
Embedded techniques for choosing the parameter

in Tikhonov regularization

S. Gazzola, P. Novati, M. R. Russo
Department of Mathematics
University of Padua, Italy

June 6, 2013

Abstract

This paper introduces a new strategy for setting the regularization parameter when
solving large-scale discrete ill-posed linear problems by means of the Arnoldi-Tikhonov
method. This new rule is essentially based on the discrepancy principle, although no
initial knowledge of the norm of the error that affects the right-hand side is assumed;
an increasingly more accurate approximation of this quantity is recovered during the
Arnoldi algorithm. Some theoretical estimates are derived in order to motivate our
approach. Many numerical experiments, performed on classical test problems as well
as image deblurring are presented.

1 Introduction

Let us consider a linear discrete ill-posed problem of the form

Ax = b, (1)

where A ∈ RN×N is severely ill-conditioned and may be of huge size. These sort of systems
typically arise from the discretization of Fredholm integral equations of the first kind with
compact kernel (for an exhaustive background on these class of problems, cf. [9, Chapter
1]). The right-hand side b is assumed to be affected by an unknown additive error e coming
from the discretization process or measurements inaccuracies, i.e.,

b = bex + e, (2)

where bex denotes the unknown exact right-hand side. We assume that the unperturbed
system Ax = bex is consistent and we denote its solution by xex; the system (1) is not
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guaranteed to be consistent. Referring to the Singular Value Decomposition (SVD) of the
matrix A,

A = UΣV T , (3)

we furthermore assume that the singular values σi quickly decay toward zero with no
evident gap between two consecutive ones.

Because of the ill-conditioning of A and the presence of noise in b, in order to find a
meaningful approximation of xex we have to substitute the available system (1) with a
nearby problem having better numerical properties: this process is called regularization.
One of the most well-known and well-established regularization technique is Tikhonov
method that, in its most general form, can be written as

min
x∈RN

{
∥Ax− b∥2 + λ∥L(x− x0)∥2

}
, (4)

where L ∈ RP×N is the regularization matrix, λ > 0 is the regularization parameter and
x0 ∈ RN is an initial guess for the solution. We denote the solution of the problem (4)
by xλ. When L = IN (the identity matrix of order N) and x0 = 0, the problem is said
to be in standard form. In this paper the norm ∥ · ∥ is always the Euclidean one. The
use of a regularization matrix different from the identity may improve the quality of the
reconstruction obtained by (4), especially when one wants to enhance some known features
of the solution. In many situations, L is taken as a scaled finite differences approximation
of a derivative operator (cf. Section 5).

A proper choice of the regularization parameter is crucial, since it specifies the amount
of regularization to be imposed. Many techniques have been developed in order to set
the regularization parameter in (4), we cite [1, 21] for a review of the classical ones along
with some more recent ones. Here, we are concerned with the discrepancy principle, that
suggests to set the parameter λ such that the nonlinear equation

∥b−Axλ∥ = η∥e∥, η & 1,

is satisfied. Of course this strategy can be applied only if a fairly accurate approximation
of the quantity ∥e∥ is known.

Denoting by xm,λ the approximation of xλ computed at the m-th step of a certain iter-
ative method applied to (4), and by ϕm(λ) = ∥b−Axm,λ∥ the corresponding discrepancy,
each nonlinear solver for the equation

ϕm(λ) = η∥e∥, (5)

leads to a parameter choice rule associated with the iterative process. The basic idea
of this paper, in which we assume ∥e∥ to be unknown, is to consider (if possible) the
approximation ϕk(0) ≈ ∥e∥, where k < m, and then to solve

ϕm(λ) = ηϕk(0), (6)
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with respect to λ. The use of (6) as a parameter choice rule is motivated by the fact that
many iterative solvers for Ax = b produce approximations xm = xm,0 whose corresponding
residual ∥b−Axm∥ tends to stagnate around ∥e∥. In other words, the information about the
noise level can be recovered during the iterative process. Moreover, in many situations, the
computational effort of the algorithm that delivers xm,λ can be exploited for forming xm,0

(or viceversa). For this reason, we may refer to any iterative process which simultaneously
uses xm to approximate ∥e∥ and solves (6) to compute xm,λ as an embedded approach.

