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Abstract

In the framework of iterative regularization techniques for large-scale
linear ill-posed problems, this paper introduces a novel algorithm for
the choice of the regularization parameter when performing the Arnoldi-
Tikhonov method. Assuming that we can apply the discrepancy principle,
this new strategy can work without restrictions on the choice of the regu-
larization matrix. Moreover this method is also employed as a procedure
to detect the noise level whenever it is just overestimated. Numerical ex-
periments arising from the discretization of integral equations and image
restoration are presented.

1 Introduction

In this paper we consider the solution of ill-conditioned linear systems of equa-
tions

Ax = b, A ∈ RN×N , b ∈ RN , (1)

in which the matrix A is assumed to have singular values that rapidly decay and
cluster near zero. These kind of systems typically arise from the discretization
of linear ill-posed problem, such as Fredholm integral equations of the first kind
with a compact kernel; for this reason they are commonly referred to as linear
discrete ill-posed problems (see [5], Chapter 1, for a background).

While working with this class of problems, one commonly assumes that the
available right-hand side vector b is affected by noise, caused by measurement
or discretization errors. Therefore, throughout the paper we suppose that

b = b+ e,

where b represents the unknown noise-free right-hand side, and we denote by
x the solution of the error-free system Ax = b. We also assume that a fairly
accurate estimate of ε = ∥e∥ is known, where ∥ · ∥ denotes the Euclidean norm.

Because of the ill-conditioning of A and the presence of noise in b, some sort
of regularization is generally employed to find a meaningful approximation of
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x. In this framework, a popular and well-established regularization technique is
Tikhonov method, which consists in solving the minimization problem

min
x∈Rn

{
∥Ax− b∥2 + λ∥Lx∥2

}
, (2)

where λ > 0 is the regularization parameter and L ∈ R(N−p)×N is the regular-
ization matrix (see e.g. [3] and [5], Chapter 5, for a background). We denote the
solution of (2) by xλ. Common choices for L are the identity matrix IN (in this
case (2) is said to be in standard form) or scaled finite differences approxima-
tions of the first or the second order derivative (when L ̸= IN (2) is said to be in
general form). We remark that, especially when one has a good intuition of the
behavior of the solution x, a regularization matrix different from the identity
can considerably improve the quality of the approximation given by the solution
of (2). The ideal situation is when the features of the exact solution that one
wants to preserve belong to the null space of the matrix L, since L acts as a
penalizing filter (see [14] and the references therein for a deeper discussion).

The choice of λ is also crucial, since it weights the penalizing term and so
specifies the amount of regularization one wants to impose. Many techniques
have been developed to determine a suitable value for the regularizing param-
eter, usually based on the amount of knowledge of the error on b (again we
refer to [5], Chapter 7, for an exhaustive background; we also quote the recent
paper [15] for the state of the art). When a fairly accurate approximation of ε
is available (as in our case), a widely used method is the so-called discrepancy
principle. It prescribes to take, as regularization parameter, the value of λ that
solves the following equation

∥b−Axλ∥ = ηε, (3)

where η > 1 is a user-specified constant, typically very close to 1. The vector
b−Axλ is called discrepancy.

In this paper we solve (2) using an iterative scheme called Arnoldi-Tikhonov
(AT) method, first proposed in [2]. This method has proved to be particularly
efficient when dealing with large scale problems, as for instance the ones arising
from image restoration. Indeed, it is based on the projection of the original prob-
lem (2) onto Krylov subspaces of smaller dimensions computed by the Arnoldi
algorithm. However, for reasons closely related to the parameter choice strategy,
this method has been experimented mostly when (2) is in standard form [10];
only recently an extension which employs the generalized Krylov subspaces and
that therefore can deal with general form problems has been introduced in [14].

Here we mainly focus the attention on general form problems, but we adopt
a different approach from the one derived in [14], since we work with the usual
Krylov subspaces Km(A, b) = span{b, Ab, . . . , Am−1b} (or, if an approximate
solution x0 is available, with Km(A, b−Ax0)). We call this method Generalized
Arnoldi-Tikhonov (GAT) to avoid confusion with the standard implementation
of the AT method. The parameter choice strategy presented in this paper is
extremely simple and does not require the problem (2) to be in standard form.
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Moreover, this new algorithm can handle rectangular matrices L, which is an
evident advantage since in many applications this option is the most natural
one. Our basic idea is to use a linear approximation of the discrepancy

∥b−Axm∥ ≈ αm + λβm,

where xm is the mth approximation of the GAT method, and to solve with
respect to λ the corresponding equation

αm + λβm = ηε.

As we shall see, the value of αm in the above equation will be just the GM-
RES residual, whereas βm will be defined using the discrepancy of the previous
step. In this way, starting from an initial guess λ0, we will actually construct a
sequence of parameters λ1, λ2, ..., such that λm−1 will be used to compute xm

until the discrepancy principle (3) is satisfied. We will be able to demonstrate
that the the above technique is in fact a secant zero finder.

As we shall see, the procedure is extremely simple and does not require any
hypothesis on the regularization matrix L. For this reason, in the paper we also
consider the possibility of using the GAT method to approximate the noise level
ε whenever it is just overestimated by a quantity ε > ε. In a situation like this
the discrepancy principle generally yields poor results if the approximation of
ε is coarse. Anyway, our idea consists in restarting the GAT method, and to
use the observed discrepancy to improve the approximation of ε step by step.
The examples so far considered have demonstrated that this approach is really
effective, and the additional expense due to the restarts of the GAT method
does not heavily affect the total amout of work. This is due to the fact that the
GAT method is extremely fast whenever an initial approximation x0 is available.

