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Abstract

This paper proposes some new general strategies for the analysis and implementa-
tion of multi-parameter regularization methods. We consider both direct methods
such as Tikhonov regularization with two or more regularization terms, and it-
erative methods based on the projection of a Tikhonov-regularized problem onto
Krylov subspaces of increasing dimensions. The latter methods regularize by choos-
ing suitable regularization terms and the dimension of the Krylov subspace. Our
investigation focuses on selecting a proper set of regularization parameters that
satisfies the discrepancy principle and maximizes a suitable quantity, whose size
reflects the quality of the computed approximate solution. Theoretical results are
shown and illustrated by numerical experiments.

1 Introduction

Consider linear least-squares problems of the form

min
x∈RN

‖Ax− b‖, A ∈ RM×N , b ∈ RM , (1)

where the singular values of the coefficient matrix quickly and smoothly decay to zero
(in particular, A is severely ill-conditioned), and where the vector b is contaminated by
unknown additive white noise e ∈ RM , i.e., b = bex+ e, where bex denotes the unknown
exact (noise-free) vector associated with b. Least-squares problems of this kind are
commonly referred to as linear discrete ill-posed problems, and arise in a variety of
scientific and engineering applications linked to the solution of inverse problems [9].
Because of the ill-conditioning of A and the perturbation e in b, one has to employ some
kind of regularization of (1) in order to be able to compute a meaningful approximation
of the desired solution xex ∈ RN of the consistent noise-free linear system of equations
Axex = bex.

Regularization methods are determined by the choice of one or several positive regular-
ization parameters, which specify the amount of regularization, and by the associated
regularization matrices. The latter impose some regularity properties on the computed
approximation of xex. Depending on the size and the properties of A, one usually
chooses between direct or iterative regularization methods. The former methods are
based on available factorizations of A and of the regularization matrices (usually the
singular value or generalized singular value decompositions), while the latter methods
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first reduce A and the regularization matrix or matrices to small size and then solve
the reduced problem by a direct method.

One-parameter Tikhonov regularization is possibly the best understood direct regular-
ization method. It solves a penalized minimization problem of the form

min
x∈RN

{
‖b−Ax‖2 + λ‖Lx‖2

}
, (2)

where λ > 0 is the regularization parameter and L ∈ RP×N the regularization matrix.
Here and in the following ‖ · ‖ denotes the vector 2-norm and (·, ·) the standard inner
product. When L = IN (i.e., the identity matrix of order N), the problem (2) is said
to be in standard form; otherwise it is in general form. We assume that L is chosen so
that the following relation between the null spaces of A and L holds

N (A) ∩N (L) = {0}. (3)

Then the minimizer xλ of (2) is unique.

It is clear from (2) that the component of the solution in N (L) is not affected by
regularization. Therefore, an effective regularization matrix L is such that known
important features of the desired solution xex belong to N (L); see, e.g., [17, 22] for
discussions.

Krylov subspace methods and generalizations thereof are popular iterative methods for
the approximate solution of large-scale Tikhonov regularization problems of the form
(2); see, e.g., [6, 11, 17, 20]. Regularization is achieved both by using the penalty term
and by terminating the iterations early.

Recently, many authors have pointed out the need of going beyond the classical frame-
work of one-parameter Tikhonov regularization and proposed the use of multi-parameter
Tikhonov regularization methods. These methods replace the least-squares problem (1)
by a penalized minimization problem of the form

min
x∈RN

{
‖b−Ax‖2 +

m∑
i=1

λi‖Lix‖2
}

; (4)

see, e.g., [1, 2, 4, 5, 15, 16] and references therein. Here the scalars λi > 0 are regu-
larization parameters and the Li ∈ RPi×N are regularization matrices for i = 1, . . . ,m.
We assume in the following that N (A)

⋂
i=1,...,mN (Li) = {0} to secure that (4) has a

unique solution, which we denote by xΛ, where Λ = (λ1, . . . , λm) is referred to as the
regularization vector. When m = 1 the problem (4) simplifies to (2).

An advantage of multi-parameter Tikhonov regularization, when compared with one-
parameter Tikhonov regularization, is that different features of the solution can be
enhanced by using several regularization matrices with different null spaces. However,
a drawback of multi-parameter Tikhonov regularization is that one has to define reli-
able strategies to determine the regularization vector. To the best of our knowledge,
the first attempt to derive a systematic parameter choice strategy was proposed by
Belge et al. [1], who introduce a generalization of the L-curve and describe an effi-
cient algorithm to compute the regularization parameters corresponding to a point on
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the L-hypersurface where the curvature is approximately maximized. Brezinski et al.
[2] propose and analyze an approach based on the GCV method. Specifically, they
solve m different one-parameter problems (one for each regularization term appearing
in (4)) and then combine the m approximations of xex so obtained. More recently, Lu
and Pereverzyev [15] and Lu et al. [16] proposed to employ the discrepancy princi-
ple to select a regularization vector for (4). Two approaches are investigated. Their
first approach is based on approximating the Tikhonov functional and the discrepancy
function by means of suitable model functions, and requiring the computed solution to
satisfy the discrepancy principle; this method is further analyzed by Fornasier et al. [4].
The second approach [16] considers particular one-parameter problems, and applies a
Newton zero-finder to the discrepancy function.

It is the purpose of the present paper to investigate a new approach to determine the
regularization vector Λ of multi-parameter regularization methods (4). Similarly as Lu
et al. [15, 16], we first determine a set of regularization vectors {Λj}j=1,...,h that satisfy
the discrepancy principle and then choose a vector from this set that solves the problem

max
j=1,...,h

Ψ
(
xΛj

)
. (5)

Common choices of the functional Ψ(xΛj ) are ‖xΛj‖, ‖LxΛj‖, or ‖xΛj‖2 + ‖LxΛj‖2,
where L is a regularization matrix. If L is a discretization of a derivative operator, then
the latter choice corresponds to maximizing a discrete Sobolev norm of the regularized
solution. In the available literature on multi-parameter Tikhonov regularization, the
issue of choosing a particular regularization vector among the vectors that satisfy the
discrepancy principle appears to be discussed just marginally in [16].

In addition to multi-parameter Tikhonov regularization of the form (4), we also con-
sider Krylov-Tikhonov regularization, which is intrinsically a multi-parameter method.
Here one of the regularization parameters is the dimension of the solution subspace
used. We propose to use the discrepancy principle to choose the Tikhonov regulariza-
tion parameter at each iteration [11, 14]; the number of iterations, which equals the
dimension of the solution subspace, is determined by solving an optimization problem
similar to (5). We will illustrate this approach for a method that projects the regular-
ization matrix in (2) into the Krylov subspace determined by the Arnoldi algorithm.
However, the approach can be applied to other iterative Tikhonov regularization meth-
ods as well, for instance to the methods discussed in [3, 11, 20]. Recently, Gazzola and
Novati [5] proposed an approach to determine Λ as well as the number of iterations
with an Arnoldi-Tikhonov method for (4), which relies on sequentially updating an
approximation of the discrepancy function. We will review this approach and discuss
how the criterion (5) can be incorporated.

This paper is organized as follows: in Section 2 we discuss direct multi-parameter
Tikhonov regularization (4). We analyze some properties of the corresponding one-
parameter problem (i.e., we sequentially vary one regularization parameter at a time).
Strategies for solving (5) are described, and we provide some insight into the choice
of functional Ψ. Section 3 is concerned with multi-parameter Krylov-Tikhonov reg-
ularization. We report results from many numerical experiments in Section 4. They
are concerned with the solution of discretized Fredholm integral equation of the first
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kind, and image deblurring and denoising. Some concluding remarks can be found in
Section 5.