In this paper we are mainly interested in solving (4) by means of the so-called Arnoldi-
Tikhonov methods (originally introduced in [3] for the standard form regularization),
which are based on the orthogonal projection of (4) onto the Krylov subspaces Km(A, b) =
span{b, Ab, . . . , Am−1b} of increasing dimensions. As well known, these methods typically
show a fast superlinear convergence when applied to discrete ill-posed problems, and hence
they are particularly attractive for large scale problems. Dealing with this kind of methods,
efficient algorithms based on the solution of (5) have been considered in [14] and [22].
More recently, in [5] a very simple strategy for solving (5), based on the linearization of
ϕm(λ), has been presented. In this paper we extend the latter approach by considering
the approximation ϕm−1(0) ≈ ∥e∥ where, in this setting, ϕm−1(0) is just the norm of the
GMRES residual computed at the previous iteration.

The paper is organized as follows. In Section 2 we survey the basic features of the
Arnoldi-Tikhonov methods. In Section 3 we review the linearization technique described
in [5], and in Section 4 we explain the parameter choice rule based on an embedded
approach, also giving a theoretical justification in the Arnoldi-Tikhonov case. In the first
part of Section 5 we write down the algorithm, in order to summarize the new method and
to better describe some practical details; the remaining parts are devoted to display the
results of some of the performed numerical tests. In the Appendix, we prove a theorem
used in Section 4.

2 The Arnoldi-Tikhonov Method

The Arnoldi-Tikhonov (AT) method was first proposed in [3] with the basic aims of re-
ducing the problem (4) (in the particular case L = IN and x0 = 0) to a problem of much
smaller dimension and to avoid the use of AT as in Lanczos type methods (see e.g. [20]).
Then, in [5, 10, 17] the method has been extended to work with a general L ∈ RP×N and
x0. Assuming x0 = 0 (this assumption will hold throughout the paper), we consider the
Krylov subspaces

Km(A, b) = span{b, Ab, . . . , Am−1b}, m ≥ 1. (7)
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In order to construct an orthonormal basis for this Krylov subspace we can use the Arnoldi
algorithm [23], which leads to the associated decomposition

AWm = WmHm + hm+1,mwm+1e
T
m (8)

= Wm+1H̄m, (9)

where Wm+1 = [w1, ..., wm+1] ∈ RN×(m+1) has orthonormal columns that span the Krylov
subspace Km+1(A, b), and w1 = b/ ∥b∥. The matrices Hm ∈ Rm×m and H̄m ∈ R(m+1)×m

are upper Hessenberg.

The AT method searches for approximations xm,λ of the solution of problem (4) be-
longing to Km(A, b). Therefore, replacing x = Wmy, y ∈ Rm, into (4), yields the reduced
minimization problem

ym,λ = arg min
y∈Rm

{∥∥H̄my − c
∥∥2 + λ ∥LWmy∥2

}
, (10)

where c = ∥b∥e1, being e1 the first vector of the canonical basis of Rm+1. The above
problem is equivalent to

ym,λ = arg min
y∈Rm

∥∥∥∥( H̄m√
λLWm

)
y −

(
c
0

)∥∥∥∥2 . (11)

Obviously, ym,λ is also the solution of the normal equation

(H̄T
mH̄m + λW T

mLTLWm)ym,λ = H̄T
mc. (12)

We remark that, when dealing with standard form problems (L = IN and x0 = 0), the
Arnoldi-Tikhonov formulation considerably simplifies thanks again to the orthogonality of
the columns of Wm and, instead of (11), we can consider

ym,λ = arg min
y∈Rm

∥∥∥∥( H̄m√
λIm

)
y −

(
c
0

)∥∥∥∥2 . (13)

In (13), the dimension of the problem is fully reduced because at each iteration we deal
with a (2m+1)×m matrix. On the other side, considering (11), there is still track of the
original dimensions of the problem. Anyway, since the AT method can typically recover a
meaningful approximation of the exact solution after just a few iterations of the Arnoldi
algorithm have been performed, the computational cost is still low. Assuming that P ≤ N
in (4) and defining a new matrix L obtained by appending N −P zero rows to the original
one, we can also consider the following new formulation

ym = arg min
y∈Rm

∥∥∥∥( H̄m√
λLm

)
y −

(
c
0

)∥∥∥∥2 , where Lm = W T
mLWm. (14)

The above problem is not equivalent to (11) anymore, but can be justified by the fact that
Lm is the orthogonal projection of L onto Km(A, b), and hence, in some sense, Lm inherits
the properties of L (see [18] for a discussion).
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3 The parameter choice strategy

As said in the Introduction, the discrepancy principle is a well-known and quite successful
parameter selection strategy that, when applied to Tikhonov regularization method (4),
prescribes to choose the regularization parameter λ > 0 such that ∥Axλ − b∥ = η∥e∥,
where the parameter η is greater than 1, though very close to it.

