MULTI-PARAMETER ARNOLDI-TIKHONOV METHODS
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Abstract. For the solution of linear ill-posed problems, in this pape¥ introduce a simple algorithm for
the choice of the regularization parameters when perfayminlti-parameter Tikhonov regularization through an
iterative scheme. More specifically, the new technique getan the use of the Arnoldi-Tikhonov method and the
discrepancy principle. Numerical experiments arisingrftbe discretization of integral equations are presented.
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1. Introduction. In the framework of Tikhonov regularization for the solutiof ill-
posed linear systemdz = b, A €¢ RV*V, the use of the multi-parameter regularization
(even called multiple penalty regularization) has beerichadly introduced with the aim of
acting simultaneously on different frequency bands of thet®n, in the hope of reproducing
all the basic features of the unknown solution with a goodueazy. Due to the wide range
of applications, there is a growing interest in this kindedularization, and many numerical
schemes have been recently presented in various contextsit@v[L1] and the references
therein for an overview).

In this paper we mainly focus the attention on linear discilt{posed problems (seé]|
Chapter 1, for a background) and we assume that the availigihehand side vectob is
affected by noise, caused by measurement or discretizaitiors. Therefore, throughout the
paper we suppose that

(1.1) b=b+e,

whereb represents the unknown noise-free right-hand side, andewetd byz the solution
of the error-free systemz = b.

In the multi-parameter Tikhonov regularization settingndting byA = (A, ..., \x)7
the vector of the regularization parameteks ¢ 0, i = 1,....k, A # 0)f and byL =
{L4,..., Ly} the set of regularization matrices, a regularized solutign is defined as

k
(1.2) A, =arg minJ(z, A, L), whereJ(z, A, £) = || Az — b|* + Z)\i | L] .
zeRN

i=1

Here and in the sequel, the norm used is always the Euclidzram. n

While the multi-parameter regularization is theoretigaliperior to any single-parameter
regularization which uses one of the matriégsn (1.2), the main problem is that in practice
it may be quite difficult to work simultaneously with more thane regularization matrix and
to suitably define the regularization parametgrs The existing methods for the automatic
choice of the parameters are essentially based on the djgadra-curve criterion (e.g.J])
and on the generalization of the GCV criterion (sép.[More recently an algorithm based
on the knowledge of the noise structure has been introdunciddl i

In many real applications, the noisy dats known to satisfy

1o =Bl <,

tDepartment of Mathematics, University of Padova, Italy.&im{gazzol a, novati }@rat h. uni pd.it.
fWhen treating multi-parameter methods, one usually requhiat each component of the vectois different
from zero. However we prefer to present the analysis justdilgeneralization of the one-parameter case.
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so that the use of the discrepancy principl€][may be considered even in the case of the
multi-parameter regularization. Indeed, ihl] the authors introduce an algorithm for the
definition of the regularization parameters based on theemigal solution with respect th

of the equation

(1.3) | Az, c — bl = ne, n>1.

Up to now, to the best of our knowledge, such technique seerhe the only existing one
based on the discrepancy principle in the framework of th&irparameter regularization.

In this paper we solvel(2) using an iterative scheme called Arnoldi-Tikhonov (AT)
method, first proposed irb] in the case of the single-parameter regularization with=
{In}, wherely denotes the identity matrix of ordéy. This method has proved to be
particularly efficient when dealing with large scale prabte as for instance the ones arising
from image restoration. Indeed, it is based on the projeatiothe original problemi(.2)
onto Krylov subspaces of smaller dimensions computed bytheldi algorithm.

Using an iterative method forl(2) we automatically introduce a new parameter to be
determined, that is, the number of iterations. Let us deby)tef(”) them-th approximation
arising from the Arnoldi-Tikhonov process (from now we otthié notations which show the
dependency oi, since this set is assumed to be fixed). The algorithm hegoged for the
definition of A and to stop the procedure, is based on the solution of

s~ <o

at each step, by means of a linear approximation (with rédpeeach parametey;, i =
1, ..., k) of the function

o (4) = [[4af™ ~ .

This method generates a sequence of regularization vettéts m > 1, whose compo-
nents)é"” are automatically defined. The idea extends the one studips] for the single-
parameter case, which has been shown to be really competiith the existing ones for
Krylov type solvers (e.g. 5, 10, 16]).

The paper is organized as follows. In Sectibwe explain the use of the AT method for
the solution of {.2). In Section3 we describe our scheme for the choice of the parameter
vectorA. In Sectiond we explain the algorithm associated to the new method aldtigaw
computationally cheaper variant. In Sectiowe display the main results obtained perform-
ing common test problems. Finally, in Secti®nwe propose some concluding remarks. We
also include an Appendix in which we report some tables thairsarize various meaningful
results related to the experiments described in Seétion

2. The Arnoldi-Tikhonov method. Let us work in the single parameter case with-
{A} and£ ={L}. The Arnoldi-Tikhonov (AT) method was introduced if] fwith the basic
aim of reducing the problem

(2.1) min {|Az — b||> + A||Lz||*}, whereXx > 0andL = Iy,
e

to a problem of much smaller dimension. The idea is to prafeematrixA onto the Krylov
subspaces generated Hyand the vectob, i.e., K, (4, b) = span{b, Ab, ..., A™~1b}, with
m < N. The method was also introduced to avoid the matrix-vectoitiplication with
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AT required by Lanczos type schemes (see 8,6,[9, 15]). To construct the Krylov sub-
spaces, the AT method employs the Arnoldi algorithm (4&e$ection 6.3] for an exhaustive
background), which yields the decomposition

(22) AVZm = m+1Hm7

whereV,, 1 = [v1, ..., m11] € RV*(m+1) has orthonormal columns which span the Krylov
subspacéC,, ;1 (A, b) andv, is defined a$/ ||b|. The matrixH,, € R("*+1D>" is an upper
Hessenberg matrix. Denoting Wy ; the entries off,,, in exact arithmetics the Arnoldi
process terminates whenevgyf 1 ., = 0, which meansC,,1(A,b) = K,,,(A,b).

The AT method searches for approximations of the solutidgh@problem 2.1) belong-
ingtoK,,,(A,b). Inthis sense, replacing= V,,y., (ym € R™)into (2.1), yields the reduced
minimization problem

2.3) min {|| By = Vil a|* + Ay}

Ym ER™
sinceV,l Vi1 = In41. Remembering that; = b/||b|| we also have
Vil b= |bller wheree; = (1,0,...,0)" € R™*,

Looking at @.3), we can say that the AT method can be regarded to as a regpdarérsion
of the GMRES.

The method considered in this paper is an extension of the éthaod in order to work
with one or more regularization operators not necessarglegquhe identity matrix. In de-
tails, replacing, as before,= V,, . (v, € R™)into (1.2) and using 2.2), we have that

k
(2.4) min  J(x,A,£) = min {HI_{mym — o]l 61”2 + Z i ||Lﬂ/mym|2}

€L (A,b) Ym ER™ Py
= 2
Hp 16l €2
VALV, 0
(2.5) = min ) Ym — . .
Yym ER™ : :
VAL Vi 0

In the sequel we will refer tdX.5) as least squares formulation of the multi-parameter Atirol
Tikhonov method. We emphasize that the above strategy capfieed even when the regu-
larization matrices are rectangular, as for instance wloasidering scaled finite differences
approximations of the derivative operators. However weamnthat, contrary to4.3), the
original dimension of the problem is only partially reducsihceL;V,, € RN —p)xm jf
L; € RIN=pi)xN,

Anyway, sinceH,,, = V,I AV, if L, € RV*¥ i =1, ...k, one may even consider
the projected operators

(2.6) K™ =V LV,
and hence the reduced minimization

. — 2 m (,r ) 2
(2.7) min {HHmym —lollen]”+ > N E ymH } :

The problem2.7) is not equivalent to the original on2.4@), but many numerical experiments
have revealed that the use 8f) is worth of further investigation. However, it is importda
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point out that, in fact, the computational cost associatgle solution of2.7) is comparable
with the one of 2.5), because of the operatio®.f).

