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Abstract. For the solution of linear ill-posed problems, in this paperwe introduce a simple algorithm for
the choice of the regularization parameters when performing multi-parameter Tikhonov regularization through an
iterative scheme. More specifically, the new technique is based on the use of the Arnoldi-Tikhonov method and the
discrepancy principle. Numerical experiments arising from the discretization of integral equations are presented.
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1. Introduction. In the framework of Tikhonov regularization for the solution of ill-
posed linear systemsAx = b, A ∈ R

N×N , the use of the multi-parameter regularization
(even called multiple penalty regularization) has been basically introduced with the aim of
acting simultaneously on different frequency bands of the solution, in the hope of reproducing
all the basic features of the unknown solution with a good accuracy. Due to the wide range
of applications, there is a growing interest in this kind of regularization, and many numerical
schemes have been recently presented in various contexts (we cite [11] and the references
therein for an overview).

In this paper we mainly focus the attention on linear discrete ill-posed problems (see [8],
Chapter 1, for a background) and we assume that the availableright-hand side vectorb is
affected by noise, caused by measurement or discretizationerrors. Therefore, throughout the
paper we suppose that

(1.1) b = b+ e,

whereb represents the unknown noise-free right-hand side, and we denote byx the solution
of the error-free systemAx = b.

In the multi-parameter Tikhonov regularization setting, denoting byΛ = (λ1, . . . , λk)
T

the vector of the regularization parameters (λi ≥ 0, i = 1, ..., k, Λ 6= 0)‡ and byL =
{L1, . . . , Lk} the set of regularization matrices, a regularized solutionxΛ,L is defined as

(1.2) xΛ,L = arg min
x∈RN

J(x,Λ,L), whereJ(x,Λ,L) = ‖Ax− b‖2 +
k∑

i=1

λi ‖Lix‖2 .

Here and in the sequel, the norm used is always the Euclidean norm.
While the multi-parameter regularization is theoretically superior to any single-parameter

regularization which uses one of the matricesLi in (1.2), the main problem is that in practice
it may be quite difficult to work simultaneously with more than one regularization matrix and
to suitably define the regularization parametersλi. The existing methods for the automatic
choice of the parameters are essentially based on the generalized L-curve criterion (e.g., [2])
and on the generalization of the GCV criterion (see [4]). More recently an algorithm based
on the knowledge of the noise structure has been introduced in [1].

In many real applications, the noisy datab is known to satisfy

‖b− b‖ ≤ ε,
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from zero. However we prefer to present the analysis just like a generalization of the one-parameter case.
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so that the use of the discrepancy principle [13] may be considered even in the case of the
multi-parameter regularization. Indeed, in [11] the authors introduce an algorithm for the
definition of the regularization parameters based on the numerical solution with respect toΛ
of the equation

(1.3) ‖AxΛ,L − b‖ = ηε, η ≥ 1.

Up to now, to the best of our knowledge, such technique seems to be the only existing one
based on the discrepancy principle in the framework of the multi-parameter regularization.

In this paper we solve (1.2) using an iterative scheme called Arnoldi-Tikhonov (AT)
method, first proposed in [5] in the case of the single-parameter regularization withL =
{IN}, whereIN denotes the identity matrix of orderN . This method has proved to be
particularly efficient when dealing with large scale problems, as for instance the ones arising
from image restoration. Indeed, it is based on the projection of the original problem (1.2)
onto Krylov subspaces of smaller dimensions computed by theArnoldi algorithm.

Using an iterative method for (1.2) we automatically introduce a new parameter to be
determined, that is, the number of iterations. Let us denoteby x

(m)
Λ them-th approximation

arising from the Arnoldi-Tikhonov process (from now we omitthe notations which show the
dependency onL, since this set is assumed to be fixed). The algorithm here proposed for the
definition ofΛ and to stop the procedure, is based on the solution of

∥∥∥Ax(m)
Λ − b

∥∥∥ = ηε,

at each step, by means of a linear approximation (with respect to each parameterλi, i =
1, ..., k) of the function

φ(m)(Λ) =
∥∥∥Ax(m)

Λ − b
∥∥∥ .

This method generates a sequence of regularization vectorsΛ(m), m ≥ 1, whose compo-
nentsλ(m)

i are automatically defined. The idea extends the one studied in [6] for the single-
parameter case, which has been shown to be really competitive with the existing ones for
Krylov type solvers (e.g., [5, 10, 16]).

The paper is organized as follows. In Section2 we explain the use of the AT method for
the solution of (1.2). In Section3 we describe our scheme for the choice of the parameter
vectorΛ. In Section4 we explain the algorithm associated to the new method along with a
computationally cheaper variant. In Section5 we display the main results obtained perform-
ing common test problems. Finally, in Section6, we propose some concluding remarks. We
also include an Appendix in which we report some tables that summarize various meaningful
results related to the experiments described in Section5.

2. The Arnoldi-Tikhonov method. Let us work in the single parameter case withΛ =
{λ} andL = {L}. The Arnoldi-Tikhonov (AT) method was introduced in [5] with the basic
aim of reducing the problem

(2.1) min
x∈RN

{
‖Ax− b‖2 + λ‖Lx‖2

}
, whereλ > 0 andL = IN ,

to a problem of much smaller dimension. The idea is to projectthe matrixA onto the Krylov
subspaces generated byA and the vectorb, i.e.,Km(A, b) = span{b, Ab, . . . , Am−1b}, with
m ≪ N . The method was also introduced to avoid the matrix-vector multiplication with



MULTI-PARAMETER ARNOLDI-TIKHONOV METHODS 3

AT required by Lanczos type schemes (see e.g [3, 5, 9, 15]). To construct the Krylov sub-
spaces, the AT method employs the Arnoldi algorithm (see [17, Section 6.3] for an exhaustive
background), which yields the decomposition

(2.2) AVm = Vm+1H̄m,

whereVm+1 = [v1, ..., vm+1] ∈ R
N×(m+1) has orthonormal columns which span the Krylov

subspaceKm+1(A, b) andv1 is defined asb/ ‖b‖. The matrixH̄m ∈ R
(m+1)×m is an upper

Hessenberg matrix. Denoting byhi,j the entries ofH̄m, in exact arithmetics the Arnoldi
process terminates wheneverhm+1,m = 0, which meansKm+1(A, b) = Km(A, b).

The AT method searches for approximations of the solution ofthe problem (2.1) belong-
ing toKm(A, b). In this sense, replacingx = Vmym (ym ∈ R

m) into (2.1), yields the reduced
minimization problem

(2.3) min
ym∈Rm

{∥∥H̄mym − V T
m+1b

∥∥2 + λ ‖ym‖2
}
,

sinceV T
m+1Vm+1 = Im+1. Remembering thatv1 = b/‖b‖ we also have

V T
m+1b = ‖b‖e1 wheree1 = (1, 0, . . . , 0)T ∈ R

m+1.

Looking at (2.3), we can say that the AT method can be regarded to as a regularized version
of the GMRES.

The method considered in this paper is an extension of the AT method in order to work
with one or more regularization operators not necessary equal to the identity matrix. In de-
tails, replacing, as before,x = Vmym (ym ∈ R

m) into (1.2) and using (2.2), we have that

min
x∈Km(A,b)

J(x,Λ,L) = min
ym∈Rm

{
∥∥H̄mym − ‖b‖ e1

∥∥2 +
k∑

i=1

λi ‖LiVmym‖2
}

(2.4)

= min
ym∈Rm

∥∥∥∥∥∥∥∥∥




H̄m√
λ1L1Vm

...√
λkLkVm


 ym −




‖b‖ e1
0
...
0




∥∥∥∥∥∥∥∥∥

2

.(2.5)

In the sequel we will refer to (2.5) as least squares formulation of the multi-parameter Arnoldi-
Tikhonov method. We emphasize that the above strategy can beapplied even when the regu-
larization matrices are rectangular, as for instance when considering scaled finite differences
approximations of the derivative operators. However we remark that, contrary to (2.3), the
original dimension of the problem is only partially reduced, sinceLiVm ∈ R

(N−pi)×m if
Li ∈ R

(N−pi)×N .
Anyway, sinceH̄m = V T

m+1AVm, if Li ∈ R
N×N , i = 1, ..., k, one may even consider

the projected operators

(2.6) K
(m)
i = V T

m+1LiVm

and hence the reduced minimization

(2.7) min
ym∈Rm

{∥∥H̄mym − ‖b‖ e1
∥∥2 +

∑m

i=1
λi

∥∥∥K(m)
i ym

∥∥∥
2
}
.