2 Direct multi-parameter regularization

We would like to compute a solution xΛ of (4) that satisfies the discrepancy principle,
i.e., is such that

‖b−AxΛ‖2 = η2ε2 , (6)

where ε ≥ ‖e‖ and η > 1 is a user-supplied safety factor independent of ε. In order
for the discrepancy principle to yield an accurate approximation of xex it is usually
necessary that η is close to unity and ε is close to ‖e‖. Introduce the discrepancy
function

Φ(Λ) = ‖b−AxΛ‖2. (7)

In the one-parameter case, i.e., when Λ = (λ), one usually applies the discrepancy
principle by solving the nonlinear equation (6) with respect to λ [18]. However, when
Λ ∈ Rm, m ≥ 2, the problem (6) is underdetermined. Following [16], we define the
discrepancy hypersurface

D = {Λ ∈ Rm : Λ > 0, ‖b−AxΛ‖ = ηε } ,

where the condition Λ > 0 is to be interpreted component-wise. In this section we
describe a strategy to impose additional constraints on the solution xΛ of (4) in order
to reduce the number of degrees of freedom in the choice of Λ.

A natural constraint is
max
Λ∈D
‖xΛ‖ . (8)

It can be justified in the following way. The discrepancy principle generally determines
over-smoothed approximations of xex, cf. [9, §7.2] and references therein. By imposing
both (6) and (8), we seek to determine the least over-smoothed approximation xΛ of
xex with Λ ∈ D. Of course, generally the constraint (8) does not by itself determine an
accurate approximation of xex. Indeed, this constraint would by itself deliver an unreg-
ularized solution. We remark that a related approach has previously been considered
in [12] for determining an improved approximation of xex given a set of regularized so-
lutions computed by different methods such as TSVD or Tikhonov regularization. The
following result provides a sufficient condition for a vector xΛ that satisfies both (6)
and (8) to be an optimal approximation of xex, in the sense that the error ‖xex − xΛ‖
is minimal. In the following theorem and below, we let I denote the set indexing the
regularization vectors belonging to D.

Theorem 1. Let {xΛi}i∈I be a set of solutions of (4) that satisfy the discrepancy
principle (6) and define ` = arg maxi∈I ‖xΛi‖. Let xΛi = xΛ`

+ δxi. If

(xex, δxi) ≤ 0 (9)

and

(xΛ`
, δxi) ≥ −

‖δxi‖2

2
+ (xex, δxi) , (10)
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for all i ∈ I, i 6= `, then

‖xex − xΛ`
‖ ≤ ‖xex − xΛi‖ ∀i ∈ I. (11)

Proof. The result follows directly by writing

‖xex − xΛi‖
2 − ‖xex − xΛ`

‖2 = 2 (xΛ`
, δxi) + ‖δxi‖2 − 2 (xex, δxi) (12)

and by considering that, thanks to (10), the right-hand side of the above equality is
nonnegative. Since the assumption ‖xΛ`

‖ ≥ ‖xΛi‖ implies

(xΛ`
, δxi) ≤ −

‖δxi‖2

2
,

one can easily see that (11) holds under both the conditions (9) and (10).

We may replace (8) by a constraint of the form

max
Λ∈D

m∑
i=1

‖LixΛ‖2 , (13)

where Li, i = 1, . . . ,m, are the regularization matrices appearing in (4). Optimality
properties analogous to Theorem 1 can be established also for the constraint (13). For
instance, one can show the following result.

Theorem 2. Let {xΛi}i∈I be a set of solutions of (4) that satisfy the discrepancy

principle (6). Define ` = arg maxi∈I

(
‖xΛi‖

2 + ‖LxΛi‖
2
)

and let xΛi = xΛ`
+ δxi. If

(xex, δxi) ≤ −
‖Lδxi‖2

2
− (LxΛ`

, Lδxi) (14)

and (
xΛ`

, (I + LTL)δxi
)
≥ −‖δxi‖

2

2
+
(
xex + LTLxΛ`

, δxi
)
, (15)

for all i ∈ I, i 6= `, then

‖xex − xΛ`
‖ ≤ ‖xex − xΛi‖ ∀i ∈ I. (16)

Proof. By writing the errors as in (12), we can conclude that (16) holds, since (15)
implies (10). Since the assumption ‖xΛ`

‖+ ‖LxΛ`
‖ ≥ ‖xΛi‖+ ‖LxΛi‖ implies

(
xΛ`

, (I + LTL)δxi
)
≤ −‖Lδxi‖

2

2
− ‖δxi‖

2

2
,

one can easily see that (16) holds under both the conditions (14) and (15).
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Remark 3. In the special case where δxi ∈ N (L) for all i ∈ I, we can immediately
see that Theorem 2 is equivalent to Theorem 1. Specifically,

` = arg max
i∈I

(
‖xΛi‖

2 + ‖LxΛi‖
2
)

= arg max
i∈I

(
‖xΛi‖

2 + ‖LxΛ`
‖2
)

= arg max
i∈I
‖xΛi‖

2 .

Further, (14) and (15) are equivalent to (9) and (10), respectively. Moreover, when the
xΛi ’s are accurate approximations of xex and are close to N (L), then the constraint
(13) with Li = L approximately reduces to constraint (8). The situation when the
xΛi ’s are close to N (L) is of interest in applications; see the discussion of Section 1.

To keep our discussion simple, we focus on the two-parameter case

min
x∈RN

{
‖b−Ax‖2 + λ1‖L1x‖2 + λ2‖L2x‖2

}
. (17)

The use of more than two regularization terms in (4) can be treated analogously. In the
two-parameter case, D is a differentiable curve in R2; see [15]. A simple technique to
impose the constraints (8) or (13) is to sample the quantities ‖LixΛ‖ for logarithmically
equispaced values of λ1 or λ2. For instance, we may define the sampling space by first
keeping λ1 = λ̂1 fixed and determining λ2 so that the discrepancy principle is satisfied
(if possible, cf. Proposition 5). Thus, let λ2 be the zero of the one-variable function

λ2 → Φ(h(λ̂1), h(λ2))2 − η2ε2 , (18)

where Φ is given by (7) and h(λi) = λ−1
i , i = 1, 2. The purpose of using h(λi)

instead of λi is to secure convexity of the function (18). This change of variable for
the function (18) is also considered by Lu et al. [16]. It is commonly used for one-
parameter Tikhonov regularization problems (2). Lu et al. [16] consider fixed linear
combinations of regularization matrices. Then the computation of the multi-parameter
Tikhonov regularization problem simplifies to one-parameter Tikhonov regularization.
We consider both regularization matrices independent and this leads to a somewhat
different zero-finder. We will need the following result.

Lemma 4. If
(L1∂h(λ2)xh(Λ), L1xh(Λ)) < 0 (19)

and
(L1∂

2
h(λ2)xh(Λ), L1xh(Λ)) = 2(L1∂h(λ2)xh(Λ), L1∂h(λ2)xh(Λ)) , (20)

then Φ(h(λ̂1), h(λ2)) is a decreasing and convex function of (λ1, λ2). Here ∂h(λ2)xh(Λ)

denotes the partial derivative with respect to the variable h(λ2).

Proof. Introduce the function

Ω(λ1, λ2) = ‖b−AxΛ‖2 + λ1‖L1xΛ‖2 + λ2‖L2xΛ‖2, Λ = (λ1, λ2).

Following Lu and Pereverzyev [15], we consider the following relations

Φ(λ̂1, λ2) = Ω(λ̂1, λ2)− λ̂1∂λ1Ω(λ1, λ2)|λ1=λ̂1
− λ2∂λ2Ω(λ̂1, λ2) ,
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∂λ2Φ(λ̂1, λ2) = −λ̂1∂λ2∂λ1Ω(λ1, λ2)|λ1=λ̂1
− λ2∂

2
λ2Ω(λ̂1, λ2) ,

∂2
λ2Φ(λ̂1, λ2) = −λ̂1∂

2
λ2∂λ1Ω(λ1, λ2)|λ1=λ̂1

− ∂2
λ2Ω(λ̂1, λ2)− λ2∂

3
λ2Ω(λ̂1, λ2) . (21)

In the above expressions,

∂λ1Ω(λ1, λ2) = ‖L1xΛ‖2 ,
∂λ2Ω(λ1, λ2) = ‖L2xΛ‖2 ,
∂λ2∂λ1Ω(λ1, λ2) = 2 (L1∂λ2xΛ, L1xΛ) ,
∂2
λ2

Ω(λ1, λ2) = 2 (L2∂λ2xΛ, L2xΛ) ,

∂2
λ2
∂λ1Ω(λ1, λ2) = 2

(
L1∂

2
λ2
xΛ, L1xΛ

)
+ 2 (L1∂λ2xΛ, L1∂λ2xΛ) ,

∂3
λ2

Ω(λ1, λ2) = 2
(
L2∂

2
λ2
xΛ, L2xΛ

)
+ 2 (L2∂λ2xΛ, L2∂λ2xΛ) .

