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Abstract. In the framework of large-scale linear discrete ill-posed problems, Krylov projection
methods represent an essential tool since their development, which dates back to the early 1950’s. In
recent years, the use of these methods in a hybrid fashion or to solve Tikhonov regularized problems
has received great attention especially for problems involving the restoration of digital images. In this
paper we review the fundamental Krylov-Tikhonov techniques based on the Lanczos bidiagonalization
and the Arnoldi algorithms. Moreover, we study the use of the unsymmetric Lanczos process that,
to the best of our knowledge, has just marginally been considered in this setting. Many numerical
experiments and comparisons of different methods are presented.
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1. Introduction. The solution of large-scale linear systems

(1.1) Ax = b, A ∈ R
N×N , b, x ∈ R

N ,

obtained by suitably discretizing ill-posed operator equations that model many inverse
problems arising in various scientific and engineering applications, generally requires
the use of iterative methods. In this setting, the coefficient matrix A is typically
of ill-determined rank, i.e., the singular values of A quickly decay and cluster at
zero with no evident gap between two consecutive ones to indicate numerical rank;
in particular, A is ill-conditioned. Moreover, generally, the available right-hand side
vector b is affected by error (noise), i.e., b = bex+e, where bex represents the unknown
error-free right-hand side. In the following we just consider additive white noise. For
an introduction to the solution of this kind of problems, we refer to [32, 36].

Historically, since the derivation of the Conjugate Gradient (CG) method [41],
CG-like techniques such as the CGLS method and Craig’s method (CGNE) [18], in
which (1.1) is solved in terms of a least-squares problem, have been widely studied.
After the famous paper [29], in which the authors define the so-called Lanczos bidiag-
onalization procedure by exploiting the Lanczos algorithm for the tridiagonalization
of symmetric matrices [48], in [59] the LSQR method is introduced. This method is
mathematically equivalent to CGLS, but with better stability properties, and it is
still widely used to solve least-squares problems. It is important to recall that these
methods compare well with, and in some cases are preferable to, direct techniques
for solving linear systems, especially for severely ill-conditioned problems. Indeed, as
pointed out in [31], contrarily to the truncated singular value decomposition (TSVD),
the projection attained with the CGLS (LSQR) method is tailored to the specific
right-hand side b, providing more rapid convergence. All of the above mentioned CG-
like techniques belong to the broad class of Krylov subspace methods, which in turn

∗This work was partially supported by MIUR (project PRIN 2012 N. 2012MTE38N), and by the
University of Padova (project CPDA124755 “Multivariate approximation with applications to image
reconstruction”).

†Department of Mathematics, University of Padova, Italy.
Email: {gazzola,novati,mrrusso}@math.unipd.it.

1



2 ON KRYLOV METHODS AND TIKHONOV REGULARIZATION

belong to the even broader class of projection methods: at each iteration of these
methods a projection of problem (1.1) onto Krylov subspaces is performed, and the
problem of reduced dimensions so obtained is solved (we refer to Section 2 for the
details).

In the case of discrete ill-posed problems, a well-known basic property of Krylov
iterative methods (which might be considered both an advantage and a disadvantage)
is the so-called semi-convergence phenomenon, i.e., at the beginning of the iterative
process the solution computed by a Krylov subspace method typically approaches the
solution xex of the error-free problem Ax = bex, but after just a few iterations it is
affected by the errors in b and rapidly deteriorates. This is due to the fact that the
ill-conditioning of the problem is inherited by the projected problems after a certain
number of steps. For this reason, Krylov subspace methods are regarded to as iterative
regularization methods, the number of iterations being the regularization parameter
that should be properly set.

The first attempt to remedy the semiconvergence issue seems to be the one pro-
posed in [58], where the TSVD of the projected problem obtained by Lanczos bidiag-
onalization is considered. The aim of this first hybrid technique was to regularize the
projected problem, i.e., to stabilize the behavior of the error (defined, in this setting,
as the norm of the difference between xex and the regularized solution computed at
each iteration). The problem of choosing the correct number of iterations is then re-
formulated as a problem of singular value analysis. Similar approaches, coupled with
parameter selection techniques such as the discrepancy principle, the generalized cross
validation (GCV), and the L-curve, were then studied in [2, 3, 31, 32, 47, 61].

Another well-established technique to stabilize the behavior of Krylov projection
methods is to apply them in connection with Tikhonov regularization. Referring to
the original problem (1.1), regularizing it by the Tikhonov method consists in solving
the minimization problem

(1.2) min
x∈RN

{
‖Ax− b‖2 + λ2‖Lx‖2

}
,

where λ > 0 is called a regularization parameter and L ∈ R
P×N is called a regulariza-

tion matrix (see again [32, 36] for a background); the norms considered in this paper
are always the vector 2-norm or the associated induced matrix norm. Assuming that
N (A)∩N (L) = {0}, we denote the solution of (1.2) by xλ. It is known that a proper
choice of both λ and L is crucial for a meaningful approximation of xex; in particular,
the regularization matrix L can be suitably chosen if some information on the behav-
ior of xex is available. The simplest regularization consists in taking L = IN , where
IN is the identity matrix of order N : this method is typically referred to as standard
form Tikhonov regularization.

The simultaneous use of Krylov methods and Tikhonov regularization for ap-
proximating the exact solution of (1.1) can be formulated in two ways. The first
one (hybrid methods) consists in regularizing the projected problem; from now on,
the word hybrid will always refer to the process of applying Tikhonov regulariza-
tion on a projected problem. The second one (Krylov-Tikhonov methods) consists
in projecting the regularized problem, i.e., in solving (1.2) by projections. To the
best of our knowledge, the use of hybrid methods has been first suggested in [58]
and [59], with the aim of regularizing the Lanczos-bidiagonalization-based methods
with the identity matrix. This technique has then been used in a number of papers
(e.g., [2, 4, 10, 11, 12, 13, 17, 47, 62, 64]) in connection with many techniques for the
definition of the sequence of the regularization parameters (one for each iteration of
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the underlying iterative method). Hybrid methods based on the Arnoldi process (i.e.,
regularization of the GMRES method [70]) have a more recent history: they were
first introduced in [10], and then studied (also with the Range-Restricted implemen-
tation) in [43, 49]. We remark that a hybrid Arnoldi method has even been implicitly
used in [51], where the symmetric Lanczos process is used for A symmetric positive
semidefinite in connection with the Lavrentiev (Franklin) regularization

(1.3) (A+ λIN )x = b, λ > 0.

Again, in [15] the same algorithm is applied for A symmetric with the standard
Tikhonov regularization.

Beyond the hybrid approaches, the use of Krylov projection methods for solving
(1.2) (i.e., Krylov-Tikhonovmethods) with L 6= IN (i.e., Krylov-Tikhonovmethods) is
even more recent. Of course, this approach is potentially more effective. Indeed, since
no information on the main features of the true solution are in principle inherited by
the solutions of the projected problems, for hybrid methods one is somehow forced to
use the identity matrix to regularize them. Lanczos bidiagonalization for solving (1.2)
has been used in [46], where an algorithm for the simultaneous bidiagonalization of A
and L is introduced, and in [42], where the skinny QR factorization of the penalty term
is used to fully project the problem. The Arnoldi algorithm for (1.2) has been used in
[27, 28, 56, 57]; in [26] it is used in the multiparameter setting. A nice method based
on the generalized Arnoldi algorithm applied to the matrix pair (A,L) is presented in
[63]. We remark that, starting from [2], many authors have suggested to bridge the gap
between hybrid methods and the solution of (1.2) by Krylov projection: indeed, after
transforming (1.2) into standard form [21], the smoothing effect of L is incorporated
into the hybrid process (see also [37, 43, 49]). However, unless L is invertible or has a
special structure, it is not easy to use this transformation; probably, for this reason,
this transformation is often not implemented and tested in the papers where it is
mentioned. Some computationally-friendly approaches to define L as a smoothing
preconditioner for the system (1.1) have been proposed in [14]. Other efficient ways
to define square regularization matrices are described, for instance, in [19, 65].

The aim of the present paper is to review the basic properties and the computa-
tional issues of the methods based on the Lanczos bidiagonalization and the Arnoldi
algorithm for solving both (1.1) and (1.2), with particular attention to the param-
eter choice rules (for both λ and the number of iterations). We also consider the
use of the unsymmetric Lanczos process, which underlies some well known linear sys-
tem solvers such as BiCG, CGS, QMR and BiCGstab (see [69, Chapter 7] and the
references therein), but has never been used in the framework of Tikhonov regulariza-
tion: indeed, in [6], these methods have been briefly addressed as iterative regulariza-
tion methods, but they have never been employed to project a Tikhonov-regularized
problem. While Krylov methods are mainly interesting for large-scale problems, we
shall compare the three approaches primarily on moderate-size test problems taken
from [35].

This paper is organized as follows: in Section 2 we address the Krylov projec-
tion methods considered in this paper and, more precisely, we outline some methods
based on the Lanczos bidiagonalization algorithm (Section 2.1), the Arnoldi algorithm
(Section 2.2), and the nonsymmetric Lanczos algorithm (Section 2.3); we also prove
some theoretical properties. In the first part of Section 3 (Section 3.1), we introduce
a common framework that embraces all the methods considered in Section 2; in order
to assess the regularizing performances of the described Krylov subspace methods,
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in the second part of Section 3 (Section 3.2) we include the results of many numeri-
cal experiments. Then, in Section 4, we describe in a general framework the hybrid
methods and the Krylov-Tikhonov methods, employing the discrepancy principle as
parameter choice strategy; theoretical considerations, as well as meaningful results of
numerical experiments, are proposed. In Section 5, we review (and we comment on)
the use of various parameter choice methods in the Krylov-Tikhonov setting; most of
them are commonly employed when performing Tikhonov or iterative regularization
and, except for the Regińska criterion, all of them have already been considered in
connection with the Krylov-Tikhonov methods. Finally, in Section 6, we analyze the
performance of the different Krylov-Tikhonov methods when applied to image deblur-
ring and denoising problems: we consider a medical and an astronomical test image,
and all the parameter choice strategies described in Section 5 are taken into account.
In this paper, we will use the following

Notations: we denote the SVD of the full-dimensional matrix A by

(1.4) A = USΣS
(
V S
)T

,

where US , V S ∈ R
N×N are orthogonal, and ΣS = diag(σ1, . . . , σN ) ∈ R

N×N is
diagonal. We denote the TSVD of A by

(1.5) AS
m = US

mΣS
m(V S

m)T ,

where US
m, V S

m ∈ R
N×m are obtained by extracting the firstm columns of the matrices

US , V S in (1.4), respectively, and ΣS
m is the leading m×m submatrix of ΣS in (1.4).

We also denote by xS
m the TSVD solution of (1.1), that is,

(1.6) xS
m = V S

m

(
ΣS

m

)−1
(US

m)T b.

The Generalized Singular Values Decomposition (GSVD) of the matrix pair (A,L) is
defined by the factorizations

(1.7) AXG = UGSG , LXG = V GCG ,

where SG = diag(s1, ..., sN ) and CG = diag(c1, ..., cN ), XG ∈ R
N×N is nonsingular

and UG , V G ∈ R
N×N are orthogonal. The generalized singular values γi of (A,L) are

defined by the ratios

(1.8) γi =
si
ci
, i = 1, ..., N.

To keep the notation simpler, in (1.7) and (1.8) we have assumed L ∈ R
N×N . We

underline that the superscripts S and G have been introduced to better distinguish
the SVD of A and the GSVD of (A,L), respectively, from the SVD and GSVD of the
matrices associated to the projected problems that we will consider in the following
sections.

Test problems: in order to numerically derscribe the properties of the methods
considered in the paper, we make use of the test problems available from Hansen’s
toolbox Regularization Tools [35]. Some test problems, such as i laplace, are imple-
mented with more than one choice for the right-hand side, so that the corresponding
solution may have different regularity. Coherently with the switches used in the tool-
box, we denote by “problem - s” the s-th test of the Matlab code.
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2. Krylov projection methods. As mentioned in the Introduction, in this
paper we review some Krylov methods as a tool for the regularization of ill-conditioned
linear systems. Given a matrix C ∈ R

N×N and a vector d ∈ R
N , the Krylov subspace

Km(C, d) is defined by

Km(C, d) = span{d, Cd, . . . , Cm−1d};

typically, in this paper, C = A, AT , ATA, AAT and d = b, AT b, Ab. Given two
Krylov subspaces K′

m and K′′
m, both of dimension m, Krylov projection methods are

iterative methods in which the m-th approximation xm is uniquely determined by the
conditions

xm ∈ x0 +K′
m,(2.1)

b−Axm ⊥ K′′
m,(2.2)

where x0 is the initial guess. In order to simplify the exposition, from now on we
assume x0 = 0. Denoting by Wm ∈ R

N×m the matrix whose columns span K′
m, i.e.,

R(Wm) = K′
m, we are interested in methods where xm = Wmym (approximately)

solves

(2.3) min
x∈K′

m

‖b −Ax‖ = min
y∈Rm

‖b− AWmy‖ = ‖b−AWmym‖ .

