he parameter selection strategy

Examples

Noise level detect

Final remarks

Automatic parameter setting for Arnoldi-Tikhonov methods

Silvia Gazzola Joint work with Paolo Novati

Department of Mathematics University of Padova - Italy

3rd Dolomites Workshop on Constructive Approximation and Application

S.Gazzola (University of Padova)

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
Outline				

- The problem
- The (standard) Arnoldi-Tikhonov (AT) method
- The Generalized AT (GAT) method
- 2 The parameter selection strategy
 - Geometric interpretation

3 Examples

- Common test problems
- Image restoration

4 Noise level detection

- The algorithm
- Example

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
Outline				

- The problem
- The (standard) Arnoldi-Tikhonov (AT) method
- The Generalized AT (GAT) method
- 2 The parameter selection strategy
 - Geometric interpretation
- 3 Examples
 - Common test problems
 - Image restoration
- 4 Noise level detection
 - The algorithm
 - Example
- 5 Final remarks

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
Outline				

- The problem
- The (standard) Arnoldi-Tikhonov (AT) method
- The Generalized AT (GAT) method
- 2 The parameter selection strategy
 - Geometric interpretation
- 3 Examples
 - Common test problems
 - Image restoration

4 Noise level detection

- The algorithm
- Example

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
Outline				

- The problem
- The (standard) Arnoldi-Tikhonov (AT) method
- The Generalized AT (GAT) method

2 The parameter selection strategy

Geometric interpretation

3 Examples

- Common test problems
- Image restoration

4 Noise level detection

- The algorithm
- Example

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
Outline				

- The problem
- The (standard) Arnoldi-Tikhonov (AT) method
- The Generalized AT (GAT) method
- 2 The parameter selection strategy
 - Geometric interpretation

3 Examples

- Common test problems
- Image restoration

4 Noise level detection

- The algorithm
- Example

The Arnoldi-Tikhonov method • 000	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
The problem				

We consider linear systems of equations

$$Ax = b, \quad A \in \mathbb{R}^{N \times N}, \quad b \in \mathbb{R}^N,$$

in which the matrix A is assumed to have singular values that rapidly decay and cluster near zero¹. We assume that

the available right-hand side vector *b* is affected by noise, that is

$$b = \overline{b} + e,$$

where \overline{b} represents the unknown noise-free right-hand side; • the quantity $\varepsilon \approx ||e||$ is known;

¹HANSEN(1998), Rank-deficient and Discrete III-Posed Problems

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
The problem				

We consider linear systems of equations

$$Ax = b, \quad A \in \mathbb{R}^{N \times N}, \quad b \in \mathbb{R}^N,$$

in which the matrix A is assumed to have singular values that rapidly decay and cluster near zero¹. We assume that

• the available right-hand side vector b is affected by noise, that is

$$b = \overline{b} + e$$
,

where \overline{b} represents the unknown noise-free right-hand side; • the quantity $\varepsilon \approx ||e||$ is known;

¹HANSEN(1998), Rank-deficient and Discrete Ill-Posed Problems

The Arnoldi-Tikhonov method • 000	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
The problem				

We consider linear systems of equations

$$Ax = b, \quad A \in \mathbb{R}^{N \times N}, \quad b \in \mathbb{R}^N,$$

in which the matrix A is assumed to have singular values that rapidly decay and cluster near zero¹. We assume that

• the available right-hand side vector b is affected by noise, that is

$$b = \overline{b} + e,$$

where \overline{b} represents the unknown noise-free right-hand side; • the quantity $\varepsilon \approx ||e||$ is known;

¹HANSEN(1998), Rank-deficient and Discrete Ill-Posed Problems

The parameter selection strateg

Examples 00000

s Noise level de

etection Final

The Arnoldi-Tikhonov (AT) method

Given λ , L, x_0 consider the Tikhonov regularization

$$\min_{x\in\mathbb{R}^N} \left\{ \|Ax - b\|^2 + \lambda \|L(x - x_0)\|^2 \right\}.$$

For the special case of $L = I_N$ and $x_0 = 0$, the Arnoldi-Tikhonov method² is based on the reduction to a problem of much smaller dimension, projecting the matrix A onto the Krylov subspaces generated by A and the vector b,

$$\mathcal{K}_m(A,b) = \operatorname{span}\{b, Ab, \dots, A^{m-1}b\}, \quad m \ll N.$$

For the construction of the Krylov subspaces the AT method uses the Arnoldi algorithm.

 2 Calvetti-Morigi-Reichel-Sgallari(2000),

Tikhonov regularization and the L-curve for large discrete ill-posed problems

S.Gazzola (University of Padova)

The Arnoldi-Tikhonov methodThe parameter selectionOOO0000

Examples

Noise level detection

Final remarks

The Arnoldi-Tikhonov (AT) method

Given λ , L, x_0 consider the Tikhonov regularization

$$\min_{x\in\mathbb{R}^N} \left\{ \|Ax - b\|^2 + \lambda \|L(x - x_0)\|^2 \right\}.$$

For the special case of $L = I_N$ and $x_0 = 0$, the Arnoldi-Tikhonov method² is based on the reduction to a problem of much smaller dimension, projecting the matrix A onto the Krylov subspaces generated by A and the vector b,

$$\mathcal{K}_m(A,b) = \operatorname{span}\{b, Ab, \dots, A^{m-1}b\}, \quad m \ll N.$$

For the construction of the Krylov subspaces the AT method uses the Arnoldi algorithm.

