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The problem

We consider linear systems of equations

Ax = b, A ∈ R
N×N , b ∈ R

N ,

in which the matrix A is assumed to have singular values that rapidly
decay and cluster near zero1.
We assume that

the available right-hand side vector b is affected by noise, that is

b = b + e,

where b represents the unknown noise-free right-hand side;

the quantity ε ≈ ‖e‖ is known;

1Hansen(1998), Rank-deficient and Discrete Ill-Posed Problems
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The Arnoldi-Tikhonov (AT) method

Given λ, L, x0 consider the Tikhonov regularization

min
x∈RN

{
‖Ax − b‖2 + λ‖L(x − x0)‖2

}
.

For the special case of L = IN and x0 = 0, the Arnoldi-Tikhonov method2

is based on the reduction to a problem of much smaller dimension,
projecting the matrix A onto the Krylov subspaces generated by A and the
vector b,

Km(A, b) = span{b,Ab, . . . ,Am−1b}, m ≪ N.

For the construction of the Krylov subspaces the AT method uses the
Arnoldi algorithm.

2Calvetti-Morigi-Reichel-Sgallari(2000),
Tikhonov regularization and the L-curve for large discrete ill-posed problems
S.Gazzola (University of Padova) Arnoldi-Tikhonov methods DWCAA 2012 4 / 20
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The Arnoldi algorithm yields the decomposition

AVm = Vm+1Hm,

where

Vm+1 = [v1, ..., vm+1] ∈ R
N×(m+1) has orthonormal columns which

span the Krylov subspace Km+1(A, b);
v1 is defined as b/ ‖b‖.
Hm ∈ R

(m+1)×m is an upper Hessenberg matrix.

The AT method searches for approximations belonging to Km(A, b).
Taking x = Vmym (ym ∈ R

m) we obtain the reduced minimization problem

min
ym∈Rm

{∥∥∥Hmym − V T
m+1b

∥∥∥
2
+ λ ‖ym‖2

}
.

Parameter choice strategy: Lm-curve criterium.

S.Gazzola (University of Padova) Arnoldi-Tikhonov methods DWCAA 2012 5 / 20



The Arnoldi-Tikhonov method The parameter selection strategy Examples Noise level detection Final remarks

The Arnoldi algorithm yields the decomposition

AVm = Vm+1Hm,

where

Vm+1 = [v1, ..., vm+1] ∈ R
N×(m+1) has orthonormal columns which

span the Krylov subspace Km+1(A, b);
v1 is defined as b/ ‖b‖.
Hm ∈ R

(m+1)×m is an upper Hessenberg matrix.

The AT method searches for approximations belonging to Km(A, b).
Taking x = Vmym (ym ∈ R

m) we obtain the reduced minimization problem

min
ym∈Rm

{∥∥∥Hmym − V T
m+1b

∥∥∥
2
+ λ ‖ym‖2

}
.

Parameter choice strategy: Lm-curve criterium.

S.Gazzola (University of Padova) Arnoldi-Tikhonov methods DWCAA 2012 5 / 20



The Arnoldi-Tikhonov method The parameter selection strategy Examples Noise level detection Final remarks

The Arnoldi algorithm yields the decomposition

AVm = Vm+1Hm,

where

Vm+1 = [v1, ..., vm+1] ∈ R
N×(m+1) has orthonormal columns which

span the Krylov subspace Km+1(A, b);
v1 is defined as b/ ‖b‖.
Hm ∈ R

(m+1)×m is an upper Hessenberg matrix.

The AT method searches for approximations belonging to Km(A, b).
Taking x = Vmym (ym ∈ R

m) we obtain the reduced minimization problem

min
ym∈Rm

{∥∥∥Hmym − V T
m+1b

∥∥∥
2
+ λ ‖ym‖2

}
.

Parameter choice strategy: Lm-curve criterium.

S.Gazzola (University of Padova) Arnoldi-Tikhonov methods DWCAA 2012 5 / 20



The Arnoldi-Tikhonov method The parameter selection strategy Examples Noise level detection Final remarks

The Arnoldi algorithm yields the decomposition

AVm = Vm+1Hm,

where

Vm+1 = [v1, ..., vm+1] ∈ R
N×(m+1) has orthonormal columns which

span the Krylov subspace Km+1(A, b);
v1 is defined as b/ ‖b‖.
Hm ∈ R

(m+1)×m is an upper Hessenberg matrix.