The paper is organized as follows. In Section 2 we review the AT method
and we describe its generalized version, the GAT method. In Section 3 we
introduce the new technique for the choice of λ. In Section 4 we display the
results obtained performing common test problems, as well as some examples of
image restoration. In Section 5 we suggest an extension of the previous method
that allows to work even when the quantity ε is overestimated. Finally, in
Section 6, we propose some concluding remarks.

2 The Arnoldi-Tikhonov method

The Arnoldi-Tikhonov (AT) method has been introduced in [2] with the basic
aim of reducing the problem

min
x∈RN

{
∥Ax− b∥2 + λ∥Lx∥2

}
, (4)

in the case of L = IN , to a problem of much smaller dimension. The idea is to
project the matrix A onto the Krylov subspaces generated by A and the vector
b, i.e., Km(A, b) = span{b, Ab, . . . , Am−1b}, with m ≪ N . The method was
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even introduced to avoid the matrix-vector multiplication with AT required by
Lanczos type schemes (see e.g [1], [2], [8], [11]). For the construction of the
Krylov subspaces the AT method uses the Arnoldi algorithm (see [16], Section
6.3, for an exhaustive background), which yields the decomposition

AVm = Vm+1Hm+1, (5)

where Vm+1 = [v1, ..., vm+1] ∈ RN×(m+1) has orthonormal columns which span
the Krylov subspace Km(A, b) and v1 is defined as b/ ∥b∥. The matrix Hm+1 ∈
R(m+1)×m is an upper Hessenberg matrix. Denoting by hi,j the entries of Hm+1,
in exact arithmetics the Arnoldi process arrests whenever hm+1,m = 0, which
means Km+1(A, b) = Km(A, b).

The AT method searches for approximations belonging to Km(A, b). In this
sense, replacing x = Vmym (ym ∈ Rm) into (4) with L = IN , yields the following
reduced minimization problem

min
ym∈Rm

{∥∥Hm+1ym − V T
m+1b

∥∥2 + λ ∥ym∥2
}
, (6)

since V T
mVm = Im. Remembering that v1 = b/ ∥b∥ we also obtain

V T
m+1b = ∥b∥ e1, where e1 = (1, 0, ..., 0)

T ∈ Rm+1.

Looking at (6), we can say that the AT method can be regarded to as a reg-
ularized version of the GMRES. We remark that a variant of this method,
the so called Range Restricted Arnoldi-Tikhonov (RRAT) method, has been
proposed in [10]. The RRAT method consists in starting the Arnoldi process
with v1 = Ab/ ∥Ab∥, i.e. to work with the Krylov subspaces Km(A,Ab) =
span{Ab,A2b, ..., Amb}, which leads again to (6), but with a different Hm+1

and Vm+1. The basic aim of this variant, which in general can be applied to
many Krylov solver, is to reduce the noise contained in b, at the beginning,
considering the product Ab. For both methods (AT and RRAT) the solution of
(4) is then approximated by xm = Vmym.

The method considered in this paper is an extension of the AT method
in order to work with a general regularization operator L ̸= IN and with an
arbitrary starting vector x0. We consider the minimization problem

min
x∈RN

{
∥Ax− b∥2 + λ ∥L(x− x0)∥2

}
, (7)

which is a slight modification of (4) that allows to incorporate an initial approx-
imation x0 of the exact solution (eventually, if x0 is not available, we consider
x0 = 0 and we definitely solve (4)). We search for approximations of the type

xm = x0 + Vmym, (8)

where Vm ∈ RN×m is defined as in (5), except that now its columns form
an orthonormal basis of the Krylov subspace Km(A, r0), where r0 = b − Ax0.
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Substituting (8) into (7) we obtain the reduced minimization problem

min
ym∈Rm

{
∥AVmym − r0∥2 + λ ∥LVmym∥2

}
= min

ym∈Rm

{
∥Hm+1ym − ∥r0∥ e1∥2 + λ ∥LVmym∥2

}
,

which can be rewritten as the following least square problem

min
ym∈Rm

∥∥∥∥( Hm+1√
λLVm

)
ym −

(
∥r0∥ e1

0

)∥∥∥∥2 . (9)

In the sequel we will refer to the above reduced minimization problem as Gen-
eralized Arnoldi-Tikhonov (GAT) method.

We note that the problem (9) has a coefficient matrix of dimension [(m +
1)+(N−p)]×m, since, in general, L ∈ R(N−p)×N . At a first glance, this formu-
lation could seem computationally disadvantageous, if compared to (6), where
the matrix LVm is replaced by the identity matrix of order m and the coefficient
matrix of the corresponding least square problem has dimension (2m+ 1)×m.
However, we remark that the GAT method can deal with arbitrary regulariza-
tion matrices so that this drawback is usually balanced by the positive effect
that a suitable L can have on noisy problems. Furthermore, it is very important
to observe that the GAT method and, in general, each Krylov solver based on
the construction of the Krylov subspaces Km(A, b), is generally very fast for
discrete ill-posed problems, and hence the number of columns of the matrix in
(9) is very small; therefore this computational inconvenience does not affect the
overall performance of the strategy proposed, as revealed by many numerical
experiments. Of course, with the word “fast” we just mean that the approxima-
tions rapidly achieve the best attainable accuracy since for this kind of problems
an iterative solver typically exhibits semiconvergence or, at best, stagnates.