²CALVETTI-MORIGI-REICHEL-SGALLARI(2000), Tikhonov regularization and the L-curve for large discrete ill-posed problems

S.Gazzola (University of Padova)

 The Arnoldi-Tikhonov method
 The parameter sele

 OOO
 OOOO

rategy Exam

Examples N

ise level detection

Final remarks

The Arnoldi-Tikhonov (AT) method

Given λ , L, x_0 consider the Tikhonov regularization

$$\min_{x\in\mathbb{R}^N} \left\{ \|Ax - b\|^2 + \lambda \|L(x - x_0)\|^2 \right\}.$$

For the special case of $L = I_N$ and $x_0 = 0$, the Arnoldi-Tikhonov method² is based on the reduction to a problem of much smaller dimension, projecting the matrix A onto the Krylov subspaces generated by A and the vector b,

$$\mathcal{K}_m(A,b) = \operatorname{span}\{b, Ab, \dots, A^{m-1}b\}, \quad m \ll N.$$

For the construction of the Krylov subspaces the AT method uses the Arnoldi algorithm.

Tikhonov regularization and the L-curve for large discrete ill-posed problems

S.Gazzola (University of Padova)

²Calvetti-Morigi-Reichel-Sgallari(2000),

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples	Noise level detection	Final remarks
0000				

 $AV_m = V_{m+1}\overline{H}_m,$

where

- $V_{m+1} = [v_1, ..., v_{m+1}] \in \mathbb{R}^{N \times (m+1)}$ has orthonormal columns which span the Krylov subspace $\mathcal{K}_{m+1}(A, b)$; v_1 is defined as b/||b||.
- $\blacksquare \overline{H}_m \in \mathbb{R}^{(m+1) \times m}$ is an upper Hessenberg matrix.

The AT method searches for approximations belonging to $\mathcal{K}_m(A, b)$. Taking $x = V_m y_m$ ($y_m \in \mathbb{R}^m$) we obtain the reduced minimization problem

$$\min_{\mathbf{y}_m \in \mathbb{R}^m} \left\{ \left\| \overline{H}_m \mathbf{y}_m - V_{m+1}^{\mathsf{T}} b \right\|^2 + \lambda \left\| \mathbf{y}_m \right\|^2 \right\}$$

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples	Noise level detection	Final remarks
0000				

 $AV_m = V_{m+1}\overline{H}_m,$

where

• $V_{m+1} = [v_1, ..., v_{m+1}] \in \mathbb{R}^{N \times (m+1)}$ has orthonormal columns which span the Krylov subspace $\mathcal{K}_{m+1}(A, b)$; v_1 is defined as b/||b||.

• $\overline{H}_m \in \mathbb{R}^{(m+1) \times m}$ is an upper Hessenberg matrix.

The AT method searches for approximations belonging to $\mathcal{K}_m(A, b)$. Taking $x = V_m y_m$ ($y_m \in \mathbb{R}^m$) we obtain the reduced minimization problem

$$\min_{\boldsymbol{y}_m \in \mathbb{R}^m} \left\{ \left\| \overline{H}_m \boldsymbol{y}_m - \boldsymbol{V}_{m+1}^{\mathsf{T}} \boldsymbol{b} \right\|^2 + \lambda \left\| \boldsymbol{y}_m \right\|^2 \right\}$$

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples	Noise level detection	Final remarks
0000				

 $AV_m = V_{m+1}\overline{H}_m,$

where

• $V_{m+1} = [v_1, ..., v_{m+1}] \in \mathbb{R}^{N \times (m+1)}$ has orthonormal columns which span the Krylov subspace $\mathcal{K}_{m+1}(A, b)$; v_1 is defined as b/||b||.

• $\overline{H}_m \in \mathbb{R}^{(m+1) \times m}$ is an upper Hessenberg matrix.

The AT method searches for approximations belonging to $\mathcal{K}_m(A, b)$. Taking $x = V_m y_m$ ($y_m \in \mathbb{R}^m$) we obtain the reduced minimization problem

$$\min_{\boldsymbol{y}_m \in \mathbb{R}^m} \left\{ \left\| \overline{H}_m \boldsymbol{y}_m - \boldsymbol{V}_{m+1}^{\mathsf{T}} \boldsymbol{b} \right\|^2 + \lambda \left\| \boldsymbol{y}_m \right\|^2 \right\}$$

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples	Noise level detection	Final remarks
0000				

 $AV_m = V_{m+1}\overline{H}_m,$

where

• $V_{m+1} = [v_1, ..., v_{m+1}] \in \mathbb{R}^{N \times (m+1)}$ has orthonormal columns which span the Krylov subspace $\mathcal{K}_{m+1}(A, b)$; v_1 is defined as b/||b||.