The AT method searches for approximations belonging to Km(A, b).
Taking x = Vmym (ym ∈ R

m) we obtain the reduced minimization problem

min
ym∈Rm

{∥∥∥Hmym − V T
m+1b

∥∥∥
2
+ λ ‖ym‖2

}
.

Parameter choice strategy: Lm-curve criterium.

S.Gazzola (University of Padova) Arnoldi-Tikhonov methods DWCAA 2012 5 / 20



The Arnoldi-Tikhonov method The parameter selection strategy Examples Noise level detection Final remarks

The Arnoldi algorithm yields the decomposition

AVm = Vm+1Hm,

where

Vm+1 = [v1, ..., vm+1] ∈ R
N×(m+1) has orthonormal columns which

span the Krylov subspace Km+1(A, b);
v1 is defined as b/ ‖b‖.
Hm ∈ R

(m+1)×m is an upper Hessenberg matrix.

The AT method searches for approximations belonging to Km(A, b).
Taking x = Vmym (ym ∈ R

m) we obtain the reduced minimization problem

min
ym∈Rm

{∥∥∥Hmym − V T
m+1b

∥∥∥
2
+ λ ‖ym‖2

}
.

Parameter choice strategy: Lm-curve criterium.

S.Gazzola (University of Padova) Arnoldi-Tikhonov methods DWCAA 2012 5 / 20



The Arnoldi-Tikhonov method The parameter selection strategy Examples Noise level detection Final remarks

The Generalized Arnoldi-Tikhonov (GAT) method

Extension of the AT method in order to work with a general regularization
operator L 6= IN and with an arbitrary starting vector x0.
Starting from

min
x∈RN

{
‖Ax − b‖2 + λ ‖L(x − x0)‖2

}
,

we search for approximations of the type

xm = x0 + Vmym,

where the columns of Vm ∈ R
N×m span the Krylov subspace Km(A, r0),

where r0 = b − Ax0.
We obtain the reduced minimization problem

min
ym∈Rm

{
‖AVmym − r0‖2 + λ ‖LVmym‖2

}

= min
ym∈Rm

{∥∥Hmym − ‖r0‖ e1
∥∥2 + λ ‖LVmym‖2

}

= min
ym∈Rm

∥∥∥∥
(

Hm√
λLVm

)
ym −

(
‖r0‖ e1

0

)∥∥∥∥
2

.
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The parameter selection strategy

The discrepancy principle is satisfied as soon as

φm(λ) := ‖b − Axm,λ‖ ≤ ηε, η ' 1.

For the GAT method the approximations are xm,λ = x0 + Vmym,λ and the
discrepancy can be rewritten as

‖b − Axm,λ‖ = ‖r0 − AVmym,λ‖ = ‖c − Hmym,λ‖,

where c = V T
m+1r0 = ‖r0‖e1 ∈ R

m+1.
Since ym,λ solves the normal equation

(H
T

mHm + λV T
m LTLVm)ym,λ = H

T

mc ,

we obtain

φm(λ) =
∥∥∥Hm(H

T

mHm + λV T
m LTLVm)

−1H
T

mc − c

∥∥∥.
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Standard approach3 4:
solve with respect to λ the nonlinear equation

φm(λ) = ηε.

New approach:
Basic hypothesis: the discrepancy can be well approximated by

φm(λ) ≈ αm + λβm

in which αm, βm ∈ R can be easily computed.

Definition of

αm. The Taylor expansion of φm(λ) suggests to chose

αm = φm(0) =
∥∥∥Hm(H

T

mHm)
−1H

T

mc − c

∥∥∥ ,

which is just the residual of the GMRES (computed working in
reduced dimension).

3Reichel-Shyshkov(2008), A new zero-finder for Tikhonov regularization.
4Lewis-Reichel(2009), Arnoldi-Tikhonov regularization methods.
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βm. Suppose that, at step m, we have used the parameter λm−1

(computed at the previous step or, if m = 1, given by the user) to
compute ym,λm−1

, by solving the reduced minimization, and the
corresponding discrepancy

φm(λm−1) =
∥∥c − Hmym,λm−1

∥∥ .