3 The parameter selection strategy

As already said in the Introduction, we assume to know ε = ∥b− b∥. Under this
hypothesis, it turns out that a successful strategy to define a suitable regular-
ization parameter, as well as a stopping criterium, is the discrepancy principle
(3) adapted to the iterative setting of the AT (or GAT) method. At each it-
eration we can define the function ϕm(λ) = ∥b−Axm,λ∥ and we say that the
discrepancy principle is satisfied as soon as

ϕm(λ) ≤ ηε,

where η ' 1. We remark that if we rather know the norm of the relative amount
of noise ε̃ = ∥e∥/∥b∥, then the discrepancy principle reads

ϕm(λ) = ηε̃∥b∥.

The quantity ε̃ is commonly referred to as noise level.
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For the GAT method in which the approximations are of the form xm,λ =
x0 + Vmym,λ ∈ x0 + Km(A, r0), where ym,λ solves (9), the discrepancy can be
rewritten as

∥b−Axm,λ∥ = ∥r0 −AVmym,λ∥ = ∥c−Hm+1ym,λ∥, (10)

where c = V T
m+1r0 = ∥r0∥e1 ∈ Rm+1. Since ym,λ solves the normal equation

(HT
m+1Hm+1 + λV T

mLTLVm)ym,λ = HT
m+1c,

associated to the least square problem (9), by (10) we obtain

ϕm(λ) =
∥∥Hm+1(H

T
m+1Hm+1 + λV T

mLTLVm)−1HT
m+1c− c

∥∥ . (11)

Dealing with expressions of type (11) for the discrepancy, a standard ap-
proach consists in solving, with respect to λ, the nonlinear equation

ϕm(λ) = ηε. (12)

In [12] the authors present, for the case L = IN , a cubically convergent zero
finder which involves quantities that can be computed quite cheaply. The strat-
egy adopted in [10] is to first determine a suitable value of m (that assures that
the equation (12) has a unique solution) and then apply the above mentioned
cubic zero finder. However the value of m initially determined may be too small
to guarantee a good approximation and usually one or two extra iterations are
performed to improve the quality of the solution.

Using the method that we are going to describe, suitable values for λ and
m are determined simultaneously. Our basic hypothesis is that the discrepancy
can be well approximated by

ϕm(λ) ≈ αm + λβm, (13)

i.e., a linear approximation with respect to λ, in which αm, βm ∈ R can be easily
computed or approximated.

For what concerns αm, the Taylor expansion of (11) suggests to chose

αm = ϕm(0) =
∥∥Hm+1(H

T
m+1Hm+1)

−1HT
m+1c− c

∥∥ ,
which is just the norm of the residual of the GMRES, which can be evaluated
working in reduced dimension, independently of the choice of L. In accordance
with our notations, we denote by ym,0 the projected GMRES solution, i.e., the
solution of

min
y∈Rm

∥Hm+1y − c∥ . (14)

For what concerns βm, suppose that, at the step m, we have used the pa-
rameter λm−1 (computed at the previous step or, if m = 1, given by the user) to
compute ym,λm−1 , by solving (9) with λ = λm−1. Then we can easily compute
the corresponding discrepancy by (10)

ϕm(λm−1) =
∥∥c−Hm+1ym,λm−1

∥∥ , (15)
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and consequently, using the approximation (13), we obtain

βm ≈ ϕm(λm−1)− αm

λm−1
. (16)

To select λm for the next step of the Arnoldi algorithm we impose

ϕm+1(λm) = ηε, (17)

and force the approximation

ϕm+1(λm) ≈ αm + λmβm. (18)

Hence by, (16) and (17), we define

λm =
ηε− αm

ϕm(λm−1)− αm
λm−1. (19)

The method (19) has a simple geometric interpretation which allows to see
it as a zero finder. Indeed, we know that ϕm(λ) is a monotonically increasing
function such that ϕm(0) = αm (cf. [10] Proposition 2.1). Hence, the linear
function

f(λ) = αm + λ

(
ϕm(λm−1)− αm

λm−1

)
,

interpolates ϕm(λ) at 0 and λm−1, and the new parameter λm is obtained by
solving f(λ) = ηε. Hence (19) is just a step of a secant method in which the
leftmost point is (0, αm). We remark that for small values of m instability can
occur: this is due to the fact that we may have αm > ηε. In this situation the
result of (19) may be negative and therefore we use

λm =

∣∣∣∣ ηε− αm

ϕm(λm−1)− αm

∣∣∣∣λm−1. (20)

Anyway, we know that, independently of the definition of λm−1, after some
iterations αm < ηε (for suitable values of η, compare also the arguments given
in [10]) so that (20) actually represents one step of a zero finder. In Figure 1 we
display what typically happens at the m-th iteration of the GAT method when
the condition αm < ηε is satisfied.