Finally, we remark that if an initial approximatiary of the solutionz is available,
then we can incorporate it into the Arnoldi-Tikhonov schemelefining the initial residual
ro = b — Axo and by considering the Krylov subspad€s, (A, ). Consequently, the
approximate solution of the problem.p) is of the formx,, = z9 + V,,y,n and in the
expressions4.3), (2.4), (2.9, (2.7) we simply have to substitutewith rq (cf. [6]).

3. The parameter selection strategyAs already said in the Introduction, if we assume
to know the quantity = ||b — b||, it turns out that a successful strategy to defineas well
as a stopping criterion, is the discrepancy princiglé&(adapted to the iterative setting of the

AT method. At each iteration we can define the functiéft) (A) = Hb — Az(™
say that the discrepancy principle is satisfied as soon as

, and we

o™ (A) <nme, where 72 1.

We remark that, if we rather know the noise lesiek | e||/||b||, then the discrepancy principle
reads

(3.1) o™ (A) = nE]|b]|.

We |mmed|ately note that, smce for the AT method the appnations are of the form(’”)
meA € Kim(A,b), wherey ) solves 2.5, the discrepancy can be rewritten as

(3.2) "™ (A) = [|b— AViy ™|l = lle — Huy (™|,

wherec = ||ble; € R™ T

Now we briefly focus on the cage= 1, since the strategy derived to choose the com-
ponents of the regularization vectarin the multi-parameter case is a generalization of the
algorithm adopted in the single-parameter case.

3.1. The one-parameter caseAs in Section2, here we denote the unique regulariza-
tion parameter and operator simply hyand L, respectively. The method that we are going
to describe has been introduced @h §nd has already been used irf]; we underline that it
is able to simultaneously determine suitable values fan h@ndm. Our basic hypothesis is
that the discrepancy can be well approximated by

(3.3) P (N) & o™ 4 2B

i.e., by a linear function with respect #g in whicha("), (™) ¢ R can be easily computed
or approximated.

Sincey&m) solves the normal equations
(HL H,y + AVELTLV, )™ = AL,
associated to the least square problém)(with £ = 1, by (3.2) we obtain
(3.4) ™ (N) = || By (HE Hyp + AVELTLV,,) " H e — ) -

’HL
For what concerns the computation®@f™) in (3.3, the Taylor expansion of3(4) suggests
to chose

(3.5) al™ = ¢m(0) = || Hp(HL Hy) "HE e — ¢,

m
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which is just the norm of the residual of the GMRES, which carelaluated working in
reduced dimension, by solving the least squares problem

(3.6) i

Hmy - CH .

For what concerng("™), suppose that, at step, we have used the parametéf"—") (ob-
tained at the previous step or,sit = 1, given by the user) to compugé’(’f,z,l) by solving
(2.5 with A = A”—1_ The corresponding discrepancy is

)

(3.7) p D) = e = Hy)

and consequently, using the approximatidr), we obtain

¢(m) ()\(m—l)) _ a(m)

(m) _
(3.8) Bim) = o

To select\("™) for the next step of the Arnoldi-Tikhonov algorithm we imgos
(3.9) oM (A = ne

and we force the approximation

(3.10) ¢(m)(>\(m)) =™ 4 )\(m)ﬂ(m);

Hence, by 8.8) and 3.9), we define

ne — al™

Am=1)
M (Nm=1)) — (m)

(3.11) A =

The method §.11) has a simple geometrical interpretation which allows te is&as a
zero finder. Indeed, with this choice of™ and 3", the functiong(™)()\) is linearly
interpolated at0, o(™) and(A(™ =1 ¢(m) (A(m=1))): looking at @.10), we understand that,
at each iteration of the Arnoldi-Tikhonov method, a step skaant-like zero-finder for the
solution of B.9) is performed (see agaid]).

We remark that in the first iterations d3.(L]) instability can occur, due to the fact that
we may haver("™) > ne. In this situation the result oB(11) may be negative (recall that the
functiong(™ (\) is increasing and is only defined far> 0); therefore we consider

ne — a('rn) (‘H'L—l).

(m) _
(312) A - q/)('rn) ()\('rn—l)) — a(m)

Numerically, formula 8.12) is very stable, in the sense that after the discrepancyipta

is satisfied \(") ~ const for growing values ofn. We address the fact that this parameter
choice technique can also be used together with the Ranggeidted approachl] and even

in the case of Krylov methods based on the Lanczos unsynmpeticess].

Finally we note that, with respect to the strategies use@ismfconnection with the AT
method, the present one is intrinsically simpler and chedpdeed it essentially involves
quantities that are strictly connected to the projectedlero and the only additional com-
putations are performed in reduced dimension. More spaflifidche computation of the
GMRES residual require®(m?) operations (if the QR update is not employed, otherwise
justO(m)).
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3.2. The multi-parameter case.As pointed out by many works in literature (cf. for
example fi] and [11]), the most natural way to face a multi-parameter probleno ifirst
solve some single-parameter problems, one for each rézatian matrix, and then to find a
connection between all the problems. In our case, abitttha step of the Arnoldi-Tikhonov
algorithm and for a given, 1 < j < k, we consider the problem

- 2

Hy
o o] ex
AL L Vi, 0
(3.13) min : Ym — : ,
Ym ER™ ' '
Ayfi Lj—l V:m 8
\/XLj ern

which is aj-parameter Arnoldi-Tikhonov scheme; it can also be reghadea reduced version
of the systemZ.5), where the corresponding regularization vector is

T

(3.14) A:((Ag.L”})T,A,o,...,o) . where A = (AL AT

» Nj—1
According to the notation that we have used in the one-paearoase, this means that

we have already solved, in a sequential wgy;- 1) reduced problems obtained adding to

the original projected problen3(6) a new regularization term and that we have determined

the suitable regularization parameter%”), ce Ag.’f%, for the problems so far considered.
Therefore, now the task is to determine the pararm%fé)r; since we only have to update one
parameter, we can resume the strategy employed for theegraghmeter AT method. We
define the function

T

315) o) = 6™ W) = [e— | A= (AT A0, 0)

Whereyf\’? is the solution of 8.13. In this framework, the normal equations associated to
the problem .13 are

m

j—1
(HZLHm + S NMVILT LV, + AvTLjTLjvm> sy = Hle.
1=1

As before, we are looking for a linear approximation, witepect to the parametar of the
discrepancy associated to the reduced multi-parametblgmoso far considered, i.e.,

(3.16) o™ (\) = al™ 4+ Agi™.