The problem (2.7) is not equivalent to the original one (2.4), but many numerical experiments
have revealed that the use of (2.6) is worth of further investigation. However, it is important to
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point out that, in fact, the computational cost associated to the solution of (2.7) is comparable
with the one of (2.5), because of the operation (2.6).

Finally, we remark that if an initial approximationx0 of the solutionx̄ is available,
then we can incorporate it into the Arnoldi-Tikhonov schemeby defining the initial residual
r0 = b − Ax0 and by considering the Krylov subspacesKm(A, r0). Consequently, the
approximate solution of the problem (1.2) is of the formxm = x0 + Vmym and in the
expressions (2.3), (2.4), (2.5), (2.7) we simply have to substituteb with r0 (cf. [6]).

3. The parameter selection strategy.As already said in the Introduction, if we assume
to know the quantityε = ‖b − b‖, it turns out that a successful strategy to defineΛ, as well
as a stopping criterion, is the discrepancy principle (1.3) adapted to the iterative setting of the

AT method. At each iteration we can define the functionφ(m)(Λ) =
∥∥∥b−Ax

(m)
Λ

∥∥∥, and we

say that the discrepancy principle is satisfied as soon as

φ(m)(Λ) ≤ ηε, where η ' 1.

We remark that, if we rather know the noise levelε̃ = ‖e‖/‖b‖, then the discrepancy principle
reads

(3.1) φ(m)(Λ) = ηε̃‖b‖.

We immediately note that, since for the AT method the approximations are of the formx(m)
Λ =

Vmy
(m)
Λ ∈ Km(A, b), wherey(m)

Λ solves (2.5), the discrepancy can be rewritten as

(3.2) φ(m)(Λ) = ‖b−AVmy
(m)
Λ ‖ = ‖c− H̄my

(m)
Λ ‖,

wherec = ‖b‖e1 ∈ R
m+1.

Now we briefly focus on the casek = 1, since the strategy derived to choose the com-
ponents of the regularization vectorΛ in the multi-parameter case is a generalization of the
algorithm adopted in the single-parameter case.

3.1. The one-parameter case.As in Section2, here we denote the unique regulariza-
tion parameter and operator simply byλ andL, respectively. The method that we are going
to describe has been introduced in [6] and has already been used in [14]; we underline that it
is able to simultaneously determine suitable values for bothλ andm. Our basic hypothesis is
that the discrepancy can be well approximated by

(3.3) φ(m)(λ) ≈ α(m) + λβ(m),

i.e., by a linear function with respect toλ, in whichα(m), β(m) ∈ R can be easily computed
or approximated.

Sincey(m)
λ solves the normal equations

(H̄T
mH̄m + λV T

mLTLVm)y
(m)
λ = H̄T

mc,

associated to the least square problem (2.5) with k = 1, by (3.2) we obtain

(3.4) φ(m)(λ) =
∥∥H̄m(H̄T

mH̄m + λV T
mLTLVm)−1H̄T

mc− c
∥∥ .

For what concerns the computation ofα(m) in (3.3), the Taylor expansion of (3.4) suggests
to chose

(3.5) α(m) = φ(m)(0) =
∥∥H̄m(H̄T

mH̄m)−1H̄T
mc− c

∥∥ ,
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which is just the norm of the residual of the GMRES, which can be evaluated working in
reduced dimension, by solving the least squares problem

(3.6) min
y∈Rm

∥∥H̄my − c
∥∥ .

For what concernsβ(m), suppose that, at stepm, we have used the parameterλ(m−1) (ob-
tained at the previous step or, ifm = 1, given by the user) to computey(m)

λ(m−1) by solving
(2.5) with λ = λ(m−1). The corresponding discrepancy is

(3.7) φ(m)(λ(m−1)) =
∥∥∥c− H̄my

(m)

λ(m−1)

∥∥∥ ,

and consequently, using the approximation (3.3), we obtain

(3.8) β(m) =
φ(m)(λ(m−1))− α(m)

λ(m−1)
.

To selectλ(m) for the next step of the Arnoldi-Tikhonov algorithm we impose

(3.9) φ(m)(λ(m)) = ηε

and we force the approximation

(3.10) φ(m)(λ(m)) = α(m) + λ(m)β(m);

Hence, by (3.8) and (3.9), we define

(3.11) λ(m) =
ηε− α(m)

φ(m)(λ(m−1))− α(m)
λ(m−1).

The method (3.11) has a simple geometrical interpretation which allows to see it as a
zero finder. Indeed, with this choice ofα(m) andβ(m), the functionφ(m)(λ) is linearly
interpolated at(0, α(m)) and(λ(m−1), φ(m)(λ(m−1))); looking at (3.10), we understand that,
at each iteration of the Arnoldi-Tikhonov method, a step of asecant-like zero-finder for the
solution of (3.9) is performed (see again [6]).

We remark that in the first iterations of (3.11) instability can occur, due to the fact that
we may haveα(m) ≫ ηε. In this situation the result of (3.11) may be negative (recall that the
functionφ(m)(λ) is increasing and is only defined forλ > 0); therefore we consider

(3.12) λ(m) =

∣∣∣∣
ηε− α(m)

φ(m)(λ(m−1))− α(m)

∣∣∣∣λ
(m−1).

Numerically, formula (3.12) is very stable, in the sense that after the discrepancy principle
is satisfied,λ(m) ≈ const for growing values ofm. We address the fact that this parameter
choice technique can also be used together with the Range-Restricted approach [10] and even
in the case of Krylov methods based on the Lanczos unsymmetric process [5].

Finally we note that, with respect to the strategies used so far in connection with the AT
method, the present one is intrinsically simpler and cheaper; indeed it essentially involves
quantities that are strictly connected to the projected problem and the only additional com-
putations are performed in reduced dimension. More specifically, the computation of the
GMRES residual requiresO(m2) operations (if the QR update is not employed, otherwise
justO(m)).
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3.2. The multi-parameter case.As pointed out by many works in literature (cf. for
example [4] and [11]), the most natural way to face a multi-parameter problem isto first
solve some single-parameter problems, one for each regularization matrix, and then to find a
connection between all the problems. In our case, at them-th step of the Arnoldi-Tikhonov
algorithm and for a givenj, 1 ≤ j ≤ k, we consider the problem

(3.13) min
ym∈Rm

∥∥∥∥∥∥∥∥∥∥∥∥∥




H̄m√
λ
(m)
1 L1Vm

...√
λ
(m)
j−1Lj−1Vm√
λLjVm




ym −




‖b‖ e1
0
...
0
0




∥∥∥∥∥∥∥∥∥∥∥∥∥

2

,

which is aj-parameter Arnoldi-Tikhonovscheme; it can also be regarded as a reduced version
of the system (2.5), where the corresponding regularization vector is

(3.14) Λ =
(
(Λ

(m)
j−1)

T , λ, 0, . . . , 0
)T

, where Λ
(m)
j−1 = (λ

(m)
1 , . . . , λ

(m)
j−1)

T .

According to the notation that we have used in the one-parameter case, this means that
we have already solved, in a sequential way,(j − 1) reduced problems obtained adding to
the original projected problem (3.6) a new regularization term and that we have determined
the suitable regularization parametersλ

(m)
1 , . . . , λ

(m)
j−1, for the problems so far considered.