• $\overline{H}_m \in \mathbb{R}^{(m+1) \times m}$ is an upper Hessenberg matrix.

The AT method searches for approximations belonging to $\mathcal{K}_m(A, b)$. Taking $x = V_m y_m$ ($y_m \in \mathbb{R}^m$) we obtain the reduced minimization problem

$$\min_{y_m \in \mathbb{R}^m} \left\{ \left\| \overline{H}_m y_m - V_{m+1}^T b \right\|^2 + \lambda \left\| y_m \right\|^2 \right\}$$

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples	Noise level detection	Final remarks
0000				

 $AV_m = V_{m+1}\overline{H}_m,$

where

• $V_{m+1} = [v_1, ..., v_{m+1}] \in \mathbb{R}^{N \times (m+1)}$ has orthonormal columns which span the Krylov subspace $\mathcal{K}_{m+1}(A, b)$; v_1 is defined as b/||b||.

• $\overline{H}_m \in \mathbb{R}^{(m+1) \times m}$ is an upper Hessenberg matrix.

The AT method searches for approximations belonging to $\mathcal{K}_m(A, b)$. Taking $x = V_m y_m$ ($y_m \in \mathbb{R}^m$) we obtain the reduced minimization problem

$$\min_{\mathbf{y}_m \in \mathbb{R}^m} \left\{ \left\| \overline{H}_m \mathbf{y}_m - V_{m+1}^{\mathsf{T}} b \right\|^2 + \lambda \left\| \mathbf{y}_m \right\|^2 \right\}.$$

The Generalized Arnoldi-Tikhonov (GAT) method

Extension of the AT method in order to work with a general regularization operator $L \neq I_N$ and with an arbitrary starting vector x_0 .

Starting from

$$\min_{x \in \mathbb{R}^{N}} \left\{ \|Ax - b\|^{2} + \lambda \|L(x - x_{0})\|^{2} \right\},\$$

we search for approximations of the type

$$x_m = x_0 + V_m y_m,$$

where the columns of $V_m \in \mathbb{R}^{N \times m}$ span the Krylov subspace $\mathcal{K}_m(A, r_0)$, where $r_0 = b - Ax_0$.

We obtain the reduced minimization problem

$$\min_{\substack{y_m \in \mathbb{R}^m}} \left\{ \|AV_m y_m - r_0\|^2 + \lambda \|LV_m y_m\|^2 \right\}$$
$$= \min_{\substack{y_m \in \mathbb{R}^m}} \left\{ \|\overline{H}_m y_m - \|r_0\| e_1 \|^2 + \lambda \|LV_m y_m\|^2 \right\}$$
$$= \min_{\substack{y_m \in \mathbb{R}^m}} \left\| \left(\frac{\overline{H}_m}{\sqrt{\lambda}LV_m} \right) y_m - \left(\frac{\|r_0\| e_1}{0} \right) \right\|^2.$$

The parameter selection strategy

The Generalized Arnoldi-Tikhonov (GAT) method

Extension of the AT method in order to work with a general regularization operator $L \neq I_N$ and with an arbitrary starting vector x_0 . Starting from

$$\min_{x\in\mathbb{R}^N}\left\{\left\|Ax-b\right\|^2+\lambda\left\|L(x-x_0)\right\|^2\right\},\,$$

we search for approximations of the type

$$x_m = x_0 + V_m y_m,$$

where the columns of $V_m \in \mathbb{R}^{N \times m}$ span the Krylov subspace $\mathcal{K}_m(A, r_0)$, where $r_0 = b - Ax_0$.

We obtain the reduced minimization problem

$$\min_{\substack{y_m \in \mathbb{R}^m}} \left\{ \|AV_m y_m - r_0\|^2 + \lambda \|LV_m y_m\|^2 \right\}$$
$$= \min_{\substack{y_m \in \mathbb{R}^m}} \left\{ \|\overline{H}_m y_m - \|r_0\| e_1 \|^2 + \lambda \|LV_m y_m\|^2 \right\}$$
$$= \min_{\substack{y_m \in \mathbb{R}^m}} \left\| \left(\frac{\overline{H}_m}{\sqrt{\lambda}LV_m} \right) y_m - \left(\frac{\|r_0\| e_1}{0} \right) \right\|^2.$$

The Generalized Arnoldi-Tikhonov (GAT) method

Extension of the AT method in order to work with a general regularization operator $L \neq I_N$ and with an arbitrary starting vector x_0 . Starting from

$$\min_{x\in\mathbb{R}^N}\left\{\left\|Ax-b\right\|^2+\lambda\left\|L(x-x_0)\right\|^2\right\},\,$$

we search for approximations of the type

$$x_m = x_0 + V_m y_m,$$

where the columns of $V_m \in \mathbb{R}^{N \times m}$ span the Krylov subspace $\mathcal{K}_m(A, r_0)$, where $r_0 = b - Ax_0$.

