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Abstract

When projection methods are employed to regularize linear discrete ill-posed prob-
lems, one implicitly assumes that the discrete Picard condition is somehow inher-
ited by the projected problems. In this paper we prove that, when considering
various Krylov subspace methods, the discrete Picard condition still holds for the
projected uncorrupted systems. By exploiting the inheritance of the discrete Pi-
card condition, some estimates on the behavior of the projected problems are also
derived. Numerical examples are provided in order to illustrate the accuracy of
the derived estimates.

1 Introduction

Let K : L2(Ω)→ L2(Ω), be a linear operator defined by

(Kf) (s) :=

∫
Ω
k(s, t)f(t)dt

where Ω ⊂ Rq is compact and Jordan-measurable, and k : Ω× Ω→ R is such that

‖k‖2 :=

∫
Ω

∫
Ω
|k(s, t)|2 dsdt <∞. (1)

In this framework it is known that K is a compact operator that can be written in
terms of its Singular Value Expansion (SVE) as

K =
∑∞

i=1
µiui 〈vi, ·〉 ,

where 〈·, ·〉 is the scalar product on the Hilbert space L2(Ω) and the µi’s are the singular
values of K. The orthonormal sets {ui}i and {vi}i are such that

k(s, t) =
∑∞

i=1
µiui(s)vi(t).

Since
‖k‖2 =

∑∞

i=1
µ2
i ,

by (1) the singular values decay as i−α, α > 1/2.
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In this paper we consider the numerical solution of the linear equation

Kf = g, (2)

which is ill-posed in the sense of Hadamard (see [11, 14] for a background). The degree
of ill-posedness is characterized by the decay rate of the singular values. Equation (2)
admits a solution f ∈ L2(Ω) if and only if the right-hand side g satisfies the so called
Picard Condition, that is,

∞∑
i=1

(
〈ui, g〉
µi

)2

<∞, (3)

(cf., for instance, [5, §2.2]). Condition (3) implies that, as i → ∞, the absolute value
of the so-called Fourier coefficients 〈ui, g〉 decays to zero as i−αµi, α > 1/2.

After suitable discretization, depending on a parameter N , the solution of the linear
equation (2) is approximated by the solution of a certain linear system (discrete ill-posed
problem)

A(N)x(N) = b(N), (4)

where the matrix A(N) inherits the spectral properties of K, and x(N) represents
the function f . Without loss of generality we may assume that A(N) ∈ RN×N ,
b(N) ∈ RN . Let us consider the singular value decomposition (SVD) of A(N), given
by the factorization

A(N) = U (N)Σ(N)V (N)T , U (N) ∈ RN×N , Σ(N) ∈ RN×N , V (N) ∈ RN×N ,

where U (N)TU (N) = U (N)U (N)T = IN (i.e., the identity matrix of order N),

V (N)TV (N) = V (N)V (N)T = IN , and Σ(N) = diag(σ
(N)
1 , . . . , σ

(N)
N ). We assume that,

independently of N , the σ
(N)
i ’s decay and cluster to zero with the same rate of the µi’s,

with no evident gap between two consecutive ones to indicate the numerical rank for
A(N). If (2) is discretized by the Galerkin method, and N is sufficiently large, this is
a meaningful assumption (see the analysis in [12]). Since the solution of (4) can be
written as

x(N) =

N∑
i=1

u
(N)T
i b(N)

σ
(N)
i

vi,

in order to compute a meaningful solution of (4) the basic assumption is that there
exists a constant C such that

sup
N

N∑
i=1

(
u

(N)T
i b(N)

σ
(N)
i

)2

≤ C <∞, (5)

Alike the infinite dimensional problem (2), the above relation, which is called Discrete

Picard Condition (DPC, see [13]), implies that the Fourier coefficients |u(N)T
i b(N)| decay

to zero as i−ασ
(N)
i , α > 1/2, in order to ensure the convergence of the series. In this

situation, independently of N , we have

‖x(N)‖2 ≤ C <∞ .
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In practice, when dealing with discrete models like (4), the DPC is not guaranteed to

hold since b(N) is usually affected by some error, i.e., b(N) = b
(N)
ex + e(N), where the

vector e(N) is assumed unknown. In the following, we always refer to the solution of