An algorithm exploiting the discrepancy principle has been first considered for the
Arnoldi-Tikhonov method in [14], where the authors suggest to solve, at each iteration m,
the nonlinear equation

ϕm(λ) := ∥H̄mym,λ − c∥ = η∥e∥, (15)

employing a special zero-finder described in [22]. In order to decide when to stop the
iterations, a preliminary condition should be satisfied and then some adjustments should
be made.

Considering the normal equations associated to (14), we write

ϕm(λ) = ∥c− H̄m(H̄T
mH̄m + λLT

mLm)−1H̄T
mc∥. (16)

Denoting by rm = b − Axm the GMRES residual, we have that ϕm(0) = ∥rm∥. In this
setting, in [5] the authors solve (15) after considering the linear approximation

ϕm(λ) ≈ ϕm(0) + λβm, (17)

where, at each iteration, the scalar βm is defined by the ratio

βm =
ϕm(λm−1)− ϕm(0)

λm−1
. (18)

In (18), ϕm(λm−1) is obtained by solving the m-dimensional problem (14) using the pa-
rameter λ = λm−1, which is computed at the previous step.

Therefore, to select λ = λm for the next step of the Arnoldi-Tikhonov algorithm, we
can approximate ϕm(λm) by (17) and impose

ϕm(λm) = η∥e∥. (19)

Substituting in the linear approximation of ϕm(λm) the expression derived in (18), and
using the condition (19), we obtain

λm =
η∥e∥ − ϕm(0)

ϕm(λm−1)− ϕm(0)
λm−1 . (20)

When ϕm(0) > η∥e∥, formula (20) produces a negative value for λm. Thus, in order to
keep λm > 0, we consider the relation

λm =

∣∣∣∣ η∥e∥ − ϕm(0)

ϕm(λm−1)− ϕm(0)

∣∣∣∣λm−1. (21)
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In this procedure, λ0 must be set to an initial value by the user, but the numerical
experiments show that this strategy is very robust with respect to this choice (typically
one may set λ0 = 1).

Remark 1. We remark that the use of the absolute value in (21) can be avoided by
forcing initially λ = 0, i.e., working with the GMRES, and then switching to the AT
method equipped with (20) as soon as ϕm(0) < η∥e∥.

In [5] this scheme has been called secant-update method , since at each iteration of the
Arnoldi algorithm it basically performs just one step of a secant-like zero finder applied
to the equation ϕm(λ) = η∥e∥. Numerically, formula (21) is very stable, in the sense that
after the discrepancy principle is satisfied, λm is almost constant for growing values of m.

4 Exploiting the GMRES residual

We now try to generalize the secant-update approach, dropping the hypothesis that the
quantity ∥e∥ is available. In this situation, one typically employs other well-known tech-
niques, such as the L-curve criterion or the Generalized Cross Validation (GCV); both
have already been used in connection with the Arnoldi-Tikhonov or Lanczos-hybrid meth-
ods [3, 4, 13, 18]. The strategy we are going to describe is to be considered different since
we still want to apply the discrepancy principle, starting with no information on ∥e∥ and
trying to recover an estimate of it during the iterative process.

Our basic assumption is that, after just a few iterations of the Arnoldi algorithm, the
norm of the residual associated to the GMRES method lies around the threshold ∥e∥ and,
despite being slightly decreasing, stabilizes during the following iterations (cf. Figure 4).
This motivates the use of the following strategy to choose the regularization parameter at
the m-th iteration

λm =
ηϕm−1(0)− ϕm(0)

ϕm(λm−1)− ϕm(0)
λm−1, η > 1, (22)

where we have replaced the quantity ∥e∥ in (21) by ϕm−1(0) = ∥rm−1∥. We remark that,
from a theoretical point of view, the formula (22) cannot produce negative values since
ϕm(0) = ∥rm∥ ≤ ∥rm−1∥ = ϕm−1(0) and ϕm(λ) is an increasing function with respect
to λ. In what follows we provide a theoretical justification for this approach, giving also
some numerical experiments using test problems taken from [8]; in the first subsection we
focus on the case b = bex, while in the second subsection we treat the case b = bex + e.