(22)

We also remark that ∂λ2xΛ and ∂2
λ2
xΛ solve the following problems

(A∂λ2xΛ, Az) + λ1 (L1∂λ2xΛ, L1z) + λ2 (L2∂λ2xΛ, L2z) = − (L2xΛ, L2z) , (23)(
A∂2

λ2xΛ, Az
)

+ λ1

(
L1∂

2
λ2xΛ, L1z

)
+ λ2

(
L2∂

2
λ2xΛ, L2z

)
= −2 (L2∂λ2xΛ, L2z) ,(24)

for all z ∈ RN , respectively. Now, to evaluate the derivatives of Φ(h(λ1), h(λ2)), we
employ the chain rule. Concerning the first derivative we get

∂λ2Φ(h(λ1), h(λ2)) =
2

λ1λ2
2

(
L1∂h(λ2)xh(Λ), L1xh(Λ)

)
(25)

+
2

λ3
2

(
L2∂h(λ2)xh(Λ), L2xh(Λ)

)
,

for λ1 = λ̂1. By taking z = ∂h(λ2)xh(Λ) in (23), evaluated at
(
h(λ̂1), h(λ2)

)
, we get

−
(
L2xh(Λ), L2∂h(λ2)xh(Λ)

)
=

(
A∂h(λ2)xh(Λ), A∂h(λ2)xh(Λ)

)
+h(λ̂1)

(
L1∂h(λ2)xh(Λ), L1∂h(λ2)xh(Λ)

)
+h(λ2)

(
L2∂h(λ2)xh(Λ), L2∂h(λ2)xh(Λ)

)
> 0

This implies that
2

λ3
2

(
L2xh(Λ), L2∂h(λ2)xh(Λ)

)
< 0 .

Since by assumption
(
L1∂h(λ2)xh(Λ), L1xh(Λ)

)
< 0, we can conclude that

∂λ2Φ(h(λ̂1), h(λ2)) < 0 .

To prove the convexity of Φ(λ̂1, λ2), the derivations are more cumbersome. By applying
the chain rule to (21) and by exploiting the equalities (22), we get

∂2
λ2Φ(h(λ1), h(λ2)) = − 2

λ1λ4
2

(
L1∂

2
h(λ2)xh(Λ), L1xh(Λ)

)
− 2

λ1λ4
2

(
L1∂h(λ2)xh(Λ), L1∂h(λ2)xh(Λ)

)
− 4

λ1λ3
2

(
L1∂h(λ2)xh(Λ), L1xh(Λ)

)
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− 2

λ5
2

(
L2∂

2
h(λ2)xh(Λ), L2xh(Λ)

)
− 2

λ5
2

(
L2∂h(λ2)xh(Λ), L2∂h(λ2)xh(Λ)

)
− 6

λ4
2

(
L2∂h(λ2)xh(Λ), L2xh(Λ)

)
,

for λ1 = λ̂1. By evaluating (23) for z = ∂2
h(λ2)xh(Λ) and (24) for z = ∂h(λ2)xh(Λ), and

by considering their difference, we get(
L2xh(Λ), L2∂

2
h(λ2)xh(Λ)

)
= 2

(
L2∂h(λ2)xh(Λ), L2∂h(λ2)xh(Λ)

)
. (26)

Substituting (20) and (26) into the expression for ∂2
λ2

Φ(h(λ1), h(λ2)), we obtain

∂2
λ2Φ(h(λ1), h(λ2)) = − 6

λ1λ4
2

(
L1∂h(λ2)xh(Λ), L1∂h(λ2)xh(Λ)

)
− 4

λ1λ3
2

(
L1∂h(λ2)xh(Λ), L1xh(Λ)

)
− 6

λ5
2

(
L2∂h(λ2)xh(Λ), L2∂h(λ2)xh(Λ)

)
− 6

λ4
2

(
L2∂h(λ2)xh(Λ), L2xh(Λ)

)
.

Exploiting (19) and performing some algebraic manipulations on (23) evaluated for
z = ∂h(λ2)xh(Λ) (namely, after moving to the left-hand side all terms except for
(A∂h(λ2)xh(Λ), A∂h(λ2)xh(Λ)) and multiplying both sides by 6/λ4

2), we get

∂2
λ2Φ(h(λ̂1), h(λ2)) > 0 ,

which concludes the proof.

Proposition 5. Under the assumptions (19), (20), and∥∥∥∥∥
(
IN −A

(
ATA+

1

λ̂1

LT1 L1

)−1

AT

)
b

∥∥∥∥∥
2

< η2ε2 < ‖b‖2 , (27)

equation (18) has a unique solution λ2 > 0.

Proof. Immediate thanks to Lemma 4.

Remark 6. The assumptions of Lemma 4 are satisfied for many linear discrete ill-
posed problems, and for many regularization matrices and regularization parameters of
different sizes. We provide an illustration in Section 4. Indeed, when L1 is a discretized
derivative operator, (20) can be regarded as a condition on the higher order derivatives
of xΛ. Also the inequalities (27) of Proposition 5 are typically satisfied: the upper
bound limits the amount of noise in b, and the lower bound is a condition on the
one-parameter problem (2) with λ = 1/λ̂1 and L = L1.
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It follows from Lemma 4 that Newton’s method applied to determining the smallest zero
of (18) is guaranteed to give quadratic and monotonic convergence if the initial approx-
imation of the zero is smaller than the desired zero; see also [21]. To implement New-
ton’s method, one needs to compute ∂h(λ2)Φ(λ̂1, λ2). An expression for ∂h(λ2)Φ(λ̂1, λ2)
is given in (25) and, according to (23), one can compute ∂h(λ2)xh(Λ) in the following
way

∂h(λ2)xh(Λ) = −
(
ATA+

1

λ1
LT1 L1 +

1

λ2
LT2 L2

)−1 (
LT2 L2xh(Λ)

)
,

or, equivalently, by taking

∂h(λ2)xh(Λ) = arg min
x∈RN

∥∥∥∥∥∥∥
 A

λ
−1/2
1 L1

λ
−1/2
2 L2

x−
 0

0

−λ1/2
2 L2xh(Λ)


∥∥∥∥∥∥∥

2

.

We remark that the matrix in the above formulation is the same as the one associated
with the problem (17).

The following result sheds some light on the maximization problem (8).

Proposition 7. Assume that λ1 = λ̂1 is fixed, that L2 has full column rank, and that
‖xΛ‖ > 0. Then ‖xΛ‖2 is a decreasing function of λ2.

Proof. It follows from (23) that

∂λ2 ‖xΛ‖2 = 2 (∂λ2xΛ, xΛ) = −2

((
ATA+ λ̂1L

T
1 L1 + λ2L

T
2 L2

)−1
(LT2 L2)xΛ, xΛ

)
.

Since LT2 L2 is nonsingular, one can easily see that the matrix appearing in the above
scalar product is positive definite, and therefore ∂λ2 ‖xΛ‖2 < 0 when ‖xΛ‖ > 0.

The assumptions of the above proposition hold when, for instance, L2 = IN . In this
case, to maximize ‖xΛ‖, one should let λ2 = 0, i.e., one should consider the one-
parameter Tikhonov regularization problem (2) with L = L1, and λ = λ̂1 chosen so
that the discrepancy principle is satisfied.