Therefore, now the task is to determine the parameterλ
(m)
j ; since we only have to update one

parameter, we can resume the strategy employed for the single parameter AT method. We
define the function

(3.15) φ
(m)
j (λ) = φ(m)(Λ) =

∥∥∥c− H̄my
(m)
Λ,j

∥∥∥ , Λ =
(
(Λ

(m)
j−1)

T , λ, 0, . . . , 0
)T

,

wherey(m)
Λ,j is the solution of (3.13). In this framework, the normal equations associated to

the problem (3.13) are
(
H̄T

mH̄m +

j−1∑

i=1

λ
(m)
i V T

mLT
i LiVm + λV T

mLT
j LjVm

)
y
(m)
Λ,j = H̄T

mc.

As before, we are looking for a linear approximation, with respect to the parameterλ, of the
discrepancy associated to the reduced multi-parameter problem so far considered, i.e.,

(3.16) φ
(m)
j (λ) ≈ α

(m)
j + λβ

(m)
j .

Analogously to the one-parameter case, to obtainα
(m)
j we considerλ = 0, that is

(3.17) α
(m)
j = φ

(m)
j (0) =

∥∥∥∥∥∥
H̄m

(
H̄T

mH̄m +

j−1∑

i=1

λ
(m)
i V T

mLT
i LiVm

)−1

H̄T
mc− c

∥∥∥∥∥∥
.

Observing the above expression we see that now we have to dealwith the discrepancy asso-
ciated to the(j − 1)-parameter method with vector of the regularization parameters given by
Λ
(m)
j−1. Using the definition (3.15) we also have

(3.18) α
(m)
j = φ(m)(Λ

(m)
j−1).
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We emphasize that, to obtain the quantityα
(m)
j , we have to solve again the(j− 1)-parameter

problem with the regularization vector given byΛ(m)
j−1. Of course, whenj = 1, the determi-

nation ofλ(m)
1 again requires the computation of the solution of the problem (3.6) as in the

mono-parameter case, i.e.,α
(m)
1 = φ

(m)
1 (0) is still the residual of the GMRES.

For what concerns the quantityβ(m)
j , once we have solved (3.13) for λ = λ

(m−1)
j , we

obtain

(3.19) φ
(m)
j (λ

(m−1)
j ) =

∥∥∥c− H̄my
(m)
Λ,j

∥∥∥ , Λ =
(
(Λ

(m)
j−1)

T , λ
(m−1)
j , 0, . . . , 0

)T
,

and consequently, using the approximation (3.16), we get

β
(m)
j =

φ
(m)
j (λ

(m−1)
j )− α

(m)
j

λ
(m−1)
j

.

Finally, imposingφ(m)
j (λ

(m)
j ) = ηε and forcing again (3.16), we compute the newj-th

component of the regularization vector as

λ
(m)
j =

ηε− α
(m)
j

φ
(m)
j (λ

(m−1)
j )− α

(m)
j

λ
(m−1)
j .

As in the one-parameter case, the computation of eachλ
(m)
j , j = 1, . . . , k can be meaning-

less for the first few iterations, sinceηε is aboveα(m)
j and the values ofλ(m)

j are therefore
negative. For this reason we actually consider

(3.20) λ
(m)
j =

∣∣∣∣∣
ηε− α

(m)
j

φ
(m)
j (λ

(m−1)
j )− α

(m)
j

∣∣∣∣∣λ
(m−1)
j .

At this point, if j < k we add a regularization term and we repeat the previous computation
considering(j + 1) instead ofj; otherwise, ifj = k, the solutiony(m)

Λ,k of (3.13) is indeed
the solution of the complete multi-parameter problem (2.5). We stop the iterations as soon as
φ(m)(Λ) ≤ ηε.

3.3. Geometrical interpretation. We close this section suggesting a geometrical inter-
pretation of the above proposed scheme. For simplicity we treat the casek = 2, but the
exposed ideas can be generalized to an arbitrary number of regularization terms. We fix an
indexm and a Cartesian coordinate system(λ1, λ2, z). Consideringz = φ(m)(λ1, λ2) we
obtain a differentiable surface inR3; solving (1.3) means finding the intersections between
the just mentioned surface and the horizontal planez = ηε (see Figure3.1, upper frame).
The strategy described above prescribes to initially takeλ2 = 0; in this way we actually work
on the plane(λ1, z) and the approximate solutionλ(m)

1 of φ(m)(λ1, 0) = φ
(m)
1 (λ1) = ηε is

the intersection betweenz = α
(m)
1 + λ1β

(m)
1 andz = ηǫ if this scalar is positive, otherwise

its absolute value (see Figure3.1, lower leftmost frame). At this point we takeλ1 = λ
(m)
1 ,

that is, we work on the plane(λ(m)
1 , λ2, z); the new valueλ(m)

2 is the approximate solution of

φ(m)(λ
(m)
1 , λ2) = φ

(m)
2 (λ2) = ηε, which is the intersection betweenz = α

(m)
2 +λ2β

(m)
2 and

z = ηǫ if this scalar is positive, otherwise its absolute value (see Figure3.1, lower rightmost
frame; in this case we display what happens when the quantityα

(m)
2 is above the noise level).
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λ
1
(m) λ

1
(m−1) λ

1

φ
1
(m)(λ

1
)

α
1
(m)

ηε

z

λ
2
=0

ηε

α
2
(m)

λ
2

φ
2
(m)(λ

2
)

λ
2
(m) λ

2
(m−1)

z

λ
1
=λ

1
(m)

FIG. 3.1.Geometric interpretation of the strategy proposed to find the values of the regularization parameters
when performing Arnoldi-Tikhonov multi-parameter methodin the casek = 2 and for a fixedm. Upper frame:

plot of the surfacez = φ(m)(λ1, λ2) along with the planesz = ηε andλ1 = λ
(m)
1 . Lower leftmost frame: plot

of the curveφ(m)
1 (λ1) = φ(m)(λ1, 0) on the planeλ2 = 0; we also display the thresholdηε, the considered

linear approximation and the computed new valueλ
(m)
1 . Lower rightmost frame: plot of the curveφ(m)

2 (λ2) =

φ(m)(λ
(m)
1 , λ2) on the planeλ(m)

1 = 0; we also display the thresholdηε, the considered linear approximation

and the computed new valueλ(m)
2 (note that, in this case,α(m)

2 > ηε).

4. Algorithms. In this section we summarize the above described method and we pro-
pose a computationally cheaper variant of the following algorithm.

ALGORITHM 4.1. Multi-parameter Arnoldi-Tikhonov
1. Input:A, b, L = {L1, . . . , Lk}, Λ = (λ

(0)
1 , . . . , λ

(0)
k ), x0, ε, η

2. Form = 1, 2, ... until ‖c− H̄my
(m)
Λ ‖ ≤ ηε

(a) UpdateVm, H̄m by the Arnoldi algorithm (2.2).
(b) For j = 1, . . . , k − 1

i. Solve (3.13) with the parameters((Λ(m)
j−1)

T , λ
(m−1)
j )T and evaluateφ(m)

j (λ
(m−1)
j )

by (3.19).
ii. Solve (3.13) with the parameters((Λ(m)

j−1)
T , 0)T and evaluateφ(m)

j (0) by
(3.19).

iii. Compute the new parameterλ(m)
j by (3.20) and thenΛ(m)

j (cf. (3.14)).

(c) Compute the vectory(m)
Λ := y

(m)
Λ,k by solving the complete problem (2.5), with

Λ = ((Λ
(m)
k−1)

T , λ
(m−1)
k )T .

(d) Compute the new parameterλ
(m)
k by (3.20) and then updateΛ.