J J
Analogously to the one-parameter case, to omé'i?f we considen\ = 0, that is
—1

7j—1
(317) o™ =" (0) = |y <H£Hrn+ZA§m)V$L¢TLiVm> Hpe—c|.

i=1

Observing the above expression we see that now we have tevilbdahe discrepancy asso-
ciated to thgj — 1)-parameter method with vector of the regularization patensgiven by

A§’fi. Using the definitiong.15 we also have

(3.18) alm = g (A (m),
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We emphasize that, to obtain the quanctiﬁ/”), we have to solve again ttig¢ — 1)-parameter
problem with the regularization vector given hy_”%. Of course, when = 1, the determi-
nation of)\g’”) again requires the computation of the solution of the pmoh@.6) as in the
mono-parameter case, i.a.g,m) = §m> (0) is still the residual of the GMRES.

For what concerns the quanti,ﬂé’”), once we have solve®(13 for A = A
obtain

yn—l) . we

K m— T 7 n n m— T
(3.19) ¢§rn) (A§rn 1)) _ HC o Hmyﬁ\:;‘) , A= ((AELL%)T, )\5 n 1)70, N .70) 7

and consequently, using the approximatidrig), we get

(m) /y(m—1) (m)

¢; (A )~y
(m—1) ’
)\j

g™ =

Finally, imposingqb;m)()\;m)) = ne and forcing again3.16, we compute the new-th
component of the regularization vector as

)\Slm) _ ne — Oégm) )\(77L—1).
J ¢§m) ()\gmfl)) - aSm) J
As in the one-parameter case, the computation of e@’(fhj =1,...,k can be meaning-

m

less for the first few iterations, sinee is abovex; ) and the values oj\gm) are therefore

negative. For this reason we actually consider

(m)
(3.20) )\gm) _ o nfmtf;j ) A§7n—1).
¢j (>\J ) - Oéj

At this point, if j < k we add a regularization term and we repeat the previous ctatipo
considering(j + 1) instead ofj; otherwise, ifj = k, the solutior‘ryf\"’? of (3.13 is indeed
the solution of the complete multi-parameter problén), We stop the iterations as soon as

¢ (A) < ne.

3.3. Geometrical interpretation. We close this section suggesting a geometrical inter-
pretation of the above proposed scheme. For simplicity wattthe casé = 2, but the
exposed ideas can be generalized to an arbitrary numbeguofaréezation terms. We fix an
indexm and a Cartesian coordinate systém, \q, z). Consideringz = ("™ (A1, \2) we
obtain a differentiable surface R*; solving (1.3) means finding the intersections between
the just mentioned surface and the horizontal plane ne (see Figure3.1, upper frame).
The strategy described above prescribes to initially take- 0; in this way we actually work
on the pland ), z) and the approximate solutiod™ of ¢(™ (A, 0) = ¢{™ (A1) = ne is
the intersection between= a{™ + X, 8\™ andz = ne if this scalar is positive, otherwise
its absolute value (see FiguBel, lower leftmost frame). At this point we take = )\gm),
thatis, we work on the plar(ekgm), A2, z); the new value\ém) is the approximate solution of
oM (A Ay) = 6™ (A2) = e, which is the intersection between= a{™ +,3{™ and
z = ne if this scalar is positive, otherwise its absolute value (Bigjure3.1, lower rightmost
frame; in this case we display what happens when the quargﬂtilis above the noise level).
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z
z
m)
&0y
m)
#0,)
c((z'“)
ne ne
(m)
a
1 = (M
A,=0 - M
- L
-1 (m) (m-1)
>‘(1M) A(lm ) A AS A, A,

FI1G. 3.1.Geometric interpretation of the strategy proposed to fire\thlues of the regularization parameters
when performing Arnoldi-Tikhonov multi-parameter mettiodhe casek = 2 and for a fixedm. Upper frame:
plot of the surface: = (;5(7")()\1,)\2) along with the planes = ne and A\ = )\gm). Lower leftmost frame: plot
of the curve¢§m)(/\1) = ¢(™)()1,0) on the plane\, = 0; we also display the thresholgk, the considered
linear approximation and the computed new vah.ﬁé”). Lower rightmost frame: plot of the cur\zggm) (A2) =
¢<m>(x§m),xg) on the planexgm) = 0; we also display the thresholge, the considered linear approximation

and the computed new valuém) (note that, in this casexgm) > ne).

4. Algorithms. In this section we summarize the above described method artov
pose a computationally cheaper variant of the followingatgm.

ALGORITHM 4.1. Multi-parameter Arnoldi-Tikhonov
Lonput: A, b, £ = {Ly,..., Li}, A= N2 A, 20,6,
2. Form =1,2,... until [[c — Hmygm)ﬂ <ne
(a) UpdateV,,, H,, by the Arnoldi algorithmZ.2).
(b) Forj=1,....k—1
i. Solve 8.13 with the parameterg(A™})”, A" ~")T and evaluates™ ("))
by (3.19.
ii. Solve @.13 with the parameter(s(Ay”f})T, 0)” and evaluateé§.m) (0) by
(3.19.
iii. Compute the new parameteém) by (3.20 and thenAgm) (cf. (3.19).
(c) Compute the vect%m) = yf{’}g by solving the complete probler®.§), with
A= (AT AT
(d) Compute the new paramemi’") by (3.20 and then updatd.
3. Compute the approximate solution= mef\m).
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Algorithm 1 follows the lines of previous section, and hereguires to solve twice each
reduced system (that is, for eagh= 1,..., k), in order to sequentially update the values of
the components of the regularization vector There is however a cheaper alternative that
consist in not using the updated values of the parametethbr ords, forj = 1,...k — 1,

we do not need to refreskf.m’l) with A§m), but we can work with the regularization vector
(AT AT = (A0 AT A T)T at Step2bi. The new expression
of a!™ is now (cf. 3.18)

This alternative approach, described by Algorithr, needs only one solution o8(13), for
j=1,... k, ateach step.

ALGORITHM 4.2. Multi-parameter Arnoldi-Tikhonov without update
LoInput: A, b, £ = (Ly, ..., Li), A = A, A9, 26,6,
2. Form =1,2,...until ||c — Hy,y ™| < ne
(a) UpdateV,,, H,, by the Arnoldi algorithmZ.2).
(b) Forj=1,...k
i. Solve @.13 with the parametergA " "))” and evaluates|™ (A" ")
by 3.19.
ii. Takea!™ asin @.1).

iii. Compute the new parametaﬁf’”) by (3.20.
(c) Update the vectoh = (A™, ... )\ém)).
3. Compute the approximate solution= mef\’ﬁfl).

The numerical tests reported in the Appendix show that théderyy can compute regu-
larized solutions whose relative error is still comparabléhe one of the solutions obtained
running Algorithm4.1 However, the number of iterations required to return tHatsm is,
on average, higher than the one related to the former method.

REMARK 4.3. In our computations both Algorithih1 and Algorithm4.2 have been
implemented with some minor changes regarding the stopgiterion. Indeed we have
employed a sort ofveakened discrepancy principltbat is, we stop the iterations as soon as

(4.2) o™ () — ||l < 107,

wheref < 0 is automatically determined as the sum of the order of thealevek and of the
order of the last significant digit of. In this way, when applying the discrepancy principle,
we neglect any quantity coming after the last significanitdifthe producgn. For instance,

if £ =102 andn = 1.01 thend = —4 and we stop the iterations as soon as

™ (N /|Ib]| < 1.01-107249.9-107°.

We remark that, if the “classical’discrepancy princigdel] is fulfilled, then also4.2) is sat-
isfied. We introduced this weakened version of the discrepprinciple because, while exe-
cuting the numerical experiments, we noted that very ofterdiscrepancy stagnates slightly
above the prescribed threshold without crossing it andppming too many iterations, the
quality of the approximate solution deteriorates.