Numerically, formula (20) is very stable, in the sense that after the dis-
crepancy principle is satisfied, λm ≈ const. This is due to the fact that
both ϕm(λm−1) and αm = ϕm(0) stagnates. Indeed, since the approxima-
tions are computed minimizing the residual within a Krylov subspace, when-
ever Km+1(A, b) ≈ Km(A, b), the values of ϕm(λm−1) and αm = ϕm(0) tends
to remain almost constant because, in any case b − AVmym,λ ∈ Km+1(A, b),
even if the solutions of (9), ym,λm−1 , and the one of GMRES, ym,0, are badly
computed.
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Figure 1: Zero finder interpretation of formula (19).

Remark 1 It is interesting to observe that formula (19) is somehow related
to the standard techniques used for approximating the local error of a discrete
method for ordinary differential equations, whenever a stepsize selection strategy
is adopted. Indeed, for a method of order p, the local error at the instant tm in
the interval of integration is of the type

LEm = cmhp+1
m ,

where cm is an unknown constant depending on the method and the problem,
and hm is the stepsize previously selected. Since an approximation of LEm is
generally known, i.e., LEm ≈ LE∗

m, we have

cm ≈ LE∗
m

hp+1
m

.

In this way, to define the new stepsize hm+1, one imposes

LEm+1 = cm+1h
p+1
m+1 ≤ ϵ,

where ϵ is the prescribed tolerance; forcing cm+1 = cm yields the method

hm+1 =

(
ϵ

LE∗
m

) 1
p+1

hm.

In (19) the role of LEm and cm is played by ϕm(λm−1) and βm respectively.

While not considered in this paper, we remark that this parameter choice
technique can also be used together with the Range-Restricted approach [10]
and even in the case of Krylov methods based on the Lanczos unsymmetric
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process [2]. As already mentioned in the previous sections we again emphasize
the fact that the method just described can work without hypothesis on the reg-
ularization matrix L, and that essentially involves quantities that are strictly
connected to the projected problem. At each iteration we simply have to mon-
itor the value of ϕm(λ) for λ = 0 and λ = λm−1, so that the only additional
cost is due to the computation (in reduced dimension) of the GMRES residual,
attainable in O(m2) operations (if the QR update is not employed, otherwise in
just O(m) operations).

If compared to the other parameter choice strategies so far used in connection
with the AT method, we realize that the present one is intrinsically simpler and
cheaper. In fact, if at each iteration we want to apply the L-curve criterium to
the standard form reduced problem (6), as proposed in [2] where this algorithm
is referred to as Lm-curve method, we have to compute the SVD of Hm+1 in
order to solve the system (9) for many values of λ. Then we need to employ a
reliable algorithm to choose the point of maximum curvature, that sometimes
may even provide an unsatisfactory value for λ. On the other side, using the
method proposed in [10], once determined a suitable m, we have to apply a
convergent zero-finder to solve the nonlinear equation (12). The latter requires,
at each step, the value of the first and the second derivative of ϕm computed for
the λ determined at the previous step and to do this we have to solve two linear
systems of dimensionm. Actually, since in both cases all the extra computations
involve the reduced matrices, we also stress that the computational overload can
still be considered negligible. However, the generalization of these strategies to
the case of the GAT method is not straightforward: we believe that the most
accessible approach is to first transform the problem (4) into standard form
(by employing, e.g., the A-weighted pseudoinverse of L) and then apply the AT
method to the transformed problem. Anyway this approach is not as general
as the GAT method since, in order to obtain a square matrix associated to the
transformed problem, L must be square itself (as explained in [13]). Moreover,
this initial transformation affects the overall computational cost because the
operations are of course in full-dimension.

Below we present the algorithm used to implement the method.

Algorithm 2 Generalized Arnoldi-Tikhonov
Input: A, b, L, x0, λ0, ε, η
For m = 1, 2, ... until ∥b−Axm,λ∥ ≤ ηε

1. Update Vm, Hm+1 with the Arnoldi algorithm (5);

2. Solve (9) with λ = λm−1 and evaluate ϕm(λm−1) by (15);

3. Compute the GMRES solution and evaluate αm = ϕm(0);

4. Compute the new parameter λm by (20).
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4 Computed examples

To support the new method (20), that from now on we will call secant update,
we present some numerical experiments. In particular, the aim of the first set
of tests is to compare the performance of our formula with respect to the ones
proposed in [2], [10] and [14] as well as to show the results obtained applying
the new parameter setting strategy to both the standard form and general form
regularization. In all the examples we suppose to know the exact solution x and
the exact right-hand side vector is constructed taking b = Ax. The elements
of the noise vector e are normally distributed with zero mean and the standard
deviation is chosen such that ∥e∥/∥b∥ is equal to a prescribed level ε̃. In this
section we always take the initial guess x0 = 0. In the second set of experiments
we consider an application of the secant update method to a problem of denois-
ing and deblurring of images. All the computations have been executed using
Matlab 7.10 with 16 significant digits on a single processor computer Intel Core
i3-350M.

4.1 Example 1

We consider a problem coming from a first-kind Fredholm integral equation used
to model a one-dimensional image restoration process∫ α2

α1

K(s, t)f(t)dt = g(s), β1 ≤ s ≤ β2, (21)

where α1 = β1 = −π/2, α2 = β2 = π/2 and

K(s, t) = (cos(s) + cos(t))2
(
sin(u)

u

)2

, u = π(sin(s) + sin(t)),

f(t) = 2 exp(−6(t− 0.8)2) + exp(−2(t+ 0.5)2).

