50) +52,16% +15,01% (100) +298,28% +16,52% (150)

Device orient. +14,26% +86,53% (50) +147,07% (50) - - +286,47% -

Compass +30,25% - - +48,25% - - +43,97% (140)

Table 7: Percentage of increase in the amount of consumed energy, recorded during tests using
the iPhone 5, updating the User Interface with sensor data. (x) indicates the different update
frequency.

plication which does not perform any operation, without any graphical elements
or underground task. Then, we compared the energy consumption of all these
applications with a native one with the same features. Results are provided in
Figure 6, expressed in terms of percentage increase with respect to the baseline
measured for the used device. Since Firefox and Opera cannot be installed on510

the Apple devices, data is missing. In the same way, since Safari is not avail-
able for the Android environment, it is not possible to test this combination of
browser and operating system.

As results show, the adoption of an application developed using a cross-
platform framework has a cost in terms of energy consumption. Without con-515

sidering the Cross-Compiled Approach, which has very different performances in

Figure 6: Consumed energy, expressed in terms of percentage increase, by a basic application
developed with the different cross-platform frameworks.
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Web App. Hybrid Interpreted Cross-compiled
App. App. App.

Sensor Native Chrome Firefox Opera PhoneGap Titanium MoSync MoSync
(C++) (Javascript)

Only App. +0,06% +3,69% +2,51% +3,74% +3,03% +1,06% +0,38% +1,72%

Accelerometer +3,04% +18,05% (50) +32,74% +27,65% +7,75% +4,92% +239,75% +6,82%
Device orient. +10,76% +20,04% +26,92% +26,23% - - +243,35% -
Compass +8,61% - - - +12,24% - - +10,34%
Proximity +0,90% - +2,00% - - - +200,65% -
Light +2,18% - +3,79% - - - - -
GPS +42,80% +62,49% +46,07% +60,15% +43,15% +43,48% +43,25% -
Camera +233,85% +200,15%* +208,26%* +258,06% +252,36% +250,17% +244,37% +254,20%
Audio record +20,56% +48,97% +53,37% +49,22% +21,76% - - -

Table 8: Amount of consumed energy, recorded during tests using the Galaxy Nexus without
updating the User Interface with sensor data expressed in form of percentage. *: images from
camera are not full screen but only a small section of the web page.

Web App. Hybrid Interpreted Cross-compiled
App. App. App.

Sensor Native Chrome Firefox Opera PhoneGap Titanium MoSync MoSync
(C++) (Javascript)

Only App. +0,09% +3,17% +2,11% +3,67% +2,74% +1,28% +1,01% +1,98%

Accelerometer +28,21% +41,14% (50) +44,32% +43,37% +33,74% +30,14% +588,86% +32,14%
Device orient. +13,08% +33,15% +46,36% +45,58% - - +542,65% -
Compass +12.74% - - - +24.54% - - +22,63%
Proximity +1,92% - +5,66% - - - +529,05% -
Light +6,59% - +53,82% - - - - -
GPS +80,56% +93,43% +84,26% +97,84% +82,69% +83,1% +81,7% -
Camera +544,95% +219,17%* +223,15%* +214,61% +557,05% +552,24% +551,49% +563,89%
Audio record +60,46% +73,49% +117,90% +77,78% +58,24% - - -

Table 9: Percentage of increase in the amount of consumed energy, recorded during tests using
the Galaxy S5 without updating the User Interface with sensor data. *: images from camera
are not full screen but only a small section of the web page.

the two platforms, the more expensive approaches are the Web Approach and the
Hybrid Approach, which runs a browser engine, that is clearly more expensive
than a simple application. Instead, the performances of the Cross-Compiled Ap-
proach are affected by the chosen development language and platform. In both520

cases, i.e., Android and Apple, performances measured for the application devel-
oped using Javascript are worst with respect to the ones collected using C++.
But the two platforms performs very differently: while for the Android platform
the C++ application is the best one among all other cross-platform frameworks,
and the Javascript implementation performs better than the Web and the Hy-525

brid Approaches, in the Apple platform the performances using Javascript are
the worst.