Using the linear approximation, we obtain

βm ≈ φm(λm−1)− αm

λm−1
.

To select λm for the next step of the Arnoldi algorithm we impose
φm(λm) = ηε, and force the approximation

φm(λm) ≈ αm + λmβm.

Hence we define

λm =
ηε− αm

φm(λm−1)− αm

λm−1.

S.Gazzola (University of Padova) Arnoldi-Tikhonov methods DWCAA 2012 9 / 20
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Geometric interpretation

We know that φm(λ) is a monotonically increasing function such that
φm(0) = αm.
Hence, the linear function

f (λ) = αm + λ

(
φm(λm−1)− αm

λm−1

)
,

interpolates φm(λ) at 0 and λm−1, and the new parameter λm is obtained by
solving f (λ) = ηε.

φ
m

(λ)

ηε

α
m

λ
m−1λ

m

secant update method.

The method is just a secant method in
which the leftmost point is (0, αm).

In the very first steps we may have
αm > ηε. In this situation the result of the
method may be negative and therefore we
use

λm =

∣∣∣∣
ηε− αm

φm(λm−1)− αm

∣∣∣∣λm−1.
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Examples
Test problem shaw

5

A ∈ R
200×200 symmetric;

cond(A) ≃ 1020;

noise level
ε̃ = ‖e‖/‖b̄‖ = 10−3;

L = I200;

η = 1.001, λ0 = 1
x0 = 0 (as always).

. . . . . .

∗ new method

◦ Lm-curve method

♦ φ8(λ) = ηε
by Newton’s method

0 5 10 15 20 25 30
10

−1.5

10
−1.3

10
−1.1

Relative Errors

0 5 10 15 20 25 30
10

−10

10
−5

Values of λ

xm,λ ∈ K8(A, b).

5Hansen(1994), Regularization Tools
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Comparison of the Lm-curve method and of the secant update approach at
each iteration.
Discrepancy principle satisfied after 8 iterations; we compute 8 extra
iterations. The secant approach exhibits a very stable behavior.

0 2 4 6 8 10 12 14 16
10

−4

10
−2

10
0

Discrepancy

0 2 4 6 8 10 12 14 16

10
−5

10
0

Values of λ

o- is the Lm-curve method, *- is the new method.
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Stability with respect to the choice of the initial value λ0.
We choose λ0 = 0.1, 0.5, 1, 10, 50.

1 2 3 4 5 6 7 8
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Remark: at the beginning we just force λm to be positive; after a few
iterations (when αm < ηε) the new approach is a zero-finder.
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Image restoration

Test image: peppers.png, size 256× 256 pixels; N = 65536.

Noise level: ε̃ = 10−2.

Gaussian blur: σ = 2.5, q = 6.

Regularization matrix: D2 ∈ R
(N−2)×N .

o- Lm method
*- secant update
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10
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(a) (b)

(c) (d)

(a) original image

(c) restored with Lm-curve approach

(b) blurred and noisy image

(d) restored with secant approach
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Noise level detection

Assumption: ε is overestimated by a quantity ε.
Therefore, applying the GAT method we can fully satisfy the discrepancy
principle (even with η = 1),

φm(λm−1) < ε.

Applying the secant update method the discrepancy would then stabilize
around ε.
We define ε = φm(λm−1) as the new approximation of the noise.
We restart the GAT method immediately with the Krylov subspace
Kℓ(A, b − Axm,λm−1

), where xm,λm−1
is the last approximation obtained.

We proceed until the discrepancy is almost constant.

S.Gazzola (University of Padova) Arnoldi-Tikhonov methods DWCAA 2012 16 / 20



The Arnoldi-Tikhonov method The parameter selection strategy Examples Noise level detection Final remarks

Noise level detection

Assumption: ε is overestimated by a quantity ε.
Therefore, applying the GAT method we can fully satisfy the discrepancy
principle (even with η = 1),

φm(λm−1) < ε.