We obtain the reduced minimization problem

$$\min_{\substack{y_m \in \mathbb{R}^m \\ y_m \in \mathbb{R}^m }} \left\{ \|AV_m y_m - r_0\|^2 + \lambda \|LV_m y_m\|^2 \right\}$$

$$= \min_{\substack{y_m \in \mathbb{R}^m \\ y_m \in \mathbb{R}^m }} \left\{ \|\overline{H}_m y_m - \|r_0\| e_1 \|^2 + \lambda \|LV_m y_m\|^2 \right\}$$

$$= \min_{\substack{y_m \in \mathbb{R}^m \\ \sqrt{\lambda}LV_m }} y_m - \left(\begin{array}{c} \|r_0\| e_1 \\ 0 \end{array} \right) \right\|^2.$$

The parameter selection strategy

The discrepancy principle is satisfied as soon as

$$\phi_m(\lambda) := \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}_{m,\lambda}\| \leq \eta \varepsilon, \quad \eta \gtrsim 1.$$

For the GAT method the approximations are $x_{m,\lambda} = x_0 + V_m y_{m,\lambda}$ and the discrepancy can be rewritten as

$$\|b - Ax_{m,\lambda}\| = \|r_0 - AV_m y_{m,\lambda}\| = \|c - \overline{H}_m y_{m,\lambda}\|,$$

where $c = V_{m+1}^T r_0 = ||r_0||e_1 \in \mathbb{R}^{m+1}$. Since $y_{m,\lambda}$ solves the normal equation

$$(\overline{H}_m^T \overline{H}_m + \lambda V_m^T L^T L V_m) y_{m,\lambda} = \overline{H}_m^T c,$$

we obtain

$$\phi_m(\lambda) = \left\| \overline{H}_m(\overline{H}_m^T \overline{H}_m + \lambda V_m^T L^T L V_m)^{-1} \overline{H}_m^T c - c \right\|.$$

The parameter selection strategy

The discrepancy principle is satisfied as soon as

$$\phi_m(\lambda) := \| b - A x_{m,\lambda} \| \le \eta \varepsilon, \quad \eta \gtrsim 1.$$

For the GAT method the approximations are $x_{m,\lambda} = x_0 + V_m y_{m,\lambda}$ and the discrepancy can be rewritten as

$$\|b - Ax_{m,\lambda}\| = \|r_0 - AV_m y_{m,\lambda}\| = \|c - \overline{H}_m y_{m,\lambda}\|,$$

where $c = V_{m+1}^T r_0 = ||r_0||e_1 \in \mathbb{R}^{m+1}$. Since $y_{m,\lambda}$ solves the normal equation

$$(\overline{H}_m^T \overline{H}_m + \lambda V_m^T L^T L V_m) y_{m,\lambda} = \overline{H}_m^T c,$$

we obtain

$$\phi_m(\lambda) = \left\| \overline{H}_m(\overline{H}_m^T \overline{H}_m + \lambda V_m^T L^T L V_m)^{-1} \overline{H}_m^T c - c \right\|.$$

The parameter selection strategy

The discrepancy principle is satisfied as soon as

$$\phi_m(\lambda) := \| b - A x_{m,\lambda} \| \le \eta \varepsilon, \quad \eta \gtrsim 1.$$

For the GAT method the approximations are $x_{m,\lambda} = x_0 + V_m y_{m,\lambda}$ and the discrepancy can be rewritten as

$$\|b - Ax_{m,\lambda}\| = \|r_0 - AV_m y_{m,\lambda}\| = \|c - \overline{H}_m y_{m,\lambda}\|,$$

where $c = V_{m+1}^T r_0 = ||r_0||e_1 \in \mathbb{R}^{m+1}$. Since $y_{m,\lambda}$ solves the normal equation

$$(\overline{H}_m^T \overline{H}_m + \lambda V_m^T L^T L V_m) y_{m,\lambda} = \overline{H}_m^T c,$$

we obtain

$$\phi_m(\lambda) = \left\| \overline{H}_m(\overline{H}_m^T \overline{H}_m + \lambda V_m^T L^T L V_m)^{-1} \overline{H}_m^T c - c \right\|.$$

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples	Noise level detection	Final remarks
0000	000			

■ Standard approach^{3 4}:

solve with respect to λ the nonlinear equation

 $\phi_m(\lambda) = \eta \varepsilon.$

New approach:

Basic hypothesis: the discrepancy can be well approximated by

 $\phi_m(\lambda) \approx \alpha_m + \lambda \beta_m$

in which $\alpha_m, \beta_m \in \mathbb{R}$ can be easily computed.

Definition of

 $lpha_m$. The Taylor expansion of $\phi_m(\lambda)$ suggests to chose

$$\alpha_m = \phi_m(0) = \left\| \overline{H}_m(\overline{H}_m^{\mathsf{T}}\overline{H}_m)^{-1}\overline{H}_m^{\mathsf{T}}c - c \right\|,$$

which is just the residual of the GMRES (computed working in reduced dimension).

³REICHEL-SHYSHKOV(2008), *A new zero-finder for Tikhonov regularization.* ⁴LEWIS-REICHEL(2009), *Arnoldi-Tikhonov regularization methods*.