If we assume that the discrepancy curve can be explicitly expressed as

λ1 = g(λ2) , (28)

where λ2, g(λ2) > 0, and g is differentiable, then we can extend the derivations in [15]
to obtain (23). More precisely, one can see that ∂λ2xΛ solves the following problem(

ATA∂λ2xΛ, z
)

+ g(λ2)
(
LT1 L1∂λ2xΛ, z

)
+ λ2

(
LT2 L2∂λ2xΛ, z

)
= −

((
LT2 L2 + ∂λ2g(λ2)LT1 L1

)
xΛ, z

)
(29)

for all z ∈ RN . Therefore, after defining

A] = ATA+ g(λ2)LT1 L1 + λ2L
T
2 L2 ,
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one gets

∂λ2 ‖xΛ‖2 = −2

((
A]
)−1

(LT2 L2 + ∂λ2g(λ2)LT1 L1)xΛ, xΛ

)
. (30)

We can explicitly determine the sign of ∂λ2 ‖xΛ‖2 for certain functions g(λ2), for in-
stance when LT2 L2 + ∂λ2g(λ2)LT1 L1 is positive definite or negative definite. We analyze
the behavior of this matrix in the following section, assuming g(λ2) to be a linear
function.

Results analogous to Proposition 7 hold when replacing the maximization (8) by (13).
Of course, λ1 and λ2 can be interchanged in the above discussion.

3 Krylov-Tikhonov multi-parameter regularization

Krylov-Tikhonov methods are obtained by projecting a Tikhonov-regularized problem
(2) or (4) onto Krylov subspaces of increasing dimensions; different Krylov-Tikhonov
methods are obtained by varying the original problem (2) or (4), or the Krylov sub-
spaces. For instance, the authors of [11] project the general form Tikhonov problem
(L 6= IN ) onto the subspaces Kk(ATA,AT b), k ≥ 1, generated by the Golub-Kahan
bidiagonalization algorithm; in [3] the problem (2) with L = IN is projected onto sub-
spaces Kk(A, b), k ≥ 1, generated by the Arnoldi algorithm. Range restricted Arnoldi
methods that generate solution subspaces Kk(A,Ab), k ≥ 1, are discussed in [14] and
[13]; the latter reference discusses a Petrov-Galerkin implementation. Krylov-Tikhonov
methods are intrinsically multi-parameter methods, since (at least) one regularization
parameter λ and the dimension k of the Krylov subspace has to be chosen. The dimen-
sion k may also be considered a regularization parameter. Generally, λ depends on the
dimension.

In the following we restrict ourselves to the case when A ∈ RN×N and consider methods
based on the Arnoldi algorithm [23, §6.3]. Application of k steps of this algorithm to
A with initial vector b/‖b‖ yields the decomposition

AWk = Wk+1H̄k , where Wk+1 ∈ RN×(k+1), Wk = Wk+1

[
Ik
0

]
∈ RN×k, (31)

have orthonormal columns, Wke1 = b/‖b‖, and H̄k ∈ R(k+1)×k is upper Hessenberg. We
assume here that k is small enough so that no breakdown takes place. Modifications of
the decomposition (31) that can be applied in the range restricted Arnoldi method case
will be commented on below. We describe a method that is analogous to the scheme in
[11], but with Kk(A, b) as solution subspaces. We refer to this method as the Arnoldi-
Tikhonov method. The special case when L = IN is described in [3]. Substituting the
Arnoldi decomposition (31) into (2) and letting Rk ∈ Rk×k be the upper triangular
matrix in the QR factorization of LWk yields the minimization problem

yk,λ = arg min
y∈Rk

∥∥∥∥[ H̄k

λ1/2Rk

]
−
[
e1‖b‖

0

]∥∥∥∥2

. (32)

We note that due to (3), the coefficient matrix in (32) has full column rank. An
approximate solution of (2) is given by xk,λ = Wkyk,λ. The regularization parameter
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λ is determined so that xk,λ satisfies the discrepancy principle. Hence, we would like
‖Axk,λ− b‖ = η2ε2. In order to secure that Newton’s method converges monotonically,
one carries out the change of variable µ = λ−1, see [11, 14], and introduces the function

Φ(k)(µ) :=
∥∥H̄kyk,1/µ − ‖b‖e1

∥∥2 − η2ε2.

The solution µk of Φ(k)(µ) yields the desired value λk = 1/µk of the regularization
parameter. It can be shown that Φ(k)(0) is a decreasing function of k, and the exis-
tence of the solution µk requires k to be large enough. Computed examples in [14]
illustrate that carrying out more than the minimal number of iterations k may result in
improved approximations of xex. We propose that the number of additional iterations
be determined by maximizing (8) or (13). Computed examples of Section 4 illustrate
this kind of stopping criterion.

An alternative stopping rule is to terminate the iterations when the regularization
parameter λk does not change much with k, i.e., when

|λk+1 − λk|
λk

< τ (33)

for some user-chosen tolerance τ . This stopping criterion is meaningful because we
would like xk,λk to be an accurate approximation of the solution of (2). It is therefore
natural to monitor the stabilization of λk.

In [5], the authors derive a multi-parameter Arnoldi-Tikhonov (mP-AT) method by
projecting problem (4) onto the Krylov subspaces Kk(A, b), k ≥ 1. We briefly describe
this method and focus on the case with two regularization matrices (m = 2). Analo-
gously to (32), we determine an approximate solution of (4) of the form xk,Λ = Wkyk,Λ
and obtain the minimization problem

yk,Λ = arg min
y∈Rk

∥∥∥∥∥∥∥
 H̄k

(λ
(k)
1 )1/2R

(1)
k

(λ
(k)
2 )1/2R

(2)
k

 y −
 e1‖b‖

0
0


∥∥∥∥∥∥∥

2

, (34)

where R
(i)
k ∈ Rk×k is the upper triangular matrix in the QR factorization of LiWk,

i = 1, 2. We define the associated discrepancy function

Φ̄(k)(Λ) =
∥∥‖b‖e1 − H̄kyk,Λ

∥∥ , (35)

where Λ = (λ1, λ2). Let k∗ be the smallest integer such that

Φ̄(k∗)(0, 0) < ηε . (36)

Since Φ̄(k)(0, 0) is the residual norm of the kth iterate determined by GMRES applied
to (1) with initial iterate x0 = 0 (and M = N), the integer k∗ typically exists and is
quite small; see [7]. Following [5], we approximate for k > k∗ the function (35) by the
linear function

Φ̄
(k)
lin (λ1, λ2) = α

(k)
0 + α

(k)
1 λ1 + α

(k)
2 λ2 ,

11



where α
(k)
0 = Φ̄(k)(0, 0),

α
(k)
1 =

Φ̄(k)(λ
(k)
1 , 0)− Φ̄(k)(0, 0)

λ
(k)
1

,

α
(k)
2 =

Φ̄(k)(0, λ
(k)
2 )− Φ̄(k)(0, 0)

λ
(k)
2

.

The parameters (λ
(k)
1 , λ

(k)
2 ) in the above definitions are the ones employed in (34) in the

kth iteration. The pair (λ
(k+1)
1 , λ

(k+1)
2 ) used in the next iteration step is determined by

imposing the “approximate discrepancy principle”

Φ̄
(k)
lin (λ1, λ2) = ηε .

This yields

λ1 =
ηε− α(k)

0

α
(k)
1

− α
(k)
2

α
(k)
1

λ2 =: γ(k) − δ(k)λ2. (37)

It follows from (36) and the fact that the one-variable functions λ1 → Φ̄(k)(λ1, 0) and
λ2 → Φ̄(k)(0, λ2) are increasing, that the coefficients γ(k) and δ(k) are positive for k > k∗.
In order for λ1 and λ2 to be nonnegative, we require that

0 ≤ λ2 ≤
γ(k)

δ(k)
. (38)

In the terminology of Lu and Pereverzyev [15], Φ̄
(k)
lin (Λ) is a model function approxima-

tion of Φ̄(k)(Λ). At each step of the Arnoldi algorithm, we consider the linear model
function obtained by just imposing three interpolation conditions

Φ̄
(k)
lin (0, 0) = Φ̄(k)(0, 0) , Φ̄

(k)
lin (λ

(k)
1 , 0) = Φ̄(k)(λ

(k)
1 , 0) , Φ̄

(k)
lin (0, λ

(k)
2 ) = Φ̄(k)(0, λ

(k)
2 ) .