Before introducing the methods considered in this paper we recall the following
Definition 2.1. Assume that b = bex in (1.1) is the exact right-hand side. Let

um be the m-th column of US . Then the Discrete Picard Condition (DPC, cf. [33])
is satisfied if

{∣∣uT
mb
∣∣}

1≤m≤N
, on the average, decays faster than {σm}1≤m≤N .

More generally, for continuous problems, the Picard Condition ensures that a
square integrable solution exists (see [36, p. 9]). For discrete problems, the DPC
ensures that the TSVD solutions of (1.1) are uniformly bounded. If we assume to
work with severely ill-conditioned problems, that is, σj = O(e−αj), α > 0, (cf. [44]),
and that the coefficients uT

mb, 1 ≤ m ≤ N , satisfy the model
∣∣uT

mb
∣∣ = σ1+β

m , β > 0,

(cf. [36, p.88]), then the TSVD solutions (1.6) are bounded as

∥∥xS
m

∥∥2 ≤
∑m

j=1
σ2β
j

≤ C
∑m

j=1
e−2βαj

≤ C
1

1− e−2βα
.

Similar bounds can be straightforwardly obtained when dealing with mildly ill-conditio-
ned problems, in which σj = O(j−α), provided that α is large enough. Of course,
whenever the solution of a given problem is bounded, then the DPC is automatically
verified.

2.1. Methods based on the Lanczos bidiagonalization algorithm. The
Lanczos bidiagonalization algorithm [29] computes two orthonormal bases {w1, . . . , wm}
and {z1, . . . , zm} for the Krylov subspaces Km(ATA,AT b) and Km(AAT , b), respec-
tively. In Algorithm 1 we summarize the main computations involved in the Lanczos
bidiagonalization procedure.
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Algorithm 1 Lanczos bidiagonalization algorithm

Input: A, b.
Initialize: ν1 = ‖b‖, z1 = b/ν1.
Initialize: w = AT z1, µ1 = ‖w‖, w1 = w/µ1.
For j = 2, . . . ,m+ 1
1. Compute z = Awj−1 − µj−1zj−1.
2. Set νj = ‖z‖.
3. Take zj = z/νj.
4. Compute w = AT zj − νjwj−1.
5. Set µj = ‖w‖.
6. Take wj = w/µj .

SettingWm = [w1, . . . , wm] ∈ R
N×m and Zm = [z1, . . . , zm] ∈ R

N×m, the Lanczos
bidiagonalization algorithm can be expressed in matrix form by the following relations

AWm = Zm+1B̄m,(2.4)

ATZm+1 = WmB̄T
m + µm+1wm+1e

T
m+1,(2.5)

where

B̄m =




µ1

ν2 µ2

. . .
. . .

νm µm

νm+1



∈ R

(m+1)×m,

and em+1 denotes the (m+ 1)-st canonical basis vector of Rm+1.

The most popular Krylov subspace method based on Lanczos bidiagonalization
is the LSQR method, which is mathematically equivalent to the CGLS, but with
better numerical properties. Referring to (2.1) and (2.2), the LSQR method has
K′

m = Km(ATA,AT b) and K′′
m = AKm(ATA,AT b). This method consists in comput-

ing, at the m-th iteration of the Lanczos bidiagonalization algorithm,

(2.6) ym = arg min
y∈Rm

∥∥‖b‖ e1 − B̄my
∥∥ ,

and in taking xm = Wmym as approximate solution of (1.1). Indeed, for this method,

min
x∈Km

‖b− Ax‖ = min
y∈Rm

‖b−AWmy‖

= min
y∈Rm

∥∥‖b‖Zm+1e1 − Zm+1B̄my
∥∥

= min
y∈Rm

∥∥‖b‖ e1 − B̄my
∥∥ .

As already addressed in the Introduction, Lanczos-bidiagonalization-based reg-
ularization methods have historically been the first Krylov subspace methods to be
employed with regularization purposes in a purely iterative fashion (cf. [71]), as hybrid
methods (cf. [58]), and to approximate the solution of (1.2) (cf. [4]). In the remaining
part of this section we prove some propositions that are useful to better understand
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the regularizing properties of the LSQR method. The following proposition deals with
the rate of convergence of the method.

Proposition 2.2. Assume that (1.1) is severely ill-conditioned, i.e.,
σj = O(e−αj), α > 0. Assume moreover that b satisfies the DPC. Then, for
m = 1, . . . , N − 2,

µm+1νm+1 = O(mσ2
m),(2.7)

µm+1νm+2 = O(mσ2
m+1),(2.8)

Proof. Concerning estimate (2.7), by (2.4) and (2.5) we have that

(2.9) (ATA)Wm = Wm(B̄T
mB̄m) + µm+1νm+1wm+1e

T
m,

so that Wm is the matrix generated by the symmetric Lanczos process applied to
the system ATAx = AT b, and its columns span Km(ATA,AT b). After recalling that
the singular values of ATA are the scalars σ2

i , i = 1, . . . , N , and that the super/sub-
diagonal elements of the symmetric tridiagonal matrix B̄T

mB̄m ∈ R
m×m are of the

form µm+1νm+1, m = 1, . . . , N − 1, (2.7) directly follows by applying Proposition 2.6
reported in Section 2.2 (for a proof, see [57, Proposition 3.3] and the refinement given
in [24, Theorem 6]).
Concerning estimate (2.8), using again (2.5) and (2.4), we have that

(AAT )Zm+1 = Zm+1(B̄mB̄T
m) + µm+1Awm+1e

T
m+1.

By step 1 of Algorithm 1,

(AAT )Zm+1 = Zm+1(B̄mB̄T
m) + µm+1[µm+1zm+1 + νm+2zm+2]e

T
m+1

= Zm+1(B̄mB̄T
m + µ2

m+1em+1e
T
m+1) + µm+1νm+2zm+2e

T
m+1,

so that Zm+1 is the matrix generated by the symmetric Lanczos process applied to
the system AATx = b, and its columns span Km+1(AA

T , b). Since the singular values
of AAT are the scalars σ2

i , i = 1, . . . , N , and the super/sub-diagonal elements of the
symmetric tridiagonal matrix (B̄mB̄T

m + µ2
m+1em+1e

T
m+1) ∈ R

(m+1)×(m+1) are of the
form µm+1νm+2, m = 0, . . . , N − 2, the estimate (2.7) follows again by applying [24,
Theorem 6].

One of the main reasons behind the success of Lanczos bidiagonalization as a tool
for regularization [1, 45] is basically due to the ability of the projected matrices B̄m

to approximate the largest singular values of A. Indeed we have the following result.
Proposition 2.3. Let B̄m = ŪmΣ̄mV̄ T

m be the SVD of B̄m, and let
Um = Zm+1Ūm, Vm = WmV̄m. Then

AVm − UmΣ̄m = 0 ,(2.10) ∥∥ATUm − VmΣ̄T
m

∥∥ ≤ µm+1 .(2.11)

Proof. Relation (2.10) immediately follows from (2.4) and B̄mV̄m = ŪmΣ̄m.
Moreover, by employing (2.5),

ATUm = ATZm+1Ūm

= WmB̄T
mŪm + µm+1wm+1e

T
m+1Ūm

= WmV̄mΣ̄T
m + µm+1wm+1e

T
m+1Ūm

= VmΣ̄T
m + µm+1wm+1e

T
m+1Ūm,
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which, since ‖wm+1‖ = ‖em+1‖ = ‖Ūm‖ = 1, leads to (2.11).
Provided that µm → 0, relations (2.10) and (2.11) ensure that the triplet(

Um, Σ̄m, Vm

)
represents an increasingly better approximation of the TSVD of A: for

this reason, Lanczos-bidiagonalization-based methods have always proved very suc-
cessful when employed with regularization purposes (cf. [1, 31, 32, 42] and
[36, Chapter 6]). Indeed, looking at Algorithm 1, we have that µj = ‖w‖, where
w ∈ Kj(A

TA,AT b) and w⊥Kj−1(A
TA,AT b). If A represents a compact opera-

tor we know that quite rapidly Kj(A
TA,AT b) becomes almost ATA-invariant, i.e.,

Kj(A
TA,AT b) ≈ Kj−1(A

TA,AT b) (see e.g. [50] and the references therein).
Proposition 2.4. Under the same hypotheses of Proposition 2.2, we have that

νm, µm → 0 and

∥∥AAT zm − µ2
mzm

∥∥ = O(νm) ,(2.12)
∥∥ATAwm − ν2mwm

∥∥ = O(µm−1) .(2.13)

Proof. We start by assuming that νm 9 0. Then, by Proposition 2.2, we imme-
diately have that µm = O(mσ2

m). Thus, by step 1 of Algorithm 1,

(2.14) z = Awm−1 + dm−1, ‖dm−1‖ = O(mσ2
m−1)

for m large enough. Then, by step 4 and by (2.14),

w = AT zm − νmwm−1

= AT

(
Awm−1 + dm−1

νm

)
− νmwm−1,

which implies

µmνmwm = ATAwm−1 − ν2mwm−1 +ATdm−1,

and hence

(2.15)
∥∥ATAwm−1 − ν2mwm−1

∥∥ = O(mσ2
m−1).

The above relation means that, asymptotically, νm behaves like a singular value
of A, so that νm → 0. Still by step 4 of Algorithm 1 we have that

(2.16) w = AT zm + d′m, ‖d′m‖ = νm.

Then at the next step 1,

z = Awm − µmzm

= A

(
AT zm + d′m

µm

)
− µmzm,

so that

νm+1µmzm+1 = AAT zm − µ2
mzm +Ad′m,

and hence

(2.17)
∥∥AAT zm − µ2

mzm
∥∥ = O(νm).
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Fig. 2.1. Problem baart: decay behavior of the sequences {νm}m and {µm}m with respect to
the singular values of A.

The above relation means that µm asymptotically behaves like a singular value of A,
so that µm → 0. At this point of the proof, we have demonstrated that νm → 0, and
consequently that µm → 0. Finally, rewriting the right-hand side of equality (2.15)
by replacing ‖dm−1‖ = O(mσ2

m−1) = µm−1, we have the result.
Proposition 2.4 states that, for severely ill-conditioned problems, we can expect

that the sequences {νm}m and {µm}m behave similarly, and that their rate of decay
is close to the one of the singular values of A. An example of this behavior is reported
in Figure 2.1. Thanks to this proposition, we can state that the approximation of the
singular values of A attainable with the singular values of B̄m is expected to be very
accurate (see Proposition 2.3).

Proposition 2.5. If the full-dimensional system (1.1) satisfies the DPC, then
the DPC is inherited by the projected problems (2.6), for 1 ≤ m ≤ N .

Proof. Recalling that LSQR is mathematically equivalent to CG applied to the
normal equations ATAx = AT b, and thanks to the relations derived in [41, Theorem
6.1] and elaborated in [36, Chapter 6], we can state that

‖xm‖ ≤ ‖xm+1‖, m = 1, . . . , N − 1.

Since the DPC holds for the problem (1.1), ‖yN‖ = ‖xN‖ = ‖xex‖ = c < ∞. More-
over, since

‖xm‖ = ‖Wmym‖ = ‖ym‖, m = 1, . . . , N,

we can state that

‖ym‖ ≤ c, m = 1, . . . , N,

which proves the result.

2.2. Methods based on the Arnoldi algorithm. The Arnoldi algorithm
computes an orthonormal basis {w1, . . . , wm} for the Krylov subspace Km(A, b). In
Algorithm 2 we summarize the main computations involved in the Arnoldi orthogo-
nalization scheme.

Setting Wm = [w1, . . . , wm] ∈ R
N×m, the Arnoldi algorithm can be written in

matrix form as

(2.18) AWm = WmHm + hm+1,mwm+1e
T
m,
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Algorithm 2 Arnoldi algorithm

Input: A, b.
Initialize: w1 = b/‖b‖.
For j = 1, 2, . . . ,m
1. For i = 1, . . . , j: compute hi,j = (Awj , wi).