4.1 The unperturbed problem

Thanks to a number of results in literature (see e.g. [16]), we know that the GMRES ex-
hibits superlinear convergence when solving problems in which the singular values rapidly
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Figure 1: Behavior of the sequences {hm+1,m}m and {σm}m for the test problems baart
(left) and shaw (right) from [8].

decay to 0. Indeed, in this situation, the Krylov subspaces tend to become A-invariant
after few iterations. In general, the fast convergence of a Krylov subspace method applied
to an ill-posed system (1) can be explained by monitoring the behavior of the sequence
{hm+1,m}m. In fact, it is well known that the GMRES residual is related with the FOM
residual ρm as follows [23, Chapter 6]

∥rm∥ ≤ hm+1,m

∣∣eTmH−1
m c

∣∣ = ∥ρm∥ , (23)

where Hm is as in (8) and c = ∥bex∥e1 ∈ Rm. Thanks to the relation (see [15])

∥rm∥2 = 1
1

∥ρm∥2 + 1
∥rm−1∥2

,

which expresses the well known peak-plateau phenomenon, we can conclude that when
the FOM solutions do not explode the GMRES residuals decay as the quantities hm+1,m.
The following theorem (proved in the Appendix) gives us an estimate for the quantities
{hm+1,m}m whenever we work with the exact right hand side bex, and A is assumed to be
severely ill-conditioned, that is, with singular values which decay exponentially (cf. [11]).
In Figure 1 we report a couple of numerical experiments.

Theorem 2. Assume that A has full rank with singular values of the type σj = O(e−αj)

(α > 0) and that bex satisfies the Discrete Picard Condition, that is,
∣∣∣uTj bex∣∣∣ ∼ σj, where

uj is the j-column of the matrix U of (3). Then if bex is the starting vector of the Arnoldi
process we have

hm+1,m = O
(
m3/2σm

)
. (24)

The following result follows immediately from Theorem 2 and (23).
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Figure 2: FOM residual history for some common test problems taken from [8].

Corollary 3. Under the hypothesis of Theorem 2, assume that there exist M such that
for m ≤ N ∣∣eTmH−1

m c
∣∣ ≤ M, (25)

where c = ∥b∥e1 ∈ Rm. Then the GMRES residuals are of the type

∥rexm ∥ = O
(
m3/2σm

)
. (26)

Employing the SVD of the matrix Hm, that is, Hm = U
(m)
m Σ

(m)
m

(
V

(m)
m

)T
, Σ

(m)
m =

diag(σ
(m)
1 , ..., σ

(m)
m ), we have

H−1
m c = V (m)

m (Σ(m)
m )−1U (m)T

m c,

so that (25) is satisfied as soon as the Discrete Picard Condition is inherited in some way

by the projected problem. It is known that if σ̃
(m)
j , j = 1, ...,m, are the singular values

approximations arising from the SVD of H̄m, then σ̃
(m)
m ≥ σ̃

(m+1)
m+1 ≥ σN > 0 (cf. [3]). Since

hm+1,m goes rapidly to 0, we also have that after a few iterations σ
(m)
j ≈ σ̃

(m)
j so that we

can expect that σ
(m)
m ≥ σN . In general, however, we do not have guarantees that M is

small, so that (26) may be quantitatively not much useful. Everything is closely related
to the SVD approximation that we can achieve with the Arnoldi algorithm (see [18] for
some theoretical results). It is known that if the matrix A is highly nonsymmetric, then
the SVD approximation may be poor so that the Discrete Picard Condition may be badly
inherited by the projected problem. Anyway, in Figure 2 we report the FOM residual
history for some test problems which confirm the behavior described by (26).
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4.2 The perturbed problem

When the right-hand side of (1) is affected by noise, we can give the following preliminary
estimate for the norm of the GMRES residual.

Proposition 4. Let b = bex + e and let rexm = pexm (A)bex be the residual of the GMRES
applied to the system Ax = bex. Assume that for m ≥ m∗, ∥pexm (A)∥ ≤ η∗. Then the m-th
residual of the GMRES applied to Ax = b satisfies

∥rm∥ ≤ η∥e∥,

where

η =
∥rexm∗∥
∥e∥

+ η∗.