Another important results of this first experiment is related to the general-
ization of these results. Even if the number of used devices does not cover all
the available devices on the market, we can notice that, looking separately at530

the two platforms, the curves trend is comparable, i.e., the curve trend of data
for iPhone 4 is very similar to the curve trend of data for iPhone 5 and the same
holds for the experiments with Android. This is very important, because it is
possible to assert that these results are representative for both platforms.
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Web App. Hybrid Interpreted Cross-compiled
App. App. App.

Sensor Native Chrome Safari PhoneGap Titanium MoSync MoSync
(C++) (Javascript)

Only App. +0,78% +2,91% +2,06% +2,50% +1,53% +2,49% +3,49%

Accelerometer +4,93% +54,28% (50) +55,94% (50) +47,69% +9,03% (100) +175,50% +12,92%

Device orientation +15,21% +50,4% (50) +49,89% (50) - - +180,05% -

Compass +36,36% - - +58,48% - - +35,27% (140)

Proximity +19,55% - - - +20,21% +171,97% -
GPS +167,81% +170,19% +171,54% +175,43% +171,85% +318,42% -
Camera +254,39% - - +314,78% +315,81% +306,46% +286,46%
Audio record +7,51% - - +14,91% +15,40% - -

Table 10: Percentage of energy consumption increase recorded during tests with the iPhone
4 without updating the UI with sensor data.

Web App. Hybrid Interpreted Cross-compiled
App. App. App.

Sensor Native Chrome Safari PhoneGap Titanium MoSync MoSync
(C++) (Javascript)

Only App. +1,69% +2,17% +3,85% +3,88% +3,26% +4,83% +5,34%

Accelerometer +2,56% +42,53% (50) +39,98% (50) +25,18% +2,47% (100) +263,94% +4,91%

Device orientation +10,19% +41,81% (50) +39,92% (50) - - +274,24% -

Compass +28,75% - - +44,23% - - +40,25% (140)

Proximity +0,33% - - - +1,58% +271,96% -
GPS +168,68% +171,57% +171,94% +176,33% +172,74% 319,79% -
Camera +271,76% - - +321,67% +311,38% +286,52% +296,70%
Audio record +11,42% - - +15,73% +21,34% - -

Table 11: Percentage of energy consumption increase recorded during tests with the iPhone
5 without updating the UI with sensor data.

5.3. Energy consumption using sensors535

After this initial test, we analyzed the performances of each framework,
when acquiring data from different sensors. Tests were performed only for that
sensors that are supported by at least one framework, and we compared the per-
formances with the native solution. The initial idea was to compare frameworks
using the same update frequency, but not all of them let the developer choose it,540

as already explained in the previous section. Therefore, data presented in the
following figures refer to the same update frequency (64ms), unless the frame-
work does not allow for customization. In this case, the update frequency is
reported between rounded brackets in Tables 4, 5, 6, 7, 8, 9, 10 and 11.

The experiments give an interesting result, in some way predictable: the545

adoption of a cross-platform framework to develop an application always implies
an higher energy consumption with respect to the native solution, and this is
true for all frameworks in both the considered device platforms. Considering
for example the accelerometer, Figure 7 shows that the curve trend is always
the same, independently from the used platform. The same behavior appears550

also for other sensors like compass (see Figure 8), proximity sensor (see Figure
9) and to collect data about device orientation (see Figure 10). Despite the
differences between the devices, the charts which illustrate the results show the
same curve trends. For this reason, we can argue that the obtained results are
generalizable to all devices of both the platform.555

Figure 11 shows that the GPS sensors has the same behavior, except for
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Figure 7: Consumed energy, expressed in
terms of percentage increase, by an appli-
cation which retrieves data from accelerom-
eter.

Figure 8: Consumed energy, expressed in
terms of percentage increase, by an appli-
cation which retrieves data from compass.

Figure 9: Consumed energy, expressed in
terms of percentage increase, by an appli-
cation which retrieves data from proximity
sensor.