Applying the secant update method the discrepancy would then stabilize
around ε.
We define ε = φm(λm−1) as the new approximation of the noise.
We restart the GAT method immediately with the Krylov subspace
Kℓ(A, b − Axm,λm−1

), where xm,λm−1
is the last approximation obtained.

We proceed until the discrepancy is almost constant.

S.Gazzola (University of Padova) Arnoldi-Tikhonov methods DWCAA 2012 16 / 20



The Arnoldi-Tikhonov method The parameter selection strategy Examples Noise level detection Final remarks

Noise level detection

Assumption: ε is overestimated by a quantity ε.
Therefore, applying the GAT method we can fully satisfy the discrepancy
principle (even with η = 1),

φm(λm−1) < ε.

Applying the secant update method the discrepancy would then stabilize
around ε.
We define ε = φm(λm−1) as the new approximation of the noise.
We restart the GAT method immediately with the Krylov subspace
Kℓ(A, b − Axm,λm−1

), where xm,λm−1
is the last approximation obtained.

We proceed until the discrepancy is almost constant.

S.Gazzola (University of Padova) Arnoldi-Tikhonov methods DWCAA 2012 16 / 20



The Arnoldi-Tikhonov method The parameter selection strategy Examples Noise level detection Final remarks

Noise level detection

Assumption: ε is overestimated by a quantity ε.
Therefore, applying the GAT method we can fully satisfy the discrepancy
principle (even with η = 1),

φm(λm−1) < ε.

Applying the secant update method the discrepancy would then stabilize
around ε.
We define ε = φm(λm−1) as the new approximation of the noise.
We restart the GAT method immediately with the Krylov subspace
Kℓ(A, b − Axm,λm−1

), where xm,λm−1
is the last approximation obtained.

We proceed until the discrepancy is almost constant.

S.Gazzola (University of Padova) Arnoldi-Tikhonov methods DWCAA 2012 16 / 20



The Arnoldi-Tikhonov method The parameter selection strategy Examples Noise level detection Final remarks

Noise level detection

Assumption: ε is overestimated by a quantity ε.
Therefore, applying the GAT method we can fully satisfy the discrepancy
principle (even with η = 1),

φm(λm−1) < ε.

Applying the secant update method the discrepancy would then stabilize
around ε.
We define ε = φm(λm−1) as the new approximation of the noise.
We restart the GAT method immediately with the Krylov subspace
Kℓ(A, b − Axm,λm−1

), where xm,λm−1
is the last approximation obtained.

We proceed until the discrepancy is almost constant.

S.Gazzola (University of Padova) Arnoldi-Tikhonov methods DWCAA 2012 16 / 20



The Arnoldi-Tikhonov method The parameter selection strategy Examples Noise level detection Final remarks

The algorithm

Input: A, b, L, λ(0), η, δ (threshold parameter), and ε0 = ε > ε.
Define x(0) = 0.
For k = 1, 2, ... until

‖εk − εk−1‖
‖εk−1‖

≤ δ

1 Apply GAT method with x0 = x(k−1), ε = εk−1, λ0 = λ(k−1).
Let x(k) be the last approximation achieved, φ(k) the corresponding
discrepancy norm, and λ(k) the last parameter value;

2 Define εk = φ(k);

3 Define λ(k) = φ(k)

φ(k−1)λ
(k).
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Example

test image mri.tif,
128 pixels.
Gaussian blurring,
σ = 1.5 and q = 6.
ε/ ‖b‖ = 10−3

ε/ ‖b‖ = 10−2.
δ = 0.01
Regularization matrix:
D1.

- without step 3;
56 restarts,
ε24/ ‖b‖ = 1.03 · 10−3.

- - with step 3;
24 restarts,
ε56/ ‖b‖ = 1.05 · 10−3.
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(i) (ii)

(iii) (iv)

(i) original; (ii) noisy and blurred; (iii) after 4 steps; (iv) after 24 restarts.
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Final remarks

simple and efficient (all the extra computations are performed in
reduced dimension);

simultaneously determine the regularization parameter and the
number of iterations;

can be generalized to the multi-parameter case (S.G., P.Novati,
Multi-parameter Arnoldi-Tikhonov methods, submitted) and to the
Range-Restricted methods.
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