We use the Matlab code shaw.m from [4] in order to discretize (21) using 200
collocation points defined by ti = (i− 0.5)π/200, i = 1, . . . , 200 and to produce
a symmetric matrix A ∈ R200×200 and the solution x. The condition number of
A is around 1020. We will consider a noise level ε̃ = 10−3 and η = 1.001.

In order to present a straightforward comparison with the methods com-
monly used in connection with the AT method, in this first example we will
take L = I200. In this context, when we employ the Lm-curve criterium, we
stop at iteration m̃ if the norm of the discrepancy associated to the parameter
computed using the Lm̃-curve is below the known threshold ηε.

In Figure 2 we display the results obtained performing 30 tests (for each
test we defined a new perturbed right-hand side to lessen the dependence of the
results on the random components of e). Both the Lm-curve and the secant
update method determine a regularized solution which always belongs to the
Krylov space K8(A, b). However the new method is in every situation the more
stable one, since the relative error norms and the values of λ determined during

10



the last iteration are always comparable. The same does not hold for the Lm-
curve method, that on average produces approximated solutions of slightly worse
quality. We also show the norms of the relative error and the values of the
regularization parameter determined solving the nonlinear equation ϕ8(λ) = ηε
by Newton’s method.

0 5 10 15 20 25 30
10

−1.5

10
−1.3

10
−1.1

Relative Errors

0 5 10 15 20 25 30
10

−10

10
−5

Values of λ

Figure 2: The norms of the relative error (above) and the values of λ corre-
sponding to the last iteration (below) for each one of the 30 tests performed.
The asterisk denotes the secant update method, the circle denotes the Lm-curve
method and the diamond denotes the values obtained solving ϕ8(λ) = ηε.

In Figure 3 we plot the solution, corresponding to the test #8 reported in
Figure 2, computed using the Lm-curve criterium and our secant approach. We
can see that, employing Tikhonov regularization method in standard form, the
quality of the solution obtained using both methods are comparable, but the
one computed by the Lm-curve method shows instability around the solution.
This is due to the fact that this criterium allows a slight undersmoothing since it
typically selects values of λ smaller than the secant update method (cf. Figure
2).

In Figure 4 we compare the behavior of the Lm-curve method and the one of
our secant update at each iteration. The results correspond to the test #22 re-
ported in Figure 2. Since, in this example, the discrepancy principle is satisfied
after only 8 iterations, we decide to compute some extra iterations to evaluate
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Figure 3: Computed solutions of the test problem shaw. Exact solution (solid
line), regularized with the secant update (dash-dot line), regularized with the
Lm-curve method (dashed line).

the behavior of both methods after the stopping criterium is fulfilled. In partic-
ular, we can note that the secant approach exhibits a very stable progress since,
once the threshold is reached, the norm of the discrepancy stagnates and the
values of the regularization parameter λ remain almost constant.

In Figure 5 we display the values of the regularization parameter, at each
iteration, obtained varying the initial value λ0 given in input. We choose λ0 =
0.1, 0.5, 1, 10, 50. It is quite evident that the strategy is able to determine a
suitable value of λ independently of the choice of the initial guess. As already
said, at the beginning we just force λm to be positive by (20) and, after the very
first iterations, everything is handled by the condition αm < ηε. Whenever this
condition is satisfied, (20) is just a zero finder, so that the curves of λ overlap
after some steps.

We now consider the behavior of the GAT method with respect to the one
based on the generarized Krylov subspaces as described in [14], here denoted
by AT-GKS. To determine the regularization parameter when performing the
AT-GKS method we employ, at each iteration, the Newton’s method to solve
the discrepancy equation (12). We take the Fredholm integral equation (21)
with α1 = β1 = 0, α2 = π, β2 = π/2, and

K(s, t) = exp(s cos t), f(t) = sin t, g(s) = 2
sin s

s
.

Considering the discretization given by the code baart.m from [4], we generate a
matrix A ∈ R500×500 and the corresponding exact quantities x and b; we take a
noise level ε̃ = 10−2 and we set η = 1.1. In order to apply the AT-GKS method
we must take a square regularization matrix, so we use the following version of
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Figure 4: Comparison between the values of the norm of the discrepancy and
the values of the regularization parameter computed, at each iteration, by the
Lm-curve method (circles) and by the secant update (asterisks). The horizontal
line in the upper graphic represents the threshold ηε. The values corresponding
to the 8th iteration, the one at which both methods would stop, are marked
with a ticker asterisk.

a scaled finite differences approximation of the second derivative operator

L̂2 :=


−2 1
1 −2 1

. . .
. . .

. . .

−2 1

 ∈ RN×N . (22)

In Figure 6 we show the results obtained performing 25 iterations of the Arnoldi
algorithm and of the generalized Arnoldi process when applying the GAT and
the AT-GKS methods, respectively. To present further comparisons between
the two methods we consider a set of test problems, all taken from [4], and we
summarize the results in Table 1. For each problem we generate a matrix of
dimension 500, we take ε̃ = 10−2, η = 1.1 and L = L̂2.

Finally we want to briefly show the advantages of using the generalized
version of the Arnoldi-Tikhonov method with respect to the standard one. We
focus exclusively on the method proposed in this paper, that is, in both cases
we employ the secant update method to set the value of the regularization
parameter λ and of the number of iterations m. We then consider the test
problem gravity.m, again from [4], which is a discretization of an integral
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Figure 5: The value of the regularization parameter computed at each iteration
by the secant update method, varying the initial guess λ0.

equation as the one in (21) where now α1 = β1 = 0, α2 = β2 = 1 and

K(s, t) = 0.25
(
(0.25)2 + (s− t)2

)−3/2
, f(t) = sin(πt) + 0.5 sin(2πt).