A(N)x(N) = b
(N)
ex as exact solution of (4). In particular, when e(N) is Gaussian white

noise, typically |u(N)T
i b(N)| decays until σ

(N)
i > ‖e(N)‖2, and then stagnates around

‖e(N)‖2 (cf. [14, Chapter 4]). Still in [13], the author shows that the DPC plays an
important role in determining how well the Tikhonov or TSVD regularized solutions
can approximate the desired exact solution of (4). For this reason, when regularizing
perturbed problems of the form (4), one usually assumes that the corresponding un-

perturbed problems satisfy the DPC, i.e., condition (5) applied to b
(N)
ex . Moreover, one

can devise a parameter choice strategy based on the so-called Picard plot (i.e., a plot of

the quantities |u(N)T
i b(N)| and σ

(N)
i versus i, i = 1, . . . , N); the parameter selected by a

visual inspection of the Picard plot often agrees with the one selected by other popular
parameter choice strategies (such as the L-curve and the GCV methods, cf. again the
discussion in [13]).

When dealing with large-scale problems, direct approaches to regularization (such as
the TSVD) are often unfeasible, because of their high computational cost; in these cases,
just iterative or hybrid approaches to regularization are possible (cf. the discussion in
[1]). Among the class of iterative regularization methods, a core role is played by Krylov
subspace methods, which allow to compute approximations of the solution of (4) by
solving projected subproblems of the form

W
(N)T
k A(N)Z

(N)
k y = W

(N)T
k b(N) or min

y

∥∥∥W (N)T
k+1 b(N) −W (N)T

k+1 A(N)Z
(N)
k y

∥∥∥ , (6)

where W
(N)
k and Z

(N)
k are matrices whose columns span suitable Krylov subspaces of

dimension k. Here and in the following, ‖ · ‖ denotes the Euclidean vector norm. When
Krylov subspace methods are employed to solve system (4) with a corrupted right-hand-
side vector b(N), during the first iterations the approximate solutions typically converge

to the exact one (i.e., the solution of (4) with b(N) = b
(N)
ex ); then, as soon as the ap-

proximate solutions are affected by the high-frequency noise components perturbing
b(N), they start to diverge. This behavior is known as semiconvergence phenomenon.
Because of semiconvergence, a reliable stopping criterion is essential to perform iter-
ative regularization. Alternatively, to overcome semiconvergence, one can resort to
hybrid methods, in which the regularization of the projected problem is considered.
Hybrid methods were originally introduced in [19] for the Lanczos-bidiagonalization
case; hybrid methods based on the Arnoldi algorithm were cosidered in [4, 7].

During the last two decades, many Krylov subspace methods have been theoretically
proved to be regularization methods in the classical sense, i.e., it has been proved
that the sequence of the approximate solutions tends to the exact solution of (4) when
‖e(N)‖ → 0 and a suitable stopping criterion is considered (see for instance [10, Chap-
ter 3] and [3]). More recently, the regularization and convergence properties of meth-
ods based on the Arnoldi and the Lanczos bidiagonalization algorithms have been
analyzed from the point of view of the spectral properties of the projected matrices

W
(N)T
k A(N)Z

(N)
k . In particular, the authors of [7, 18] experimentally show that the
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behavior of the regularized solution obtained by truncating the Arnoldi process is sim-
ilar to the one obtained by TSVD. Still in [7, 18], the rate of convergence of methods
based on the Arnoldi algorithm is shown to be related to the decay rate of the singular
values of A(N). Regarding hybrid methods, new parameter choice strategies have been
devised in [6, 16, 18] under the assumption that the original uncorrupted problem (4)
satisfies the DPC. Finally, estimates on the behavior of the GMRES residual for the
exact and the corrupted problems are given in [6] under the assumption that the DPC
still holds for the projected subproblems (6); this fact has been confirmed by many
numerical experiments performed on the most common test problems from [15].