Proof. Since b = bex + e and, thanks to the optimality property of the GMRES residual,

∥rm∥ = min
pm(0)=1

∥pm(A)b∥ ≤ ∥pexm (A)b∥ ,

and hence
∥rm∥ ≤ ∥pexm (A)bex∥+ ∥pexm (A)e∥ ≤ ∥rexm ∥+ η∗∥e∥.

The result follows from ∥rexm ∥ ≤ ∥rexm∗∥, which holds for m ≥ m∗.

In the remaining part of this section, we try to give some additional information about
the value of the constant η of Proposition 4. Let

Ṽm =

[
b

∥b∥
,

Ab

∥Ab∥
, ...,

Am−1b

∥Am−1b∥

]
, Ṽ ex

m =

[
bex

∥bex∥
,

Abex

∥Abex∥
, ...,

Am−1bex

∥Am−1bex∥

]
.

With this notations we can write

∥rm∥ = min
s∈Rm+1,s1=0

∥∥∥b− Ṽm+1s
∥∥∥ ,

where s1 is the first component of vector s.

Proposition 5. For the GMRES residual we have

∥rm∥ ≤ η(m)∥e∥,

where

η(m) = 1 +
∥rexm ∥+

∥∥∥(Ṽm+1 − Ṽ ex
m+1

)
sex

∥∥∥
∥e∥

,

in which sex (sex1 = 0) is such that ∥rexm ∥ =
∥∥∥b− Ṽ ex

m+1s
ex
∥∥∥.
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Proof. We have

∥rm∥ = min
s∈Rm

∥∥∥b− Ṽm+1s
∥∥∥ ≤

∥∥∥b− Ṽm+1s
ex
∥∥∥

=
∥∥∥bex + e− Ṽm+1s

ex + Ṽ ex
m+1s

ex − Ṽ ex
m+1s

ex
∥∥∥

≤ ∥rexm ∥+ ∥e∥+
∥∥∥(Ṽm+1 − Ṽ ex

m+1

)
sex

∥∥∥ .

The fast decay of the singular values of A ensures that, for k ≥ 1 (note that sex1 = 0)

1

∥e∥

∥∥∥∥ Akb

∥Akb∥
− Akbex

∥Akbex∥

∥∥∥∥ ≪ 1, (27)

so that, whenever ∥rexm ∥ ≈ 0, we have η(m) ≈ 1. Condition (27) is also at the basis of the so-
called range-restricted approach for Krylov type methods (see [14]). We also remark that
the relation (27) can be interpreted as the discrete analogous of the Riemann-Lebesgue
Lemma (see e.g. [9, p.6]), whenever we assume that the noise e does not involve low
frequencies. We give some examples of this behavior in Figure 3.

Finally, in Figure 4 we prove experimentally our main assumption, that is, ∥rm∥ ≈ ∥e∥
for m sufficiently large, which justifies the use of formula (22).
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Figure 4: GMRES residual history when the right-hand side is affected by 1% noise. In
clockwise order the problem considered are baart, foxgood, shaw and i laplace
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5 Algorithm and Numerical Experiments

Comparing the parameter selection strategies (21) and (22), we can state that (22) gener-
alizes the approach described in Section 3, since no knowledge of ∥e∥ is assumed. However,
on the downside, scheme (21) can simultaneously determine the value of the regularization
parameter at each iteration and the number of iterations to be performed, while this is no
more possible considering the rule (22). In order to determine when to stop the iterations
of the Arnoldi algorithm, we have to consider a separate stopping criterion. Since both
ϕm(λm−1) and ∥rm∥ exhibit a stable behavior going on with the iterations, a way to set m
is to monitor when such stability occurs, i.e., to evaluate the relative difference between
the norm of the residuals and the relative difference between the discrepancy functions.
Therefore, once two thresholds τres and τdiscr have been set, we decide to stop the iterations
as soon as

∥rm∥ − ∥rm−1∥
∥rm−1∥

< τres, (28)

and
ϕm(λm−1)− ϕm−1(λm−2)

ϕm−1(λm−2)
< τdiscr. (29)

This approach is very similar to the one adopted in [4] for the GCV method in a hybrid
setting. Also in [3] the authors decide to terminate the Arnoldi process when the corners
of two consecutive projected L-curves are pretty close. We can also expect the value of
λm obtained at the end of the iterations to be suitable for the original problem (4).