The discrepancy curve associated with Φ̄
(k)
lin (Λ) is the line connecting the points (λ

(k)
1 , 0)

and (0, λ
(k)
2 ) in the (λ1, λ2)-plane. Therefore, the generic function g(λ2) defined in (28)

is determined by (37) for each k > k∗.

Differently from the approach adopted in [5], we choose the pair

(λ
(k+1)
1 , λ

(k+1)
2 ) so that (37) holds and ‖xk,Λ‖ = ‖yk,Λ‖ is maximized. We can derive an

explicit expression for ∂λ2‖yk,Λ‖2. Letting

H̄]
k = H̄T

k H̄k + λ1(R
(1)
k )TR

(1)
k + λ2(R

(2)
k )TR

(2)
k , (39)

and performing some standard manipulations, we get

∂λ2 ‖yk,Λ‖
2 = 2 (∂λ2yk,Λ, yk,Λ) , (40)

where

∂λ2yk,Λ = −
(
H̄]
k

)−1 (
(R

(2)
k )TR

(2)
k − δ

(k)(R
(1)
k )TR

(1)
k

)
yk,Λ . (41)
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Note that (40) and (41) are particular cases of (30) and (29), respectively, obtained by
taking g(λ2) = γ(k) − δ(k)λ2.

The behavior of (40) is quite easy to analyze. Let ζ
(k)
j , j = 1, . . . , k, denote the

generalized singular values of the matrix pair (R
(1)
k , R

(2)
k ). Then we distinguish the

following cases:

• if (ζ
(k)
k )2 ≤

(
δ(k)
)−1

, then ∂λ2‖yk,Λ‖2 ≤ 0, and we maximize ‖xk,Λ‖ by letting λ2

be as small as possible, i.e., according to (38), λ2 = 0;

• if (ζ
(k)
1 )2 ≥

(
δ(k)
)−1

, then ∂λ2‖yk,Λ‖2 ≥ 0, and we maximize ‖xk,Λ‖ by letting λ2

be as large as possible, i.e., according to (38), λ2 = γ(k)
(
δ(k)
)−1

;

• if none of the previous conditions is satisfied, then no conclusion about the sign of
∂λ2‖yk,Λ‖2 can be drawn, and we evaluate ‖yk,Λ‖2 at logarithmically equispaced
values of λ2 in the interval (38).

The behavior of the quantities ‖Lixk,Λ‖ and ‖Lixk,Λ‖2 + ‖Ljxk,Λ‖2, i, j = 1, 2, can be
analyzed in an analogous way.

We terminate the computations as soon as

Φ̄(k)(λ
(k)
1 , λ

(k)
2 ) < ηε. (42)

This approach overcomes the main shortcoming of the strategy developed in [5], namely
the dependence of the computed approximate solution on the order of the regularization
matrices in (34). For instance, by exchanging the order of the regularization matrices
in (34), i.e., by expressing λ2 as a function of λ1, one gets

λ2 =
γ(k)

δ(k)
− 1

δ(k)
λ1 (43)

with the bounds 0 ≤ λ1 ≤ γ(k), instead of (37) and (38), respectively. Computing
∂λ1‖yk,Λ‖2 as done in (40), one obtains

∂λ1 ‖yk,Λ‖
2 = −2

((
H̄]
k

)−1 (
(R

(1)
k )TR

(1)
k − (δ(k))−1(R

(2)
k )TR

(2)
k

)
yk,Λ, yk,Λ

)
,

where H̄]
k is defined as in (39). One can easily see that ‖yk,Λ‖ is increasing if

(ζ
(k)
k )2 ≤

(
δ(k)
)−1

. Therefore, in this case, in order to maximize ‖xk,Λ‖ one should take

the largest possible λ1, i.e., λ1 = γ(k). Correspondingly, thanks to (43),
λ2 = 0. These values agree with the ones chosen when λ1 is expressed as a func-

tion of λ2. Indeed, if (ζ
(k)
k )2 ≤

(
δ(k)
)−1

, then ‖xk,Λ‖ is still maximized by taking λ2 = 0

and, correspondingly, λ1 = γ(k). We can conclude that, at least in this situation,
the approximate solution is invariant with respect to the order of the regularization
matrices.
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4 Numerical experiments

We report the results of some numerical tests with the parameter choice methods dis-
cussed. The first set of experiments is concerned with test problems from [8], and we
customize the problems so that the exact solution lies in the null space of one of the
regularization matrices L1 or L2 in (17). The second set of experiments illustrates
the performance of the multi-parameter Tikhonov, AT, RRAT, and mP-AT methods
when applied to many popular problems still taken from [8]. The third set of exper-
iments considers image deblurring and denoising problems, and we apply the direct
multi-parameter Tikhonov regularization and the mP-AT method. Depending on the
problem, we take as regularization matrices IN or the following

D1 =

 1 −1
. . .

. . .

1 −1

 ∈ R(N−1)×N , (44)

D2 =

 1 −2 1
. . .

. . .
. . .

1 −2 1

 ∈ R(N−2)×N , (45)

which represent scaled finite difference approximations of the first and the second
derivative operators, respectively. All the computations have been executed using Mat-
lab 8.1 with 16 significant digits.

Example 1. The coefficient matrices considered for the direct regularization method
(17) are of size 100 × 100. We take the particular solution xex = [1, 1, . . . , 1]T . The
unperturbed right-hand side is obtained by computing bex = Axex, and white noise is
added in such a way that the noise level ε̃ = ‖e‖/‖b‖ is 10−2. We use the safety factor η =
1.01 in the discrepancy principle. As regularization matrices, we take Li = IN , D1, i =
1, 2, so that xex ∈ N (D1). Table 1 reports the averages of the results obtained running
50 tests. Each test uses a different realization of the noise e. In detail, we consider
the two regularization matrix pairs (IN , D1) and (D1, IN ). For both pairs the first
regularization parameter λ1 is varied: the values of λ1 are logarithmically equispaced
between 10−8 and 102. For each λ1, a value of λ2 such that (6) is satisfied is determined
by applying the Newton zero finder described in Section 2. For each test problem we
display the relative error obtained with the one-parameter Tikhonov method (2) with
L = D1 (third column), the minimum relative error obtained considering different
combinations of the vectors (λ1, λ2) (fourth column), the relative error obtained when
selecting the regularization parameters according to (8) (fifth column), together with
the corresponding (λ1, λ2) (sixth and seventh columns), and the relative error obtained
when selecting the regularization parameters according to (13) (eighth column).