At the same time we decide to enforce the stopping critenoorder to assure that not

only the solutioryf\’”) of the complete problem but also all the solutions of the cediuregu-

larization problems satisfy the weakened discrepancyipia 4.2, that iS,d)g’”) ()\gf’”_l)) —



10 S. GAZZOLA, P. NOVATI

ne||b|| < 10°Vj = 1,...,k—1. Thisis a quite natural choice, since the solution of thetimul
parameter problem is built taking into account the&olutions of the associated one-parameter
problems.

5. Numerical Experiments. In this section we test the behavior of Algorithril to
solve the multi-parameter problem. We believe that the Wwagtto validate the method just
described is to make suitable comparisons with what hapipethe one-parameter case; in
the sequel we will explain the details and the goal of eacleegnpent. We will exclusively
focus on the two-parameter and the three-parameter casgetheAest problems are taken
from Hansen’s packadeegularization Tool§7].

In all the examples we suppose to know the exact soldti@md the exact right-hand
side vector is either given ir7] or constructed taking = AZ. The elements of the noise
vectore are normally distributed with zero mean and the standarihtiem is chosen such
that||e||/||b|| is equal to a prescribed levél Moreover we always consider the initial guess
zo = 0, we sety = 1.01 andA = (1,...,1)” € R*. Following what is done in11], each
test problem is generated 100 times to reduce the dependétive results on the random
components of the vecter All the computations have been executed using Matlab 7ittO w
16 significant digits on a single processor computer InteeG8-350M.

Before describing each test, we list the regularizatiorriced that we have employed:

e the identity matrix/y € RV*V,
e Scaled finite difference approximations of the first and sdewrder derivatives, i.e.,

1 -1
(5.1) Dy := e RIN-DxN,
I 1 -1
(1 -2 1
(5.2) Dy : = € RIN-2xN,
I 1 -2 1

whose null-spaces are given8{(D; ) = span {(1,1,..., 1)} c RY andV(D;) =
span {(1,1,..., )7, (1,2,...,N)T} C RY.

e Square projection matrices built using the strategy sugdeds [12]: given M <
RN *¢ we compute the “skinny” QR factorizatioh/ = W R (whereW € RN*¢
andR € R“*%) and we take, as regularization matrix,

(5.3) L:=Iy—-WWT e RV*V,

In this way the null space af is spanned by the orthonormal columnd@t This
kind of matrix is particularly useful when we want to consideegularization oper-
ator with a given null-space different from the ones of thenownly used operators

(5. and 6.2).

5.1. Results obtained considering particular solutions.The aim of the first set of per-
formed experiments is to show that, when applying the npdtameter method to a problem
whose exact solutiom lies in the null space of the regularization operalgy the parame-
ter selection strategy correctly weights th#th component of the regularization vectby by
assigning to\; a value dominating the other components. Indeed, in thistsitn, the regu-
larization operator.; is the most suitable one, since the important features cfdhgion are
not damped. Therefore we start to consider two particulacesolutions: the constant one,
Te := (1,1,...,1)7 € RV, and the linear oneg; := (1,2,...,N)T € RY; as recalled in
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the above listz. € N (Dy) N N(D3), whileT, € N'(D5). For this reason we will employ
both the two and three-parameter methods with differentiinations of the regularization
matricesl y, D1 andD,.

First of all we take the solutiom. and we consider the matrix of siZé = 200 associ-
ated to the problern_| apl ace. The involved noise level is = 102 and we determine a
regularized solution by using th€zo0, D1) two-parameter method.  To be aware of what

Relative Errors
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FIG. 5.1. Results obtained running 100 times the test probleimapl ace with the particular solutiorz.
(we plot one single marker for each performed test). Uppamf: we report the values of the relative errors
in logarithmic scale on the horizontal axis and, at each ieaitlevel, we mark the values corresponding to the
I200 one-parameter (circle), th®; one-parameter (square) and tfi&oo, D1) two-parameter (asterisk) methods.
Lower frame: we report the values of the regularization paeders in logarithmic scale on the horizontal axis and,
at each vertical level, we mark the values correspondingnédtoo one-parameter (circle), th®; one-parameter
(square) and the 200, D1) two-parameter (asterisk) methods; concerning the matameter method, the first
line (labeled byl2no) refers to the parameter that weights the tejim||2, while the second line (labeled k1)
refers to the parameter that weights the tefti; z||2.

happens using the single parameter Tikhonov method, fdr test we also report the results
obtained considering exclusively = I5op andL = D;. We display the results relative to
100 different noisy right-hand sides in Figugel. We can clearly see that, with very few ex-
ceptions, the components of the regularization vectorcatsa tol>oo and D, replicate the
behavior of the parameter of the Tikhonov method Witk 509 andL = Dy, respectively.
This means that, in the regularization process, the mosbappate regularization operator,
in this caseD, weights more than the others. In almost all cases, theisohiof thelsy
and D; one-parameter method belong to Krylov subspaces of dimersiand 6, respec-
tively, while most of the solutions associated to the twoap@eter method belong to Krylov
subspaces of dimension 6 or 7. In Fig@r€ we focus on a single test and we display the
course of the relative error, the regularization paransedad the discrepancies of the exam-
ined methods at each step of the Arnoldi algorithm. Lookinlgath figures we can see that
the quality of the solutions computed by the multi-parametethod does not improve with
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Relative Errors
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F1G. 5.2. Behavior of the relative errors, regularization parametend discrepancies versus the number of
iterations for the test problem_l apl ace with solutionz.. Upper box: we consider the multi-parameter method
(asterisk), thelzop one-parameter method (circle) and tii2; one-parameter method (square); middle box: we
display the values of the parameteXs associated td/ogo (asterisk with dashed line) andl; associated taD;
(asterisk with dash-dot line) and the values of the parametéthe two one-parameter methods considered above
(with the same markers as listed above); lower box: the ndrtheresidual of the GMRES ovéb|| (circle) and