2. Compute w = Awj −
∑j

i=1 hi,jwi.
3. Define hj+1,j = ‖w‖.
4. If hj+1,j = 0 stop; else take wj+1 = w/hj+1,j .

where Hm = [hi,j ]i,j=1,...,m ∈ R
m×m is an upper Hessenberg matrix that represents

the orthogonal projection of A onto Km(A, b), i.e., WT
mAWm = Hm, and em is the

m-th canonical basis vector of Rm. Equivalently, relation (2.18) can be written as

(2.19) AWm = Wm+1H̄m,

where

(2.20) H̄m =

[
Hm

hm+1,meTm

]
∈ R

(m+1)×m.

The basic steps outlined in Algorithm 2 are only indicative. There are some
important variants of the algorithm as, for instance, the modified Gram-Schmidt
or the Householder implementation [69, §6.3], which may considerably improve its
accuracy, measured in terms of the quantity

∥∥WT
mWm − Im

∥∥. It is known that, when
using the standard Gram-Schmidt process, the theoretical orthogonality of the basis
vectors is almost immediately lost; on the other side, when using the Householder
orthogonalization, the orthogonality is guaranteed at the machine precision level.
Throughout this section we are mainly interested in the theoretical properties of
the methods based on the Arnoldi algorithm, so that we assume to work in exact
arithmetic.

2.2.1. The GMRES method. The most popular Krylov subspace method
based on the Arnoldi algorithm is the GMRES method [70]. Referring to (2.1) and
(2.2), the GMRES method works with K′

m = Km(A, b) and K′′
m = AKm(A, b). Simi-

larly to LSQR, we have

min
x∈Km

‖b−Ax‖ = min
y∈Rm

‖b−AWmy‖

= min
y∈Rm

∥∥‖b‖Wm+1e1 −Wm+1H̄my
∥∥

= min
y∈Rm

∥∥‖b‖ e1 − H̄my
∥∥ ,

so that, at them-th iteration of the Arnoldi algorithm, the GMRES method prescribes
to compute

(2.21) ym = arg min
y∈Rm

∥∥‖b‖ e1 − H̄my
∥∥ ,

and to take xm = Wmym as an approximate solution of (1.1).
The theoretical analysis of the regularizing properties of the GMRES method

applied to the solution of ill-conditioned linear systems has been fully performed in
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Fig. 2.2. Problem baart: decay behavior of the sequence {hm+1,m}
m

with respect to the
singular values of A.

[9], where the authors show that the approximate solutions tend to the exact solution
whenever the norm of the error of the right hand side of the system goes to 0 and a
stopping criterion based on the residual is employed.

It is well known that the rate of convergence of the method is closely related to the
behavior of the sequence {hm+1,m}m, since hm+1,m = ‖w‖ (cf. step 3 of Algorithm
2) is a measure of the extendibility of the Krylov subspaces. Moreover, it is also
known that the residual of GMRES can be bounded using the Full Orthogonalization
Method (FOM, see e.g. [69, §6.4]) residual as follows

‖rm‖ ≤ hm+1,m

∣∣eTmH−1
m e1

∣∣ ‖b‖ .

In the case of severely ill-conditioned problems, the following result has been proved
in [57] (cf. Figure 2.2).

Proposition 2.6. Assume that A has full rank with singular values of the form
σj = O(e−αj) (α > 0) and that b satisfies the DPC. Then, if b is the starting vector
of the Arnoldi process, we obtain

(2.22) hm+1,m = O (mσm) .

The authors of [57] show that the Arnoldi algorithm can be regarded as a tool for
approximating the TSVD of the matrix A, similarly to what is done when one employs
the Lanczos bidiagonalization algorithm (cf. Section 2.1 and [1, 31]). Moreover, the
authors of [8] show that, in some situations, GMRES equipped with a suitable stopping
rule can deliver more accurate approximations than TSVD. In [57] the following result
was proved.

Proposition 2.7. Let H̄m = ŪmΣ̄mV̄ T
m be the SVD of H̄m, and let

Um = Wm+1Ūm and Vm = WmV̄m. Then

AVm − UmΣ̄m = 0,(2.23)

WT
m(ATUm − VmΣ̄T

m) = 0.(2.24)

Since the Arnoldi algorithm does not involve AT , unless the matrix is symmetric
we cannot expect that the approximation of the largest singular values of A is as
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good as the one attainable with the Lanczos bidiagonalization algorithm. The different
approximation capabilities of the two algorithms can also be understood by comparing
(2.11) and (2.24): the latter represents a Galerkin condition that only guarantees
that, if A is nonsingular, at the end of the process the Arnoldi algorithm provides the
complete SVD of A.

As for the Discrete Picard Condition, up to our knowledge the question whether
this condition is inherited by the projected problem (cf. Proposition 2.5) is still open.
Computationally it is quite evident that it is in fact inherited, but the theoretical proof
is still unavailable. The same holds also for the other methods considered below.

2.2.2. The Range-Restricted GMRES method. The Range-Restricted
GMRES (RRGMRES) method was first introduced in [5], and then used in [7], with
the aim of reducing the presence of the error in the starting vector of the Arnoldi
algorithm. Indeed, this method prescribes to look for approximate solutions belong-
ing to the Krylov subspaces Km(A,Ab), and therefore to run the Arnoldi algorithm
with starting vector w1 = Ab/ ‖Ab‖. Thanks to the smoothing properties of A, many
high-frequency noise components are removed in w1, and therefore the propagation
of the noise in the RRGMRES basis vectors is less severe than in the GMRES ones.
However, on the downside, the vector b might be important for the reconstruction,
especially if the exact solution is intrinsically not very smooth: not including b in the
solution subspace can lead to a loss of information (cf. the discussion in [7]). More
recently, in [20] RRGMRES has been generalized to work with starting vector Asb,
s ≥ 1.

Let Wm = [w1, . . . , wm] ∈ R
N×m be the orthogonal basis of Km(A,Ab) computed

by the Arnoldi algorithm; then relation (2.18) still holds, i.e.,

(2.25) AWm = Wm+1H̄m,

where H̄m is an upper Hessenberg matrix. Writing

b = Wm+1W
T
m+1b+

(
I −Wm+1W

T
m+1

)
b

= Wm+1W
T
m+1b+W⊥

m+1

(
W⊥

m+1

)T
b ,

we have

min
x∈Km(A,Ab)

‖b−Ax‖2 = min
y∈Rm

‖b−AWmy‖2

= min
y∈Rm

∥∥Wm+1W
T
m+1b−Wm+1H̄my

∥∥2 +
∥∥∥W⊥

m+1

(
W⊥

m+1

)T
b
∥∥∥
2

= min
y∈Rm

∥∥WT
m+1b− H̄my

∥∥2 +
∥∥∥
(
W⊥

m+1

)T
b
∥∥∥
2

,

so that, at the m-th iteration of the Arnoldi algorithm, the RRGMRES method
prescribes to compute

ym = arg min
y∈Rm

∥∥WT
m+1b− H̄my

∥∥

Proposition 2.7 is still valid, since it only involves the Arnoldi decomposition (2.25):
this assures that RRGMRES can still be interpreted as a method able to approximate
the singular values of A.

We remark that the above derivations are only meaningful from a theoretical point
of view, since improved implementations of RRGMRES (and other methods related
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to it) were proposed in [54, 55]. In particular, the most recent implementations
do not rely on the explicit computation of the quantities WT

m+1b and (W⊥
m+1)

T b, and
therefore they are more stable with respect to the loss of orthogonality in the columns
of Wm+1.

2.3. Methods based on the nonsymmetric Lanczos algorithm. The Non-
symmetric Lanczos algorithm (also referred to as two-sided Lanczos process, or Lanc-
zos biorthogonalization procedure) is employed to compute two bases {w1, . . . , wm}
and {k1, . . . , km} for the Krylov subspaces Km(A, b) and Km(AT , b), respectively, sat-
isfying the biorthogonality condition wT

i kj = δij , i, j = 1, . . . ,m. In Algorithm 3
we summarize the main computations involved in the Lanczos biorthogonalization
procedure.

Algorithm 3 Lanczos biorthogonalization algorithm

Input: A, b.
Initialize: w1 = b/‖b‖, k1 = w1 so that (w1, k1) = 1.
Initialize: β1 = δ1 = 0, w0 = k0 = 0.
For j = 1, . . . ,m
1. αj = (Awj , kj).
2. Compute w = Awj − αjwj − βjwj−1.
3. Compute k = ATkj − αjkj − δjkj−1.
4. Set δj+1 = |(w, k)|1/2. If δj+1 = 0 stop.
5. Set βj+1 = (w, k)/δj+1.
6. Take kj+1 = k/βj+1.
7. Take wj+1 = w/δj+1.

Setting Wm = [w1, . . . , wm] and Km = [k1, . . . , km], the Lanczos biorthogonaliza-
tion algorithm can be expressed in matrix form by the following relations

AWm = WmTm + δm+1wm+1e
T
m,(2.26)

ATKm = KmT T
m + βm+1km+1e

T
m,(2.27)

where Tm ∈ R
m×m is the tridiagonal matrix

Tm =




α1 β2

δ2 α2 β3

. . .
. . .

. . .

δm−1 αm−1 βm

δm αm



.

Because of the biorthogonality property, relation (2.26) yields to

KT
mAWm = Tm and WT

mATKm = T T
m.

It is well known that, if the matrix A is symmetric, then this method reduces to the
symmetric Lanczos process: indeed, in this case, Wm = Km have orthogonal columns,
and Tm is symmetric.

The matrix Tm can be regarded to as the projection of A obtained from an oblique
projection process onto Km(A, b) and orthogonal to Km(AT , b). Relation (2.26) can
be written as

(2.28) AWm = Wm+1T̄m,
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where

(2.29) T̄m =

[
Tm

δm+1,meTm

]
∈ R

(m+1)×m.

We remark that the definition of δj+1 =
∣∣kTw

∣∣1/2 at step 4 of Algorithm 3 only
represents a common choice, since it leads to δj+1 = ±βj+1 (cf. step 5 of the
same algorithm). More generally, to build the two bases, it is only necessary that
δj+1βj+1 = kTw.

The most popular Krylov subspace methods based on Lanczos biorthogonalization
are the BiCG and QMR methods (cf. [69, Chapter 7] and the references therein). In
the following we focus just on the QMR method and we always assume that the
Lanczos nonsymmetric algorithm does not breakdown on or before the m-th step.

At the m-th iteration of the nonsymmetric Lanczos algorithm, the QMR [23]
method prescribes to compute

(2.30) ym = arg min
y∈Rm

∥∥‖b‖ e1 − T̄my
∥∥ ,

and to take xm = Wmym as approximate solution of (1.1). Since the matrix Wm+1 is
not orthogonal, it is known that

∥∥‖b‖ e1 − T̄mym
∥∥ is just a pseudo-residual, since

‖b−Axm‖ =
∥∥Wm+1

(
‖b‖ e1 − T̄mym

)∥∥ .

Exploiting the QR factorization of Wm+1, and hence the relation between QMR and
GMRES, it can be proved that (cf. [23])

∥∥rQMR
m

∥∥ ≤ κ(Wm+1)
∥∥rGMRES

m

∥∥ ,

where rQMR
m and rGMRES

m are the residuals of QMR and GMRES, respectively. Of
course, if A is symmetric, then QMR and GMRES are mathematically equivalent.

In the remaining part of this section we make some considerations that are helpful
to gain some insight into the use of the QMR method for regularization purposes.
Since the matrix Wm+1 is not orthogonal, it is difficult to theoretically demonstrate
that QMR can be efficiently used as a tool for regularization. Indeed, it is not easy
to provide relations which show that the matrix T̄m reproduces the singular value
properties of A. We only know (see [68, Chapter 6]) that for m large enough the
matrix T̄m contains some of the spectral information of A, since it can be used to
approximate the left and right eigenvalues. For this reason, we may expect that, if A
is not much far from symmetric, then T̄m can also be used to approximate its singular
values. To study the convergence of the nonsymmetric Lanczos process, we recall the
following proposition, originally proved in [57].

Proposition 2.8. Let us assume that the singular values A are of the form
σj = O(e−αj) (α > 0); let us moreover assume that the discrete Picard condition is
satisfied. Let

Ṽm = [ṽ0, ..., ṽm−1] ∈ R
N×m, where ṽk = Akb/

∥∥Akb
∥∥ .