Figure 10: Consumed energy, expressed in
terms of percentage increase, by an applica-
tion which retrieves data about device ori-
entation.

the MoSync C++ implementation on iPhone 4 and 59, but we also note that
the same implementation obtained the worst result also for other sensors like
proximity sensor (see Figure 9), orientation (sse Figures 10 and 14) and ac-
celerometer (see Figures 7 and 12). Therefore this implementation is actually560

not efficient to retrieve data from sensors in all platforms.

5.4. Power consumed updating User Interface with data from sensors

The experiments allow also to measure that the increment in energy con-
sumption is higher when the application updates the user interface, showing the
data retrieved from sensors, while it is lower, but still present, when the user565

interface is not updated (see Fig. 7 vs. Fig. 12, Fig. 8 vs. 13 and Fig. 10
vs. Fig. 14). This means that, for all these frameworks, the most expensive
task is not to execute or interpret in real-time the code (as in the case of the
Interpreted Approach), but the more expensive task is to update the graphical
elements on the screen.570

Consider, for example, the case of data acquisition from the accelerometer. If
we compare Figures 7 and 12 it is possible to notice that the difference in terms

9Data about energy consumption for iPhone 4 and 5 for GPS are quite superimposable.
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Figure 11: Consumed energy, expressed in
terms of percentage increase, by an appli-
cation which retrieves data from GPS. Note
that data about measurements for iPhone 4
and iPhone 5 are quite superimposable.

Figure 12: Consumed energy, expressed in
terms of percentage increase, by an appli-
cation which retrieves and shows data from
accelerometer.

Figure 13: Consumed energy, expressed in
terms of percentage increase, by an appli-
cation which retrieves and shows data from
compass.

Figure 14: Consumed energy, expressed in
terms of percentage increase, by an applica-
tion which retrieves and shows data about
device orientation.

of consumed energy is particularly relevant for the Web Approach and the Cross-
Compiled Approach using the C++ implementation of MoSync. Moreover, the
difference can be higher: comparing the difference between the native solution575

and the one using the PhoneGap framework in all the devices, the difference of
energy consumption increases required by PhoneGap when updating the user
interface with respect to the native solution varies between 38% and 71%, while
it lowers down between 2% and 3% when the user interface is not updated (and
this is not one of the framework performing worst).580

Considering the compass sensor and comparing Figures 8 and 13 we can see
that the curves trends are the same, but the curves are moved upper, since the
consumed energy is augmented. This behavior deeply affects the measurement
for the Galaxy S5, but it is present for all the devices. Even in the case of data
about device orientation, analyzing Figures 10 and 14 the energy consumption585

increased, in particular for the Cross-Compiled Approach.
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6. Discussion

6.1. Energy Consumption

Data retrieved from the experiments discussed so far, leads to some consid-
erations. An interesting case study is represented by the MoSync framework.590

As already explained before, this framework follows the Cross-Compiled Ap-
proach, meaning that it generates a real native application, translating the code
into real native code. MoSync supports two programming languages, C++ or
Javascript. We tested both the possibilities.

The experiments showed that the C++ implementation, when dealing with595

data retrieved from sensors, is much more expensive, both with respect to the
Javascript implementation and to the native solution. The explanation of this
result comes from the nature of C++: since it does not natively handle events
(without using an external library), the final result is an application that uses
polling, i.e., to retrieve data from sensors it implements an infinite cycle that600

runs for all the application lifecycle till its termination. This behavior is then
translated into the final application and, from performances point of view, it
is extremely energy consuming. This means that this kind of implementation
could not be used “as is” when developing applications that retrieve and use
data from sensors. A possible solution is to use it together with a C++ library605

which provides support to events.
Without considering the C++ implementation of the MoSync framework,

the Web Approach, where applications are rendered using a Web browser, is
the most expensive one, even if it is used in offline mode, i.e., without being
connected to the Internet (one of the new HTML5 feature). There are different610

reasons to explain this result. The first one is the early stage of development
of these features. The possibility to access smartphone sensors are far to be
standard and fully supported by all browsers and devices so, at the time of
writing, browsers and devices probably are not optimized for an heavy use,
yet. Secondly, when a page requires sensor data, this request is made by the615

Javascript engine, that is interpreted by the browser and translated to a request
into the native language of the OS, thus consuming more energy. Finally, the
first experiment showed that the execution of a web browser is more expensive
than a simple native smartphone application, even without retrieving data from
sensors. Therefore, since the Web Approach combines together all these aspects,620

it is clear that in the end the energy consumption of this particular approach is
heavy and not suitable for smartphone applications.