We consider a system of size 400, the noise level is ε̃ = 10−2, we set η = 1.01
and we take, as regularization matrix for the generalized method, the rectan-
gular version of (22) of dimension 398× 400 obtained from L̂2 deleting its first
and last rows. To evaluate the progress of the relative error we decide to run
both methods for 20 iterations. We display the obtained results in Figure 7.
To perform all the iterations we take 0.18 seconds using the GAT method and
0.04 seconds using the AT method; this agrees with the fact that, employing a
regularization operator different from the identity, the computational demand
is heavier. However, looking at both the plots in Figure 7 we can see an undeni-
able improvement in the quality of the approximations obtained. In particular,
looking at the right plot, we can clearly see that, using the GAT method, we can
overcome all the spurious oscillations that affect the AT regularized solution.

4.2 Example 2

We now consider some examples coming from 2D image restoration problems.
In particular we will focus on the deblurring and denoising of grayscale images,
which consists in recovering the n×n original image X from an available blurred
and noisy one B (see [7] for a background). To describe these problems we
will adopt a linear model and therefore we write the unknown exact image as
x = vect(X) ∈ RN , N = n2. We will always consider a Gaussian Point-Spread
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Figure 6: Solution of baart. Left box: relative errors versus the dimension
of the Krylov subspaces considered for the new GAT method (asterisks) and
for the AT-GKS method (circles). Right box: the best regularized solution
computed by the two methods. More precisely we display the exact solution
(solid line) and the solutions regularized by the GAT (dash-dot line) and the
AT-GKS (dashed line) methods.

Function (PSF) defined by

hσ(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
,

and zero boundary conditions. This lead to a symmetric Toeplitz matrix given
by

A = (2πσ2)−1T ⊗ T ∈ RN×N ,

where T ∈ Rn×n is a symmetric banded Toeplitz matrix whose first row is a
vector v defined by

vj =

{
e−

(j−1)2

2σ2 for j = 1, . . . , q,

0 for j = q + 1, . . . , n.

The parameter q is the half-bandwidth of the matrix T , and the parameter
σ controls the shape of the PSF (the larger σ, the wider the function). The
boundary conditions are set to zero. We use Hansen’s function blur.m from
[6] to build the blurring matrix A. We consider a noise level ε̃ = 10−2 and, as
stated at the beginning of this section, we construct the corrupted image, in
vector form, as b = Ax+ e.

In this context, we will exclusively consider Tikhonov regularization in gen-
eral form. In the following we list the main regularization matrices that we have
employed. We display the matrices in rectangular form and we use the notation
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Test Method Time (sec) Minimum Relative error

baart AT-GKS 0.12 1.4202 · 10−2 (11)
GAT 0.01 9.0670 · 10−3 (7)

gravity AT-GKS 0.29 8.4911 · 10−3 (17)
GAT 0.03 6.2079 · 10−3 (16)

phillips AT-GKS 0.35 3.8747 · 10−2 (18)
GAT 0.02 3.0353 · 10−2 (11)

shaw AT-GKS 0.26 7.9675 · 10−2 (15)
GAT 0.01 6.9368 · 10−2 (8)

Table 1: Comparison of the results obtained performing the GAT method and
the AT-GKS method. In parenthesis we list the number of iterations performed
to attain the minimum relative error.

L̂ when we consider their square versions obtained by appending or prepend-
ing a suitable number of rows in such a way that the bidiagonal or tridiagonal
pattern of the original matrix is preserved.

L1 : =

 1 −1
. . .

. . .

1 −1

 ∈ R(N−1)×N , (23)

L1L : =

(
In ⊗ L1

L1 ⊗ In

)
∈ R2n(n−1)×N , (24)

L1M : = In ⊗ L̂1 + L̂1 ⊗ In ∈ RN×N , (25)

L2 : =

 1 −2 1
. . .

. . .
. . .

1 −2 1

 ∈ R(N−2)×N , (26)

L2L : = In ⊗ L̂2 + L̂2 ⊗ In ∈ RN×N . (27)

The operators (23) and (26) represent scaled finite difference approximations of
the first and the second derivative, respectively; the operator (24) is taken from
[9], the matrix (27) represents a discretization of the two dimensional Laplace
operator. We also introduce the matrix (25) that is the sum of the discretized
first derivatives in the vertical and horizontal direction.

Our first task is to compare the performance of the Lm-curve criterium and
of the new method. We consider the popular test image peppers.png, in its
original size 256 × 256 pixels. The corresponding linear system has dimension
65536. We corrupt the original image using a Gaussian blur whose parameter is
σ = 2.5; we set q = 6, ε̃ = 10−2 and we take L2 as regularization matrix. In order
to employ Hansen’s function l curve.m from [4] we have slightly modified the
function cgsvd.m, belonging to the same package, with the purpose of working
with the matrix L2Vk which has more rows than columns. In Figure 8 we can
examine the quality of the reconstruction obtained using both the Lm-curve
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Figure 7: Solution of gravity. Left frame: relative errors obtained at each
iteration running the GAT method (asterisks) and the standard AT method
(circles). Right frame: the regularized solutions computed when the stopping
criterium is satisfied by the two methods. More precisely we display the exact
solution (solid line) and the solutions regularized by the GAT (dash-dot line)
and the AT (dashed line, obtained at iteration ) methods.