the discrepancie&ﬁ’”) /||b]| associated to the first regularization term (squarﬁ()’,”) /||b]| associated to the second
regularization term (diamond).
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F1G. 5.3.Results obtained running 100 times the test prolgdml | i ps with the particular solutiorz; (we
plot one single marker for each performed test). Upper frame report the values of the relative errors on the
horizontal axis and, at each vertical level, we mark the galaorresponding to th&,o one-parameter (circle), the
D, one-parameter (square), thes one-parameter (diamond) and tiéxo0, D1, D2) three-parameter (asterisk)
methods. Lower frame: we report the values of the reguléidmgparameters in logarithmic scale on the horizontal
axis and, at each vertical level, we mark the values corredjp to thel2go one-parameter (circle), thé&; one-
parameter (square), th®, one-parameter (diamond) and tfié&o0, D1, D2) three-parameter (asterisk) methods;
concerning the multi-parameter method, the first line (labéy I200) refers to the parameter that weights the term
|||, the second line (labeled b1 ) refers to the parameter that weights the teji; «||2, and the third line
(labeled byD-) refers to the parameter that weights the teffi2z||2.
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FIG. 5.4. Behavior of the relative errors, regularization parametemd discrepancies versus the number of
iterations for the test problermhaw with solutionz;. The displayed quantities are the same as in Figuand
are denoted by the same markers. In addition: in the uppemmxisualize theD, mono-parameter method (dia-
mond); in the middle box we visualize the parametgr(asterisk with solid line) that weights the tefiDox||? of
the multi-parameter method along with the regularizati@rgmeter associated to thes mono-parameter method
(diamond); in the lower box we visualize the discrepam§§7)/|\b|| (hexagram) associated to the third regulariza-
tion term.
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respect to the results associated to ihemono-parameter method. However this is quite
reasonable since, as said in the Introduction, the taskeofrttlti-parameter methods is to
preserve many different features of the solution; whem &isis case, the solution belongs to
the null space of one of the considered operator, the morempeter method with that regu-
larization operator is the one that works better. Now we itarghe matrix associated to the
problemphi | | i ps with N = 200 and we take, as exact solution, the linear oné¢he noise
level is agaire = 10~2. We compute the regularized solution employing the thraexmeter
method with regularization matricds, = Isg9, Lo = Dy andLs = D,. We display the
results in Figuré.3 together with what we have obtained treating the same enohlith the
Is00, D1, Do one-parameter methods. Even in this case the parameteticelstrategy can
still automatically weight the regularization matricessigning the highest parameter to the
matrix whose null space contains the exact solution (in¢hise,D-). Regarding the num-
ber of iterations required to satisfy the weakened disereparinciple, the three-parameter
method needs in most of the cases 8, 11 or 13 iterationgthenono-parameter method
needs 7 or 8 iterations while both tli& and D, mono-parameter methods require 8 or 9
iterations. In Figures.4 we show the values of the relative errors, of the regulddngba-
rameters and of the discrepancies versus the number dfigtesdor the problenshaw of
size 200; we take again the linear vectpras exact solution.

The method has been experimented on the most popular tdsepre of [7], all of
dimensionN = 200, using the two particular solutiorg. andz;. We also consider two
different noise levels{= 10~2 ands = 5-10~2) and several combinations of regularization
operators. We summarize the obtained results in TAble TableA.2, TableA.3 and Table
A.4 reported in the Appendix.

Finally we propose the results of a couple of experimentl bonsidering the artificial
solutions

(5.4) Tgin = 2@ 4 2 := 10sin (;) +2z eRY,
_ o 1 r
(55) Ttan — x( ) + l‘(b) = 1—0 tan (N—Hg) +x e RN.

Tsin 1S 0Scillating whileT,,,, is quickly increasing. This test is motivated by the fact tiha

so far considered couple of matricés) and 6.2) indeed represents a particular situation,
sinceN (D1) C N (D,). Taking instead the solutio’ (4) or (5.5), by (5.3) we can build two
particular regularization matrices’® andL(") such that:(*) € N(L(®), 2 e N(L®)
and N (L®) n N (L®) = {0}. As consequence, both;, andZ., do not belong to the
null space of the matrices(*) or L), In this way we can really appreciate the essence of
the multi-parameter methods, that is, as said in the Inttolo, to preserve many different
features of the solution of the original problem that may Istodted imposing only one
regularization operator. For both solutions we considemtiatrix A € R200%200 gssociated
to the test problerioxgood, a noise leveF = 102 and the regularization matricds =
L@, Ly = L We display the results relative t6.6) and 6.5) in Figure5.5.

5.2. Results obtained considering more general solutionsn the second set of com-
puted experiments we simply consider the most common testigms in [/] with their ap-
propriate solution. We are just going to display some grapascompare the performances
of the new multi-parameter method and the usual Arnoldhditov method. We will only
consider the regularization matricég, D, andDs.

In Figure5.6 we display the behavior of the relative errors and the vathig¢ke regu-
larization parameters obtained solving the test problelnapl ace of dimensionN = 200
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FIG. 5.5. Results obtained running 100 times the test probl@rgood with the particular solutionscg;,,
(first and second frames) ang.an (third and fourth frames); as before, we plot one single reafflor each per-
formed test. The regularization operatak$®) and L(®) are projection operators of the forns (). First and third
frames: we report the values of the relative errors on theizmntal axis and, at each vertical level, we mark the
values corresponding to the(®) one-parameter (circle), thé(%) one-parameter (square) and tié (@), L,(b))
two-parameter (asterisk) methods. Second and fourth fsame report the values of the regularization parameters
in logarithmic scale on the horizontal axis and, at each iceitlevel, we mark the values corresponding to fH&)
one-parameter (circle), thé (%) one-parameter (square) and tli& (), L(%)) two-parameter (asterisk) methods;
concerning the multi-parameter method, the first line (lebieby (%)) refers to the parameter that weights the first
regularization term (i.e., the one that acts on th&) component of the solutions.¢) and 5.5)), and the second
line (labeled byL(?)) refers to the parameter that weights the second reguléicmaerm (i.e., the one that acts on
thez(®) component of the solutions.¢) and (.5)).
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FIG. 5.6. Results obtained running 100 times the test problefmapl ace (we plot one single marker for
each performed test). Upper frame: we report the values efd¢hative errors on the horizontal axis and, at each
vertical level, we mark the values corresponding tofhg one-parameter (circle), th®; one-parameter (square)
and the(Dq, I200) two-parameter (asterisk) methods. Lower frame: we repuet alues of the regularization
parameters in logarithmic scale on the horizontal axis amceach vertical level, we mark the values corresponding
to the Iz0p one-parameter (circle), thé, one-parameter (square) and thi@1, I200) two-parameter (asterisk)
methods; concerning the multi-parameter method, the first(labeled byD1 ) refers to the parameter that weights
the term|| D1x||2, while the second line (labeled Wy) refers to the parameter that weights the tejtm|2.
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with a noise of levef = 102 that affects the right-hand-side vector; we considerdthgand

D, one-parameter methods and tHi,, Is) two-parameter method. We remark that, when
performing the multi-parameter method, the results carffieetad by the order in which the
regularization matrices appear. Indeed, looking at tharpaters selection strategy described
in subsectior8.2, we can understand that the first regularization matrixtia tase L) is
weighted similarly to the one-parameter case, while thiefohg ones work as corrections.
This is a consequence of the fact that many reduced problesnsodved sequentially and
each one is based on the solutions and on the parameter&#sdadc the previous ones; in
this sense the first regularization operator is somehowrddgad with respect to the others.
Therefore, if one has some intuition about the regularitthefsolution, we suggest to put in
the first place the most suitable regularization matrix.abl€A.5 and in TableA.6 reported

in the Appendix we collect the results obtained considettiggmono-parameter and the two
and three-parameter methods with various combinationseofisual regularization matrices
and two different noise levels.

5.3. Further considerations. In this subsection we highlight a couple of important fea-
tures of the new method that we noted while performing theemizal experiments just de-
scribed.