If Ṽm has full column rank, then there exist Cm ∈ R
m×m nonsingular, and

Em, Fm ∈ R
N×m, such that

Ṽm = US
mCm + Em, ‖Em‖ = O(σm),(2.31)

US
m = ṼmC−1

m + Fm,
∥∥FmΣS

m

∥∥ = O(mσm).(2.32)
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Fig. 2.3. Problem baart: decay behavior of the sequence {δm}m with respect to the singular
values of A.

At this point, we can prove the following result (cf. Figure 2.3).
Proposition 2.9. Under the same hypothesis of Proposition 2.8, for

m = 1, . . . , N − 1

(2.33) δm+1 = O(mσm).

Proof. Directly from relation (2.28), we have that KT
m+1AWm = T̄m and that

δm+1 = kTm+1Awm. Thanks to [30, §2.5.5], we can write A = AS
m +∆m, where AS

m is
defined in (1.5) and ‖∆m‖ = σm+1. Therefore

δm+1 = kTm+1Awm = kTm+1A
S
mwm + kTm+1∆mwm

= kTm+1U
S
mΣS

m(V S
m )Twm + kTm+1∆mwm

= kTm+1(ṼmC−1
m + Fm)ΣS

m(V S
m)Twm + kTm+1∆mwm,

where we have used (2.32). Since R(Ṽm) = R(Wm) = Km(A, b), we can immediately

conclude that kTm+1Ṽm = 0. Therefore

δm+1 = kTm+1(FmΣS
m)(V S

m)Twm + kTm+1∆mwm

≤ (O(mσm) + σm+1)‖km+1‖‖wm+1‖.

Since ‖km+1‖ ‖wm‖ does not depend on the rate of the decay of σm, we have
(2.33).

As is well known, a disadvantage of the methods based on the nonsymmetric
Lanczos process is that they can break down for several reasons, even in exact arith-
metic. More precisely, the procedure outlined in Algorithm 3 may break down as
soon as a vector k is found to be orthogonal to the corresponding w, so that δj+1

as defined in line 4 of Algorithm 3 vanishes. If this occurs when both k and w are
different from zero, then we are dealing with a so-called serious breakdown. Although
such exact breakdowns are very rare in practice, near breakdowns (i.e., kTw ≈ 0) can
cause severe numerical stability problems in subsequent iterations. The possibility of
breakdowns has brought the nonsymmetric Lanczos process into discredit. The term
“look-ahead” Lanczos is commonly used to denote extensions of the standard Lanczos
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method that skip over breakdowns and near-breakdowns. In our setting, since the
convergence is generally very fast, the situation kTw ≈ 0 is somehow less expectable,
and hence, as we will see, the QMR method actually represents a valid alternative
to LSQR and GMRES. More precisely, the search subspaces for QMR and GMRES
are the same, while the constraints imposed on the approximate solutions differ. Fur-
thermore, Lanczos biorthogonalization process is based on two three-term recurrences
(cf. lines 2 and 3 of Algorithm 3) involving the columns of Wm and Km, respectively,
and therefore the storage requirements are potentially less demanding with respect to
GMRES. However, using the basic implementation of Algorithm 3, two matrix-vector
products (one with A and one with AT ) are required at each iteration.

In some of the following numerical experiments (Section 6) we also consider a
range-restricted version of the nonsymmetric Lanczos algorithm, where
xm ∈ Km(A,Ab). The reasons for considering such a method for the regularization of
(1.1) are analogous to the ones explained in Section 2.2.2 for RRGMRES.

3. General formulation. In this section we provide a general formulation that
embraces the Krylov methods considered in this work. We also give the general
formulation of the hybrid and the Krylov-Tikhonov approaches.

3.1. Theoretical framework. The methods considered in the previous section
are all based on algorithms that are able to construct three sequences of matrices
Wm, Zm,Km ∈ R

N×m, m ≥ 1, such that

(3.1) AWm = Zm+1D̄m, KT
mWm = Im,

where D̄m ∈ R
(m+1)×m has a simple structure. In this way, the solution x of (1.1) is

approximated by Wmym, where ym solves the projected least squares problem

(3.2) min
y∈Rm

∥∥d− D̄my
∥∥ ≈ min

y∈Rm

‖b−AWmy‖ ,

and where d ∈ R
m+1 depends on the method. Considering the “skinny” QR factor-

ization of the matrix Zm+1, that is,

(3.3) Zm+1 = Qm+1Rm+1, Qm+1 ∈ R
N×(m+1), Rm+1 ∈ R

(m+1)×(m+1),

we can state the following general result.
Proposition 3.1. Given a Krylov subspace method based on the decomposition

(3.1), for each y ∈ R
m we have

(3.4) ‖b−AWmy‖2 =
∥∥QT

m+1b−Rm+1D̄my
∥∥2 +

∥∥(Q⊥
m+1)

T b
∥∥2 .

Proof. Considering the factorizations (3.1) and (3.3), and writing

b = Qm+1Q
T
m+1b+

(
I −Qm+1Q

T
m+1

)
b = Qm+1Q

T
m+1b+Q⊥

m+1(Q
⊥
m+1)

T b,

we have

‖b−AWmy‖ =
∥∥b− Zm+1D̄my

∥∥2 =
∥∥Qm+1

(
QT

m+1b−Rm+1D̄my
)∥∥2

+
∥∥Q⊥

m+1(Q
⊥
m+1)

T b
∥∥2 .

Thanks to the orthonormality of the columns of Qm+1 and Q⊥
m+1, we immediately

have (3.4).
Depending on the properties of the considered Krylov method, expression (3.4)

can assume simpler forms. In particular:
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• For LSQR we have D̄m = B̄m. Moreover, Wm = Km and Zm have orthonor-
mal columns: therefore, Qm+1 = Zm+1, Rm+1 = Im+1. Since
R(Zm) = Km(AAT , b), we also have QT

m+1b = ‖b‖ e1 and (Q⊥
m+1)

T b = 0;
referring to (3.2), d = ‖b‖e1.

• For GMRES we have D̄m = H̄m. Moreover, Qm = Zm = Wm = Km has
orthonormal columns, and R(Wm) = Km(A, b). Therefore, QT

m+1b = ‖b‖ e1
and (Q⊥

m+1)
T b = 0; referring to (3.2), d = ‖b‖e1.

• For RRGMRES we have D̄m = H̄m. Moreover, Qm = Zm = Wm = Km and
R(Wm) = Km(A,Ab). Anyway, in general, (Q⊥

m+1)
T b 6= 0; referring to (3.2),

d = QT
m+1b.

• For QMR we have D̄m = T̄m and Zm = Wm. Unless A is symmetric, the QR
factorization (3.3) is such that Rm+1 6= Im+1. Since
b ∈ R(Zm+1) = R(Qm+1), and more precisely b = ‖b‖Zm+1e1 = ‖b‖Qm+1e1,
we have that QT

m+1b = ‖b‖ e1 and (Q⊥
m+1)

T b = 0; referring to (3.2), d = ‖b‖e1.
Moreover, the matrix Qm is just the orthogonal matrix Wm generated by the
Arnoldi algorithm. By comparing (3.2) and (2.30) with (3.4) it is clear that
in QMR the matrix Rm+1 6= Im+1 is discarded.

All the Krylov methods studied in this paper are based on the solution of (3.2)
with d = QT

m+1b. Observe, however, that none of them makes use of the QR de-
composition (3.3), because, except for RRGMRES, we have QT

m+1b = ‖b‖ e1, and,
for RRGMRES, Qm+1 = Wm+1. Using the above general formulation we have that
the corresponding residual norm ‖b−Axm‖ is in general approximated by a pseudo-
residual

(3.5) ‖b−Axm‖ ≈
∥∥QT

m+1b− D̄mym
∥∥ .

The following proposition expresses the residual and the pseudo-residual in terms of
the SVD decomposition of the projected matrix D̄m; the proof is straightforward. It
will be used in Section 4.

Proposition 3.2. Let ym be the solution of (3.2), and let xm = Wmym be the
corresponding approximate solution of (2.3). Let moreover D̄m = ŪmΣ̄mV̄ T

m be the
SVD decomposition of D̄m. Then

∥∥QT
m+1b− D̄mym

∥∥ =
∣∣eTm+1Ū

T
mQT

m+1b
∣∣ .

3.2. Some numerical experiments.

3.2.1. The SVD approximation. As already addressed, the regularization
properties of the considered methods are closely related to the ability of the projected
matrices D̄m to simulate the SVD properties of the matrix A. Indeed, the SVD of
A is commonly considered the most useful tool for the analysis of discrete ill-posed
problem (see, e.g., [36, Chapter 2]), and the TSVD is a commonly used tool for
regularization (see again [36, Chapter 5]). Denoting by AS

m the truncated singular
value decomposition of A (1.5), the TSVD regularized solution of Ax = b is given by
the solution of the least squares problem

min
x∈RN

∥∥b−AS
mx
∥∥ .
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When working with Krylov methods that satisfy (3.1), we have that the least-square
solution of (1.1) is approximated by the solution of

min
x∈Km

‖b−Ax‖ = min
y∈Rm

‖b−AWmy‖

= min
x∈RN

∥∥b−AWmKT
mx
∥∥

= min
x∈RN

∥∥b− Zm+1D̄mKT
mx
∥∥ ,

where, as usual, we have assumed that Wm and Km have full rank. The solution of the
above least squares problem is approximated by taking the solution of the projected
least squares problem (3.2); we again underline that in (3.2) the equality holds just
for LSQR and GMRES. After introducing the matrix

(3.6) AK
m := Zm+1D̄mKT

m,

which is a sort of regularized matrix associated to the generic Krylov subspace meth-
ods defined by the factorization (3.1), we want to compare the approximation and reg-
ularization properties of the Krylov methods with the ones of the TSVD method. We
do this by plotting the quantity

∥∥A−AK
m

∥∥ (recall the optimality property∥∥A−AS
m

∥∥ = σm+1, [30, §2.5.5]). The results are reported in Figure 3.1. The sub-
plots (b) and (d) refer to the problems shaw and gravity, whose coefficient matrices
are symmetric, so that the nonsymmetric Lanczos process (NSL) is equivalent to the
Arnoldi algorithm. The Lanczos bidiagonalization process is denoted by LB.

The ability of the projected matrices D̄m of approximating the dominating singu-
lar values of A has been studied in terms of the residuals in Propositions 2.3 and 2.7,
for the Lanczos bidiagonalization and the Arnoldi algorithms, respectively. In Figures
3.2 and 3.3 we show some experiments for all the considered methods. The results
show the good approximation properties of these methods, and implicitly ensure that
all the methods show a very fast initial convergence, which can be measured in terms
of the number of approximated singular values greater than the noise level ‖e‖/‖bex‖.

3.2.2. Accuracy analysis for standard test problems. In this section we
consider the accuracy of the methods introduced in Section 2, in terms of the minimum
relative error attainable (with respect to the number of performed iterations), for
different noise levels, from 10−1 to 10−12. The results, on an average of 30 runs, are
reported in Figure 3.4.

Whenever the noise level is relatively high, RRGMRES seems to be the most
accurate method. The reason obviously lies in the use of a starting vector, Ab, in
which most of the noise has been removed. This fact also agrees with the results
presented in [54, 55]. The difference is less evident when the noise level is small, and
it is interesting to see that the attainable accuracy of RRGMRES typically stagnates
around a certain level. This is the downside of the range-restricted approach. It is
also interesting to observe that the methods may show little differences in presence
of nonsmooth solutions (such as gravity - 3 and i laplace - 4, where the solution
is piecewise constant).

3.2.3. Stability. In order to understand the practical usefulness of the Krylov
methods considered in this paper, we present some results showing how difficult it
may be to exploit the potential accuracy of these methods together with their speed.
As stopping (or parameter selection) rule we use the discrepancy principle [52], which
is one of the most popular techniques to set the regularization parameters when the
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Fig. 3.1. Plots of
∥

∥A− AK
m

∥

∥ with respect to the singular values of A for the problems baart

(a), shaw (b), i laplace (c) and gravity (d).

error e on the right hand side b is assumed to be of Gaussian white type, and its
norm is known (or well estimated). The discrepancy principle prescribes to stop the
iterations as soon as

(3.7) ‖b−Axm‖ ≤ η ‖e‖ ,

where η > 1 (typically η ≈ 1) is a safety factor. In Table 3.1 we compare the
best attainable accuracy (with respect to the number of iterations) with the accu-
racy attained at the iteration selected by the stopping rule; we consider the average
of 100 runs of the methods with different realizations of the random vector e, with
‖e‖ / ‖bex‖ = 10−3. In particular, denoting by mopt the iteration number correspond-
ing to the optimal accuracy, we also consider the accuracy at the iterations mopt − 1
and mopt + 1. The differences may be huge, and cannot be detected by the residual
norm, which is generally flat around mopt (see Figure 3.5).