Another interesting aspect that we can notice from the analysis of the data,
is how the updating of the user interface affects the energy consumption of the
frameworks. Let us consider, as an example, Phonegap and Titanium frame-625

works used to develop an application which retrieves data from the accelerom-
eter, since this is the only sensor supported by both the frameworks. Updating
the User Interface (see Figure 12), Phonegap is less expensive than Titanium in
the Android platforms and viceversa in the Apple platform. Without updating
the User Interface (see Figure 7), Titanium is less expensive than Phonegap630

in both platforms. This means that the mapping between the Javascript code
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and User Interface elements made by Titanium during compilation and runtime
is more expensive than the Hybrid Approach of Phonegap in Android devices.
Analyzing Phonegap and Titanium frameworks and their performances in both
the platforms, it is possible to conclude that Titanium has better performances635

on the Apple devices, while on the Android platform, Phonegap is sometimes
better. This behavior takes two different considerations. The first one is that
probably Titanium is much more optimized for the Apple platform instead of
the Android one. The second one is that if we must choose between Titanium
or Phonegap as developing framework, it is not possible to find the best solution640

in terms of energy consumption. This means that the choice should consider
how users are distributed among the different platforms, and choose the devel-
oping framework depending on this distribution (and this is against the idea of
cross-platform development). Since cross-platform frameworks can have differ-
ent behaviors in different platforms, their current state-of-art does not guarantee645

a real cross-platform development.

6.2. Selection of the best framework

The choice of which framework to use must take into account, first of all,
the number and type of supported features, since not all the native features are
supported by cross-platform frameworks, e.g., the compass is not supported by650

browsers (i.e., the Web Approach), Titanium and MoSync (using C++).
To choose a winner for the best framework among the considered ones, it is

clear that MoSync, using the Javascript implementation, when available, is the
one with best performances in terms of energy consumption. The resulting code
and final application leads to better results with respect to other approaches like655

the Hybrid or the Interpreted one, where code is executed in an encapsulated
environment (a web browser) or where the code is interpreted at runtime. It
performs better than the C++ implementation of the same framework due to
the fact that C++, as already discussed before, does not efficiently handle alone
events, meaning that this implementation of MoSync may improve using a li-660

brary which handles the events. The Javascript implementation is not affected
by this problem and so the results are better.

For these reasons, the Javascript implementation of this framework can be
a good choice for applications which massively use data from sensors, e.g., ap-
plications for runners.665

Even if the Cross-Compiled Approach produces a native application without
any additional software layer that can lower performances, in terms of power
consumption performances are deeply affected by the quality of the compilation
process which translates the application from the language used for development
to the native one. Therefore, this result is not a-priori predictable. This is670

highlighted by experiments made with the C++ implementation of MoSync.
Simple applications which do not retrieve data from sensors, e.g., home

banking, do not require particular attention on the choice of the framework to
use, since the increment in terms of energy consumption is always under 6%
(the worst case is 5,34%).675
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6.3. Suggestion for the improvement of the efficiency of the frameworks

The results obtained from the experiments can be read in different ways,
some correct and some incorrect. The experiments show that energy consump-
tion performances of cross-platform frameworks are still far from the native
approach. Therefore, these frameworks are currently difficultly adoptable when680

the applications acquire data from sensors (a condition often true especially for
ubiquitous and pervasive applications) and update the user interface.