The first property is that the AT multi-parameter method igywv@bust with respect to
the initial choice of the regularization vectadr, that is, considering different values of the
components o\, the accuracy of the results and the number of iterationbasieally stable.
In Figure5.7 we display the values of the regularization parametersimdxdaby solving the
test problenshaw of dimensionN = 200 and taking as exact solution the one givenip [
the noise level is = 10~2. We have employed th@q0, D1, D2) three-parameter method
and we have executed four tests considering the vettwhose three entries are all equal
to 0.5, 1, 10 or 100. We can see that, except in the very first iterations, the\iehaf

2 )\l 8 )\2 12 )\3
10 10 ‘ 10
10
. 10"}
. 10
10
10°
4
10 "
10°
10° 10*
-1
10 . 102
10
, 10°
10 °F _
107} s
107}
10° A 10 : 10" :
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FIG. 5.7. Values of the components of the regularization vedtoversus the number of iterations (each
frame corresponds to a different component). The test prolisshawand we consider thélzoo, D1, D2) multi-
parameter AT method. The initial values for the regulaizatvector areA = (0.5,0.5,0.5)T (diamond),A =
(1,1,1)T (asterisk),A = (10,10, 10)7 (circle), A = (100, 100, 100)T (square).

each);, i = 1,2, 3 is very similar independently on the value)«if”. We have also tried to
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FiG. 5.8. Values of the relative error, of the discrepancies and of rdgularization parameters versus the
number of iterations for the test probleshawsolved by thé 200, D1, D2) multi-parameter method. In the second
and third boxes, the circle denotes the quantities assedi&t the first regularization matrix/oo), the diamond
denotes the quantities associated to the second regulamizenatrix (D), and the square denotes the quantities
associated to the third regularization matrio¢). This method would stop at the 9th iteration (denoted bybige
asterisk), but we decide to run it till the 30th iteration.
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consider different components of the initial vectoand the results, even if not shown, are
identical to the ones just described.

The second property is about the performance of the methed wiany extra iterations
are executed after the stopping criterion is fulfilled. Despe had to review the stopping
criterion introducing the weakened discrepancy princ{pfe Sectiond), we can appreciate
that in many cases the behavior of the method is very stalele @hen we decide to go on
with an arbitrary number of iterations. For instance, inuk&b.8 we display what happens
solving the problenshaw by the three-parameter method and considering, as before,
200, = 1072, L1 = Iz, L2 = D; andLs; = D,. Similar results have been obtained also
forphi | I'i ps andf oxgood.

6. Conclusion. We have described a new strategy to work with multi-paramiékéonov
method when an iterative scheme based on the Arnoldi atgoiig adopted. The parameters
selection method is founded on the discrepancy principietia@ algorithm to determine the
suitable regularization parameters at each step of theldiratgorithm is computationally
very cheap, since it exclusively involves computationseduced dimension. We have ver-
ified that the new method is able to automatically weight tifieigbnt regularization terms,
assigning to the most suitable ones a higher regularizgigwameter. The numerical ex-
periments performed also show that, in many cases, the neéhoohé able to improve the
solution computed by means of the mono-parameter Arndktiohov method.

Appendix.

We report some tables that complete the experiments desarilSectiord. The results
are obtained performing, for each problem, 100 tests anddake average of the relative
errors, the average of each regularization parameter pipegeas in the method and the aver-
age of the number of iterations. The paramefars\, and\; are always associated to the
regularization matricegy, D, and D,, respectively. When the multi-parameter method is
concerned we report the results obtained applying bothitlyn 4.1and Algorithm4.2 (we
mark the latter with the abbreviatiofJ within brackets next to the test name). The dimen-
sion of the problem is alwayd” = 200. TableA.1, TableA.2, TableA.3 and TableA.4 are
referred to the test concerning particular solutions (tamtsand linear), while Tabla.5 and
TableA.6 are referred to the solution given in the routines@f We consider different noise
levels and we highlight the most interesting results usioigface.
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TABLE A.1
Constant solutiof®. with noise leveE = 10~ 2.
Relative Errors A1 A2 A3 Iterations
baart 1.0378e-001 6.7818e-004 - - 3.00
baart 3.1941e-002 - 2.9526e+002 - 3.36
baart 4.6184e-002 - - 1.5322e+003 3.08
baart 3.3079e-002 4.1362e-003| 2.3190e+003 - 3.40
baart (W) 3.8475e-002 2.3079e-003| 1.0314e+003 - 4.31
baart 3.5972e-002 5.8633e-003 - 8.8528e+004 3.34
baart (W) 4.6334e-002 6.8556e-004 - 1.5115e+004 3.01
baart 5.4689e-003 - 3.9761e+002| 1.5605e+005 4.01
baart (W) 6.3468e-003 - 3.3345e+002| 6.4547e+005 4.00
baart 3.2744e-002 3.9987e-003| 2.7437e+003| 8.9722e+007 3.48
baart (W) 2.5777e-003 3.7114e-003| 8.3275e+003| 2.0124e+009 5.30
gravity 7.6927e-002 2.7235e-002 - - 4.05
gravity 3.5608e-002 - 1.2120e+002 - 4.89
gravity 3.7409e-002 - - 7.5008e+003 5.01
gravity 3.6233e-002 4.3953e-002| 5.0042e+001 - 5.06
gravity (W) 3.6591e-002 3.5814e-002| 9.1060e+001 - 4.82
gravity 3.7397e-002 4.6282e-002 - 1.8640e+002 4.94
gravity (W) 3.7525e-002 | 3.7270e-002 - 2.6912e+003|  4.92
gravity 3.0131e-002 - 2.9360e+002| 1.8309e+004 6.08
gravity (W) 2.7768e-002 - 3.8358e+002| 2.3200e+004|  7.08
gravity 3.1157e-002 5.7598e-002| 4.7711e+001| 3.1995e+003 6.50
gravity (W) 2.6016e-002 6.3788e-002| 2.6957e+002| 7.3402e+003 8.02
shaw 1.9111e-001 8.2282e-004 - - 11.96
shaw 1.0719e-001 - 9.6939%e-001 - 6.82
shaw 1.4307e-001 - - 1.7511e+002 7.12
shaw 1.2701e-001 1.1500e-003| 6.5296e+000 - 6.91
shaw (W) 9.5561e-002 8.9523e-004 1.2847el - 7.65
shaw 1.1748e-001 | 9.5530e+000 - 1.3175e+003 7.44
shaw (W) 1.2813e-001 6.1538e+000 - 2.2507e+003 7.82
shaw 1.1748e-001 - 9.5530e+000| 1.3175e+003 7.44
shaw (W) 1.2813e-001 - 6.1538e+000| 2.2507e+003 7.82
shaw 1.7063e-001 1.0023e-003| 3.0629e+000| 1.2808e+003 7.65
shaw (W) 1.0891e-001 9.5358e-004| 7.0005e+000| 1.5660e+003 8.38
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TABLE A.2

Constant solutiorz. with noise leveE = 5 - 10—2.