Figure 1 displays the behavior of various quantities associated to the problem phillips

with xex = [1, 1, . . . , 1]T and ε̃ = 10−2. In particular, we plot the relative errors for
all the admissible pairs (λ1, λ2), sequentially varying both λ1 or λ2 and determining
the corresponding parameter λ2 or λ1 such that (6) is satisfied. In a similar way, we
display the quantities ‖xΛ‖ and ‖xΛ‖2 +‖D1xΛ‖2, and the values of λ1 and λ2. We use
special markers to highlight the quantities delivering the minimum attainable relative

14



Reg.M. error (1P) error (opt) error (8) λ1 λ2 error (13)
baart (IN , D1) 6.7210e-04 3.4362e-04 6.7210e-04 1.0000e-08 1.0000e+08 6.7210e-04
baart (D1, IN ) 6.7210e-04 8.8168e-03 8.8168e-03 9.8815e+01 6.5757e-03 8.8168e-03
deriv2 (IN , D1) 7.5030e-04 3.4723e-04 7.5011e-04 1.0000e-08 1.0000e+08 7.5011e-04
deriv2 (D1, IN ) 7.5030e-04 1.4748e-03 1.4748e-03 1.0000e+02 1.3657e-05 1.4748e-03
i laplace (IN , D1) 9.6223e-04 6.5678e-04 9.6223e-04 1.0000e-08 1.0000e+08 9.6223e-04
i laplace (D1, IN ) 9.6223e-04 3.7590e-02 3.7590e-02 9.7657e+01 1.8152e-03 3.7590e-02
phillips (IN , D1) 6.7026e-04 3.7505e-04 6.7026e-04 1.0000e-08 1.0000e+08 6.7026e-04
phillips (D1, IN ) 6.7026e-04 5.3248e-03 5.3248e-03 9.7657e+01 7.8922e-02 5.3248e-03
shaw (IN , D1) 9.1441e-04 4.7361e-04 9.1441e-04 1.0000e-08 1.0000e+08 9.1441e-04
shaw (D1, IN ) 9.1441e-04 9.5181e-03 9.5181e-03 9.6526e+01 8.6195e-03 9.5181e-03

Table 1: Results obtained considering problems (2) and (17) with xex = [1, 1, . . . , 1]T

and ε̃ = 10−2. The regularization matrix pairs are reported in the second column.

error (black circle), and the quantities satisfying the criteria (8) (black square) and (13)
(black hexagram).

When applying the 2P-AT method (34), the size of the coefficient matrices is
N = 200, and xex = [1, 2, . . . , N ]T is a vector of increasing linearly equispaced val-
ues; the noise level is ε̃ = 10−1, and η = 1.1. The regularization matrices employed are
(IN , D2) and (D2, IN ). The regularization parameters λi, i = 1, 2, are selected accord-
ing to (37) and (8). Analogously to the previous experiments, the first regularization
parameter λ1 assumes logarithmically equispaced values between 10−10 and 102. The
maximum number of Arnoldi steps allowed is 20. Table 2 reports the averages of the
minimum relative errors obtained running 50 tests (third column): more precisely, at
each iteration of the Arnoldi algorithm, criteria (37) and (8) are applied, and the error
is minimized with respect to the number of Arnoldi steps; the associated regularization
parameter pairs! are displayed in the fourth and fifth columns. The relative errors ob-
tained when the discrepancy-based stopping criterion (42) is satisfied (sixth column),
as well as the components of the vector (λ1, λ2) obtained by (37), (8) and (42) (seventh
and eighth columns), are also reported. The average number of iterations is displayed
in parentheses.

Reg.M. error (8,37,opt) λ1 λ2 error (8,37,42) λ1 λ2
baart (D2, IN ) 4.0561e-02 (4.4) 1.07e+10 2.30e-05 6.5831e-02 (3.0) 1.41e+03 1.00e-10
baart (IN , D2) 4.8238e-02 (3.5) 3.63e-05 1.93e+06 6.4423e-02 (3.0) 1.36e-08 1.01e+04
deriv2 (D2, IN ) 3.7113e-01 (4.7) 9.20e-01 5.85e-06 4.5094e-01 (3.0) 3.38e-01 1.00e-10
deriv2 (IN , D2) 3.6711e-01 (4.8) 8.89e-06 7.10e-01 4.5115e-01 (3.0) 1.83e-10 3.42e-01
i laplace (D2, IN ) 2.9994e-02 (13.9) 3.36e+07 2.70e-06 5.5257e-01 (5.1) 2.99e+00 1.00e-10
i laplace (IN , D2) 1.8750e-01 (9.3) 3.82e-10 6.47e+05 4.8774e-01 (5.4) 1.68e-06 1.76e+00
phillips (D2, IN ) 8.2781e-02 (13.8) 3.01e+05 1.76e-01 2.0457e-01 (2.1) 8.35e-01 1.00e-10
phillips (IN , D2) 1.7842e-02 (6.6) 6.72e-02 4.45e+04 2.0056e-01 (3.1) 9.56e-08 7.33e-01
shaw (D2, IN ) 2.6984e-01 (7.7) 3.33e+04 9.42e-04 4.8510e-01 (4.1) 2.87e+01 2.05e-03
shaw (IN , D2) 2.6447e-01 (7.8) 8.72e-04 5.09e+04 4.9258e-01 (4.1) 2.12e-03 1.53e+01

Table 2: Results obtained considering problem (34) with xex = [1, 2, . . . , N ]T and
ε̃ = 10−1. The regularization matrix pairs are reported in the second column. The
criteria used are recalled in the third and sixth column headings.

Figure 2 considers one single test performed with the coefficient matrix baart,
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Figure 1: Test problem phillips with xex = [1, 1, . . . , 1]T . The first and second rows
display quantities related to problem (17) with (IN , D1) and (D1, IN ), respectively. (a),
(a’): relative errors for the combinations of λi’s displayed in the third frames; (b), (b’):
values of ‖xΛ‖ (upper frame) and ‖xΛ‖2 + ‖D1xΛ‖2 (lower frame) for the combinations
of λi’s displayed in the third frames; (c), (c’): pairs of values λ1 (hexagram) and λ2

(diamond).
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xex = [1, 2, . . . , N ]T , and ε̃ = 10−1. We plot the relative errors, (λ
(k)
1 , λ

(k)
2 ), and the

discrepancy function versus the number of Arnoldi steps k. The iteration delivering
the best relative error is highlighted by a black circle, while the iteration satisfying the
stopping criterion is highlighted by a black square.

(a) (b) (c)

0 5 10 15 20
10

−2

10
−1

10
0

0 5 10 15 20
10

−10

10
−5

10
0

10
5

10
10

0 2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

(a’) (b’) (c’)

0 5 10 15 20
10

−2

10
−1

10
0

10
1

10
2

0 5 10 15 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

0 5 10 15 20
10

−2

10
−1

10
0

Figure 2: Test problem baart with xex = [1, 2, . . . , N ]T . The first and second rows
refer to the regularization matrix pairs (IN , D2) and (D2, IN ), respectively. (a), (a’):
relative errors versus number of steps; (b), (b’): pairs of values λ1 (hexagram) and
λ2 (diamond) versus the number of steps; (c), (c’): values of the discrepancy function
versus the number of steps.

Looking at the results of the first set of experiments, we can conclude that the pro-
posed strategies are able to detect the most meaningful regularization term (i.e., the
one involving the matrix Li such that xex ∈ N (Li)), and to weigh it with a large regu-
larization parameter. Moreover, the results are quite invariant with respect to the order
of the regularization matrices. Two-parameter Tikhonov regularization gives computed
solutions of higher quality than one-parameter Tikhonov regularization for some prob-
lems. For many problems the 2P-AT method determines approximate solutions whose
quality is comparable to the optimal attainable one.

Example 2. Some popular test problems with the solutions given in [8] (or slightly
modified versions of them) are used. Namely, two versions of the test problem deriv2

are used. The exact solution of the test denoted by deriv2,1 is a discretization of
the function f(t) = t, while the exact solution of the test denoted by deriv2,2 is a
discretization of the function f(t) = exp(t). The test problem i laplace is modified:
a discretization of the function f(t) = 1 + exp(−t/2) is taken as the exact solution.
A reason for this modification is that the criterion (8) fails when the exact solution
is sparse, i.e., with many components close to zero (such as the discretized version of
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exp(−t/2)); indeed, by maximizing the norm of a sparse solution, one would recover a
quite corrupted and noisy approximation of it, even if the discrepancy principle holds.