3. Compute the approximate solutionx = Vmy
(m)
Λ .
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Algorithm 1 follows the lines of previous section, and hencerequires to solve twice each
reduced system (that is, for eachj = 1, . . . , k), in order to sequentially update the values of
the components of the regularization vectorΛ. There is however a cheaper alternative that
consist in not using the updated values of the parameter. In other words, forj = 1, . . . k − 1,
we do not need to refreshλ(m−1)

j with λ
(m)
j , but we can work with the regularization vector

((Λ
(m−1)
j−1 )T , λ

(m−1)
j )T = (λ

(m−1)
1 , . . . , λ

(m−1)
j−1 , λ

(m−1)
j )T at Step2bi. The new expression

of α(m)
j is now (cf. (3.18))

(4.1) α
(m)
j = φ(m)(Λ

(m−1)
j−1 ).

This alternative approach, described by Algorithm4.2, needs only one solution of (3.13), for
j = 1, . . . , k, at each step.

ALGORITHM 4.2. Multi-parameter Arnoldi-Tikhonov without update
1. Input:A, b, L = (L1, . . . , Lk), Λ = (λ

(0)
1 , . . . , λ

(0)
k ), x0, ε, η

2. Form = 1, 2, ... until ‖c− H̄my
(m)
Λ ‖ ≤ ηε

(a) UpdateVm, H̄m by the Arnoldi algorithm (2.2).
(b) For j = 1, . . . k

i. Solve (3.13) with the parameters(Λ(m−1)
j−1 )T and evaluateφ(m)

j (λ
(m−1)
j )

by (3.19).
ii. Takeα(m)

j as in (4.1).

iii. Compute the new parameterλ(m)
j by (3.20).

(c) Update the vectorΛ = (λ
(m)
1 , . . . , λ

(m)
k ).

3. Compute the approximate solutionx = Vmy
(m)

Λ(m−1) .

The numerical tests reported in the Appendix show that this strategy can compute regu-
larized solutions whose relative error is still comparableto the one of the solutions obtained
running Algorithm4.1. However, the number of iterations required to return the solution is,
on average, higher than the one related to the former method.

REMARK 4.3. In our computations both Algorithm4.1 and Algorithm4.2 have been
implemented with some minor changes regarding the stoppingcriterion. Indeed we have
employed a sort ofweakened discrepancy principle, that is, we stop the iterations as soon as

(4.2) φ(m)(λ) − ηε̃‖b‖ < 10θ,

whereθ < 0 is automatically determined as the sum of the order of the noise level̃ε and of the
order of the last significant digit ofη. In this way, when applying the discrepancy principle,
we neglect any quantity coming after the last significant digit of the product̃εη. For instance,
if ε̃ = 10−2 andη = 1.01 thenθ = −4 and we stop the iterations as soon as

φ(m)(λ)/‖b‖ ≤ 1.01 · 10−2 + 9.9̄ · 10−5.

We remark that, if the “classical”discrepancy principle (3.1) is fulfilled, then also (4.2) is sat-
isfied. We introduced this weakened version of the discrepancy principle because, while exe-
cuting the numerical experiments, we noted that very often the discrepancy stagnates slightly
above the prescribed threshold without crossing it and, performing too many iterations, the
quality of the approximate solution deteriorates.

At the same time we decide to enforce the stopping criterion in order to assure that not
only the solutiony(m)

Λ of the complete problem but also all the solutions of the reduced regu-

larization problems satisfy the weakened discrepancy principle (4.2), that is,φ(m)
j (λ

(m−1)
j )−
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ηε̃‖b‖ < 10θ ∀j = 1, . . . , k−1. This is a quite natural choice, since the solution of the multi-
parameter problem is built taking into account thek solutions of the associated one-parameter
problems.

5. Numerical Experiments. In this section we test the behavior of Algorithm4.1 to
solve the multi-parameter problem. We believe that the bestway to validate the method just
described is to make suitable comparisons with what happensin the one-parameter case; in
the sequel we will explain the details and the goal of each experiment. We will exclusively
focus on the two-parameter and the three-parameter cases. All the test problems are taken
from Hansen’s packageRegularization Tools[7].

In all the examples we suppose to know the exact solutionx and the exact right-hand
side vector is either given in [7] or constructed takingb = Ax. The elements of the noise
vectore are normally distributed with zero mean and the standard deviation is chosen such
that‖e‖/‖b‖ is equal to a prescribed levelε̃. Moreover we always consider the initial guess
x0 = 0, we setη = 1.01 andΛ = (1, . . . , 1)T ∈ R

k. Following what is done in [11], each
test problem is generated 100 times to reduce the dependenceof the results on the random
components of the vectore. All the computations have been executed using Matlab 7.10 with
16 significant digits on a single processor computer Intel Core i3-350M.

Before describing each test, we list the regularization matrices that we have employed:
• the identity matrixIN ∈ R

N×N .
• Scaled finite difference approximations of the first and second order derivatives, i.e.,

D1 : =




1 −1
. . .

. . .
1 −1


 ∈ R

(N−1)×N ,(5.1)

D2 : =




1 −2 1
. . .

. . .
. . .

1 −2 1


 ∈ R

(N−2)×N ,(5.2)

whose null-spaces are given byN (D1) = span
{
(1, 1, . . . , 1)T

}
⊂ R

N andN (D2) =

span
{
(1, 1, . . . , 1)T , (1, 2, . . . , N)T

}
⊂ R

N .
• Square projection matrices built using the strategy suggested in [12]: given M ∈
R

N×ℓ we compute the “skinny” QR factorizationM = WR (whereW ∈ R
N×ℓ

andR ∈ R
ℓ×ℓ) and we take, as regularization matrix,

(5.3) L := IN −WWT ∈ R
N×N .

In this way the null space ofL is spanned by the orthonormal columns ofW . This
kind of matrix is particularly useful when we want to consider a regularization oper-
ator with a given null-space different from the ones of the commonly used operators
(5.1) and (5.2).

5.1. Results obtained considering particular solutions.The aim of the first set of per-
formed experiments is to show that, when applying the multi-parameter method to a problem
whose exact solutionx lies in the null space of the regularization operatorLi, the parame-
ter selection strategy correctly weights thei-th component of the regularization vectorΛ, by
assigning toλi a value dominating the other components. Indeed, in this situation, the regu-
larization operatorLi is the most suitable one, since the important features of thesolution are
not damped. Therefore we start to consider two particular exact solutions: the constant one,
xc := (1, 1, . . . , 1)T ∈ R

N , and the linear one,xl := (1, 2, . . . , N)T ∈ R
N ; as recalled in
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the above list,xc ∈ N (D1) ∩ N (D2), while xl ∈ N (D2). For this reason we will employ
both the two and three-parameter methods with different combinations of the regularization
matricesIN , D1 andD2.

First of all we take the solutionxc and we consider the matrix of sizeN = 200 associ-
ated to the problemi laplace. The involved noise level is̃ε = 10−2 and we determine a
regularized solution by using the(I200, D1) two-parameter method. To be aware of what
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FIG. 5.1. Results obtained running 100 times the test problemi laplace with the particular solutionxc

(we plot one single marker for each performed test). Upper frame: we report the values of the relative errors
in logarithmic scale on the horizontal axis and, at each vertical level, we mark the values corresponding to the
I200 one-parameter (circle), theD1 one-parameter (square) and the(I200, D1) two-parameter (asterisk) methods.
Lower frame: we report the values of the regularization parameters in logarithmic scale on the horizontal axis and,
at each vertical level, we mark the values corresponding to theI200 one-parameter (circle), theD1 one-parameter
(square) and the(I200,D1) two-parameter (asterisk) methods; concerning the multi-parameter method, the first
line (labeled byI200) refers to the parameter that weights the term‖x‖2, while the second line (labeled byD1)
refers to the parameter that weights the term‖D1x‖2.