criterium (box (c)) and the secant approach (box (d)). In Figure 9 we report the
history of the norm of the relative error and of the discrepancy for both methods.
We can see that the restored images are almost identical, even if the norm of the
relative error is equal to 7.88·10−2 if we use the Lm-curve method and 8.34·10−2

if we use our secant approach; the number of iterations is 9 in the first case,
8 in the second case. However, considering the running time, the difference
between the two approaches is more pronounced: using the Lm-curve criterium
we need 3.05 seconds to compute the solution, while the new method restores
the available image in 0.49 seconds. This gap is mainly due to the fact that,
using the Lm-curve method, at each step we have to evaluate the Generalized
Singular Value Decomposition (GSVD) of the matrix pair (Hk+1, L2Vk) and the
dimension of second matrix is the same of the unreduced problem.

We now focus exclusively on our method. We want to test the behavior
of the GAT method varying the regularization matrix. As a matter of fact the
corrupted image is always restored in less than a second and the results obtained
using different regularization matrices taken from the list (23)-(27) are very
similar. In particular, since the test image is smooth and lacks of highly definite
edges, the best result is obtained applying the second derivative operator L2. To
improve the quality of the restoration, once the stopping criterium is fulfilled at
a certain step with λ as regularization parameter, we try to carry on some extra
iterations with λ fixed. We will denote this approach with the abbreviation
Lt,ex, where t is one of the subscripts presented in (23)-(27) and ex denotes the
number of extra iterations performed.

In Table 2 we record the results obtained considering an underlying Gaussian
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Figure 8: Original image peppers.png (a), blurred and noisy image (b), re-
stored image with the Lm-curve criterium (c) and restored image with the
secant update method (d).

blur function with σ = 1.5. The results displayed in Table 3 are relative to
σ = 2.5. The parameter q is set equal to 6 and the noise level ε̃ is equal to 10−2

in both cases.
Finally we consider the performance of the new method applied to the

restoration of corrupted medical images. We take the test image mri.tif from
Matlab, of size 128×128 pixels, which represents a magnetic resonance image of
a section of the human brain. Contrary to the previous test image, the present
one is characterized by well marked edges. We again consider a Gaussian blur
with parameter σ = 1.5. The half-bandwidth of T is q = 6 and the noise level
is equal to 10−2. In Table 4 we report the results obtained changing the reg-
ularization operators and in Figure 10 we show the restored image obtained
employing the regularization matrix L1M and running the GAT algorithm for
5 extra iterations.
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Figure 9: Restoration of peppers.png. Comparison between the norm of the
relative error (above) and the norm of the discrepancy (below) obtained us-
ing the Lm-curve criterium (circles) and the secant update (asterisks). The
horizontal continuous line marks the threshold ηε.

5 Noise level detection

The Generalized Arnoldi-Tikhonov method used in connection with the param-
eter selection strategy presented in Section 3 can be successfully employed also
to estimate the noise level ε/

∥∥b∥∥ if it is not a-priori known. In a situation like
this, the discrepancy principle may yield poor results and other techniques such
as the L-curve criterium or the GCV method are generally used (here we again
quote [15] for a recent overview about the existing parameter choice strategies).

If we assume that that ε is overestimated by a quantity ε, we may expect
that applying the GAT method we can fully satisfy the discrepancy principle
even taking η = 1, that is,

ϕm(λm−1) < ε, (28)

for a given m. Applying the secant update method (20) for the definition of the
parameter λ, the discrepancy would then stabilize around ε, if the method is
not arrested (cf. Figure 4). Our idea is to restart it immediately after (28) is
fulfilled, working with the Krylov subspaces generated by A and b−Axm,λm−1 ,
where xm,λm−1 is the last approximation obtained. At the same time we define
ε := ϕm(λm−1) as the new approximation of the noise. We proceed until the
discrepancy is almost constant and we introduce a threshold parameter δ to
check this situation step-by-step. This idea has been implemented following the
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Reg. Matr. Relative Error Iterations Running time (sec)

IN 7.3930 · 10−2 4 0.21
L1 5.5585 · 10−2 6 0.34
L1L 5.5594 · 10−2 6 0.39
L1M 5.5665 · 10−2 6 0.31
L1M,4 5.0402 · 10−2 10 0.62
L2 5.2268 · 10−2 7 0.39
L2L 5.2423 · 10−2 7 0.40
L2L,4 5.0298 · 10−2 11 0.79

Table 2: Results of the restoration of peppers.png affected by a Gaussian blur
with σ = 1.5 and a noise level equal to 10−2. In the first column we list the
regularization matrices considered.

Reg. Matr. Relative Error Iterations Running time (sec)

IN 1.1268 · 10−1 6 0.23
L1 8.4488 · 10−2 8 0.48
L1L 8.4487 · 10−2 8 0.53
L1M 8.4446 · 10−2 8 0.47
L1M,3 7.6920 · 10−2 11 0.73
L2 8.3142 · 10−2 8 0.47
L2L 8.3742 · 10−2 8 0.47
L2L,3 7.6927 · 10−2 11 0.80

Table 3: Results of the restoration of peppers.png affected by a Gaussian blur
with σ = 2.5 and a noise level equal to 10−2. In the first column we list the
regularization matrices considered.

algorithm given below.