In this view, using the values η1 = 1.02, η2 = 1.05, η3 = 1.1 for the discrepancy
rule in (3.7), and denoting by mDP the iteration number selected, in Table 3.1 we
report the number of times in which |mDP −mopt| = 1 and |mDP −mopt| ≥ 2, denoted
by semi-failure and total failure of the stopping rule, respectively.

The results reported in Table 3.1 are rather clear: independently of the choice of
the safety factor η, in many cases the stopping rule does not allow to exploit the po-
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Fig. 3.2. Approximation of the dominating singular values - the nonsymmetric case. The solid
horizontal lines stand for the first singular values of A. The circles display the singular values of
the matrix D̄m in (3.1), where m is varied along the horizontal axis.
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Fig. 3.3. Approximation of the dominating singular values - the symmetric case. The layout
of the plots is as described in Figure 3.2.

tentials of these methods. In other words, in practice, the fast convergence/divergence
of the methods makes them rather unreliable whenever the singular values of A decay
very rapidly. Obviously, the situation is even more pronounced whenever ‖e‖ is not
known, and then other stopping rules such as the GCV or the L-curve need to be
used.
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Fig. 3.5. Problem baart: example of fast convergence/divergence behavior of GMRES.

4. Krylov methods and Tikhonov regularization. As shown in Section 3.2,
the Krylov methods considered in this paper are able to obtain a good accuracy when
applied to discrete ill-posed problem, but the fast transition between convergence and
divergence, which is not detected by the residual, makes their practical use quite
difficult. For this reason, the regularization of the projected subproblems (hybrid
methods, cf. the Introduction) is generally necessary.

In this setting, the standard form Tikhonov regularization of (3.2) reads

(4.1) min
y∈Rm

{∥∥QT
m+1b− D̄my

∥∥2 + λ2 ‖y‖2
}
.

If the regularization parameter λ is defined (at each step) independently of the origi-
nal problem, that is, with the only aim of regularizing (3.2), then the corresponding
method is traditionally called hybrid (cf. again the Introduction). As already ad-
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Table 3.1

Stability results. Each test is performed 100 times with different noise realizations.

Method Average error Semi-failure Total failure
mopt mopt − 1 mopt + 1 η1 η2 η3 η1 η2 η3

baart

LSQR 0.116 0.160 2.139 56 67 78 21 18 11
GMRES 0.047 0.548 1.054 4 18 2 13 3 1
RRGMRES 0.034 0.384 0.320 25 28 30 18 14 1
QMR 0.046 0.513 0.382 10 5 10 15 10 0

shaw

LSQR 0.047 0.057 0.300 22 25 39 19 66 23
GMRES 0.048 0.107 0.541 3 15 0 4 0 2
RRGMRES 0.046 0.059 0.297 56 30 65 22 65 24

i laplace

LSQR 0.140 0.145 0.190 30 66 20 70 12 86
GMRES 0.547 0.943 4.748 2 97 1 99 3 97
RRGMRES 0.429 0.891 1.034 4 96 15 85 8 91
QMR 0.048 0.107 0.541 3 15 0 97 2 98

gravity

LSQR 0.138 0.018 0.026 34 55 31 63 26 74
GMRES 0.032 0.041 0.038 58 42 72 28 95 5
RRGMRES 0.014 0.018 0.026 48 42 48 46 47 91

dressed, regularization by Krylov methods, or their use to solve the Tikhonov min-
imization problem, has a long history, dating back to [58]. Regarding GMRES, the
hybrid approach, called Arnoldi-Tikhonov method, was first considered in [10] with
the basic aim of avoiding the matrix-vector multiplications with AT used by Lanczos-
bidiagonalization-type schemes.

Throughout the remainder of the paper we use Krylov methods to iteratively solve
(1.2) (i.e., according to the classification given in the Introduction, Krylov-Tikhonov
methods), and hence we define λ step by step with the aim of regularizing the original
problem. In other words, we iteratively solve a sequence of constrained minimization
problems of the form

(4.2) min
x∈Km

{
‖b −Ax‖2 + λ2 ‖Lx‖2

}
;

in the sequel, for theoretical purposes, it could be useful to consider the following
expression for the Tikhonov regularized solution

(4.3) xλ = (ATA+ λ2LTL)−1AT b.

In this sense, at each step we approximate the solution of (1.2) by solving

(4.4) min
y∈Rm

{∥∥QT
m+1b− D̄my

∥∥2 + λ2 ‖LWmy‖2
}

(cf. Section 3). Minimizing (4.4) is equivalent to solving the following regularized
least squares problem

(4.5) min
y∈Rm

∥∥∥∥
[

D̄m

λLWm

]
y −

[
QT

m+1b
0

]∥∥∥∥
2

.
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If we denote by ym,λ the solution of (4.4), then xm,λ = Wmym,λ is the corresponding
approximate solution of (1.2) and regularized solution of (1.1). It is well known
that, in many applications, the use of a suitable regularization operator L 6= IN may
substantially improve the quality of the approximate solution with respect to the
choice of L = IN . As for the Lanczos bidiagonalization algorithm, the solution of
(4.4) with L 6= IN has been considered, among the others, in [46] and [42], whereas
the Arnoldi algorithm has been used in [26, 27, 28, 56, 57].

It is important to observe that, if L = IN , then the dimension of the problem
(4.5) is fully reduced whenever Wm is orthogonal, while, if L ∈ R

P×N is a general
matrix having P ≈ N rows, then the dimension of (4.5) inherits the dimension of the
original problem. In order to fully reduce the dimension of the subproblem (4.5) when
L 6= IN , one could consider the “skinny” QR factorization of LWm (see [42]), i.e.,

(4.6) LWm = QL
mLm,

where QL
m ∈ R

P×m has orthonormal columns, and Lm ∈ R
m×m is upper triangular.

Alternatively, assuming that P ≤ N , one could also add N −P zero rows to L (which
does not alter (4.2)) and consider the projection of L onto Km(A, b) (see [57]), i.e.,

(4.7) Lm = KT
mLWm ∈ R

m×m,

where Km depends on the Krylov subspace (cf. (3.1)). In both cases, (4.4) reads

min
y∈Rm

{∥∥QT
m+1b− D̄my

∥∥2 + λ2 ‖Lmy‖2
}

(4.8)

= min
y∈Rm

∥∥∥∥
[

D̄m

λLm

]
y −

[
QT

m+1b
0

]∥∥∥∥
2

,

[
D̄m

λLm

]
∈ R

(2m+1)×m.

For theoretical purposes, it could be useful to consider the following expression

(4.9) ym,λ = (D̄T
mD̄m + λ2LT

mLm)−1D̄T
mQT

m+1b.

We remark that, when we consider the matrix (4.7), problem (4.8) is not equivalent
to (4.2), anymore. However, the use of the matrix Lm defined in (4.7) appears natural
in this framework: Lm would be the regularization operator of the projection of the
Franklin-type regularization [22]

(A+ λL)x = b, λ > 0.

According to our experience, employing the upper triangular Lm in (4.6), or consider-
ing the projected operator (4.7) performs about the same in terms of convergence rate
and accuracy, even if the latter approach requires P ≤ N . Because of this limitation,
in what follows we always tacitly assume to work with the matrix Lm defined in (4.6).
In the following we use the acronyms LBT (Lanczos-Bidiagonalization-Tikhonov),
AT (Arnoldi-Tikhonov), RRAT (Range- Restricted-Arnoldi-Tikhonov), NSLT (Non-
Symmetric-Lanczos-Tikhonov), and RRNSLT (Range-Restricted-Non-Symmetric-
Lanczos-Tikhonov) to denote that the matrices in (4.8) have been computed by the
Lanczos bidiagonalization, Arnoldi, Range-Restricted Arnoldi, nonsymmetric Lanczos
algorithms, and Range-Restricted nonsymmetric Lanczos algorithms, respectively.

Now let D̄m = ŪmS̄mX̄−1
m and Lm = V̄mC̄mX̄−1

m be the GSVD decomposition of
the matrix pair

(
D̄m, Lm

)
, where Ūm ∈ R

(m+1)×(m+1) and V̄m ∈ R
m×m are orthogo-
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nal, X̄m ∈ R
m×m is nonsingular, and

S̄m =




s
(m)
1

. . .

s
(m)
m

0 . . . 0


 ∈ R

(m+1)×m, C̄m =




c
(m)
1

. . .

c
(m)
m


 ∈ R

m×m.

The generalized singular values of (D̄m, Lm) are defined by the ratios

γ
(m)
i =

s
(m)
i

c
(m)
i

i = 1, . . . ,m,

and the columns of Ūm are denoted by ū
(m)
i , i = 1, ...,m+ 1.

We have the following result, which provides an approximation of the residual
‖b−Axm,λ‖ and, at the same time, can be used in some parameter-choice rules (cf.
Section 5).

Proposition 4.1. Let ym,λ be the solution of (4.8). Then the pseudo-residual
satisfies (cf. (3.5))
(4.10)

∥∥D̄mym,λ −QT
m+1b

∥∥2 =

m∑

i=1

(
λ2

γ
(m)2
i + λ2

(ū
(m)
i )TQT

m+1b

)2

+
(
(ū

(m)
m+1)

TQT
m+1b

)2
.

Proof. This result simply follows by substituting the GSVD of (D̄m, Lm) into
(4.9), in order to obtain

(4.11) ym,λ = X̄m(S̄T
mS̄m + λ2C̄T

mC̄m)−1S̄T
mŪT

mQT
m+1b,

and by replacing the above expression in
∥∥D̄mym,λ −QT

m+1b
∥∥2.

Some numerical experiments. In this section we provide some experiments
concerning the method (4.8). We assume that the quantity ‖e‖ is known quite accu-
rately, and consequently we use the discrepancy principle to simultaneously select the
number of iterations (stopping rule) and the value of the regularization parameter λ.
Similarly to the discrete case of Section 3.2, when solving regularized problems of the
form (4.8), one commonly says that the discrepancy principle is satisfied when

(4.12) ‖b−Axm,λ‖ ≤ η ‖e‖ ,

where η & 1. Using the same arguments as the ones employed in Section 2 for
evaluating the norm of the residuals associated to the projection methods described
by the decomposition (3.1), we have that

(4.13) ‖b−Axm,λ‖ ≈
∥∥QT

m+1b− D̄mym,λ

∥∥ ,

and the discrepancy principle consists in solving, at each iteration m and with respect
to the regularization parameter λ, the following nonlinear equation

(4.14) φm(λ) :=
∥∥QT

m+1b− D̄mym,λ

∥∥ = η‖e‖,

where ym,λ is the solution of (4.8).



S. GAZZOLA, P. NOVATI, AND M. R. RUSSO 25

Among the existing algorithms that solve (4.14) within a Krylov methods cou-
pled with Tikhonov regularization (see, e.g., [49] and [66]), the one proposed in [27]
has been shown to be quite efficient and very simple to implement. Denoting by
rm = QT

m+1b− D̄mym the pseudo-residual applied to the unregularized linear system
(i.e., λ = 0), clearly φm(0) = ‖rm‖. In this setting, the authors solve (4.14) after
considering the linear approximation

(4.15) φm(λ) ≈ φm(0) + λχm,

where, at each iteration, the scalar χm is defined by the ratio

(4.16) χm =
φm(λm−1)− φm(0)

λm−1
.

In (4.16), φm(λm−1) is obtained by solving the m-dimensional problem (4.8) using
the parameter λ = λm−1, which is computed at the previous step. Therefore, to select
λ = λm for the next step, we impose

(4.17) φm(λm) = η‖e‖.

Substituting in the linear approximation (4.15) of φm(λm) the expression derived in
(4.16), and using the condition (4.17), one can easily obtain the following rule for
λm > 0

(4.18) λm =

∣∣∣∣
η‖e‖ − φm(0)

φm(λm−1)− φm(0)

∣∣∣∣λm−1.

In [27] this scheme was called secant-update method: this is the rule that we employ in
the following experiments. Depending on the problem, we use the following classical
regularization matrices,

L1 =




1 −1
. . .