S.Gazzola (University of Padova)

The Arnoldi-Tikhonov method The p	parameter selection strategy Exam	ples Noise level detection Final remarks
0000 0000	0000	0 0000

Standard approach³ ⁴:

solve with respect to λ the nonlinear equation

 $\phi_m(\lambda) = \eta \varepsilon.$

New approach:

Basic hypothesis: the discrepancy can be well approximated by

 $\phi_m(\lambda) \approx \alpha_m + \lambda \beta_m$

in which $\alpha_m, \beta_m \in \mathbb{R}$ can be easily computed.

Definition of

 $lpha_m$. The Taylor expansion of $\phi_m(\lambda)$ suggests to chose

$$\alpha_m = \phi_m(0) = \left\| \overline{H}_m (\overline{H}_m^T \overline{H}_m)^{-1} \overline{H}_m^T c - c \right\|,$$

which is just the residual of the GMRES (computed working in reduced dimension).

³REICHEL-SHYSHKOV(2008), *A new zero-finder for Tikhonov regularization*. ⁴LEWIS-REICHEL(2009), *Arnoldi-Tikhonov regularization methods*.

S.Gazzola (University of Padova)

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples	Noise level detection	Final remarks
0000	000			

Standard approach³ ⁴: solve with respect to λ the nonlinear equation

 $\phi_m(\lambda) = \eta \varepsilon.$

New approach:

Basic hypothesis: the discrepancy can be well approximated by

 $\phi_m(\lambda) \approx \alpha_m + \lambda \beta_m$

in which $\alpha_m, \beta_m \in \mathbb{R}$ can be easily computed.

Definition of

 α_m . The Taylor expansion of $\phi_m(\lambda)$ suggests to chose

$$\alpha_m = \phi_m(0) = \left\| \overline{H}_m (\overline{H}_m^{\mathsf{T}} \overline{H}_m)^{-1} \overline{H}_m^{\mathsf{T}} c - c \right\|,$$

which is just the residual of the GMRES (computed working in reduced dimension).

³REICHEL-SHYSHKOV(2008), *A new zero-finder for Tikhonov regularization*. ⁴LEWIS-REICHEL(2009), *Arnoldi-Tikhonov regularization methods*.

S.Gazzola (University of Padova)

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples	Noise level detection	Final remarks
0000	000			

Standard approach³ ⁴: solve with respect to λ the nonlinear equation

 $\phi_m(\lambda) = \eta \varepsilon.$

New approach:

Basic hypothesis: the discrepancy can be well approximated by

 $\phi_m(\lambda) \approx \alpha_m + \lambda \beta_m$

in which $\alpha_m, \beta_m \in \mathbb{R}$ can be easily computed.

Definition of

 $lpha_m$. The Taylor expansion of $\phi_m(\lambda)$ suggests to chose

$$\alpha_m = \phi_m(0) = \left\| \overline{H}_m (\overline{H}_m^T \overline{H}_m)^{-1} \overline{H}_m^T c - c \right\|,$$

which is just the residual of the GMRES (computed working in reduced dimension).

³REICHEL-SHYSHKOV(2008), *A new zero-finder for Tikhonov regularization*. ⁴LEWIS-REICHEL(2009), *Arnoldi-Tikhonov regularization methods*.

S.Gazzola (University of Padova)

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples	Noise level detection	Final remarks
0000	0000	00000		

Standard approach³ ⁴:

solve with respect to λ the nonlinear equation

 $\phi_m(\lambda) = \eta \varepsilon.$

New approach:

Basic hypothesis: the discrepancy can be well approximated by

 $\phi_m(\lambda) \approx \alpha_m + \lambda \beta_m$

in which $\alpha_m, \beta_m \in \mathbb{R}$ can be easily computed.

Definition of

 $lpha_m$. The Taylor expansion of $\phi_m(\lambda)$ suggests to chose

$$\alpha_m = \phi_m(0) = \left\| \overline{H}_m (\overline{H}_m^T \overline{H}_m)^{-1} \overline{H}_m^T c - c \right\|,$$

which is just the residual of the GMRES (computed working in reduced dimension).

³REICHEL-SHYSHKOV(2008), *A new zero-finder for Tikhonov regularization*. ⁴LEWIS-REICHEL(2009), *Arnoldi-Tikhonov regularization methods*.

S.Gazzola (University of Padova)

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples	Noise level detection	Final remarks
0000	0000			

■ Standard approach³ ⁴:

solve with respect to λ the nonlinear equation

 $\phi_m(\lambda) = \eta \varepsilon.$

New approach:

Basic hypothesis: the discrepancy can be well approximated by

 $\phi_m(\lambda) \approx \alpha_m + \lambda \beta_m$

in which $\alpha_m, \beta_m \in \mathbb{R}$ can be easily computed.

Definition of

 α_m . The Taylor expansion of $\phi_m(\lambda)$ suggests to chose

$$\alpha_m = \phi_m(\mathbf{0}) = \left\| \overline{H}_m (\overline{H}_m^T \overline{H}_m)^{-1} \overline{H}_m^T c - c \right\|,$$

which is just the residual of the GMRES (computed working in reduced dimension).