happens using the single parameter Tikhonov method, for each test we also report the results
obtained considering exclusivelyL = I200 andL = D1. We display the results relative to
100 different noisy right-hand sides in Figure5.1. We can clearly see that, with very few ex-
ceptions, the components of the regularization vector associated toI200 andD1 replicate the
behavior of the parameter of the Tikhonov method withL = I200 andL = D1, respectively.
This means that, in the regularization process, the most appropriate regularization operator,
in this caseD1, weights more than the others. In almost all cases, the solutions of theI200
andD1 one-parameter method belong to Krylov subspaces of dimension 5 and 6, respec-
tively, while most of the solutions associated to the two-parameter method belong to Krylov
subspaces of dimension 6 or 7. In Figure5.2 we focus on a single test and we display the
course of the relative error, the regularization parameters and the discrepancies of the exam-
ined methods at each step of the Arnoldi algorithm. Looking at both figures we can see that
the quality of the solutions computed by the multi-parameter method does not improve with
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FIG. 5.2. Behavior of the relative errors, regularization parameters and discrepancies versus the number of
iterations for the test problemi laplace with solutionxc. Upper box: we consider the multi-parameter method
(asterisk), theI200 one-parameter method (circle) and theD1 one-parameter method (square); middle box: we
display the values of the parametersλ1 associated toI200 (asterisk with dashed line) andλ2 associated toD1

(asterisk with dash-dot line) and the values of the parameters of the two one-parameter methods considered above
(with the same markers as listed above); lower box: the norm of the residual of the GMRES over‖b‖ (circle) and

the discrepanciesφ(m)
1 /‖b‖ associated to the first regularization term (square),φ

(m)
2 /‖b‖ associated to the second

regularization term (diamond).
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FIG. 5.3.Results obtained running 100 times the test problemphillips with the particular solutionxl (we
plot one single marker for each performed test). Upper frame: we report the values of the relative errors on the
horizontal axis and, at each vertical level, we mark the values corresponding to theI200 one-parameter (circle), the
D1 one-parameter (square), theD2 one-parameter (diamond) and the(I200, D1, D2) three-parameter (asterisk)
methods. Lower frame: we report the values of the regularization parameters in logarithmic scale on the horizontal
axis and, at each vertical level, we mark the values corresponding to theI200 one-parameter (circle), theD1 one-
parameter (square), theD2 one-parameter (diamond) and the(I200, D1, D2) three-parameter (asterisk) methods;
concerning the multi-parameter method, the first line (labeled byI200) refers to the parameter that weights the term
‖x‖2, the second line (labeled byD1) refers to the parameter that weights the term‖D1x‖2, and the third line
(labeled byD2) refers to the parameter that weights the term‖D2x‖2.
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FIG. 5.4. Behavior of the relative errors, regularization parameters and discrepancies versus the number of
iterations for the test problemshaw with solutionxl. The displayed quantities are the same as in Figure5.2 and
are denoted by the same markers. In addition: in the upper boxwe visualize theD2 mono-parameter method (dia-
mond); in the middle box we visualize the parameterλ3 (asterisk with solid line) that weights the term‖D2x‖2 of
the multi-parameter method along with the regularization parameter associated to theD2 mono-parameter method

(diamond); in the lower box we visualize the discrepancyφ
(m)
3 /‖b‖ (hexagram) associated to the third regulariza-

tion term.
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respect to the results associated to theD1 mono-parameter method. However this is quite
reasonable since, as said in the Introduction, the task of the multi-parameter methods is to
preserve many different features of the solution; when, as in this case, the solution belongs to
the null space of one of the considered operator, the mono-parameter method with that regu-
larization operator is the one that works better. Now we consider the matrix associated to the
problemphillipswith N = 200 and we take, as exact solution, the linear onexl; the noise
level is agaiñε = 10−2. We compute the regularized solution employing the three-parameter
method with regularization matricesL1 = I200, L2 = D1 andL3 = D2. We display the
results in Figure5.3, together with what we have obtained treating the same problem with the
I200, D1, D2 one-parameter methods. Even in this case the parameter selection strategy can
still automatically weight the regularization matrices, assigning the highest parameter to the
matrix whose null space contains the exact solution (in thiscase,D2). Regarding the num-
ber of iterations required to satisfy the weakened discrepancy principle, the three-parameter
method needs in most of the cases 8, 11 or 13 iterations, theI200 mono-parameter method
needs 7 or 8 iterations while both theD1 andD2 mono-parameter methods require 8 or 9
iterations. In Figure5.4 we show the values of the relative errors, of the regularization pa-
rameters and of the discrepancies versus the number of iterations for the problemshaw of
size 200; we take again the linear vectorxl as exact solution.

The method has been experimented on the most popular test problems of [7], all of
dimensionN = 200, using the two particular solutionsxc andxl. We also consider two
different noise levels (̃ε = 10−2 andε̃ = 5 ·10−2) and several combinations of regularization
operators. We summarize the obtained results in TableA.1, TableA.2, TableA.3 and Table
A.4 reported in the Appendix.

Finally we propose the results of a couple of experiments built considering the artificial
solutions

(5.4) xsin = x(a) + x(b) := 10 sin
(x
2

)
+ x ∈ R

N ,

(5.5) xtan = x(a) + x(b) :=
1

10
tan

(
x

N + 1

π

2

)
+ x ∈ R

N .

xsin is oscillating whilextan is quickly increasing. This test is motivated by the fact that the
so far considered couple of matrices (5.1) and (5.2) indeed represents a particular situation,
sinceN (D1) ⊂ N (D2). Taking instead the solution (5.4) or (5.5), by (5.3) we can build two
particular regularization matricesL(a) andL(b) such thatx(a) ∈ N (L(a)), x(b) ∈ N (L(b))
andN (L(a)) ∩ N (L(b)) = {0}. As consequence, bothxsin andxtan do not belong to the
null space of the matricesL(a) or L(b). In this way we can really appreciate the essence of
the multi-parameter methods, that is, as said in the Introduction, to preserve many different
features of the solution of the original problem that may be distorted imposing only one
regularization operator. For both solutions we consider the matrixA ∈ R

200×200 associated
to the test problemfoxgood, a noise level̃ε = 10−2 and the regularization matricesL1 =
L(a), L2 = L(b). We display the results relative to (5.4) and (5.5) in Figure5.5.

5.2. Results obtained considering more general solutions.In the second set of com-
puted experiments we simply consider the most common test problems in [7] with their ap-
propriate solution. We are just going to display some graphsthat compare the performances
of the new multi-parameter method and the usual Arnoldi-Tikhonov method. We will only
consider the regularization matricesIN , D1 andD2.

In Figure5.6 we display the behavior of the relative errors and the valuesof the regu-
larization parameters obtained solving the test problemi laplace of dimensionN = 200
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FIG. 5.5. Results obtained running 100 times the test problemfoxgood with the particular solutionsxsin
(first and second frames) andxtan (third and fourth frames); as before, we plot one single marker for each per-
formed test. The regularization operatorsL(a) andL(b) are projection operators of the form (5.3). First and third
frames: we report the values of the relative errors on the horizontal axis and, at each vertical level, we mark the
values corresponding to theL(b) one-parameter (circle), theL(a) one-parameter (square) and the(L(a), L(b))
two-parameter (asterisk) methods. Second and fourth frames: we report the values of the regularization parameters
in logarithmic scale on the horizontal axis and, at each vertical level, we mark the values corresponding to theL(b)

