Parameter selection strategies for the Arnoldi-Tikhonov method
S. Gazzola, P. Novati, and M. R. Russo

Department of Mathematics, University of Padua, Italy

Introduction

Consider a linear system

\[Ax = b, \quad A \in \mathbb{R}^{m \times n}. \]

We assume that

- the singular values \(s_i \geq s_{i+1} \geq \cdots \geq s_{n} > 0 \) of \(A \) quickly decay and cluster at zero;
- the available right-hand side is affected by additive Gaussian white noise, i.e., \(b = b^0 + e \); and
- the Discrete Picard Condition (DPC) holds: \(\| R(A) \| \approx s_n \).

Problems like this arise in a variety of applications, especially solving inverse problems, i.e., when one wants to reconstruct the cause of an observed effect. Here, we focus on the case of \(A \) and the errors in \(b \); some sort of regularization should be employed in order to find a meaningful approximation of the exact solution \(x^0 \).

Arnoldi-Tikhonov regularization method

To regularize the available system we employ the well-established Tikhonov method that, in its general form, consists in solving the problem

\[\min_{\tilde{x} \in \mathbb{R}^n} \{ \| A \tilde{x} - b \|_2^2 + \lambda \| W \tilde{x} \|_2^2 \}, \]

where \(L \in \mathbb{R}^{m \times n} (P \leq N) \) is the regularization parameter and \(x_0 \in \mathbb{R}^n \) is an initial guess for the solution, in the special case \(L = I \) and \(\lambda = 0 \) the problem is said to be in standard form. The Arnoldi-Tikhonov (AT) method solves the regularized system by projecting it into a Krylov subspace

\[K_m(x_0, r_0) = \text{span} \{ r_0, Ar_0, \ldots, A^{m-1}r_0 \}, \quad \text{with } r_0 = b - Ax_0, \quad m \in \mathbb{N}, \]

of increasing dimension. An orthonormal basis for \(K_m(x_0, r_0) \) is computed by the Arnoldi algorithm that, in matrix form, leads to the decomposition

\[AV_m = W_mR_m, \]

where \(W_m = [w_0, w_1, \ldots, w_{m-1}] \in \mathbb{R}^{m \times m} \) has orthonormal columns that span \(K_m(x_0, r_0) \). The matrix \(R_m \in \mathbb{R}^{m \times m} \) is upper Hessenberg. Imposing the regularized solution \(x_m \) to belong to the space \(\text{span} \{ r_0, \ldots, A^{m+1}r_0 \} \), i.e., substituting \(x_m = x + W_m \tilde{x} \) into the regularized problem, we obtain

\[x_m = \arg\min_{\tilde{x} \in \mathbb{R}^n} \left\{ \| R_m \tilde{x} \|_2 + \lambda \| W_m \tilde{x} \|_2 \right\}. \]

Numerical experiments

Theoretical estimates

Convergence of the Arnoldi algorithm

Theorem 1. Let us assume that \(A \) is severely ill-conditioned (i.e., \(\sigma_1(A) \approx 0 \)) and that \(\lambda^* \) satisfies the DPC. Then, if \(m^* \) is the starting vector of the Arnoldi process, we have

\[h_{m^*} = O\left(m^* \lambda^* \right). \]

Approximation of the SVD

Let us denote the SVD of \(\bar{A} = U \Sigma V^T \) by

\[A = U \sqrt{\lambda_0} \Sigma V^T, \]

where \(\lambda_0 \) is the norm of the GMRES residual and \(\beta_m = \lambda_0 \| W_m \|_2 \). Then

\[\lambda_i = \lambda_0 \left(\lambda_i - \lambda_{i-1} \right), \quad i = 1, \ldots, m. \]

Proposition 2. Let \(\left(\lambda_1, \sigma_1 \right), \ldots, \left(\lambda_m, \sigma_m \right) \) denote the residual of the GMRES applied to \(A = \sqrt{\lambda^*} \). one can express

\[\| R_m \|_2 \approx \sigma_m \| W_m \|_2 \| x_m \|_2. \]

Behavior of \(|\lambda_m| \)

Let us define the \(N \times m \) matrices \(U \Sigma_m = \text{diag}(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_m}) \) and \(\bar{V}^T = V_m^T \). \(\| \bar{V}^T \|_2 \) denotes the residual of the GMRES applied to \(A = \sqrt{\lambda^*} \). one can express

\[\| \bar{V}^T \|_2 \approx \| x_m \|_2. \]

Proposition 3. The norm of the GMRES residual satisfies

\[\| x_m \|_2^2 \leq \min_{\tilde{x} \in \mathbb{R}^n} \left\{ 1 + \left(\| x_0 \|_2 + \| x_1 \|_2 + \cdots + \| x_m \|_2 \right)^2 \right\}. \]

We choose the following stopping criterion

\[\| \bar{V}^T \|_2 - \| x_m \|_2 < 10^{-5}. \]

References

Image deburring & denoising

In this test problem, the blur is Gaussian symmetric and the corresponding matrix \(A \) is block Toeplitz with Toeplitz blocks. The size of the original image is 256 pixels, therefore \(A \in \mathbb{R}^{256 \times 256} \). As is generated by the function \(\text{blur} \), whose parameters are \(\alpha = 0.1, \sigma = 1 \). The regularization matrix employed is a discretization of the first derivative operator. The noise level is \(10^{-5} \).