³REICHEL-SHYSHKOV(2008), *A new zero-finder for Tikhonov regularization*. ⁴LEWIS-REICHEL(2009), *Arnoldi-Tikhonov regularization methods*.

S.Gazzola (University of Padova)

Arnoldi-Tikhonov methods

DWCAA 2012 8 / 20

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples	Noise level detection	Final remarks
	0000			

 β_m . Suppose that, at step m, we have used the parameter λ_{m-1} (computed at the previous step or, if m = 1, given by the user) to compute $y_{m,\lambda_{m-1}}$, by solving the reduced minimization, and the corresponding discrepancy

$$\phi_m(\lambda_{m-1}) = \left\| c - \overline{H}_m y_{m,\lambda_{m-1}} \right\|.$$

Using the linear approximation, we obtain

$$\beta_m \approx \frac{\phi_m(\lambda_{m-1}) - \alpha_m}{\lambda_{m-1}}.$$

To select λ_m for the next step of the Arnoldi algorithm we impose $\phi_m(\lambda_m) = \eta \varepsilon$, and force the approximation

$$\phi_m(\lambda_m) \approx \alpha_m + \lambda_m \beta_m.$$

Hence we define

$$\lambda_m = \frac{\eta \varepsilon - \alpha_m}{\phi_m(\lambda_{m-1}) - \alpha_m} \lambda_{m-1}.$$

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples	Noise level detection	Final remarks
0000	0000			

 β_m . Suppose that, at step m, we have used the parameter λ_{m-1} (computed at the previous step or, if m = 1, given by the user) to compute $y_{m,\lambda_{m-1}}$, by solving the reduced minimization, and the corresponding discrepancy

$$\phi_m(\lambda_{m-1}) = \left\| c - \overline{H}_m y_{m,\lambda_{m-1}} \right\|.$$

Using the linear approximation, we obtain

$$\beta_m \approx \frac{\phi_m(\lambda_{m-1}) - \alpha_m}{\lambda_{m-1}}.$$

To select λ_m for the next step of the Arnoldi algorithm we impose $\phi_m(\lambda_m) = \eta \varepsilon$, and force the approximation

$$\phi_m(\lambda_m) \approx \alpha_m + \lambda_m \beta_m.$$

Hence we define

$$\lambda_m = \frac{\eta \varepsilon - \alpha_m}{\phi_m(\lambda_{m-1}) - \alpha_m} \lambda_{m-1}.$$

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples	Noise level detection	Final remarks
	0000			

 β_m . Suppose that, at step m, we have used the parameter λ_{m-1} (computed at the previous step or, if m = 1, given by the user) to compute $y_{m,\lambda_{m-1}}$, by solving the reduced minimization, and the corresponding discrepancy

$$\phi_m(\lambda_{m-1}) = \left\| c - \overline{H}_m y_{m,\lambda_{m-1}} \right\|.$$

Using the linear approximation, we obtain

$$\beta_m \approx \frac{\phi_m(\lambda_{m-1}) - \alpha_m}{\lambda_{m-1}}.$$

To select λ_m for the next step of the Arnoldi algorithm we impose $\phi_m(\lambda_m) = \eta \varepsilon$, and force the approximation

$$\phi_m(\lambda_m) \approx \alpha_m + \lambda_m \beta_m.$$

Hence we define

$$\lambda_m = \frac{\eta \varepsilon - \alpha_m}{\phi_m(\lambda_{m-1}) - \alpha_m} \lambda_{m-1}.$$

Tł	ie	Arn	olo	li-T	Tik	ho	nov	met	hod	

Examples

Noise level de

Geometric interpretation

We know that $\phi_m(\lambda)$ is a monotonically increasing function such that $\phi_m(0) = \alpha_m$. Hence, the linear function

$$f(\lambda) = \alpha_m + \lambda \left(\frac{\phi_m(\lambda_{m-1}) - \alpha_m}{\lambda_{m-1}} \right),$$

interpolates $\phi_m(\lambda)$ at 0 and λ_{m-1} , and the new parameter λ_m is obtained by solving $f(\lambda) = \eta \varepsilon$.

secant update method.

- The method is just a secant method in which the leftmost point is (0, α_m).
- In the very first steps we may have α_m > ηε. In this situation the result of the method may be negative and therefore we use

$$\Delta_m = \left| \frac{\eta \varepsilon - \alpha_m}{\phi_m(\lambda_{m-1}) - \alpha_m} \right| \lambda_{m-1}.$$

S.Gazzola (University of Padova)

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples •0000	Noise level detection	Final remarks
Examples				
Test problem shaw ³				

- $A \in \mathbb{R}^{200 \times 200}$ symmetric; cond(A) $\simeq 10^{20}$;
- noise level $\widetilde{\varepsilon} = \|e\| / \|\overline{b}\| = 10^{-3};$
- $L = I_{200};$
- $\eta = 1.001, \ \lambda_0 = 1$ $x_0 = 0$ (as always).
- * new method
- *L_m*-curve method

 5 HANSEN(1994), Regularization Tools

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples	Noise level detection	Final remarks
0000		0000		

Comparison of the L_m -curve method and of the secant update approach at each iteration.