To test the two-parameter Tikhonov method (17), coefficient matrices of size
100× 100 and ε̃ = 10−2 are considered. As regularization matrices, the pairs (D1, D2)
and (D2, D1) are employed. In Figure 3, the assumptions of Lemma 4 are checked for
the test problem phillips. More precisely, λ1 and λ2 are varied (on the horizontal
and vertical axis, respectively), and for each pair (λ1, λ2) the value∣∣∣(L1∂

2
h(λ2)xh(Λ), L1xh(Λ)

)
− 2

(
L1∂h(λ2)xh(Λ), L1∂h(λ2)xh(Λ)

)∣∣∣ (46)

is displayed. We can see that the above difference often is negligible; the largest values
are attained when λ2 is much larger than the corresponding λ1. Analogous results hold
for all the test problems listed in Table 3. Similarly to Example 1, Table 3 displays
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Figure 3: Values of the differences (46), test problem phillips. The considered regu-
larization matrices are: (a) (IN , D2), (b) (D2, IN ), (c) (D1, D2), (d) (D2, D1).

the average results obtained running each test problem 50 times with different noise
realizations. The strategy employed to compute the regularized solutions, and the
layout of the table, have already been described for the first set of experiments. Figure
4 focuses on the test problem shaw. Using the layout of Figure 1, the relative errors
for all the admissible pairs (λ1, λ2) are plotted. In a similar way, the quantities ‖xΛ‖
and ‖D1xΛ‖2 + ‖D2xΛ‖2, and the values of λ1 and λ2 are displayed. Special markers
are employed to highlight the quantities minimizing the relative error (black circle),
and satisfying (8) and (13) with (L1, L2) = (D1, D2) (black square and hexagram,
respectively). The top left frame of Figure 7 displays the reconstruction obtained
by the (D2, D1) regularization. Looking at these results, we can see that for many
problems the reconstructions computed by the two-parameters methods are improved
with respect to the one-parameter case. Often criteria (8) and (13) deliver solutions
of similar quality, whose accuracy is close to the optimal one. Moreover, the behavior
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Reg.M. error (1P) error (opt) error (8) λ1 λ2 error (13)
baart (D2, D1) 8.0635e-02 1.3453e-01 1.3453e-01 1.6472e-01 1.0864e-03 1.3453e-01
baart (D1, D2) 8.0635e-02 7.8716e-02 7.8716e-02 1.0959e-08 1.7387e+02 7.8716e-02
deriv2,1 (D2, D1) 3.1010e-03 6.3631e-02 6.3631e-02 2.5941e-03 2.2372e-06 6.3631e-02
deriv2,1 (D1, D2) 3.1010e-03 1.9937e-03 1.0704e-02 1.3493e-08 5.2958e-04 2.7687e-02
deriv2,2 (D2, D1) 2.5946e-02 5.1406e-02 5.1406e-02 7.1663e-03 3.1757e-06 5.1406e-02
deriv2,2 (D1, D2) 2.5946e-02 2.5946e-02 2.5946e-02 1.0000e-08 2.5395e+01 2.5946e-02
i laplace (D2, D1) 4.0132e-01 1.4544e-02 1.3883e-01 6.8407e-03 1.1369e+01 1.3883e-01
i laplace (D1, D2) 4.0132e-01 2.5835e-02 4.0099e-01 1.0638e-08 1.3742e+01 4.0132e-01
phillips (D2, D1) 3.0705e-02 2.8188e-02 2.8189e-02 2.9757e+00 4.0418e-02 2.8188e-02
phillips (D1, D2) 3.0705e-02 3.0668e-02 3.0705e-02 1.0000e-08 9.2435e+01 3.0705e-02
shaw (D2, D1) 2.2179e-01 1.7871e-01 2.3344e-01 3.0639e-02 1.2488e-08 1.7972e-01
shaw (D1, D2) 2.2179e-01 1.9440e-01 2.1487e-01 2.3807e-08 2.0072e+00 1.9449e-01

Table 3: Results obtained by Tikhonov regularization problems (2) and (17) with the
solution given in [8] (except for i laplace) and ε̃ = 10−2. The regularization matrix
pairs are reported in the second column, and (13) is implemented with (L1, L2) =
(D1, D2).

of the solution is usually almost invariant with respect to the order of regularization
matrix pair.

Table 4 reports the average relative errors obtained running the AT (with L = D2) and
RRAT methods 50 times with different noise realizations. The size of the coefficient
matrices is 200 × 200, ε̃ = 10−2, and η = 1.1. Recalling the explanations given at the
beginning of Section 3, at each Arnoldi iteration a Newton zero finder is employed to
compute λk. The relative errors are displayed when the final dimension k of the Krylov
subspaces Kk(A, b) or Kk(A,Ab) is selected according to an optimal criterion (i.e., the
relative error is minimized) (third column), according to (8) (fourth column), according
to (13) (just for general form problems) (fifth column), according to the stabilization
of the values of λk (33) (with τ = 1) (sixth column), and according to the stopping
rule proposed in [14, 11] (seventh column). The latter criterion consists in stopping the
iterations as soon as the quantity ‖H̄kyk,0−e1‖b‖‖ (cf. (32)) drops below the threshold
ηε. The relative errors delivered by the stopping strategies (8) or (13) are often close
to the optimal ones, and one commonly gets an improved reconstruction with respect
to the criterion proposed in [14, 11]. Figure 5 displays the history of the relative errors,
of the quantities ‖xk,λ‖, and of the regularization parameters λk for the test problems
phillips and baart, when the AT and RRAT methods are performed, respectively.
The reconstructions obtained by applying different stopping criteria are shown in the
second and third frames of Figure 7, respectively.

Finally, we test the performance of the 2P-AT method. Analogously to Example 1, we
compare the results obtained when the approximation (37) together with the rule (8)
is equipped with the discrepancy-based stopping criterion (42), and when the stopping
iteration is selected in order to minimize the relative error (i.e., optimal stopping crite-
rion). Similarly to Table 2, Table 5 reports the averages of the minimum relative errors
obtained running 50 times each test problem, and varying the noise realization. The
coefficient matrices are of size 200× 200, and ε̃ = 10−2, η = 1.1. The average number
of iterations is displayed in parentheses; the components of the vector (λ1, λ2) also are
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Figure 4: Test problem shaw. The first and second rows display quantities relative to
problem (17) with (D1, D2) and (D2, D1), respectively. (a), (a’): relative errors for
the combinations of λi’s displayed in the third frames; (b), (b’): values of ‖xΛ‖ (upper
frame) and ‖D1xΛ‖2 +‖D2xΛ‖2 (lower frame); (c), (c’): pairs of values λ1 (hexagram)
and λ2 (diamond).
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Figure 5: AT method (column (a)), and RRAT method (column (b)) applied to the
test problem phillips. The first box displays the relative errors versus the number of
iterations, the second box displays the quantities ‖xk,λ‖ versus the number of iterations
k, and the third box displays the values λk versus the number of iterations k.
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Meth. (opt) (8) (13) (33) [14, 11]
baart AT 1.15e-02 (20.8) 1.15e-02 (14.8) 2.76e-01 ( 3.0) 4.60e-02 (5.4) 2.76e-01 (3.0)
baart RRAT 1.78e-01 (3.0) 2.77e-01 (2.7) 2.08e-01 (3.9) 5.27e-01 (2.4)
deriv2,1 AT 7.86e-02 (7.8) 1.42e-01 (1.12) 1.65e-01 (5.3) 1.23e-01 (7.8) 1.74e-01 (5.1)
deriv2,1 RRAT 2.80e-01 (9.9) 2.82e-01 (7.7) 2.86e-01 (5.1) 3.11e-01 (4.0)
deriv2,2 AT 2.54e-01 (6.9) 2.84e-01 (17.2) 3.41e-01 (4.1) 3.16e-01 (5.1) 3.41e-01 (4.0)
deriv2,2 RRAT 2.64e-01 (8.2) 2.64e-01 (6.0) 2.70e-01 (5.0) 2.87e-01 (4.0)
i laplace AT 8.72e-02 (6.6) 5.55e-01 (9.2) 3.81e-01 (6.3) 1.92e-01 (7.3) 1.38e-01 (5.4)
i laplace RRAT 1.07e-01 (4.7) 1.20e-01 (4.8) 1.74e-01 (5.1) 1.38e-01 (4.1)
phillips AT 2.38e-02 (13.4) 2.94e-02 (8.4) 8.67e-02 (4.0) 2.85e-02 (6.1) 8.67e-02 (4.0)
phillips RRAT 2.79e-02 (6.8) 2.86e-02 (9.7) 2.89e-02 (5.0) 2.92e-02 (4.0)
shaw AT 7.94e-02 (7.8) 1.44e-01 (11.2) 1.64e-01 (5.3) 1.14e-01 (7.7) 1.71e-01 (5.1)
shaw RRAT 1.46e-01 (10.1) 1.46e-01 (9.1) 1.48e-01 (5.1) 1.69e-01 (4.0)

Table 4: Averages of the relative errors obtained with the AT and RRAT methods
(specified in the second column); different stopping criteria (listed in the column head-
ings) are applied. The average number of iterations is reported in parentheses.

reported.

