
Nonlinear Evolution Equations and Linear Algebra
Cagliari (Sardinia, Italy), September 2-5, 2013

Parameter selection strategies
for the Arnoldi-Tikhonov method

S. GAZZOLA, P. NOVATI, AND M. R. RUSSO

Department of Mathematics, University of Padua, Italy

Introduction

Consider a linear system

Ax = b, A ∈ R
N×N .

We assume that

• the singular values σ1 ≥ σ2 ≥ · · · ≥ σN > 0 of A quickly
decay and cluster at zero;

• the available right-hand side is affected by additive
Gaussian white noise, i.e. b = bex + e = Axex + e;

• the Discrete Picard Condition (DPC) holds: |uT
i b

ex| ≃ σj .

Problems like this arise in a variety of applications, especially
solving inverse problems, i.e. when one wants to reconstruct
the cause of an observed effect.
Because of the bad conditioning of A and the errors in b, some
sort of regularization should be employed in order to find a
meaningful approximation of the exact solution xex.

Arnoldi-Tikhonov regularization method

To regularize the available system we employ the well-
established Tikhonov method that, in its general form, con-
sists in solving the problem

min
x∈RN

{
‖Ax− b‖22 + λ‖L(x− x0)‖22

}
,

where L ∈ R
P×N (P ≤ N) is the regularization matrix, λ > 0

is the regularization parameter and x0 ∈ R
N is an initial guess

for the solution; in the special case L = IN and x0 = 0 the
problem is said to be in standard form.
The Arnoldi-Tikhonov (AT) method solves the regularized
system by projecting it into a Krylov subspace

Km(A, r0) = span{r0, Ar0, . . . , Am−1r0}, r0 = b−Ax0, m ≪ N,

of increasing dimension. An orthonormal basis for Km(A, r0)
is computed by the Arnoldi algorithm that, in matrix form,
leads to the decomposition

AWm = Wm+1H̄m,

where Wm = [w1, . . . , wm] ∈ R
N×m has orthonormal columns

that span Km(A, r0) and H̄m ∈ R
(m+1)×m is upper Hessenberg.

Imposing the regularized solution xm,λ to belong to the space
x0 + Km(A, r0), i.e. substituting x = x0 + Wmy into the regu-
larized problem, we obtain

ym,λ = arg min
y∈Rm

∥∥∥∥
(

H̄m√
λmLm

)
y −

(
‖r0‖2e1

0

)∥∥∥∥
2

2

.

Remark 1: in this formulation, the original regularization ma-
trix is projected onto x0 +Km(A, r0), i.e. Lm = W T

mLWm.
Remark 2: this method is effective only if a proper regulariza-
tion parameter λ = λm is set at each iteration and a stopping
criterion is specified.

Generalized Cross Validation

The Generalized Cross Validation (GCV) is a popular ‖e‖2-
free, statistics-based strategy that prescribes to choose the reg-
ularization parameter minimizing the prediction errors for all
the data elements; the basic idea behind GCV is that a good
choice of the regularization parameter should accurately pre-
dict missing data. GCV has already been adopted in the
TSVD, Tikhonov, iterative, Lanczos-hybrid settings.
In the AT framework (assume x0 = 0), at each iteration m, one
chooses

λm = argmin
λ>0

Gm(λ), Gm(λ) :=

∥∥H̄mym,λ − b
∥∥2
2(

N −m+
∑m

i=1
λ

(

γ
(m)
i

)2
+λ

)2

where γ
(m)
i , i = 1, . . . , m are the generalized singular values of

(H̄m, Lm).
Remark 1: at the denominator of Gm(λ), the term (N − m)
accounts for the iterative feature of the AT method while the
sum accounts for the projected Tikhonov regularization.
Remark 2: sometimes Gm(λ) is pretty flat near the minimum;
in this case the GCV strategy may fail.
To decide when to stop the iterations one monitors the rela-
tive changes in the residuals associated to AT method and the
progression of the sequence {λm}m≥1.

Theoretical estimates

Convergence of the Arnoldi algorithm

Theorem 1. Let us assume that A is severely ill-conditioned (i.e.
σj = O(e−αj), α > 0) and that bex satisfies the DPC. Then, if bex is
the starting vector of the Arnoldi process, we have

hm+1,m = O
(
m3/2σm

)
.