one-parameter (circle), theL(a) one-parameter (square) and the(L(a), L(b)) two-parameter (asterisk) methods;
concerning the multi-parameter method, the first line (labeled byL(a)) refers to the parameter that weights the first
regularization term (i.e., the one that acts on thex(a) component of the solutions (5.4) and (5.5)), and the second
line (labeled byL(b)) refers to the parameter that weights the second regularization term (i.e., the one that acts on
thex(b) component of the solutions (5.4) and (5.5)).
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FIG. 5.6. Results obtained running 100 times the test problemi laplace (we plot one single marker for
each performed test). Upper frame: we report the values of the relative errors on the horizontal axis and, at each
vertical level, we mark the values corresponding to theI200 one-parameter (circle), theD1 one-parameter (square)
and the(D1, I200) two-parameter (asterisk) methods. Lower frame: we report the values of the regularization
parameters in logarithmic scale on the horizontal axis and,at each vertical level, we mark the values corresponding
to theI200 one-parameter (circle), theD1 one-parameter (square) and the(D1, I200) two-parameter (asterisk)
methods; concerning the multi-parameter method, the first line (labeled byD1) refers to the parameter that weights
the term‖D1x‖2, while the second line (labeled byI200) refers to the parameter that weights the term‖x‖2.
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with a noise of level̃ε = 10−2 that affects the right-hand-side vector; we consider theI200 and
D1 one-parameter methods and the(D1, I200) two-parameter method. We remark that, when
performing the multi-parameter method, the results can be affected by the order in which the
regularization matrices appear. Indeed, looking at the parameters selection strategy described
in subsection3.2, we can understand that the first regularization matrix (in this case,L1) is
weighted similarly to the one-parameter case, while the following ones work as corrections.
This is a consequence of the fact that many reduced problems are solved sequentially and
each one is based on the solutions and on the parameters associated to the previous ones; in
this sense the first regularization operator is somehow advantaged with respect to the others.
Therefore, if one has some intuition about the regularity ofthe solution, we suggest to put in
the first place the most suitable regularization matrix. In TableA.5 and in TableA.6 reported
in the Appendix we collect the results obtained consideringthe mono-parameter and the two
and three-parameter methods with various combinations of the usual regularization matrices
and two different noise levels.

5.3. Further considerations. In this subsection we highlight a couple of important fea-
tures of the new method that we noted while performing the numerical experiments just de-
scribed.

The first property is that the AT multi-parameter method is very robust with respect to
the initial choice of the regularization vectorΛ, that is, considering different values of the
components ofΛ, the accuracy of the results and the number of iterations arebasically stable.
In Figure5.7we display the values of the regularization parameters obtained by solving the
test problemshaw of dimensionN = 200 and taking as exact solution the one given in [7];
the noise level is̃ε = 10−2. We have employed the(I200, D1, D2) three-parameter method
and we have executed four tests considering the vectorΛ whose three entries are all equal
to 0.5, 1, 10 or 100. We can see that, except in the very first iterations, the behavior of
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FIG. 5.7. Values of the components of the regularization vectorΛ versus the number of iterations (each
frame corresponds to a different component). The test problem isshaw and we consider the(I200, D1,D2) multi-
parameter AT method. The initial values for the regularization vector areΛ = (0.5, 0.5, 0.5)T (diamond),Λ =
(1, 1, 1)T (asterisk),Λ = (10, 10, 10)T (circle),Λ = (100, 100, 100)T (square).

eachλi, i = 1, 2, 3 is very similar independently on the value ofλ
(0)
i . We have also tried to
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FIG. 5.8. Values of the relative error, of the discrepancies and of theregularization parameters versus the
number of iterations for the test problemshaw solved by the(I200,D1,D2) multi-parameter method. In the second
and third boxes, the circle denotes the quantities associated to the first regularization matrix (I200), the diamond
denotes the quantities associated to the second regularization matrix (D1), and the square denotes the quantities
associated to the third regularization matrix (D2). This method would stop at the 9th iteration (denoted by thebig
asterisk), but we decide to run it till the 30th iteration.
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consider different components of the initial vectorΛ and the results, even if not shown, are
identical to the ones just described.

The second property is about the performance of the method when many extra iterations
are executed after the stopping criterion is fulfilled. Despite we had to review the stopping
criterion introducing the weakened discrepancy principle(cf. Section4), we can appreciate
that in many cases the behavior of the method is very stable even when we decide to go on
with an arbitrary number of iterations. For instance, in Figure5.8 we display what happens
solving the problemshaw by the three-parameter method and considering, as before,N =
200, ε̃ = 10−2, L1 = I200, L2 = D1 andL3 = D2. Similar results have been obtained also
for phillips andfoxgood.

6. Conclusion. We have described a new strategy to work with multi-parameter Tikhonov
method when an iterative scheme based on the Arnoldi algorithm is adopted. The parameters
selection method is founded on the discrepancy principle and the algorithm to determine the
suitable regularization parameters at each step of the Arnoldi algorithm is computationally
very cheap, since it exclusively involves computations in reduced dimension. We have ver-
ified that the new method is able to automatically weight the different regularization terms,
assigning to the most suitable ones a higher regularizationparameter. The numerical ex-
periments performed also show that, in many cases, the new method is able to improve the
solution computed by means of the mono-parameter Arnoldi-Tikhonov method.

Appendix.
We report some tables that complete the experiments described in Section5. The results

are obtained performing, for each problem, 100 tests and taking the average of the relative
errors, the average of each regularization parameter that appears in the method and the aver-
age of the number of iterations. The parametersλ1, λ2 andλ3 are always associated to the
regularization matricesIN , D1 andD2, respectively. When the multi-parameter method is
concerned we report the results obtained applying both Algorithm 4.1and Algorithm4.2(we
mark the latter with the abbreviationWU within brackets next to the test name). The dimen-
sion of the problem is alwaysN = 200. TableA.1, TableA.2, TableA.3 and TableA.4 are
referred to the test concerning particular solutions (constant and linear), while TableA.5 and
TableA.6 are referred to the solution given in the routines of [7]. We consider different noise
levels and we highlight the most interesting results using boldface.
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TABLE A.1
Constant solutionxc with noise level̃ε = 10−2.

Relative Errors λ1 λ2 λ3 Iterations
baart 1.0378e-001 6.7818e-004 - - 3.00
baart 3.1941e-002 - 2.9526e+002 - 3.36
baart 4.6184e-002 - - 1.5322e+003 3.08
baart 3.3079e-002 4.1362e-003 2.3190e+003 - 3.40
baart (WU) 3.8475e-002 2.3079e-003 1.0314e+003 - 4.31
baart 3.5972e-002 5.8633e-003 - 8.8528e+004 3.34
baart (WU) 4.6334e-002 6.8556e-004 - 1.5115e+004 3.01
baart 5.4689e-003 - 3.9761e+002 1.5605e+005 4.01
baart (WU) 6.3468e-003 - 3.3345e+002 6.4547e+005 4.00
baart 3.2744e-002 3.9987e-003 2.7437e+003 8.9722e+007 3.48
baart (WU) 2.5777e-003 3.7114e-003 8.3275e+003 2.0124e+009 5.30
gravity 7.6927e-002 2.7235e-002 - - 4.05
gravity 3.5608e-002 - 1.2120e+002 - 4.89
gravity 3.7409e-002 - - 7.5008e+003 5.01
gravity 3.6233e-002 4.3953e-002 5.0042e+001 - 5.06
gravity (WU) 3.6591e-002 3.5814e-002 9.1060e+001 - 4.82
gravity 3.7397e-002 4.6282e-002 - 1.8640e+002 4.94
gravity (WU) 3.7525e-002 3.7270e-002 - 2.6912e+003 4.92
gravity 3.0131e-002 - 2.9360e+002 1.8309e+004 6.08
gravity (WU) 2.7768e-002 - 3.8358e+002 2.3200e+004 7.08
gravity 3.1157e-002 5.7598e-002 4.7711e+001 3.1995e+003 6.50
gravity (WU) 2.6016e-002 6.3788e-002 2.6957e+002 7.3402e+003 8.02
shaw 1.9111e-001 8.2282e-004 - - 11.96
shaw 1.0719e-001 - 9.6939e-001 - 6.82
shaw 1.4307e-001 - - 1.7511e+002 7.12
shaw 1.2701e-001 1.1500e-003 6.5296e+000 - 6.91
shaw (WU) 9.5561e-002 8.9523e-004 1.2847e1 - 7.65
shaw 1.1748e-001 9.5530e+000 - 1.3175e+003 7.44
shaw (WU) 1.2813e-001 6.1538e+000 - 2.2507e+003 7.82
shaw 1.1748e-001 - 9.5530e+000 1.3175e+003 7.44
shaw (WU) 1.2813e-001 - 6.1538e+000 2.2507e+003 7.82
shaw 1.7063e-001 1.0023e-003 3.0629e+000 1.2808e+003 7.65
shaw (WU) 1.0891e-001 9.5358e-004 7.0005e+000 1.5660e+003 8.38
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TABLE A.2
Constant solutionxc with noise level̃ε = 5 · 10−2.