The method so far described, can be summarized in the following

Algorithm 1: AT method equipped with the parameter choice rule (22)

Inputs: A, b, L, x0, λ0, η, τres, τdiscr
For m = 1, 2, . . . , until (28) and (29) are both fulfilled

1. Update Wm and H̄m by the Arnoldi algorithm (9).

2. Compute the reduced-dimension GMRES solution ym,0 (cf. (10) and the corre-
sponding residual rm.

3. Compute the solution ym,λ of (14), taking{
λ = λ0 if m = 1, 2,

λ = λm−1 otherwise.
.

4. Compute the discrepancy ϕm(λm−1) = ∥H̄mym,λm−1 − c∥.
5. if m ≥ 2 update λm by formula (22).

end
Compute xm,λm−1 = Wmym,λm−1 .
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To illustrate the behavior of this algorithm, we treat three different kinds of test
problems. All the experiments have been carried out using Matlab 7.10 with 16 significant
digits on a single processor computer (Intel Core i7). The algorithm is implemented with
λ0 = 1, η = 1.02, and τres = τdiscr = 5 · 10−2.

5.1 Test problems from Regularization Tools

We consider again some classical test problems taken from Hansen’s Regularization

Tools [8]. In particular in Figure 5, we report the results for the problems baart, shaw,
foxgood, i laplace; the right-hand side b is affected by additive 0.1% Gaussian noise e,
such that the noise level ε = ∥e∥/∥bex∥ is equal to 10−3. The dimension of each problem
is N = 120. The regularization operator used is the discrete first derivative L1 for shaw
and i laplace, and the discrete second derivative L2 for baart and foxgood, augmented
with one or two zero rows respectively, in order to make it square, that is,

L1 :=


1 −1

. . .
. . .

1 −1
0 ... ... 0

 , L2 :=


1 −2 1

. . .
. . .

. . .

1 −2 1
0 ... ... ... 0
0 ... ... ... 0

 . (30)

For each experiment we show: a) the approximate solution; b) the relative residual
and error history; c) the value of the regularization parameter computed at each iteration
by the secant update method (λsec) given by formula (21), the embedded method (λemb)
computed by (22), the ones arising from the L-curve criterion (λL−curve) see [3], and the
optimal one (λopt) for the original, full-dimensional regularized problem (4) obtained by
the minimization of the distance between the regularized and the exact solution [19]

min
λ

∥xλ − xex∥2 = min
λ

∥∥∥∥∥
P∑
i=1

λ2

(γ2i + λ2)

ūTi b

σi
xi +

N∑
i=P+1

(uTi b)xi −
N∑
i=1

uTi b
ex

σi
vi

∥∥∥∥∥ ,
where γi, ūi, i = 1, . . . , P are respectively the generalized singular values and left gener-
alized singular vectors of (A,L), and xi, i = 1, . . . , N are the right generalized singular
vectors of (A,L).

5.2 Results for Image Restoration

To test the performance of our algorithm in the image restoration contest, a number of
experiments were carried out, some of which are presented here.

Let X be a n×n two dimensional image. The vector xex of dimension N = n2 obtained
by stacking the columns of the image X and the associated blurred and noise-free image

13



0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

 

 
Exact solution
Approximation

0 5 10 15
10

−4

10
−3

10
−2

10
−1

10
0

noise

 

 
noise
error
residual
GMRES−residual

0 5 10 15
10

−5

10
0

10
5

10
10

10
15

 

 
λ

opt

λ
emb

λ
sec

λ
L−curve

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 
Exact solution
Approximation

0 5 10 15
10

−4

10
−3

10
−2

10
−1

10
0

noise

Iterations

 

 
noise
error
residual
GMRES−residual

0 5 10 15
10

−5

10
0

10
5

 

 
λ

opt

λ
emb

λ
sec

λ
L−curve

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 
Exact solution
Approximation

0 5 10 15
10

−4

10
−3

10
−2

10
−1

10
0

noise

Iterations

 

 
noise
error
residual
GMRES−residual

0 5 10 15
10

−6

10
−4

10
−2

10
0

10
2

10
4

 

 
λ

opt

λ
emb

λ
sec

λ
L−curve

0 20 40 60 80 100 120
−0.5

0

0.5

1

1.5

2

2.5

 

 
Exact solution
Approximation

0 5 10 15
10

−4

10
−3

10
−2

10
−1

10
0

noise

Iterations

 

 
noise
error
residual
GMRES−residual

0 5 10 15
10

−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

 