Reg.M. error (8,37,opt) error (8,37,42) λ1 λ2
baart (D2, D1) 3.9490e-02 (4.6) 4.3014e-02 (4.0) 4.0058e+00 2.5516e-02
baart (D1, D2) 5.2746e-02 (4.1) 5.5152e-02 (4.0) 2.5382e-02 3.9275e+00
deriv2,1 (D2, D1) 2.4281e-01 (7.0) 2.7480e-01 (5.9) 2.3625e-07 1.0438e-04
deriv2,1 (D1, D2) 2.4822e-01 (6.9) 2.6928e-01 (5.9) 1.0439e-04 9.0103e-07
deriv2,2 (D2, D1) 2.3914e-01 (6.9) 2.8082e-01 (5.2) 5.2474e-08 4.2868e-04
deriv2,1 (D1, D2) 2.4581e-01 (6.4) 2.7423e-01 (5.2) 4.2869e-04 6.2413e-07
i laplace (D2, D1) 6.6196e-02 (6.9) 1.2223e-01 (6.3) 7.3493e+00 9.3721e-01
i laplace (D1, D2) 6.5610e-02 (7.4) 1.2765e-01 (6.4) 1.0593e+00 7.5247e+00
phillips (D2, D1) 1.0888e-02 (11.3) 2.6077e-02 (8.1) 2.3893e+02 3.6592e+00
phillips (D1, D2) 1.0927e-02 (11.3) 2.2764e-02 (8.1) 4.9763e+00 2.3893e+02
shaw (D2, D1) 1.1856e-01 (6.0) 1.7966e-01 (4.0) 1.0000e-10 1.1298e-01
shaw (D1, D2) 1.1939e-01 (6.1) 1.7966e-01 (4.0) 1.1298e-01 1.0000e-10

Table 5: Results obtained considering problem (34) with the solution given in [8] (except
for i laplace) and ε̃ = 10−2. The regularization matrix pairs are reported in the second
column. The criteria used are recalled in the third and fourth column headings.

Similarly to Figures 2 and 4, Figure 6 displays one single test performed with the coef-
ficient matrix i laplace. Both the regularization matrix pairs (D1, D2) and (D2, D1)
are considered: for each combination of the regularization matrices, the relative errors,

(λ
(k)
1 , λ

(k)
2 ), and the discrepancy function versus the number of Arnoldi steps k are

plotted. The iteration delivering the best relative error is highlighted by a black circle,
while the iteration satisfying the discrepancy-based stopping criterion is highlighted by
a black square. The reconstructions associated to the matrices (D2, D1) are displayed
in the fourth frame of Figure 7. We can still conclude that the quality of the reconstruc-
tion is stable with respect to the regularization matrix pairs (see in particular Figure
6), and that the relative errors obtained by applying simultaneously the strategies (37),
(8) and (42) are close to the optimal ones.

Example 3. The test images employed for this set of experiments are available in
the Matlab package [19], and are of size 256 × 256 pixels. To restore the blurred and
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Figure 6: Test problem i laplace. The first and second rows display quantities relative
to problem (34) with (D2, D1) and (D1, D2), respectively. (a), (a’): history of the

relative errors; (b), (b’): history of the regularization parameters λ
(k)
1 (hexagram) and

λ
(k)
2 (diamond); (c), (c’): history of the values of the discrepancy function.
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Figure 7: Reconstructions obtained by the two-parameter Tikhonov method (frame
(a)), by the AT method (frame (b)), by the RRAT method (frame (c)), and by the
2P-AT method (frame (d)). In each frame, the exact solution is plotted by a thin solid
line. In frame (a), the reconstruction obtained by (2) is plotted by a dashed line, the
reconstruction obtained by (17) and the criterion (8) is plotted by a dashed-dotted line,
and the optimal reconstruction obtained by (17) is plotted by a dotted line. In frames
(b) and (c), the reconstruction obtained by the stopping criterion employed in [14, 11]
is plotted by a dashed line, the reconstruction obtained applying the stopping criterion
(8) is plotted by a dashed-dotted line, and the optimal reconstruction is plotted by a
dotted line. In frame (d), the reconstruction obtained by (37) and (8) is plotted by
a dashed-dotted line, and the optimal reconstruction obtained by (37) is plotted by a
dotted line.
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noisy image shown in Figure 8, frame (b), the two-parameter Tikhonov method (17) is
applied, equipped with the criterion (8). The blur is defined by a symmetric Gaussian
point spread function (PSF), given analytically by the function

k(s, t) =
1

2πα2
exp

(
− 1

2α2
(s2 + t2)

)
, (47)

where α = 2.5. Periodic boundary conditions are considered, so that the matrix A
in (1), which represents the blur, is block circulant with circulant blocks. Matrix
multiplications and inversions are efficiently performed with the aid of the FFT (see
[10, Chapter 4] for the details). The noise level is 10−2. The regularization matrices
employed are discretizations of the second and first derivative operators, which act
along the vertical and horizontal directions of the image, respectively. More precisely,
the regularization matrices are defined by

L1 = In ⊗D2 and L2 = D1 ⊗ In ,

where n = 256, and D1 and D2 are defined by (44) and (45) with N = n = 256. The re-
construction obtained is displayed in Figure 8, frame (c). The relative restoration error
is 2.5209 · 10−1, and the corresponding regularization vector is
(λ1, λ2) = (2.5594 · 10−3, 7.4964 · 10−2).

(a) (b) (c)

Figure 8: (a) exact image; (b) blurred and noisy (ε̃ = 10−2) image; (c) reconstruction
obtained by (17) with (8).

The 2P-AT method (34), equipped with the rules (37) and (8), is applied to restore
the blurred and noisy image shown in Figure 9, frame (b). A symmetric Gaussian
PSF, with α = 2 in (47), is considered. In this case, reflexive boundary conditions are
employed. The noise level is 10−2. The regularization matrices are

L1 =

[
In ⊗D1

D1 ⊗ In

]
∈ R2n(n−1)×N and L2 = IN ∈ RN×N ,

where n = 256, N = n2; in particular, L1 is defined by stacking the discretized ver-
tical and horizontal first derivative operators. The reconstruction obtained at the
6th iteration of the Arnoldi algorithm is displayed in Figure 9, frame (c). The rel-
ative restoration error is 1.8660 · 10−1, and the corresponding regularization vector is
(λ1, λ2) = (5.5782 · 10−9, 1.0071 · 10−4).
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(a) (b) (c)

Figure 9: (a) Exact image; (b) blurred and noisy (ε̃ = 10−2) image; (c) reconstruction
obtained by (34) and (8).

5 Final remarks

In this paper we proposed and analyzed a new strategy to perform multi-parameter
regularization. The basic idea is to define regularized solutions that simultaneously
satisfy the discrepancy principle and maximize some norm or seminorm. The numerical
experiments with the two-parameter Tikhonov method, the AT and RRAT methods,
and the 2P-AT method show that the new strategy can deliver coherent and improved
(with respect to the one-parameter methods) results, and therefore can be regarded
as a valid alternative to other popular schemes employed so far to implement multi-
parameter regularization.
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