Relative Errors λ1 λ2 λ3 Iterations
baart 4.7271e-002 1.8289e-002 - - 3.03
baart 4.6467e-002 - 2.6946e+002 - 3.00
baart 4.8727e-002 - - 3.1295e+001 3.00
baart 2.8299e-002 3.5002e-002 2.8047e+003 - 3.81
baart (WU) 4.5396e-002 1.8319e-002 3.1644e+002 - 3.01
baart 5.6287e-002 3.5177e-002 - 6.1848e+004 3.81
baart (WU) 4.5595e-002 1.8319e-002 - 2.0673e+004 3.01
baart 4.1186e-002 - 2.6891e+003 3.5107e+006 3.12
baart (WU) 4.2843e-002 - 1.2127e+003 4.1811e+006 3.09
baart 2.9684e-002 3.4540e-002 2.8129e+003 7.0676e+006 3.95
baart (WU) 4.5433e-002 1.8319e-002 3.1644e+002 1.4420e+005 3.01
gravity 1.4412e-001 6.2068e-002 - - 3.00
gravity 7.3863e-002 - 1.0178e+003 - 3.38
gravity 7.6596e-002 - - 5.8340e+002 3.30
gravity 7.5657e-002 8.9338e-002 2.6968e+001 - 3.52
gravity (WU) 5.9147e-002 1.7299e-001 1.4920e+003 - 4.61
gravity 7.6178e-002 9.4794e-002 - 7.9399e+002 3.41
gravity (WU) 7.7175e-002 6.9617e-002 - 1.6570e+003 3.23
gravity 5.6443e-002 - 3.4291e+003 1.0032e+005 5.13
gravity (WU) 5.7096e-002 - 2.1291e+003 1.7057e+005 5.14
gravity 7.5426e-002 1.1257e-001 3.4710e+001 1.6360e+004 3.90
gravity (WU) 5.5631e-002 3.2129e-001 7.2494e+002 5.6887e+004 10.39
shaw 3.8658e-001 1.1241e-002 - - 4.73
shaw 3.7087e-001 - 1.0679e+001 - 4.30
shaw 3.7499e-001 - - 1.1396e+002 4.08
shaw 3.4765e-001 4.0968e-002 6.2112e+000 - 5.77
shaw (WU) 3.2295e-001 2.8325e-002 8.9987e+000 - 6.71
shaw 3.6824e-001 9.7160e-002 - 5.0404e+002 4.85
shaw (WU) 3.5303e-001 1.8491e-002 - 1.3922e+003 5.06
shaw 2.2610e-001 - 8.0840e+001 1.0614e+003 6.59
shaw (WU) 2.8593e-001 - 2.4070e+001 2.7850e+003 6.02
shaw 3.4812e-001 3.0250e-002 6.1392e+000 5.6965e+002 7.06
shaw (WU) 3.2119e-001 3.3386e-002 3.6780e+000 1.0717e+003 9.23
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TABLE A.3
Linear solutionxl with noise level̃ε = 10−2.

Relative Errors λ1 λ2 λ3 Iterations
gravity 9.1882e-002 9.9070e-003 - - 5.88
gravity 4.3925e-002 - 6.2429e+000 - 6.60
gravity 4.4210e-002 - - 8.3509e+002 6.60
gravity 4.8555e-002 3.0927e-002 - 1.5557e+001 6.32
gravity (WU) 4.5759e-002 2.1120e-002 - 2.0771e+003 6.85
gravity 4.0287e-002 - 3.9018e+001 7.2829e+003 7.96
gravity (WU) 3.5810e-002 - 6.9289e+001 7.7211e+003 9.39
gravity 4.0742e-002 3.3236e-002 5.2950e+000 1.8860e+003 8.15
gravity (WU) 3.6273e-002 4.3565e-002 6.7350e+000 2.0170e+003 12.37
phillips 8.3395e-002 7.5351e-004 - - 3.88
phillips 5.1312e-002 - 6.0850e+000 4.79
phillips 2.5810e-002 - - 1.0223e+004 3.70
phillips 4.9806e-002 1.1568e-003 - 1.5404e+002 3.76
phillips (WU) 2.9860e-002 7.8084e-004 - 1.1637e+005 3.73
phillips 2.0121e-002 - 1.3793e+001 3.0215e+005 5.34
phillips (WU) 7.3637e-003 - 1.0211e+001 7.1454e+007 5.82
phillips 2.1245e-002 1.1547e-003 5.1765e+000 7.0991e+005 4.03
phillips (WU) 4.9555e-003 1.0063e-003 2.6263e+000 1.3782e+009 6.12
shaw 1.6558e-001 5.6169e-004 - - 8.04
shaw 9.8639e-002 - 2.0738e+000 - 7.05
shaw 1.1969e-001 - - 2.8091e+002 7.90
shaw 1.6111e-001 9.4367e-004 - 2.4475e+002 7.60
shaw (WU) 1.4970e-001 6.4663e-004 - 3.0588e+002 8.65
shaw 1.8624e-001 - 1.4567e+003 7.5914e+003 10.66
shaw (WU) 1.8275e-001 - 1.6192e+003 6.4621e+004 12.87
shaw 1.5545e-001 7.2387e-004 1.1118e+000 3.0236e+002 8.34
shaw (WU) 8.5492e-002 6.8840e-004 2.3488e-001 9.2377e+002 10.08
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TABLE A.4
Linear solutionxl with noise level̃ε = 5 · 10−2.

Relative Errors λ1 λ2 λ3 Iterations
gravity 2.8768e-001 5.5438e-002 - - 4.05
gravity 7.9760e-002 - 8.3692e+001 - 4.99
gravity 9.9241e-001 - - 2.0821e+003 6.47
gravity 9.9263e-001 3.0098e-002 - 3.0273e+002 8.08
gravity (WU) 9.9256e-001 3.0199e-002 - 3.9649e+002 9.23
gravity 7.0756e-002 - 5.1613e+002 5.8957e+004 6.88
gravity (WU) 6.9625e-002 - 5.1480e+002 8.2787e+004 7.32
gravity 7.1772e-002 2.7579e-001 3.3161e+001 3.5037e+003 8.09
gravity (WU) 6.9084e-002 2.8820e-001 1.6383e+001 2.2734e+003 15.31
phillips 1.3393e-001 6.9273e-003 - - 4.98
phillips 4.6177e-002 - 1.9380e+001 - 4.00
phillips 6.2626e-002 - - 1.5541e+002 3.00
phillips 5.9475e-002 1.2138e-002 - 3.8318e+003 3.04
phillips (WU) 4.4428e-002 7.1280e-003 - 7.3170e+005 3.96
phillips 4.4724e-002 - 8.0428e+001 2.8338e+006 5.74
phillips (WU) 3.0147e-002 - 4.9414e+001 9.6469e+006 5.51
phillips 5.9309e-002 1.1927e-002 1.9741e+001 2.6932e+004 3.15
phillips (WU) 5.1288e-002 8.9332e-003 5.1621e+000 2.0490e+007 6.68
shaw 4.2575e-001 5.0157e-003 - - 5.40
shaw 3.3582e-001 - 9.5404e+000 - 5.81
shaw 3.8572e-001 - - 1.2562e+003 5.41
shaw 3.7063e-001 1.6175e-002 - 5.2509e+002 6.60
shaw (WU) 3.3534e-001 1.8732e-002 - 1.0808e+003 8.03
shaw 1.9170e-001 - 3.4898e+001 1.0244e+003 7.64
shaw (WU) 1.5476e-001 - 3.7043e+001 3.9485e+003 8.22
shaw 3.3859e-001 1.8235e-002 5.7642e+000 5.6926e+002 7.68
shaw (WU) 3.1797e-001 2.1206e-002 3.7208e+000 2.1282e+003 12.32
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TABLE A.5
Given solution with noise level̃ε = 10−2.