This problem is difficult to solve, and will require a lot of work in the next
years, but it is not correct to state that cross-platform frameworks cannot im-
prove in the future. In fact, considering the classification of frameworks de-685

scribed in Section 3, an important result obtained with the experiments is to
highlight which are the components that consume more energy, since the ex-
periments identified as the user interface rendering the more consuming task.
Therefore, an efficient cross-platform framework must pay particular attention
on the efficiency of the UI rendering.690

Considering the Web Approach, it requires a browser for rendering the ap-
plication. Therefore, these frameworks can improve their energy consumption
only if the future implementations of the browsers become more efficient. The
Hybrid Approach needs a WebKit engine, a component of a browser, for ren-
dering. Even in this case, improvements in energy consumption do not depend695

on the frameworks implementation but on the implementation of the WebKit
engine.

A different situation is represented by the other two classes of frameworks:
in this case they do not rely on external components for rendering, therefore
they can improve their energy consumption by improving their implementation.700

The Interpreted Approach contains a real-time interpretation step. This soft-
ware layer increases the amount of CPU operations with respect to the native
approach, thus requiring more energy, but research can contribute to lower this
amount of CPU operations.

We consider the Cross-Compiled Approach the most promising one, so we705

suggest to use it for implementation of new frameworks. However, it is crucial
that the development of this kind of framework focus its attention on producing
application code that is efficient and with performances comparable to native
code. In particular, developers should pay special attention to the optimization
of events management. Otherwise, a “bad” implementation can waste the ad-710

vantage of this class of frameworks, as in the case of the C++ implementation
of MoSync. Instead, the Javascript implementation of MoSync shows that this
goal is achievable.

7. Conclusions

Market fragmentation due to the variety of existing mobile devices and to715

the availability of different operating systems have posed new important issues
in mobile applications development, since mobile applications should reach the
highest number of possible users.
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To overtake this problem, cross-platform frameworks, that let develop one
single application that is further deployed to each target mobile OS, are cur-720

rently under development and analysis.
The main contribution of this paper is the analysis of one of the most im-

portant aspect when dealing with mobile devices: energy consumption. In par-
ticular, we considered all the possible sensors of smartphone devices that can be
used to acquire information about the environment or the context of the user,725

and we analyzed how retrieving data from these sensors (and showing or not the
retrieved value on the User Interface) influences energy consumption depending
on the used framework. We defined test cases in order to assure the same test
conditions for each framework, i.e., screen luminosity, application background,
text size and colors, etc.730

Our results showed how the adoption of cross-platform frameworks as devel-
opment tools always implies an increase in energy consumption, even if the final
application is a real native application, i.e., using the Cross-Compiled Approach.
Moreover, we compared together frameworks with the aim of finding a final rank
to the current best approach to follow. Actually, the Cross-Compiled Approach,735

i.e., MoSync in our test, in particular using the Javascript implementation, if
available, is the one that lowers the increase of the amount of energy required
to acquire data from sensors and show them, i.e., to update the User Interface.

Unfortunately, the same approach using another programming language, i.e.,
MoSync using C++, has the worst performance when retrieving data from sen-740

sors (except for the compass, for which the performance are comparable to the
Hybrid approach).

Experiments also showed that is not possible to have a final and absolute
rank for all the considered framework, since the set of supported features and
sensors is not the same, and some frameworks are better optimized for a plat-745

form instead of the other one. Clearly, this is against the idea of cross-platform
development. Therefore, for those applications that consider energy consump-
tion as a big issue, at the time of writing, the native solution is better, or the
framework to use should be carefully considered. Again, to state that the imple-
mentation of an efficient cross-platform framework is not possible is incorrect,750

but the developers of these frameworks should also consider the energy con-
sumption issue, since it is very important and its current state-of-art is only at
the beginning. In this paper we gave some indications to improve the current
frameworks in term of power consumption.

Another important aspect which was highlighted by the experiments is that755

the update of the User Interface represents the most expensive task, and the
main cause of the increase in energy consumption. Moreover, the updating
frequency of data retrieved by sensors and their visualization heavily affects
energy consumption. Therefore, the developer has to take into consideration
very carefully these two aspects when dealing with mobile applications and, in760

particular, with data from sensors.
Finally, if the cross-platform framework is necessary, currently MoSync using

Javascript is the one that assures the consumption more similar (but still higher)
to the native solution.
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