Relative Errors A1 A2 A3 Iterations
baart 4.7271e-002 | 1.8289e-002 - - 3.03
baart 4.6467e-002 - 2.6946e+002 - 3.00
baart 4.8727e-002 - - 3.1295e+001 3.00
baart 2.8299e-002 | 3.5002e-002| 2.8047e+003 - 3.81
baart (W) 4.5396e-002 | 1.8319e-002| 3.1644e+002 - 3.01
baart 5.6287e-002 | 3.5177e-002 - 6.1848e+004 3.81
baart (W) 4.5595e-002 | 1.8319e-002 - 2.0673e+004 3.01
baart 4.1186e-002 - 2.6891e+003| 3.5107e+006 3.12
baart (W) 4.2843e-002 - 1.2127e+003| 4.1811e+006 3.09
baart 2.9684e-002 | 3.4540e-002| 2.8129e+003| 7.0676e+006 3.95
baart (W) 4.5433e-002 | 1.8319e-002| 3.1644e+002| 1.4420e+005 3.01
gravity 1.4412e-001 | 6.2068e-002 - - 3.00
gravity 7.3863e-002 - 1.0178e+003 - 3.38
gravity 7.6596e-002 - - 5.8340e+002 3.30
gravity 7.5657e-002 | 8.9338e-002| 2.6968e+001 - 3.52
gravity (W) 5.9147e-002 | 1.7299e-001| 1.4920e+003 - 4.61
gravity 7.6178e-002 | 9.4794e-002 - 7.9399e+002 3.41
gravity (W) 7.7175e-002 | 6.9617e-002 - 1.6570e+003 3.23
gravity 5.6443e-002 - 3.4291e+003| 1.0032e+005 5.13
gravity (W) 5.7096e-002 - 2.1291e+003| 1.7057e+005 5.14
gravity 7.5426e-002 | 1.1257e-001| 3.4710e+001| 1.6360e+004 3.90
gravity (W) 5.5631e-002 | 3.2129e-001| 7.2494e+002| 5.6887e+004 10.39
shaw 3.8658e-001 | 1.1241e-002 - - 4.73
shaw 3.7087e-001 - 1.0679e+001 - 4.30
shaw 3.7499e-001 - - 1.1396e+002 4.08
shaw 3.4765e-001 | 4.0968e-002| 6.2112e+000 - 5.77
shaw (W) 3.2295e-001 | 2.8325e-002| 8.9987e+000 - 6.71
shaw 3.6824e-001 | 9.7160e-002 - 5.0404e+002 4.85
shaw (W) 3.5303e-001 | 1.8491e-002 - 1.3922e+003 5.06
shaw 2.2610e-001 - 8.0840e+001| 1.0614e+003 6.59
shaw (W) 2.8593e-001 - 2.4070e+001| 2.7850e+003 6.02
shaw 3.4812e-001 | 3.0250e-002| 6.1392e+000| 5.6965e+002 7.06
shaw (W) 3.2119e-001 | 3.3386e-002| 3.6780e+000| 1.0717e+003 9.23

21
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TABLE A.3
Linear solutionz; with noise leveE = 102,

Relative Errors A1 A2 A3 Iterations
gravity 9.1882e-002 | 9.9070e-003 - - 5.88
gravity 4.3925e-002 - 6.2429e+000 - 6.60
gravity 4.4210e-002 - - 8.3509e+002 6.60
gravity 4.8555e-002 | 3.0927e-002 - 1.5557e+001 6.32
gravity (W) 4.5759e-002 | 2.1120e-002 - 2.0771e+003 6.85
gravity 4.0287e-002 - 3.9018e+001| 7.2829e+003 7.96
gravity (W) 3.5810e-002 - 6.9289e+001| 7.7211e+003 9.39
gravity 4.0742e-002 | 3.3236e-002| 5.2950e+000| 1.8860e+003 8.15
gravity (W) 3.6273e-002 | 4.3565e-002| 6.7350e+000| 2.0170e+003 12.37
phillips 8.3395e-002 | 7.5351e-004 - - 3.88
phillips 5.1312e-002 - 6.0850e+000 4.79
phillips 2.5810e-002 - - 1.0223e+004 3.70
phillips 4,9806e-002 | 1.1568e-003 - 1.5404e+002 3.76
phillips (W) 2.9860e-002 | 7.8084e-004 - 1.1637e+005 3.73
phillips 2.0121e-002 - 1.3793e+001| 3.0215e+005 5.34
phillips (W) 7.3637e-003 - 1.0211e+001| 7.1454e+007 5.82
phillips 2.1245e-002 | 1.1547e-003| 5.1765e+000| 7.0991e+005 4.03
phillips (W) 4,9555e-003 | 1.0063e-003| 2.6263e+000| 1.3782e+009 6.12
shaw 1.6558e-001 | 5.6169e-004 - - 8.04
shaw 9.8639e-002 - 2.0738e+000 - 7.05
shaw 1.1969e-001 - - 2.8091e+002 7.90
shaw 1.6111e-001 | 9.4367e-004 - 2.4475e+002 7.60
shaw (W) 1.4970e-001 | 6.4663e-004 - 3.0588e+002 8.65
shaw 1.8624e-001 - 1.4567e+003| 7.5914e+003 10.66
shaw (W) 1.8275e-001 - 1.6192e+003| 6.4621e+004 12.87
shaw 1.5545e-001 | 7.2387e-004| 1.1118e+000| 3.0236e+002 8.34
shaw (W) 8.5492e-002 | 6.8840e-004| 2.3488e-001| 9.2377e+002 10.08
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TABLE A.4