 

λ
opt

λ
emb

λ
sec

λ
L−curve

Figure 5: From top to bottom: results for baart, foxgood, i laplace, shaw. On the left
column we display the computed approximate solution. In the middle column we show the
convergence behavior of the new method (error, discrepancy and GMRES residual) with
the noise level highlighted by a dashed lines. On the right we compare different parameter
choice strategies. The tick circle displayed in all the frame of the middle and the rightmost
columns marks the iteration at which we would stop, according to the rule (28), (29). The
approximate solutions refer to this iteration.
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bex is generated by multiplying xex by a blurring matrix A ∈ RN×N . The matrix A is block
Toeplitz with Toeplitz blocks and is implemented in the function blur from [8], which has
two parameters, band and sigma; the former specifies the half-bandwidth of the Toeplitz
blocks and the latter the variance of the Gaussian point spread function. We generate a
blurred and noisy image b ∈ RN by adding a noise-vector e ∈ RN , so that b = Axex + e.
We assume the blurring operator A and the corrupted image b to be available while no
information is given on the error e.

In the example, the original image is the cameraman.tif test image from Matlab, a
256 × 256, 8-bit gray-scale image, commonly used in image deblurring experiments. The
image is blurred with parameters band=7 and sigma=2. We further corrupt the blurred
images with 0.1% additive Gaussian noise. The blurred and noisy image is shown in the
center column of Figure 6, the regularization operator is defined as

L = In ⊗ L1 + L1 ⊗ In ∈ RN×N , (31)

(cf. [12, §5]). The restored image is shown in the right column of Figure 6 . The result
has been obtained in m = 8 iterations of the Arnoldi algorithm, the CPU-time required
for this experiment is around 1.2 seconds. Many other experiments on image restoration
have shown similar performances.

5.3 Results for MRI Reconstruction

The treatment of different kinds of medical images such as Magnetic Resonance Imaging
(MRI), Computed Tomography (CT), Position Emission Tomography (PET), often re-
quires the usage of image processing techniques to remove various types of degradations
such as noise, blur and contrast imperfections. Our experiments focus on MRI medical
image affected by Gaussian blur and noise. Typically, when blur and noise affect the MRI
images, the visibility of small components in the image decreases and therefore image
deblurring techniques are extensively employed to grant the image a sharper appearance.

In our test we blur a synthetic MRI 256 × 256 image, with Gaussian blur (band=9,
sigma=2.5), and we add 10% Gaussian white noise, since the noise level of a real problem
may be expected to be quite high.

Figure 7 displays the performance of the algorithm. On the left column we show the
blur-free and noise-free image, on the middle column we show the corrupted image, on the
right column we show the restored image.The regularization operator employed is again
(31). The result has been obtained in m = 5 iterations of the algorithm, in around 0.7
seconds.
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Figure 6: Restoration of cameraman.tif. From left to right: original image; blurred and
noisy image with blur parameters band=7, sigma=2 and noise level ε = 10−3; restored
image. From top to bottom: original-size image and two zooms.
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Figure 7: Restoration of the test image mri.png image. From left to right: original
image; blurred and noisy image with noise level ε = 10−1 and blur parameters band=9,
sigma=2.5; restored image. From top to bottom original size image and two zooms.
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6 Conclusions

In this paper we have proposed a very simple method to define the sequence of regular-
ization parameters for the Arnoldi Tikhonov method, in absence of information on the
percentage of error which affects the right hand side. The numerical results have shown
that this technique is rather stable, with results comparable with the existing approaches
(GCV, L-curve). We have used the term ”embedded” to describe this procedure since the
construction of the Krylov subspaces is used, at the same time, either as error estimator
by means of the GMRES residual or for the solution of (4) with the AT method. We
remark that, in principle, the idea can be applied to any basic iterative method able to
approximate ∥e∥ and, at the same time, usable in connection with Tikhonov regularization
(as for instance, probably, the Lanczos bidiagonalization).

7 Appendix

While, in general, the SVD decomposition can be considered independent of the Arnoldi
process in absence of hypothesis on the starting vector b, the following proposition states
that, if the Discrete Picard Condition is satisfied, then we are able to express a relation
between R(Um) (the space generated by the columns of Um, where UmΣmV T

m is the trun-
cated SVD of A) and Km(A, b). In order to reduce the complexity of the notations, with
respect to Section 4 here b simply denotes the unperturbed right-hand side of the system.