Approximation of the SVD

Let us denote the SVD of H̄m ∈ R
(m+1)×m by

H̄m = Ūm+1Σ
(m)V̄ T

m .

Proposition 2. Let U
(m)
m+1 := Wm+1Ūm+1 and V

(m)
m := WmV̄m.

Then
∥∥∥A− U

(m)
m+1Σ

(m)V (m)T
m

∥∥∥
2
=
∥∥A(I −WmW

T
m)
∥∥
2
.

After some considerations involving AT and using some
heuristics, one obtains the bound

∥∥∥A− U
(m)
m+1Σ

(m)V (m)T
m

∥∥∥
2
≃
∥∥W T

m+1Awm+1

∥∥
2
.

Behavior of ‖rGMRES

m
‖2

Let us define the N ×m matrices Ṽ ex
m = [Aibex/‖Aibex‖2]i=0,...,m−1

and Ṽm = [Aib/‖Aib‖2]i=0,...,m−1. rexm denotes the residual of the
GMRES applied to Ax = bex; one can express

‖rexm ‖2 = ‖bex − Ṽm+1s
ex‖2, where sex ∈ R

m, eT1 s
ex = 0.

Proposition 3. The norm of the GMRES residual satisfies

‖rGMRES

m ‖2 ≤ η(m)‖e‖2, η(m) = 1 +
‖rexm ‖

2
+
∥∥∥
(
Ṽm+1 − Ṽ ex

m+1

)
sex
∥∥∥
2

‖e‖
2

.
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Numerical experiments

Left column: baart; right column: shaw (both from Regularization Tools).
Matrix size: N = 120. Noise level ‖e‖2/‖bex‖2 = 10−2.

Reconstructed solutions
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Sequence {λm}m≥1
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The discrepancy principle for the AT method

‖e‖2 known

The discrepancy principle prescribes to choose the regulariza-
tion parameter that solves the nonlinear equation

φm(λ) := ‖b− Axm,λ‖2 = η‖e‖2, η > 1 (≃ 1).

In the AT setting, at each step m, the following linear approx-
imation of the discrepancy function is considered

φm(λ) ≃ φm(0) + λβm,

where φm(0) is the norm of the GMRES residual and

βm =
φm(λm−1)− φm(0)

λm−1
.

The value λm−1 is the one considered at the previous iteration
(λ0 is given by the user, and the strategy is very stable w.r.t.
this initial choice).
To select the next parameter λm one solves the linear equation
φm(0) + λβm = η‖e‖2 w.r.t. λ and gets

λm =

∣∣∣∣
η‖e‖2 − φm(0)

φm(λm−1)− φm(0)

∣∣∣∣λm−1.

We stop when the norm of the discrepancy associated to the
current solution xm,λm−1 lies below the threshold η‖e‖2.
Remark 1: this approach is equivalent to performing just one
step of a secant zero finder at each iteration of the AT method;
therefore this strategy is called secant update method.
Remark 2: the secant update method acts simultaneously as a
parameter choice strategy and as a stopping criterion.
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‖e‖2 unknown (embedded technique)

Assuming that, after a few iterations, the norm of the GMRES
residual stabilizes around ‖e‖2, one can consider the follow-
ing parameter update strategy

λm =

∣∣∣∣
ηφm−1(0)− φm(0)

φm(λm−1)− φm(0)

∣∣∣∣λm−1.

In this case one stops the iterations monitoring the relative
changes in the GMRES residuals and in the discrepancies.

Image deblurring & denoising

In this test problem, the blur is Gaussian symmetric and the correspond-
ing matrix A is block Toeplitz with Toeplitz blocks. The size of the original
image is 256 pixels, therefore A ∈ R

65536×65536. A is generated by the func-
tion blur, whose parameters are band= 7, sigma= 2. The regularization
matrix employed is a discretization of the first derivative operator. The
noise level is 10−3.

Original image

Corrupted image

Restored by AT method equipped with GCV (10th iteration)

Restored by AT method equipped with ‖e‖2-free discrepancy principle (10th iteration)