From a theoretical point of view, the investigation of the inheritance of the DPC by
the projected subproblems (6) is still an open issue, which represents the goal of this

paper. Denoting by y
(N)
k the solution of (6), we say that the DPC is inherited if there

exists a constant C ′ such that

sup
k,N
‖y(N)
k ‖ ≤ C ′ <∞,

To establish the inheritance of the DPC when the exact (b(N) = b
(N)
ex ) problems (6)

are solved, we use a backward induction argument, i.e., we prove that if the (k + 1)th
projected problem satisfies the DPC, so does the kth one. Thanks to this result, we can
derive further estimates on the behavior of the residuals associated to the projection
methods (6), and we can give an alternative justification of the typical semiconvergent

behavior of the iterative methods applied to the corrupted (b(N) = b
(N)
ex +e(N)) problem

(4). Unless strictly necessary, from now on we avoid the use of the superscript (N),
assuming it implicit by the context.

This paper is organized as follows: in Section 2 we provide a brief overview on the
considered Krylov subspace methods, along with their hybrid versions. In Section 3,
after giving some more details about the DPC, we prove that the DPC is inherited
when employing Arnoldi based methods (Section 3.1) and Lanczos bidiagonalization
based methods (Section 3.2); we also analyze the behavior of the residuals for both the
uncorrupted and the corrupted projected problems of the form (6). Our derivations
are supported by many numerical tests, whose most meaningful results are displayed
along Section 3. Finally, in Section 4 we present some concluding remarks.

Remarks about the numerical tests. All the considered test problems belong to
the package Regularization Tools [15]: in particular we display the results for the test
problems baart, wing (whose coefficient matrices are nonsymmetric), deriv2, and shaw

(whose coefficient matrices are symmetric); the coefficient matrix of the system (4) has
size 120 × 120 for all the test problems. All the computations have been performed
using Matlab 7.10 with 16 significant digits. Unless otherwise stated, we implement the
Arnoldi algorithm by Householder reflections [22, Chapter 6], and we implement the
Lanczos bidiagonalization algorithm with reorthogonalization following the indications
in [21].
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2 Regularization by Krylov Subspace Methods

Krylov subspaces methods are projection-type methods such that, at the kth iteration,
an approximation xk of the solution of (4) is formed by imposing that

xk ∈ K
(1)
k and rk = b−Axk ⊥ K

(2)
k , (7)

where K(i)
k = Kk(Ci, di) = span{di, Cidi, . . . , Ck−1

i di}, Ci ∈ RN×N , di ∈ RN ,
i = 1, 2. Usually the matrices Ci and the vectors di depend on A and b. Formu-
lation (7) intrinsically assumes that the initial guess x0 is the zero vector. Moreover,

in the following we always assume that dim(K(i)
k ) = k, i = 1, 2.

2.1 The Arnoldi algorithm and the GMRES method

The Arnoldi algorithm [22, Chapter 6] underlies many of the most used Krylov methods
for linear systems, and it is employed to compute an orthonormal basis for the space
Kk(A, b); more precisely, it leads to the decompositions

AWk = WkHk + hk+1,kwk+1e
T
k

= Wk+1H̄k, (8)

where Wk+1 = [Wk wk+1] ∈ RN×(k+1) has orthonormal columns that span the Krylov
subspace Kk+1(A, b), ek is the kth element of the canonical basis of Rk (here and in the
following the dimension should be clear from the contest), and w1 = Wk+1e1 = b/ ‖b‖2.
In the above relations, both Hk ∈ Rk×k and H̄k ∈ R(k+1)×k are upper Hessenberg
matrices; Hk is obtained by discarding the last row of H̄k. The Arnoldi algorithm
terminates as soon as hk+1,k = 0, which means that an invariant subspace of A has
been computed.