Proposition 6. Assume that the singular values A are of the type σj = O(e−αj) (α > 0).

Assume moreover that the Discrete Picard Condition is satisfied. Let Ṽm := [ṽ0, ..., ṽm−1] ∈
RN×m where ṽk := Akb/

∥∥Akb
∥∥. If Ṽm has full column rank, then there exist Cm ∈ Rm×m

nonsingular, Em, Fm ∈ RN×m, such that

Ṽm = UmCm + Em, ∥Em∥ = O(m1/2σm), (32)

Um = ṼmC−1
m + Fm, ∥FmΣm∥ = O(m3/2σm). (33)

Proof. Let U⊥
m := [um+1, ..., uN ] ∈ RN×(N−m). Defining Cm := UT

mṼm ∈ Rm×m and

Em := U⊥
m

(
U⊥
m

)T
Ṽm ∈ RN×m we have Ṽm = UmCm + Em. Now we observe that for

0 ≤ k ≤ m− 1 ∣∣uTj ṽk∣∣ ∼ σj . (34)

For k = 0 the above relation is ensured by the Picard Condition, whereas for k ≥ 1 it
holds since

ṽk =

∥∥Ak−1b
∥∥

∥Akb∥
Aṽk−1.

Therefore, using σj = O(e−αj), we immediately obtain

∥Em∥ =

∥∥∥∥(U⊥
m

)T
Ṽm

∥∥∥∥ = O(m1/2σm), (35)
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We observe that the matrix Cm can be written as

Cm = UT
mWmSm,

where Sm is upper triangular and nonsingular if Ṽm has full rank. Now, from the relation
[6, §2.6.3]

σmin(U
T
mWm)2 = 1−

∥∥∥∥(U⊥
m

)T
Wm

∥∥∥∥2 ,
the quantity

∥∥∥(U⊥
m

)T
Wm

∥∥∥, which express the distance between R(Um) and R(Wm), is

strictly less than one if the Picard Condition is satisfied. Thus, by (32), we can write

Um = ṼmC−1
m −EmC−1

m , (36)

and since Em = U⊥
m

(
U⊥
m

)T
Ṽm we have that

EmC−1
m = U⊥

m

(
U⊥
m

)T
Ṽm

(
UT
mṼm

)−1
. (37)

By (34), using the Cramer rule to compute
(
UT
mṼm

)−1
Σm ∈ Rm×m we can see that each

element of this matrix is of the type O(1), so that

∣∣∣∣(U⊥
m

)T
Ṽm

(
UT
mṼm

)−1
Σm

∣∣∣∣ ∼ m

 σm+1 · · · σm+1
...

...
σN · · · σN

 ∈ R(N−m)×m,

and hence ∥∥∥∥(U⊥
m

)T
Ṽm

(
UT
mṼm

)−1
Σm

∥∥∥∥ = O(m3/2σm), (38)

using again σj = O(e−αj). Defining Fm = −EmC−1
m we obtain (33) by (36), (37) and

(38).

Thanks to the above Proposition, the following proof of Theorem 2 stated in Section
4.1 is straightforward.

Proof of Theorem 2. Let Am = UmΣmV T
m , and let ∆m = A−Am. By (9)

hm+1,m = wT
m+1Awm

= wT
m+1∆mwm + wT

m+1Amwm

= O(σm+1) + wT
m+1UmΣmV T

mwm,

since ∥∆m∥ = σm+1. Therefore, using (33) we obtain

hm+1,m = O(σm+1) + wT
m+1(ṼmC−1

m + Fm)ΣmV T
mwm.

which concludes the proof, since wT
m+1Ṽm = 0 and ∥FmΣm∥ = O(m3/2σm). �
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Remark 7. The hypothesis σj = O(e−αj) apparently limits the above results to severely
ill-conditioned problems. Actually, it is just used in (35) and (38) since, by the integral
criterion, ∑

j≥m+1
σj = O(e−αm) = O(σm).

In this sense, the results can be extended to mildly ill-conditioned problems, in which
σj = O(j−α), α > 1. In this situation we would have∑

j≥m+1
σj = O(m1−α),

so that, for α sufficiently large, (32), (33) and the results of Theorem 2 and Corollary 3,
can be extended to mildly ill-conditioned problems by replacing σm with O(m1−α).
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