Discrepancy principle satisfied after 8 iterations; we compute 8 extra iterations. The secant approach exhibits a very stable behavior.

o- is the L_m -curve method, *- is the new method.

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples	Noise level detection	Final remarks
0000		00000		

Stability with respect to the choice of the initial value λ_0 . We choose $\lambda_0 = 0.1, 0.5, 1, 10, 50$.

Remark: at the beginning we just force λ_m to be positive; after a few iterations (when $\alpha_m < \eta \varepsilon$) the new approach is a zero-finder.

0000	0000	00000	0000	
The Arnoldi-Tikhonov method	The parameter selection strategy	Examples	Noise level detection	Final remarks

Image restoration

- Test image: peppers.png, size 256×256 pixels; N = 65536.
- Noise level: $\tilde{\varepsilon} = 10^{-2}$.
- Gaussian blur: $\sigma = 2.5$, q = 6.
- Regularization matrix: $D_2 \in \mathbb{R}^{(N-2) \times N}$

o- L_m method
*- secant update

he parameter selection strategy

Examples

Noise level detection

Final remarks

(a)

(b)

(c)

(d)

(a) original image
(b) blurred and noisy image
(c) restored with L_m-curve approach
(d) restored with secant approach

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
Noise level dete	ction			

Therefore, applying the GAT method we can fully satisfy the discrepancy principle (even with $\eta = 1$),

 $\phi_m(\lambda_{m-1})<\overline{\varepsilon}.$

Applying the secant update method the discrepancy would then stabilize around $\overline{\varepsilon}$.

We define $\overline{\varepsilon} = \phi_m(\lambda_{m-1})$ as the new approximation of the noise. We restart the GAT method immediately with the Krylov subspace $\mathcal{K}_{\ell}(A, b - Ax_{m,\lambda_{m-1}})$, where $x_{m,\lambda_{m-1}}$ is the last approximation obtained. We proceed until the discrepancy is almost constant.

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
Noise level dete	ction			

Therefore, applying the GAT method we can fully satisfy the discrepancy principle (even with $\eta = 1$),

 $\phi_m(\lambda_{m-1})<\overline{\varepsilon}.$

Applying the secant update method the discrepancy would then stabilize around $\overline{\varepsilon}$.

We define $\overline{\varepsilon} = \phi_m(\lambda_{m-1})$ as the new approximation of the noise. We restart the GAT method immediately with the Krylov subspace $\mathcal{K}_{\ell}(A, b - Ax_{m,\lambda_{m-1}})$, where $x_{m,\lambda_{m-1}}$ is the last approximation obtained. We proceed until the discrepancy is almost constant.

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
Noise level dete	ction			

Therefore, applying the GAT method we can fully satisfy the discrepancy principle (even with $\eta = 1$),

 $\phi_m(\lambda_{m-1})<\overline{\varepsilon}.$

Applying the secant update method the discrepancy would then stabilize around $\overline{\varepsilon}$.

We define $\overline{\varepsilon} = \phi_m(\lambda_{m-1})$ as the new approximation of the noise. We restart the GAT method immediately with the Krylov subspace $\mathcal{K}_{\ell}(A, b - Ax_{m,\lambda_{m-1}})$, where $x_{m,\lambda_{m-1}}$ is the last approximation obtained. We proceed until the discrepancy is almost constant.

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
Noise level detection				

Therefore, applying the GAT method we can fully satisfy the discrepancy principle (even with $\eta = 1$),

 $\phi_m(\lambda_{m-1})<\overline{\varepsilon}.$

Applying the secant update method the discrepancy would then stabilize around $\overline{\varepsilon}$.

We define $\overline{\varepsilon} = \phi_m(\lambda_{m-1})$ as the new approximation of the noise. We restart the GAT method immediately with the Krylov subspace $\mathcal{K}_{\ell}(A, b - Ax_{m,\lambda_{m-1}})$, where $x_{m,\lambda_{m-1}}$ is the last approximation obtained. We proceed until the discrepancy is almost constant.

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
Noise level detection				

Therefore, applying the GAT method we can fully satisfy the discrepancy principle (even with $\eta = 1$),

 $\phi_m(\lambda_{m-1})<\overline{\varepsilon}.$

Applying the secant update method the discrepancy would then stabilize around $\overline{\varepsilon}$.

We define $\overline{\varepsilon} = \phi_m(\lambda_{m-1})$ as the new approximation of the noise. We restart the GAT method immediately with the Krylov subspace $\mathcal{K}_{\ell}(A, b - Ax_{m,\lambda_{m-1}})$, where $x_{m,\lambda_{m-1}}$ is the last approximation obtained. We proceed until the discrepancy is almost constant.