. . .

1 −1


 ∈ R

(N−1)×N ,(4.19)

L2 =




1 −2 1
. . .

. . .
. . .

1 −2 1


 ∈ R

(N−2)×N ,(4.20)

which represent scaled finite difference approximations of the first and the second
derivative operators, respectively. In particular, looking at the quality of the best
attainable approximation and at the regularity of the solution, we use L1 for shaw,
i laplace, i laplace-4, gravity, gravity-3, and L2 for baart, foxgood, gravity-2
(piecewise linear solution). The results are reported in Figure 4.1.

5. Other parameter choice rules. In this section, we discuss some regulariza-
tion parameter selection techniques that have already been proposed in the literature,
but have never been coupled with some of the Krylov methods considered in this
paper. In the following we assume that no information on ‖e‖ is available.

5.1. Embedded-based discrepancy principle. This strategy is a generaliza-
tion of the secant-update approach (see the previous section), first proposed in [28].
This strategy has to be considered different from other well-known techniques, since



26 ON KRYLOV METHODS AND TIKHONOV REGULARIZATION

3 4 5 6 7 8 9 10 11

10
−2

10
−1

baart

 

 
LBT
AT
RR−AT
NSLT

6 7 8 9 10 11

10
−2

10
−1

shaw

 

 
LBT
AT
RR−AT

3 4 5 6 7 8 9 10 11

10
−3

10
−2

10
−1

10
0

foxgood

 

 
LBT
AT
RR−AT

7 8 9 10 11 12
10

−2

10
−1

10
0

10
1

i_laplace

 

 
LBT
AT
RR−AT
NSLT

7 8 9 10 11 12

10
−1

10
0

10
1

i_laplace − 4

 

 
LBT
AT
RR−AT
NSLT

7 8 9 10 11

10
−2

10
−1

gravity

 

 
LBT
AT
RR−AT

7 8 9 10 11

10
−2

10
−1

gravity − 2

 

 
LBT
AT
RR−AT

7 8 9 10 11

10
−1

gravity − 3

 

 
LBT
AT
RR−AT

Fig. 4.1. Accuracy of the automatically selected final approximation versus the number of
iterations m. The pictures collect the relative errors ‖xex − xm,λ‖/‖x

ex‖ resulting from 30 runs of
each Krylov-Tikhonov method (small markers) and the corresponding mean values (big markers).
The dimension of each problem is N = 200, and the noise level is 10−3.
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we still want to apply the discrepancy principle, starting with no information on
‖e‖ and trying to recover an estimate of it during the iterative process. The basic
assumption is that, after just a few iterations of each Krylov method described by
(3.1), the norm of the residual associated to the purely iterative method lies around
the threshold ‖e‖ (i.e., φm(0) ≈ ‖e‖) and, despite being usually slightly decreasing,
stabilizes during the following iterations. This property is rather clear since all the
methods of Section 2 are based on the minimization of the residual (pseudoresidual).
This motivates the use of the following update formula to choose the regularization
parameter at the m-th iteration

(5.1) λm =
ηφm−1(0)− φm(0)

φm(λm−1)− φm(0)
λm−1, η & 1.

5.2. Generalized Cross Validation (GCV). The GCV parameter choice cri-
terion prescribes to choose as regularization parameter the scalar λ that minimizes
the GCV functional

(5.2) G(λ) =
‖(I −AA♯

λ)b‖
2

(trace(I −AA♯
λ))

2
,

where A♯
λ stands for the regularized inverse of A associated to Tikhonov regularization

(1.2); more precisely, considering the expression (4.3), we derive

A♯
λ = (ATA+ λ2LTL)−1AT .

To obtain an expression of G(λ) easy to handle, one considers the GSVD of the matrix
pair (A,L), defined by (1.7).

When dealing with the regularized problems (4.8), in order to set λ step by step,
i.e., to define the sequence of regularization parameters {λm}m≥1, we assume that

the GSVD decomposition of the matrix pair
(
D̄m, Lm

)
constitutes an increasingly

better approximation of the truncated GSVD of (A,L). Similarly to Section 4, let
D̄mX̄m = ŪmS̄m and LmX̄m = V̄mC̄m be the GSVD of the matrix pair (D̄m, Lm).

Following the approach of the recent paper [57], since the numerator of (5.2) is
just the squared norm of the residual corresponding to the regularized solution, and

(trace(I −AA♯
λ))

2 =

N∑

i=1

λ2

γ2
i + λ2

where γi are the generalized singular values of (A,L) (cf. (1.8)), the definition of
the sequence of regularization parameters {λm}m≥1 can be obtained by means of the
minimization of the functionals

(5.3) GK
m(λ) :=

∑m
i=1

(
λ2

γ
(m)2
i

+λ2
(ū

(m)
i )TQT

m+1b

)2

+
(
(ū

(m)
m+1)

TQT
m+1b

)2

(
N −m+

∑m
i=1

λ2

γ
(m)2
i

+λ2

)2 ,

where we have used the expression of the (pseudo)residual given by Proposition 4.1. In
other words, the numerator is defined using the (pseudo)residual, and the denominator

by replacing γi with γ
(m)
i for i ≤ m, and γi with 0 for i ≥ m+ 1. Clearly, the above
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approximation can be obtained working in reduced dimension, and it is in perfect
agreement with the formula commonly used for both Tikhonov-regularized problems
and iterative methods (see [36, Chapter 7] and [17]).

By considering the expression (4.9), we can immediately state that the Krylov-
Tikhonov methods produce a regularized solution given by

xm,λ = Wm(D̄T
mD̄m + λ2LT

mLm)−1D̄T
mZT

m+1b,

so that, we can derive the following result, which provides a clearer interpretation
of (5.3).

Proposition 5.1. For each one of the considered methods, let

(
AK

λ,m

)♯
= Wm(D̄T

mD̄m + λ2LT
mLm)−1D̄T

mZT
m+1.

Then

GK
m(λ) ≈

∥∥∥∥
(
I −AK

m

(
AK

λ,m

)♯)
b

∥∥∥∥
2

(
trace

(
I −AK

m

(
AK

λ,m

)♯))2 ,

where AK
m is given by (3.6). The equal sign just holds for the LBT and the AT

methods.

Proof.

(I −AK
m

(
AK

λ,m

)♯
) =

(
I − Zm+1D̄mKT

mWm(D̄T
mD̄m + λ2LT

mLm)−1D̄T
mZT

m+1

)

=
(
I − Zm+1D̄m(D̄T

mD̄m + λ2LT
mLm)−1D̄T

mZT
m+1

)
.

Therefore
∥∥∥(I −AK

m

(
AK

λ,m

)♯
)b
∥∥∥ =

∥∥b− Zm+1D̄mym,λ

∥∥

= ‖b−AWmym,λ‖

≈
∥∥QT

m+1b− D̄mym,λ

∥∥ ,

where the equal sign holds for the LBT and the AT methods (recall the discussion in
Section 3).

We remark that, since

trace(I −AK
m

(
AK

λ,m

)♯
) = N − trace(Zm+1D̄m(D̄T

mD̄m + λ2LT
mLm)−1D̄T

mZT
m+1)

≈ N − trace(D̄m(D̄T
mD̄m + λ2LT

mLm)−1D̄T
m),

and since

trace(D̄m(D̄T
mD̄m + λLT

mLm)−1D̄T
m) = m−

m∑

i=1

λ2

γ
(m)2
i + λ2

,

we have fully justified the expression (5.3). In Figure 5.1 we plot some of the approx-
imations of G(λ) attained by GK

m(λ).
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Fig. 5.1. Problem baart with regularization matrix L = L2. Approximations of G(λ) obtained
by GK

m(λ) for some values of m. The markers indicate the stationary points, i.e., the selected values
for λm.

5.3. L-curve. The L-curve criterion [34] is based on defining the regularization
parameter for (1.2) as the scalar λ that maximizes the curvature of the parametric
curve

Ω(λ) = (log ‖b−Axλ‖ , log ‖Lxλ‖).

Remarkably, this curve very often has an L-shaped dependence on λ, and its corner
(i.e., the point of maximum curvature) represents a good value for λ; indeed, if we
choose the λ corresponding to the corner, we consider a compromise between the
minimization of the residual and the minimization of the penalty term.

This criterion has already been used in connection with Krylov-Tikhonovmethods
(cf. [4, 10]). The basic idea consists in assuming that the curves

Ωm(λ) = (log
∥∥QT

m+1b− D̄mym,λ

∥∥ , log ‖Lmym,λ‖)

are increasingly better approximations of Ω(λ), so that the parameter λm correspond-
ing to the corner of Ωm(λ) should represent a good approximation of a suitable reg-
ularization parameter for (1.2).

Proposition 5.2. Let ym,λ be the solution of (4.8). Using the GSVD of the
matrix pair (D̄m, Lm), we obtain

(5.4) ‖Lmym,λ‖
2
=

m∑

i=1

(
γ
(m)
i

γ
(m)2
i + λ2

(ū
(m)
i )TQT

m+1b

)2

.

Proof. Since Lm = V̄mC̄mX̄−1
m , the proof follows directly from (4.11).

Using the expressions (4.10) and (5.4), the analysis of the “projected” L-curves
Ωm(λ) can be performed quite easily in reduced dimension. Among the existing
corner-finding methods (see e.g. [16, 40, 66]), in our experiments we use the L-curve
criterion based on the adaptive algorithm referred to as “pruning algorithm” [39]. In
Figure 5.2 we plot some of the approximations of Ω(λ) obtained with Ωm(λ).

5.4. Regińska. Regińska criterion [60] is a very efficient parameter choice rule
for Tikhonov regularization, and it is closely related to the L-curve criterion. The
regularization parameter λ is defined as the minimum of the function

Ψµ(λ) = ‖b −Axλ‖
2 ‖Lxλ‖

2µ
, µ > 0,
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Fig. 5.2. Problem baart with regularization matrix L = I. Approximations of Ω(λ) obtained
by Ωm(λ) for some values of m. The markers indicate the corners selected, i.e., the points corre-
sponding to the chosen values for λm.
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Fig. 5.3. Problem baart with regularization matrix L = L2. Approximations of Ψµ(λ) obtained
with Ψµ,m(λ) for some values of m. The markers indicate the stationary points, i.e., the selected
values for λm. In each picture µ = 1.

for a proper µ. Analogously to the L-curve criterion, this rule is motivated by the
observation that finding the minimizer of Ψµ corresponds to considering a good bal-
ance between the size of the regularization term and the size of the residual norm. In
[60] the author proves that, if the curvature of the L-curve is maximized at λ∗ and
if the tangent to the L-curve at (log ‖b−Axλ∗‖ , log ‖Lxλ∗‖) has slope −1/µ, then
Ψµ(λ) is minimized at λ∗. The authors of [61] derive a modification of the basic
Regińska criterion, in order to improve its performance when dealing with a discrete
regularization parameter.

As in the previous cases, in order to set λm step by step when dealing with the
projected regularized problems (4.8), we consider the function

Ψµ,m(λ) =
∥∥QT

m+1b− D̄mym,λ

∥∥2 ‖Lmym,λ‖
2µ

, µ > 0,

which can be written in terms of the generalized singular values of of
(
D̄m, Lm

)
by

using again (4.10) and (5.4). In Figure 5.3 we plot some of the approximations of
Ψµ(λ) obtained with Ψµ,m(λ); we choose µ = 1.

5.5. Numerical Experiments. In order to check the performance of the con-
sidered Krylov methods together with the parameter selection strategies just outlined,
here we present some experiments in which each method is coupled with the four cri-
teria (Sections 5.1–5.4). In each picture, 50 runs of each method have been executed,
considering different realizations of the random noise. The final approximations have
been selected by checking the relative residual. In particular each run is stopped
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Fig. 5.4. Relative error of the final approximation selected by (5.5) versus the number of
iterations. The pictures collect the results of 50 runs of each method (small markers) and the
corresponding mean values (big markers). The dimension of each problem is N = 200, and the
noise level is 10−2.

whenever

(5.5)
|‖rm‖ − ‖rm−1‖|

‖rm‖
≤ ε,

where ε = 1.05. The results, in terms of relative error versus number of iterations,
are reported in Figure 5.4. These pictures (together with many other that are not
reported) reveal that the four criteria are somehow equivalent when coupled with the
Krylov methods here considered, since it is not easy to detect the one that clearly
overtakes the others.