Algorithm 3 Restarted Generalized Arnoldi-Tikhonov
Input: A, b, L, λ(0), η, δ, and ε0 = ε > ε. Define x(0) = 0.
For k = 1, 2, ... until

∥εk − εk−1∥
∥εk−1∥

≤ δ. (29)

1. Run Algorithm 2 with x0 = x(k−1), ε = εk−1, λ0 = λ(k−1). Let x(k) be
the last approximation achieved, ϕ(k) the corresponding discrepancy norm,
and λ(k) the last parameter value;

2. Define εk := ϕ(k);

3. Define λ(k) = ϕ(k)

ϕ(k−1)λ
(k).

20



Reg. Matr. Relative Error Iterations Running time (sec)

IN 1.8615 · 10−1 6 0.07
L1 1.8459 · 10−1 6 0.10
L1L 1.8471 · 10−1 6 0.10
L1M 1.8434 · 10−1 6 0.08
L1M,5 1.7078 · 10−1 11 0.17
L2 1.7704 · 10−1 8 0.11
L2L 1.7700 · 10−1 8 0.11
L2L,5 1.6854 · 10−1 13 0.27

Table 4: Results of the restoration of mri.tif affected by a Gaussian blur with
σ = 1.5 and a noise level equal to 10−2.

We remark that Step 3 of the above algorithm is rather heuristic. Indeed,
Algorithm 2 does not provide a further update for λ whenever the discrepancy
principle is satisfied, since it is assumed to remain almost constant (cf. Figure 4
and 9). Anyway, in this situation we may expect that, improving the quality of
the noise estimate, we have ϕ(k) ≤ ϕ(k−1) because, by assumption, the noise is
overestimated; therefore the corresponding estimated optimal value for λ should
decrease accordingly, because with less noise we need less regularization. The
definition in Step 3 also ensures that λ(k) ≈ const whenever ϕ(k) ≈ ϕ(k−1) (cf.
(20)).

We test the procedure just described, with and without Step 3 of Algorithm
3, considering again the test image mri.tif and, as before, we build the blurring
matrix A with parameters σ = 1.5 and q = 6. Then we corrupt the blurred
image in order to obtain ε/ ∥b∥ = 10−3. At this point we assume to know
only an overestimate ε, such that ε/ ∥b∥ = 10−2. We employ the regularization
matrix L1M defined by (25). In Figure 11 we display the results. We can clearly
observe that, after 4 iterations, that is, after the first call of the GAT method,
the norm of the discrepancy lays below the overestimated threshold ε At this
point we allow the GAT method to restart immediately and to go on until the
approximation is satisfactory. The implementation with δ = 0.01, including
the last line of Algorithm 3, fulfils the condition (29) after 24 restarts with an
estimate ε24/ ∥b∥ = 1.03 · 10−3, while the version without it needs 56 restarts
to deliver the estimate ε56/ ∥b∥ = 1.05 · 10−3; in the first case the total running
time is 0.48 seconds, in the second case the total running time is 1.45 seconds.
In this example, after the first call, the discrepancy principle is always satisfied
after the first iteration. If we do not include the update described at Step 3, the
value of λ considered at each restart is equal to the one computed at the end of
the first call.

In Figure 12 and 13 we compare the quality of the reconstruction after the
first call (when the overestimated discrepancy principle is satisfied) and at the
end of the scheme using Step 3 of Algorithm 3.

The numerical experiments performed on various kind of discrete ill-posed
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Figure 10: Restoration of mri.tif using L1M,5. Original image (A), blurred
and noisy image (B), restored image (C).

problems has proved that this approach is really robust and fairly accurate. We
have not found examples in which the procedure failed. The method is restarted
many times until the discrepancy is almost constant and this constant is much
close to the real noise level.

We remark that generally each restart of the method allows to satisfy (28)
after the first step of the Arnoldi algorithm, and hence without an heavy extra
work. Anyway, since the discrepancy typically stagnates, one may even try to
employ a rational extrapolation to avoid too many restarts, and then apply
Algorithm 2 using the extrapolated value.

6 Conclusions

In this paper we have proposed an approximated version of the classical dis-
crepancy principle that can be easily coupled with the iterative scheme of the
Arnoldi-Tikhonov method, since it simultaneously determines the best value of
the regularization parameter λ and the dimension m of the reduced problem.
This technique is considerably fast and simpler than others commonly used,
since it only exploits quantities that are naturally related to the problem we
want to solve. The numerical experiments that we have performed so far show
that the results computed by our new algorithm are comparable, if not better,
to the results computed using the most established methods. Moreover, the ro-
bustness and the simplicity of the approach described allows to employ it even
as noise-level detector, as demonstrated experimentally in Section 5.

Therefore we strongly believe that the method described in this paper could
be successfully employed to regularize huge ill-posed linear problems coming
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Figure 11: Results of Algorithm 3 applied to the restoration of mri.tif with
overestimated noise level. In the first box we also plot two horizontal lines, which
represent the overestimated and the true noise level. In each box, the initial 4
iterations, corresponding to the first call of Algorithm 2, are highlighted using
a small circle. The continuous line represents the slower version of Algorithm 3
(without Step 3), the dashed line represents its quicker version (with Step 3).

from many applications, especially the ones concerning the deblurring and de-
noising of corrupted images.
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