Taking K(i)
k = Kk(A, b), i = 1, 2 in (7), the Arnoldi algorithm can be used to construct

approximations of the solution of (4) in the following way (Full Orthogonalization
Method, FOM)

xk = Wkyk, where yk = (Hk)
−1ck , ck = ‖b‖e1 ∈ Rk. (9)

Besides FOM, the most highly-regarded Krylov subspace method based on the Arnoldi
algorithm is the GMRES [22, Chapter 6], which is a projection method having

K(1)
k = Kk(A, b) and K(2)

k = AKk(A, b). At the kth iteration, the GMRES prescribes to
take as approximate solution of (4) the vector

xk = Wkyk, where yk = arg min
y∈Rk

‖ ‖b‖e1︸ ︷︷ ︸
ck∈Rk+1

−H̄ky‖. (10)

We note that the above projected problem is derived by taking into account relation
(8). In the following, we employ the matrix relation

AWk = Wk+2H̄
0
k , where H̄0

k =

[
H̄k

0

]
∈ R(k+2)×k, (11)
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which is basically equivalent to (8). Indeed, the solution of the least squares problem

min
y∈Rk

‖ ‖b‖e1︸ ︷︷ ︸
ck+1∈Rk+2

−H̄0
ky‖ , (12)

solves (10), and viceversa.

Hybrid methods formulated with respect to the Arnoldi algorithm and Tikhonov reg-
ularization compute an approximate solution of the form xk,λ = Wkyk,λ, where

yk,λ = arg min
y∈Rk

{
‖ck − H̄ky‖2 + λ2‖y‖2

}
; (13)

a suitable regularization parameter λ has to be set at each iteration (cf. [7]).

2.2 The Lanczos bidiagonalization algorithm and the LSQR method

The Lanczos (Golub-Kahan) bidiagonalization algorithm [8] is employed to compute
two matrices Wk, Zk ∈ RN×k having orthonormal columns, and being such that
R(Wk) = Kk(ATA,AT b) and R(Zk) = Kk(AAT , b). At the kth step, the Lanczos
bidiagonalization algorithm can be expressed in matrix form by the following relations

ATZk = WkB
T
k ,

AWk = Zk+1B̄k,

where both Bk ∈ Rk×k and B̄k ∈ R(k+1)×k are lower bidiagonal; Bk is obtained by
deleting the last row of B̄k; if we denote the diagonal elements of B̄k by ζi, and its
sub-diagonal elements by νi+1, i = 1, . . . , k, the Lanczos bidiagonalization algorithm
terminates as soon as ζi = 0 or νi+1 = 0. The most highly-regarded Krylov subspace
method based on the Lanczos bidiagonalization algorithm is the LSQR [21, 20], which

is a projection method having K(1)
k = Kk(ATA,AT b) and K(2)

k = AKk(ATA,AT b). At
the kth iteration, the LSQR prescribes to take as approximate solution of (4) the vector

xk = Wkyk, where yk = arg min
y∈Rk

‖ ‖b‖e1︸ ︷︷ ︸
ck∈Rk+1

−B̄ky‖ . (14)

Hybrid methods formulated with respect to the Lanczos bidiagonalization algorithm
and Tikhonov regularization compute an approximate solution of the form
xk,λ = Wkyk,λ, where

yk,λ = arg min
y∈Rk

{
‖ck − B̄ky‖2 + λ2‖y‖2

}
; (15)

a suitable regularization parameter λ has to be set at each iteration (cf. [17] and the
references therein).
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3 Inheritance of the Discrete Picard Condition

As stated in the Introduction, the DPC holds for (4) if∣∣uTi b∣∣ = O
(
i−ασi

)
, α > 1/2, i→ N →∞.

In the following, we theoretically prove the inheritance of the DPC by backward induc-
tion. We assume that both the Arnoldi and the Lanczos bidiagonalization algorithms do
not break down until step N . This is not a restrictive assumption: indeed, if N∗ is the
smallest integer such that hN∗+1,N∗ = 0 (in the Arnoldi case), ζN∗ = 0 or νN∗+1 = 0 (in
the Lanczos bidiagonalization case), all the following derivations are still valid, provided
that N is replaced by N∗. We use the notation [z]i to denote the ith component of the
vector z.