Linear solutionz; with noise leveE = 5 - 1072,

Relative Errors A1 A2 A3 Iterations
gravity 2.8768e-001 | 5.5438e-002 - - 4.05
gravity 7.9760e-002 - 8.3692e+001 - 4.99
gravity 9.9241e-001 - - 2.0821e+003 6.47
gravity 9.9263e-001 | 3.0098e-002 - 3.0273e+002 8.08
gravity (W) 9.9256e-001 | 3.0199e-002 - 3.9649e+002 9.23
gravity 7.0756e-002 - 5.1613e+002| 5.8957e+004 6.88
gravity (W) 6.9625e-002 - 5.1480e+002| 8.2787e+004 7.32
gravity 7.1772e-002 | 2.7579e-001| 3.3161e+001| 3.5037e+003 8.09
gravity (W) 6.9084e-002 | 2.8820e-001| 1.6383e+001| 2.2734e+003 15.31
phillips 1.3393e-001 | 6.9273e-003 - - 4,98
phillips 4.6177e-002 - 1.9380e+001 - 4.00
phillips 6.2626e-002 - - 1.5541e+002 3.00
phillips 5.9475e-002 | 1.2138e-002 - 3.8318e+003 3.04
phillips (W) 4.4428e-002 | 7.1280e-003 - 7.3170e+005 3.96
phillips 4.4724e-002 - 8.0428e+001| 2.8338e+006 5.74
phillips (W) 3.0147e-002 - 4,9414e+001| 9.6469e+006 5.51
phillips 5.9309e-002 | 1.1927e-002| 1.9741e+001| 2.6932e+004 3.15
phillips (W) 5.1288e-002 | 8.9332e-003| 5.1621e+000| 2.0490e+007 6.68
shaw 4.2575e-001 | 5.0157e-003 - - 5.40
shaw 3.3582e-001 - 9.5404e+000 - 5.81
shaw 3.8572e-001 - - 1.2562e+003 5.41
shaw 3.7063e-001 | 1.6175e-002 - 5.2509e+002 6.60
shaw (W) 3.3534e-001 | 1.8732e-002 - 1.0808e+003 8.03
shaw 1.9170e-001 - 3.4898e+001| 1.0244e+003 7.64
shaw (W) 1.5476e-001 - 3.7043e+001| 3.9485e+003 8.22
shaw 3.3859e-001 | 1.8235e-002| 5.7642e+000| 5.6926e+002 7.68
shaw (W) 3.1797e-001 | 2.1206e-002| 3.7208e+000| 2.1282e+003 12.32
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TABLE A.5
Given solution with noise levél= 10~2.
Relative Errors A1 A2 A3 Iterations
baart 5.0485e-002 | 5.9453e-004 - - 4.00
baart 9.6425e-002 - 4.2167e-001 - 6.00
baart 6.2569e-002 - - 1.0876e+003 5.01
baart 1.5099e-001 | 1.0683e-003| 6.3735e-002 - 5.50
baart (W) 1.5135e-001 1.0854e-003| 1.0809e-001 - 6.10
baart 8.8097e-002 | 8.3136e-004 - 1.3274e+002 4.38
baart (W) 1.2243e-001 1.0936e-003 - 2.3528e+002 5.67
baart 1.2223e-001 - 8.5082e-001| 1.6022e+002 7.57
baart (W) 1.2907e-001 - 8.9299e-001| 1.1968e+002 8.93
baart 1.4903e-001 | 1.1395e-003| 1.5122e-002| 9.7826e+001 6.63
baart (W) 2.0029e-001 | 1.2088e-003| 2.5714e-003| 3.3557e+001 15.88
gravity 1.2013e-001 9.7765e-003 - - 5.27
gravity 4.0751e-002 - 3.4584e+000 - 6.24
gravity 4.0657e-002 - - 5.4844e+002 6.19
gravity 4.3901e-002 | 3.3339e-002| 7.3607e-001 - 6.15
gravity (W) 4.2829e-002 | 2.7101e-002| 3.6701e+000 - 6.50
gravity 4.2992e-002 4.1944e-002 - 9.7444e+001 6.04
gravity (W) 4.1431e-002 | 2.8425e-002 - 2.3548e+003|  6.60
gravity 4.5887e-002 - 1.1104e+001| 2.0749e+003 7.92
gravity (W) 4.6282e-002 - 1.2389e+001| 2.5341e+003 8.83
gravity 3.7745e-002 4.0109e-002| 8.4321e-001| 4.1857e+002 7.80
gravity (W) 3.5941e-002 | 5.1580e-002| 6.8753e-001| 8.0771e+002 13.03
phillips 2.8920e-002 1.8711e-002 - - 5.00
phillips 2.5621e-002 - 5.2041e+000 - 5.05
phillips 2.5663e-002 - - 5.5949e+002 5.00
phillips 2.5654e-002 5.5102e-002| 2.2946e+000 - 7.52
phillips (W) 2.5428e-002 | 4.2635e-002| 2.2588e+000 - 8.06
phillips 2.6108e-002 5.0990e-002 - 2.7694e+002 7.48
phillips (W) 2.6021e-002 | 4.1527e-002 - 3.0252e+002 8.05
phillips 2.7134e-002 - 1.0548e+001| 1.4744e+002 7.54
phillips (W) 2.7043e-002 - 9.1030e+000| 1.3533e+002 8.43
phillips 2.5571e-002 4.6571e-002| 9.4471e-001| 4.5558e+001 9.71
phillips (W) 2.5307e-002 | 5.1642e-002| 3.8008e-001| 5.2265e+001 12.56
shaw 1.3445e-001 | 7.5858e-004 - - 5.85
shaw 1.2074e-001 - 5.4351e-001 - 6.29
shaw 1.2074e-001 - - 1.2207e+002 6.01
shaw 1.3477e-001 1.8739e-003| 2.5149e-001 - 6.73
shaw (W) 1.4452e-001 | 3.1749e-003| 2.6832e-001 - 8.02
shaw 1.3466e-001 2.0832e-003 - 5.8343e+001 6.71
shaw (W) 1.4767e-001 | 3.6720e-003 - 5.1928e+001 8.18
shaw 2.0162e-001 - 1.8871e-001| 2.9227e+000 9.59
shaw (W) 2.0445e-001 - 1.8076e-001| 4.0254e+000 10.85
shaw 1.3631e-001 | 3.1890e-003| 2.6252e-001| 1.7495e+001 7.71
shaw (W) 1.3297e-001 3.6163e-003| 2.2794e-002| 9.6222e+000 15.36
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(1]
(2]
(3]
[4]
(5]

TABLE A.6
Given solution with noise levél= 5 - 10—2.
Relative Errors A1 A2 A3 Iterations
baart 2.5915e-001 | 5.5184e-003 - - 3.88
baart 3.5281e-001 - 4.1254e+001 - 22.62
baart 1.4907e-001 - - 7.8514e+001 3.90
baart 3.1181e-001 1.0697e-002| 1.6995e+000 - 5.41
baart (W) 3.1079e-001 1.0679e-002| 1.8720e+001 - 6.17
baart 2.5738e-001 7.0589e-003 - 1.4668e+003 4.04
baart (W) 2.4875e-001 6.3857e-003 - 1.8854e+003 4.16
baart 3.6233e-001 - 4.2956e+001| 6.7892e+005 11.53
baart (W) 3.6189e-001 - 4.2750e+001| 9.5807e+005 12.31
baart 3.0971e-001 1.2027e-002| 9.7625e-001| 8.6695e+002 6.34
baart (W) 3.0669e-001 1.4359e-002| 5.6894e+000| 2.7463e+006 22.44
gravity 2.0667e-001 7.6931e-002 - - 4.20
gravity 7.1581e-002 - 6.4767e+001 - 5.00
gravity 6.5899e-002 - - 1.0511e+002 4.96
gravity 7.0950e-002 1.5823e-001| 2.6622e+000 - 5.89
gravity (W) 6.9396e-002 9.8279e-002| 2.2876e+001 - 5.08
gravity 6.7248e-002 1.4980e-001 - 1.3094e+003 5.15
gravity (W) 6.5526e-002 9.7083e-002 - 2.3641e+003 5.03
gravity 8.9110e-002 - 1.5691e+002| 7.3888e+003 7.24
gravity (W) 9.2507e-002 - 1.5515e+002| 9.6310e+003 8.28
gravity 6.7490e-002 | 3.0044e-001| 7.9010e+000| 4.7311e+002 8.24
gravity (W) 6.6388e-002 | 3.1555e-001| 7.0614e-001| 1.0583e+003 16.10
phillips 1.7706e-001 | 5.4795e-002 - - 4.00
phillips 5.2064e-002 - 2.7421e+001 - 4.86
phillips 4.9188e-002 - - 1.2585e+002 4.79
phillips 5.1560e-002 2.2233e-001| 3.0768e+000 - 8.89
phillips (W) 4.5868e-002 9.5929e-002| 1.1118e+001 - 5.33
phillips 5.0609e-002 2.1969e-001 - 3.3818e+002 7.30
phillips (W) 5.3031e-002 | 8.1022e-002 - 3.5514e+003 5.04
phillips 6.2712e-002 - 6.8085e+001| 3.2822e+002 7.74
phillips (W) 6.2458e-002 - 6.7112e+001| 3.4593e+002 8.65
phillips 4.9898e-002 2.5948e-001| 1.8172e+000| 5.1243e+001 10.62
phillips (W) 4.9975e-002 2.6521e-001| 2.4459e-001| 9.0852e+001 16.69
shaw 1.8119e-001 7.5811e-003 - - 5.00
shaw 2.0664e-001 - 1.2412e+001 - 6.91
shaw 2.0299e-001 - - 1.9892e+003 6.81
shaw 1.8248e-001 2.9196e-002| 1.1667e+000 - 9.45
shaw (W) 1.7661e-001 2.9472e-002| 1.3307e+000 - 8.14
shaw 1.7095e-001 | 3.2668e-002 - 3.7580e+002 8.77
shaw (W) 1.7345e-001 | 3.0384e-002 - 2.4513e+002 9.91
shaw 3.6022e-001 - 1.9433e+001| 2.1029e+002 8.31
shaw (W) 4.1838e-001 - 1.6601e+001| 6.2015e+002 9.97
shaw 1.6869e-001 2.7108e-002| 1.3957e+000| 6.2512e+001 8.53
shaw (W) 1.7007e-001 2.9894e-002| 1.6217e-001| 6.3068e+001 15.61
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