6. Image deblurring and denoising. As already addressed in the Introduc-
tion, regularization techniques based on Krylov subspace methods are particularly
effective when applied to image restoration problems. Many papers have been de-
voted to studying the performances of different Krylov methods when applied to the
denoising and deblurring of corrupted images: among the most recent ones we cite
[1, 7, 25, 38, 56]. In this section we closely follow the approach adopted in [38], and
we consider a medical and an astronomical test image of size 256 × 256 pixels, dis-
torted by three different kinds of spatially invariant blurs (isotropic, non-isotropic and
experimentally defined); the boundary conditions are set to zero for all the tests (cf.
Figure 6.1). Both the isotropic and the non-isotropic blurs are analytically defined
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Exact Blurred & Noisy PSF

Fig. 6.1. Test images employed in this section. In the first column we display the ideally exact
image, in the second column we display the blurred and noisy image, and in the third column we
display a blow-up (400%) of the PSFs.

starting from a Gaussian point spread function (PSF) K(s, t), i.e.,

(6.1) K(s, t) =
1

2π
√
α2
1α

2
2 − ρ4

exp

(
−
1

2
[s t]

[
α2
1 ρ2

ρ2 α2
2

]−1 [
s
t

])
.

In the isotropic case, we take α1 = α2 = 3 and ρ = 0; in the non-isotropic case we take
α1 = 10, α2 = 8, and ρ = 4; in the experimental case we use the data made available
in [53], which simulate how an extraterrestrial satellite can be detected from ground-
based telescopes. Once the PSFs have been set, the corresponding blurring matrices
are generated by employing the Restore Tools [53] routines: the matrix associated to
the isotropic blur is symmetric, while the matrices associated to the non-isotropic and
the experimental blurs are nonsymmetric. We further perturb the blurred images by
adding 5% Gaussian white noise in the medical image case, and 1% Gaussian white
noise in the astronomical image case.
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Let us focus on the symmetrically blurred medical image. Since in this case both
the Arnoldi and the Lanczos nonsymmetric algorithms reduce to the Lanczos tridi-
agonalization algorithm, we take into account just the AT, the RRAT and the LBT
methods. We extensively test both the standard and the general form regularization,
taking

(6.2) L = L1 ⊗ IN + IN ⊗ L1,

where L1 is defined in (4.19); the regularization matrix L represents the sum of the
first derivatives in the horizontal and vertical directions of the two-dimensional image.
In Tables 6.1 and 6.2 we collect the results obtained by testing the AT, RRAT, and
LBT methods: we run each method 50 times, considering different noise realizations,
and the average values are displayed. In particular, we are interested in comparing
the performances of the various methods and parameter choice strategies (cf. Section
5): for this reason we report the relative errors and the regularization parameters
attained when an appropriate stopping criterion is satisfied. Moreover, to evaluate the
efficiency of each method, in Table 6.3 we report the average of the minimum relative
errors (with respect to the number of iterations) and the average of the iterations at
which it is attained. In Figure 6.2 we display the history of the relative errors when
a “quasi-optimal” regularization parameter is chosen; in Figure 6.3 we show the best
reconstructions obtained by the general-form AT, RRAT and LBT methods after 12
iterations have been performed. To set the “quasi-optimal” regularization parameter
at each iteration we consider a fixed set of trial regularization parameters and we
choose the one that delivers the minimum relative error. Of course, this strategy is
possible only if the exact solution is available; however, we decide to consider it in
order to show the regularizing properties of the different Krylov subspace methods
applied to the Tikhonov problem, independently on the strategy employed to set the
parameter.

So far, we can see that the AT and LBT methods seem to outperform the RRAT
method both in terms of efficiency and quality of the reconstruction. With respect to
the LBT method, the AT method needs considerably less iterations to deliver good
approximations of the exact solution, and including a regularization matrix different
from the identity leads to more accurate reconstructions; on the downside, while the
LBT method seems to be very robust with respect to the choice of the regularization
parameters (and often even very tiny regularization parameters are suitable in the
LBT case), the performance of the AT methods seems to be much more dependent
on an accurate tuning of the regularization parameter.

Then, let us consider the non-isotropically blurred medical image. In this case
we take into account all the methods previously described, i.e., the AT, RRAT, LBT,
NSLT, and RRNSLT methods. Similarly to what we have done in the symmetric
case, we consider both the standard and the general form regularization, where we
still employ the matrix L defined in (6.2). As before, in Table 6.4, 6.5 and 6.6 we
collect the averages of the results obtained running 50 times each test, with differ-
ent noise realizations; Figure 6.4 displays the history of the relative errors when a
“quasi-optimal” regularization parameter is chosen. The remarks just made about
the performance of the different Krylov-Tikhonov methods in the symmetric case still
hold for the unsymmetric blur; moreover, looking at the results in Table 6.4, 6.5 and
Figure 6.4, we can clearly see that the performances of the AT and NSLT methods
are very similar.
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Table 6.1

Averages of the results obtained running 50 times the isotropic deblurring and denoising problem; Tikhonov regularization in standard
form is employed. In the first three columns we display the average of the attained relative errors, and the average number of required
iterations (between brackets); in the last three columns we display the average of the corresponding regularization parameters.

Relative Error Regularization Parameter
LBT AT RRAT LBT AT RRAT

Discrepancy 2.0745 · 10−1 (9.28) 3.2355 · 10−1 (4) 3.5581 · 10−1 (30) 7.3730 · 10−2 6.3057 · 10−2 3.2389 · 10−1

Embedded 2.2291 · 10−1 (7) 2.4345 · 10−1 (6) 3.0491 · 10−1 (5) 9.6528 · 10−2 2.7193 · 10−2 5.2685 · 10−2

GCV 2.2487 · 10−1 (6) 3.7878 · 10−1 (4) 3.0909 · 10−1 (3) 6.6069 · 10−4 5.0119 · 10−4 3.9811 · 10−5

L-curve 2.1811 · 10−1 (14) 2.1350 · 10−1 (6) 3.1318 · 10−1 (9) 1.4010 · 10−1 4.7940 · 10−2 1.0251 · 10−1

Regińska 2.2565 · 10−1 (6) 3.1209 · 10−1 (4) 3.0434 · 10−1 (4) 5.0119 · 10−2 5.0119 · 10−2 1.9953 · 10−3

Table 6.2

Averages of the results obtained running 50 times the isotropic deblurring and denoising problem; Tikhonov regularization in general
form is employed. In the first three columns we display the average of the attained relative errors, and the average number of required
iterations (between brackets); in the last three columns we display the average of the corresponding regularization parameters.

Relative Error Regularization Parameter
LBT AT RRAT LBT AT RRAT

Discrepancy 2.0821 · 10−1 (9.52) 2.0047 · 10−1 (6.98) 3.6561 · 10−1 (2) 1.7492 · 100 4.3601 · 10−2 1.3591 · 101

Embedded 2.2363 · 10−1 (8) 2.1087 · 10−1 (6) 3.0545 · 10−1 (6) 2.1745 · 10−1 4.7113 · 10−2 1.4447 · 10−1

GCV 2.2487 · 10−1 (6) 3.7877 · 10−1 (4) 3.0909 · 10−1 (3) 1.9953 · 10−3 2.5119 · 10−4 3.1623 · 10−4

L-curve 3.6390 · 10−1 (2) 2.0161 · 10−1 (7) 3.6564 · 10−1 (2) 1.4030 · 101 6.3991 · 10−2 1.4030 · 101

Regińska 2.4059 · 10−1 (6) 2.3710 · 10−1 (7) 3.0458 · 10−1 (4) 3.9811 · 10−1 3.9811 · 10−1 1.9953 · 10−3

Table 6.3

Averages of the minimum relative errors obtained running 50 times the isotropic deblurring and denoising problem; between brackets
we display the average number of iterations required to attain such minima.

Standard Form General Form
LBT AT RRAT LBT AT RRAT

Discrepancy 1.96 · 10−1 (30) 1.94 · 10−1 (9) 3.56 · 10−1 (30) 2.07 · 10−1 (13.3) 1.90 · 10−1 (9) 3.66 · 10−1 (2)
Embedded 1.88 · 10−1 (30) 2.42 · 10−1 (5) 3.02 · 10−1 (10) 1.89 · 10−1 (30) 1.91 · 10−1 (9.1) 3.05 · 10−1 (23.1)

GCV 1.89 · 10−1 (19.3) 2.54 · 10−1 (2) 2.98 · 10−1 (23.8) 1.89 · 10−1 (19.3) 2.54 · 10−1 (2) 2.98 · 10−1 (23.8)
L-curve 1.88 · 10−1 (30) 1.99 · 10−1 (9) 2.98 · 10−1 (30) 3.64 · 10−1 (2) 1.87 · 10−1 (27.3) 3.66 · 10−1 (2)
Regińska 1.87 · 10−1 (28.2) 1.88 · 10−1 (11.4) 2.98 · 10−1 (23) 2.38 · 10−1 (9) 2.36 · 10−1 (6) 2.98 · 10−1 (23)
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Fig. 6.2. History of the best relative errors attainable when applying Krylov-Tikhonov regu-
larization in standard form (frame (a)) and general form (frame (b)) to the symmetrically blurred
medical image. In both frames, the AT method is denoted by an asterisk, the RRAT method is
denoted by a square, and the LBT method is denoted by a circle.

AT LBT RRAT

Fig. 6.3. Best reconstructions obtained at the 12-th iteration of Krylov-Tikhonov regularization
methods in general form applied to the symmetrically blurred medical image.

In Figure 6.5, we also perform a Discrete Cosine Transform (DCT) analysis: we
display just the results relative to the general form regularization, since the results
relative to the standard form regularization are very similar. The regularization pa-
rameter is chosen according to the “quasi-optimal” strategy. This analysis is based
on splitting the “exact” and the perturbed components; recalling that b = bex + e,
and adopting the general notation of Proposition 5.1, we write

xex
m = (AK

λ,m)♯bex and xe
m = (AK

λ,m)♯e.

We remark that xex
m is still dependent on the noise component in b, since the con-

sidered Krylov subspaces are generated taking b, AT b or Ab as starting vector. The
goal of this analysis is to understand how the noise propagates during the Krylov-
Tikhonov iterations, and to assess the quality of the restoration that can be achieved
performing different Krylov-Tikhonov methods: in this way we extend the analysis
performed in [38] for the purely iterative methods. Looking at Figure 6.5 we can
clearly see that, although the basis of the Krylov subspaces associated to the consid-
ered methods are quite different (cf. again the analysis in [37], or [38]), the properties
of the reconstructed solutions obtained by all the Krylov-Tikhonov methods are sim-
ilar. As clearly shown in column (b), all the images in column (a) are dominated
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by low-frequency components (i.e., their spectral components are mostly located in
the upper left corner). In particular, the image xex

m obtained by the RRAT method
seems to be the most low-frequency one; this behavior is quite natural if we consider
the slow performance of the RRAT method (cf. Figure 6.4, frame (b)). Among the
other images xex

m , the one produced by the LBT method is slightly more low-frequent
than the one produced by the AT method. All the images in column (c) appear to be
dominated by bandpass-filtered noise in the form of freckles, which are in connection
with the image contours; this description is coherent with the information displayed
in column (d), where the dominating frequencies appear inside a bandlimited ring. In
the RRAT and LBT cases the freckles in (c) are slightly less enhanced, and the ring
in (d) is slightly narrower. The same analysis has been performed for the previously
considered symmetric case, and the results are very similar.
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Fig. 6.4. History of the best relative errors attainable when applying Krylov-Tikhonov regular-
ization in standard form (frame (a)) and general form (frame (b)) to the unsymmetrically blurred
medical image. In both frames, the AT method is denoted by an asterisk, the RRAT method is
denoted by a square, the LBT method is denoted by a circle, and the NSLT method is denoted by
a triangle; since the relative errors associated to the RRNSLT method basically coincide with the
RRAT ones, they are omitted.

Finally, let us consider the satellite test image. Due to the well-marked edges of
the ideally exact image (cf. Figure 6.1), we exclusively consider general-form Tikhonov
regularization, equipped with particular regularization matrices that are adaptively
defined in order to increasingly better approximate a TV-like regularization method
[67]. Basically, after a suitable number of iterations has been performed (according to
a fixed parameter choice strategy), we restart the underlying Arnoldi, Lanczos bidiag-
onalization or nonsymmetric Lanczos algorithms, and we define a new regularization
matrix of the form L = D̃mLhv

1 , where D̃m is a suitable diagonal weighting matrix
dependent on the last computed solution, and

Lhv
1 =

[
L1 ⊗ IN
IN ⊗ L1

]
, L1 given in (4.19).