Relative Errors λ1 λ2 λ3 Iterations
baart 5.0485e-002 5.9453e-004 - - 4.00
baart 9.6425e-002 - 4.2167e-001 - 6.00
baart 6.2569e-002 - - 1.0876e+003 5.01
baart 1.5099e-001 1.0683e-003 6.3735e-002 - 5.50
baart (WU) 1.5135e-001 1.0854e-003 1.0809e-001 - 6.10
baart 8.8097e-002 8.3136e-004 - 1.3274e+002 4.38
baart (WU) 1.2243e-001 1.0936e-003 - 2.3528e+002 5.67
baart 1.2223e-001 - 8.5082e-001 1.6022e+002 7.57
baart (WU) 1.2907e-001 - 8.9299e-001 1.1968e+002 8.93
baart 1.4903e-001 1.1395e-003 1.5122e-002 9.7826e+001 6.63
baart (WU) 2.0029e-001 1.2088e-003 2.5714e-003 3.3557e+001 15.88
gravity 1.2013e-001 9.7765e-003 - - 5.27
gravity 4.0751e-002 - 3.4584e+000 - 6.24
gravity 4.0657e-002 - - 5.4844e+002 6.19
gravity 4.3901e-002 3.3339e-002 7.3607e-001 - 6.15
gravity (WU) 4.2829e-002 2.7101e-002 3.6701e+000 - 6.50
gravity 4.2992e-002 4.1944e-002 - 9.7444e+001 6.04
gravity (WU) 4.1431e-002 2.8425e-002 - 2.3548e+003 6.60
gravity 4.5887e-002 - 1.1104e+001 2.0749e+003 7.92
gravity (WU) 4.6282e-002 - 1.2389e+001 2.5341e+003 8.83
gravity 3.7745e-002 4.0109e-002 8.4321e-001 4.1857e+002 7.80
gravity (WU) 3.5941e-002 5.1580e-002 6.8753e-001 8.0771e+002 13.03
phillips 2.8920e-002 1.8711e-002 - - 5.00
phillips 2.5621e-002 - 5.2041e+000 - 5.05
phillips 2.5663e-002 - - 5.5949e+002 5.00
phillips 2.5654e-002 5.5102e-002 2.2946e+000 - 7.52
phillips (WU) 2.5428e-002 4.2635e-002 2.2588e+000 - 8.06
phillips 2.6108e-002 5.0990e-002 - 2.7694e+002 7.48
phillips (WU) 2.6021e-002 4.1527e-002 - 3.0252e+002 8.05
phillips 2.7134e-002 - 1.0548e+001 1.4744e+002 7.54
phillips (WU) 2.7043e-002 - 9.1030e+000 1.3533e+002 8.43
phillips 2.5571e-002 4.6571e-002 9.4471e-001 4.5558e+001 9.71
phillips (WU) 2.5307e-002 5.1642e-002 3.8008e-001 5.2265e+001 12.56
shaw 1.3445e-001 7.5858e-004 - - 5.85
shaw 1.2074e-001 - 5.4351e-001 - 6.29
shaw 1.2074e-001 - - 1.2207e+002 6.01
shaw 1.3477e-001 1.8739e-003 2.5149e-001 - 6.73
shaw (WU) 1.4452e-001 3.1749e-003 2.6832e-001 - 8.02
shaw 1.3466e-001 2.0832e-003 - 5.8343e+001 6.71
shaw (WU) 1.4767e-001 3.6720e-003 - 5.1928e+001 8.18
shaw 2.0162e-001 - 1.8871e-001 2.9227e+000 9.59
shaw (WU) 2.0445e-001 - 1.8076e-001 4.0254e+000 10.85
shaw 1.3631e-001 3.1890e-003 2.6252e-001 1.7495e+001 7.71
shaw (WU) 1.3297e-001 3.6163e-003 2.2794e-002 9.6222e+000 15.36
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TABLE A.6
Given solution with noise level̃ε = 5 · 10−2.

Relative Errors λ1 λ2 λ3 Iterations
baart 2.5915e-001 5.5184e-003 - - 3.88
baart 3.5281e-001 - 4.1254e+001 - 22.62
baart 1.4907e-001 - - 7.8514e+001 3.90
baart 3.1181e-001 1.0697e-002 1.6995e+000 - 5.41
baart (WU) 3.1079e-001 1.0679e-002 1.8720e+001 - 6.17
baart 2.5738e-001 7.0589e-003 - 1.4668e+003 4.04
baart (WU) 2.4875e-001 6.3857e-003 - 1.8854e+003 4.16
baart 3.6233e-001 - 4.2956e+001 6.7892e+005 11.53
baart (WU) 3.6189e-001 - 4.2750e+001 9.5807e+005 12.31
baart 3.0971e-001 1.2027e-002 9.7625e-001 8.6695e+002 6.34
baart (WU) 3.0669e-001 1.4359e-002 5.6894e+000 2.7463e+006 22.44
gravity 2.0667e-001 7.6931e-002 - - 4.20
gravity 7.1581e-002 - 6.4767e+001 - 5.00
gravity 6.5899e-002 - - 1.0511e+002 4.96
gravity 7.0950e-002 1.5823e-001 2.6622e+000 - 5.89
gravity (WU) 6.9396e-002 9.8279e-002 2.2876e+001 - 5.08
gravity 6.7248e-002 1.4980e-001 - 1.3094e+003 5.15
gravity (WU) 6.5526e-002 9.7083e-002 - 2.3641e+003 5.03
gravity 8.9110e-002 - 1.5691e+002 7.3888e+003 7.24
gravity (WU) 9.2507e-002 - 1.5515e+002 9.6310e+003 8.28
gravity 6.7490e-002 3.0044e-001 7.9010e+000 4.7311e+002 8.24
gravity (WU) 6.6388e-002 3.1555e-001 7.0614e-001 1.0583e+003 16.10
phillips 1.7706e-001 5.4795e-002 - - 4.00
phillips 5.2064e-002 - 2.7421e+001 - 4.86
phillips 4.9188e-002 - - 1.2585e+002 4.79
phillips 5.1560e-002 2.2233e-001 3.0768e+000 - 8.89
phillips (WU) 4.5868e-002 9.5929e-002 1.1118e+001 - 5.33
phillips 5.0609e-002 2.1969e-001 - 3.3818e+002 7.30
phillips (WU) 5.3031e-002 8.1022e-002 - 3.5514e+003 5.04
phillips 6.2712e-002 - 6.8085e+001 3.2822e+002 7.74
phillips (WU) 6.2458e-002 - 6.7112e+001 3.4593e+002 8.65
phillips 4.9898e-002 2.5948e-001 1.8172e+000 5.1243e+001 10.62
phillips (WU) 4.9975e-002 2.6521e-001 2.4459e-001 9.0852e+001 16.69
shaw 1.8119e-001 7.5811e-003 - - 5.00
shaw 2.0664e-001 - 1.2412e+001 - 6.91
shaw 2.0299e-001 - - 1.9892e+003 6.81
shaw 1.8248e-001 2.9196e-002 1.1667e+000 - 9.45
shaw (WU) 1.7661e-001 2.9472e-002 1.3307e+000 - 8.14
shaw 1.7095e-001 3.2668e-002 - 3.7580e+002 8.77
shaw (WU) 1.7345e-001 3.0384e-002 - 2.4513e+002 9.91
shaw 3.6022e-001 - 1.9433e+001 2.1029e+002 8.31
shaw (WU) 4.1838e-001 - 1.6601e+001 6.2015e+002 9.97
shaw 1.6869e-001 2.7108e-002 1.3957e+000 6.2512e+001 8.53
shaw (WU) 1.7007e-001 2.9894e-002 1.6217e-001 6.3068e+001 15.61
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