The Arnoldi-Tikhonov method	The parameter selection strategy 0000	Examples 00000	Noise level detection ○●○○	Final remarks
The algorithm				

 $\frac{\|\varepsilon_k - \varepsilon_{k-1}\|}{\|\varepsilon_{k-1}\|} \le \delta$

 Apply GAT method with x₀ = x^(k-1), ε = ε_{k-1}, λ₀ = λ^(k-1). Let x^(k) be the last approximation achieved, φ^(k) the corresponding discrepancy norm, and λ^(k) the last parameter value;

2 Define $\varepsilon_k = \phi^{(k)}$; 3 Define $\lambda^{(k)} = \frac{\phi^{(k)}}{\phi^{(k)}} \lambda^{(k)}$

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
The algorithm				

$$\frac{\|\varepsilon_k - \varepsilon_{k-1}\|}{\|\varepsilon_{k-1}\|} \le \delta$$

 Apply GAT method with x₀ = x^(k-1), ε = ε_{k-1}, λ₀ = λ^(k-1). Let x^(k) be the last approximation achieved, φ^(k) the corresponding discrepancy norm, and λ^(k) the last parameter value;

2 Define $\varepsilon_k = \phi^{(k)}$; 3 Define $\lambda^{(k)} = \frac{\phi^{(k)}}{2} \lambda^{(k)}$

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection ○●○○	Final remarks
The algorithm				

$$\frac{\|\varepsilon_k - \varepsilon_{k-1}\|}{\|\varepsilon_{k-1}\|} \le \delta$$

 Apply GAT method with x₀ = x^(k-1), ε = ε_{k-1}, λ₀ = λ^(k-1). Let x^(k) be the last approximation achieved, φ^(k) the corresponding discrepancy norm, and λ^(k) the last parameter value;

2 Define $\varepsilon_k = \phi^{(k)}$; 3 Define $\lambda^{(k)} = \frac{\phi^{(k)}}{\phi^{(k-1)}} \lambda^{(k)}$.

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
The algorithm				

$$\frac{\|\varepsilon_k - \varepsilon_{k-1}\|}{\|\varepsilon_{k-1}\|} \le \delta$$

 Apply GAT method with x₀ = x^(k-1), ε = ε_{k-1}, λ₀ = λ^(k-1). Let x^(k) be the last approximation achieved, φ^(k) the corresponding discrepancy norm, and λ^(k) the last parameter value;

2 Define $\varepsilon_k = \phi^{(k)}$; 3 Define $\lambda^{(k)} = \frac{\phi^{(k)}}{\phi^{(k-1)}}\lambda$

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
The algorithm				

$$\frac{\|\varepsilon_k - \varepsilon_{k-1}\|}{\|\varepsilon_{k-1}\|} \le \delta$$

 Apply GAT method with x₀ = x^(k-1), ε = ε_{k-1}, λ₀ = λ^(k-1). Let x^(k) be the last approximation achieved, φ^(k) the corresponding discrepancy norm, and λ^(k) the last parameter value;

2 Define $\varepsilon_k = \phi^{(k)}$; 3 Define $\lambda^{(k)} = \frac{\phi^{(k)}}{\phi^{(k-1)}} \lambda^{(k)}$.

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
E 1				

Example

- test image mri.tif, 128 pixels.
- Gaussian blurring,
 - $\sigma = 1.5$ and q = 6.
- $\varepsilon/\|b\| = 10^{-3}$ $\overline{\varepsilon}/\|b\| = 10^{-2}.$
- δ = 0.01
- Regularization matrix: D₁.
- without step 3; 56 restarts, $\varepsilon_{24}/\|b\| = 1.03 \cdot 10^{-3}.$
- - with step 3;

24 restarts, $\varepsilon_{56}/\|b\| = 1.05 \cdot 10^{-3}.$

The parameter selection strategy

xamples

Noise level detection

Final remarks

(iii)

(iv)

(i) original; (ii) noisy and blurred; (iii) after 4 steps; (iv) after 24 restarts.

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
Final remarks				

- simple and efficient (all the extra computations are performed in reduced dimension);
- simultaneously determine the regularization parameter and the number of iterations;
- can be generalized to the multi-parameter case (S.G., P.NOVATI, Multi-parameter Arnoldi-Tikhonov methods, submitted) and to the Range-Restricted methods.

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
Final remarks				

- simple and efficient (all the extra computations are performed in reduced dimension);
- simultaneously determine the regularization parameter and the number of iterations;
- can be generalized to the multi-parameter case (S.G., P.NOVATI, Multi-parameter Arnoldi-Tikhonov methods, submitted) and to the Range-Restricted methods.

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
Final remarks				

- simple and efficient (all the extra computations are performed in reduced dimension);
- simultaneously determine the regularization parameter and the number of iterations;
- can be generalized to the multi-parameter case (S.G., P.NOVATI, Multi-parameter Arnoldi-Tikhonov methods, submitted) and to the Range-Restricted methods.

The Arnoldi-Tikhonov method	The parameter selection strategy	Examples 00000	Noise level detection	Final remarks
Final remarks				

- simple and efficient (all the extra computations are performed in reduced dimension);
- simultaneously determine the regularization parameter and the number of iterations;
- can be generalized to the multi-parameter case (S.G., P.NOVATI, Multi-parameter Arnoldi-Tikhonov methods, submitted) and to the Range-Restricted methods.