This approach was first derived in [25], where the authors consider the AT and
the discrepancy principle; we refer to this paper for some additional details about
the choice of the matrix D̃m and the number of restarts to be performed. In Figure
6.6 we display the history of the relative errors obtained by projecting the Tikhonov-
regularized problem into the Krylov subspaces associated to the Arnoldi, Lanczos
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Table 6.4

Averages of the relative errors obtained running 50 times the non-isotropic deblur-
ring and denoising problem; Tikhonov regularization in standard form is employed.
Between brackets we report the average number of iterations required to satisfy the
stopping criterion.

LBT AT NSLT RRAT RRNSLT

Discrepancy 4.05 · 10−1 (17.6) 6.64 · 10−1 (6) 6.64 · 10−1 (6) 5.19 · 10−1 (30) 5.19 · 10−1 (30)
Embedded 4.45 · 10−1 (7) 4.45 · 10−1 (6) 4.45 · 10−1 (6) 4.94 · 10−1 (5) 4.94 · 10−1 (5)

GCV 4.38 · 10−1 (7) 5.26 · 10−1 (4) 5.26 · 10−1 (4) 4.98 · 10−1 (3) 4.98 · 10−1 (3)
L-curve 4.42 · 10−1 (13) 4.32 · 10−1 (6) 4.32 · 10−1 (6) 4.99 · 10−1 (9) 4.99 · 10−1 (9)
Regińska 4.39 · 10−1 (7) 4.83 · 10−1 (4) 4.83 · 10−1 (4) 4.94 · 10−1 (4) 4.94 · 10−1 (4)

Table 6.5

Averages of the relative errors obtained running 50 times the non-isotropic de-
blurring and denoising problem; Tikhonov regularization in general form is employed.
Between brackets we report the average number of iterations required to satisfy the
stopping criterion.

LBT AT NSLT RRAT RRNSLT

Discrepancy 4.05 · 10−1 (17.6) 4.24 · 10−1 (9) 4.24 · 10−1 (9) 5.24 · 10−1 (2) 8.73 · 10−1 (2)
Embedded 4.44 · 10−1 (8) 4.19 · 10−1 (7) 4.19 · 10−1 (7) 4.95 · 10−1 (6) 8.25 · 10−1 (6)

GCV 4.38 · 10−1 (7) 5.26 · 10−1 (4) 5.26 · 10−1 (4) 4.98 · 10−1 (3) 8.30 · 10−1 (3)
L-curve 5.23 · 10−1 (2) 4.22 · 10−1 (7) 4.22 · 10−1 (7) 5.08 · 10−1 (6) 8.46 · 10−1 (6)
Regińska 4.92 · 10−1 (5) 4.95 · 10−1 (6.4) 4.95 · 10−1 (6.4) 4.94 · 10−1 (4) 4.94 · 10−1 (4)

Table 6.6

Averages of the minimum relative errors obtained running 50 times the non-
isotropic deblurring and denoising problem; between brackets we display the average
number of iterations required to attain such minima.

LBT AT NSLT RRAT RRNSLT

Standard Form

Discrepancy 3.99 · 10−1 (28.8) 3.91 · 10−1 (12) 3.91 · 10−1 (12) 5.19 · 10−1 (30) 5.19 · 10−1 (30)
Embedded 3.99 · 10−1 (30) 3.86 · 10−1 (13.1) 3.86 · 10−1 (13.1) 4.91 · 10−1 (11) 4.91 · 10−1 (11)

GCV 3.866 · 10−1 (30) 4.56 · 10−1 (2) 4.56 · 10−1 (2) 4.87 · 10−1 (30) 4.87 · 10−1 (30)
L-curve 4.05 · 10−1 (30) 3.76 · 10−1 (19.2) 3.76 · 10−1 (19.2) 4.88 · 10−1 (30) 4.88 · 10−1 (30)
Regińska 3.99 · 10−1 (30) 3.96 · 10−1 (16) 3.96 · 10−1 (16) 4.87 · 10−1 (30) 4.87 · 10−1 (30)

General Form

Discrepancy 4.04 · 10−1 (24.1) 3.82 · 10−1 (14) 3.82 · 10−1 (14) 5.26 · 10−1 (2) 5.24 · 10−1 (2)
Embedded 4.03 · 10−1 (30) 3.81 · 10−1 (14.9) 3.81 · 10−1 (14.9) 4.94 · 10−1 (8) 4.94 · 10−1 (8)

GCV 3.87 · 10−1 (30) 4.56 · 10−1 (3) 4.56 · 10−1 (3) 4.87 · 10−1 (30) 4.87 · 10−1 (30)
L-curve 5.23 · 10−1 (2) 3.74 · 10−1 (19.2) 3.74 · 10−1 (19.2) 4.87 · 10−1 (30) 4.87 · 10−1 (30)
Regińska 4.90 · 10−1 (4) 4.88 · 10−1 (2) 4.88 · 10−1 (2) 4.87 · 10−1 (30) 4.87 · 10−1 (30)

bidiagonalization, and nonsymmetric Lanczos algorithms; different parameter choice
strategies are taken into account.

For all the methods we allow at most 40 inner iterations and 20 restarts. We can
state that, typically, many steps are performed during the first set of iterations and
then, as soon as the first restart happens, the stopping criterion is almost immediately
fulfilled and a few iterations are considered (i.e., the number of iterations at each cycle
decreases as the number of restarts increases): this is due to the fact that, when more
restarts are considered, an increasingly more accurate initial guess for the solution is
available. Of course the performance of the method depends on the particular Krylov
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Fig. 6.5. Spectral analysis of different Krylov subspace methods employed to project the general-
form Tikhonov-regularized problem. More precisely, we show xex

m (a), a blow-up (800%) of the DCT
of xex

m (b), xe
m (c), and a blow-up (400%) of the DCT of xe

m (d) after 10 iterations have been
performed (i.e., m = 10).

subspace taken into account: as previously remarked, the AT method is the fastest
one, while the RRAT method is the slowest one; the LBT method is the most stable
one.

In Figure 6.7 we display an example of the reconstructions obtained at the end of
the iterative process when the embedded parameter choice strategy is employed. As
in the previous examples, in Table 6.7 we collect the results obtained by extensively
testing the AT, RRAT, LBT, and NSLT methods: we run each method 50 times,
considering different noise realizations, and the average values are displayed. In order
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to compare the performances of the different methods and the different parameter
choice strategies, we report the relative errors attained at the end of the outer iteration
cycle and the total number iterations (i.e., the sum of the iterations performed during
each restart). Moreover, to assess the quality of the restoration achieved by each
Krylov-Tikhonov method, in Table 6.8 we report the best attainable relative error
(with respect to the number of steps) and the number of required iterations. The
worst reconstructions are associated to the RRAT method: this is due to the fact that
many iterations are required to deliver a suitable reconstruction and therefore, when
a restart happens (i.e., when the fixed maximum number of iterations per restarts is
performed) the exact solution is poorly approximated. The AT method delivers good
reconstructions, except when a parameter choice based on the GCV is employed: this
is due to the fact that the AT method is very sensitive to the value of the regularization
parameter and the solution rapidly deteriorates. The performances of the NSLT and
RRNSLT methods are very similar to the AT and RRAT ones, respectively.

Discrepancy Embedded
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Fig. 6.6. History of the relative errors obtained when approximating the TV regularization by
means of suitably restarted Krylov-Tikhonov methods. The AT method is denoted by an asterisk,
the RRAT method is denoted by a square, the LBT method is denoted by a circle. We use a big
diamond to highlight the iterations at which a restart happens: after the last diamond is displayed,
the restarts happen almost immediately (typically, after 3 iterations have been performed) and, not
to overload the plots, we decide to omit them.

To summarize the results of all the performed numerical experiments, we remark
that many strategies based on the projection of the Tikhonov-regularized problems
are very efficient when one has to deal with image restoration problems. Contrarily
to what is stated in [38] for the purely iterative methods, we conclude that the most
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Table 6.7

Averages of the relative errors obtained running 50 times the test problem associated to the satellite image; the values displayed are
obtained after all the prescribed restarts have been performed. Between brackets we display the average of the total number of required
iterations

LBT AT NSLT RRAT RRNSLT
Discrepancy 3.6679 · 10−1 (89.03) 3.4162 · 10−1 (66) 3.4162 · 10−1 (66) 7.6822 · 10−1 (181) 7.6761 · 10−1 (181)
Embedded 6.2061 · 10−1 (64) 3.3932 · 10−1 (70) 3.3928 · 10−1 (70) 5.6985 · 10−1 (60) 5.6986 · 10−1 (60)

GCV 4.0588 · 10−1 (73) 6.9823 · 10−1 (81.13) 6.8135 · 10−1 (79.27) 5.4931 · 10−1 (30) 5.4930 · 10−1 (30)
L-curve 3.5585 · 10−1 (86.60) 3.0717 · 10−1 (79.17) 3.0274 · 10−1 (83.97) 6.0955 · 10−1 (44) 6.0955 · 10−1 (44)
Regińska 4.4106 · 10−1 (65.50) 3.5297 · 10−1 (71) 3.5199 · 10−1 (71) 5.5428 · 10−1 (33) 5.4327 · 10−1 (37)

Table 6.8

Averages (over 50 runs) of the regularization parameters obtained when the stopping criterion is satisfied. The satellite test problem
is considered (as in Table 6.7)

LBT AT NSLT RRAT RRNSLT
Discrepancy 1.1682 · 101 3.9632 · 101 3.9673 · 101 3.9209 · 100 7.2011 · 100

Embedded 5.0156 · 10−1 6.2059 · 10−1 6.2464 · 10−1 1.8579 · 10−3 1.8582 · 10−3

GCV 1.6596 · 10−4 7.8632 · 101 4.3102 · 101 5.0119 · 10−5 5.0372 · 10−5

L-curve 1.6685 · 10−3 3.2662 · 10−3 3.4124 · 10−3 2.6954 · 10−3 2.6971 · 10−3

Regińska 5.8916 · 10−3 3.1623 · 10−3 1.9140 · 10−3 1.5849 · 10−3 1.0212 · 10−3
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Fig. 6.7. Reconstructions obtained by different Krylov-Tikhonov regularization methods at the
end of the restarting scheme.

effective Krylov-Tikhonov methods seem the ones based on the standard Arnoldi al-
gorithm and the Lanczos bidiagonalization algorithm. In general, AT is faster and
cheaper (as far as matrix-vectors multiplications are concerned) than LBT; however,
LBT is more reliable than AT when different parameter choice strategies and stopping
criteria are considered. Moreover, the performances of the Arnoldi and nonsymmetric
Lanczos based methods are very similar: the reason behind this is that, since the regu-
larized solutions typically belong to Krylov subspaces of low dimension, the projected
problems have a similar behavior (cf. the remarks in Section 2.3). Therefore we pro-
pose the NSLT method as a valid alternative to the AT method for the regularization
of nonsymmetric problems. Finally, since the starting point of the Krylov-Tikhonov
methods is a regularized problem, a certain amount of regularization is added as the
problem is projected onto Krylov subspaces of increasing dimensions: for this reason
the noise, which is potentially more present in the Krylov subspaces generated by the
standard Arnoldi algorithm than in the subspaces generated by the Lanczos bidiago-
nalization and range-restriced Arnoldi algorithms [38], is filtered out. Moreover, even
if the SVD components of the matrix A are mixed in Km(A, b) (cf. [37]), the SVD of
the projected matrices quickly approximate the SVD of the full-dimensional original
matrix (cf. the arguments in Sections 2.2 and 2.3): for this reason, one can obtain
good results when solving the projected regularized problems.
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7. Conclusions. In this paper we have collected many old and new results con-
cerning the use of some well-known Krylov methods for solving the Tikhonov mini-
mization problem. The analysis has been focused on linear discrete ill-posed problems,
which include applications in image restoration. We have shown that the projected
problem associated to each one of the considered methods rapidly inherits the basic
spectral properties of the original problem, so that these methods can be efficiently
used in connection with some of the most important parameter choice rules. This
property makes these methods particularly attractive for large-scale problems. The
performed numerical experiments have revealed that it is difficult to detect which
method outperforms the others in terms of accuracy and speed (i.e., number of iter-
ations). However, it should be emphasized that the Arnoldi-based methods do not
require computations with the matrix transpose, so the cost per iteration is lower
than the iteration-wise cost of the Lanczos-based methods.
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