3.1 Methods based on the Arnoldi algorithm

Let us consider the SVD of the matrix H̄0
k in (12), given by

H̄0
k = U0

kΣkV
T
k , U0

k ∈ R(k+2)×k, Σk ∈ Rk×k, Vk ∈ Rk×k, (16)

where (U0
k )TU0

k = Ik, (Vk)
TVk = Vk(Vk)

T = Ik, and Σk = diag(σ
(k)
1 , . . . , σ

(k)
k ). We

remark that the SVD of H̄k is closely linked to (16): indeed,

H̄k = UkΣkV
T
k , where Uk ∈ R(k+1)×k and U0

k =

[
Uk
0

]
. (17)

In the following, we will extensively exploit an update formula for the SVD given in
[2]. Since H̄0

k is obtained by deleting the last column of H̄k+1, i.e.,

H̄k+1 =
[
H̄0
k , h̄k+1

]
∈ R(k+2)×(k+1),

we can state that
U0
k = Uk+1Xk+1, (18)

where Uk+1 is the matrix of the left singular values of H̄k+1. The ith column x
(k+1)
i of

Xk+1 ∈ R(k+1)×k is computed by taking

x
(k+1)
i =

1∥∥∥∥(D(k+1)
i

)−1
w(k+1)

∥∥∥∥
(
D

(k+1)
i

)−1
w(k+1) ∈ Rk+1, i = 1, . . . , k , (19)

where
D

(k+1)
i = (Σk+1)2 − (σ

(k)
i )2Ik+1 ∈ R(k+1)×(k+1)

and Σk+1 is the diagonal matrix of the singular values of H̄k+1. Therefore, D
(k+1)
i is

diagonal, and

w(k+1) =
1

‖h̄k+1‖
UTk+1h̄k+1 ∈ Rk+1 . (20)
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Without loss of generality, in the following we assume that the component [w(k+1)]j ,

j = 1, . . . , k + 1, of w(k+1) (20) is different from zero, and that the σ
(k+1)
j ’s,

k = 1, . . . , N − 1, are distinct: this implies that the updated singular values σ
(k)
j ’s are

distinct. If this is not the case, then we have to perform deflation and we basically act on
the nonzero components of w(k+1) as we describe below

(see again [2] for the details). The singular values σ
(k+1)
j , j = 1, . . . , k + 1, and σ

(k)
j ,

j = 1, . . . , k, are linked by the so-called (strict) interlacing property [9, §8.6.1]

σ
(k+1)
1 > σ

(k)
1 > · · · > σ

(k+1)
i > σ

(k)
i > σ

(k+1)
i+1 > · · · > σ

(k)
k > σ

(k+1)
k+1 . (21)

Since the singular values of HN and A obviously coincide (i.e., σ
(N)
j = σj), thanks to

(21) one has

σj − σ(k+1)
j < σj − σ(k)

j ,

which shows that the convergence σ
(k)
j → σj for k → N is monotone. The next result

requires that the convergence is very fast; even if a theoretical analysis of this behavior
is still missing, experimentally it is clear. Figure 1 compares the behavior of the singular

values µi’s (of the continuous operator), σi’s, σ
(50)
i ’s, σ

(30)
i ’s, and σ

(10)
i ’s for a couple of

test problems.

(a) (b)
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Figure 1: Behavior of the continuous singular values, the singular values of A, and the
singular values of the matrices H̄50, H̄30, and H̄10. The considered test problems are
deriv2 (frame (a)) and shaw (frame (b)). Just the values above 10−14 are displayed.

Theorem 1. Let (4) satisfy the DPC. Assume that the rate of convergence of {σ(k)
i }k

is such that
k+1∑
j=1

[
x

(k+1)
i

]
j
O(j−ασ

(k+1)
j ) = O(i−ασ

(k+1)
i ) (22)

for a given α > 1/2. Then the projected least square problem (10) satisfies the DPC for
k = 1, . . . , N .

Proof. Our goal is to prove that ‖yk‖ ≤ C ′ < ∞ independently of N , and for k ≤ N .
We proceed by backward induction. The DPC obviously holds for k = N , since
xN = WNyN solves (4). Next, let us assume that (12) satisfies the DPC for
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2 ≤ k + 1 ≤ N , and let us prove that (12) satisfies the DPC for k. Thanks to re-
lation (18), we can express the norm of the solution of (12) as

‖yk‖ = ‖(H̄0
k)†ck+1‖

= ‖Σ−1
k (U0

k )T ck+1‖
=

∥∥Σ−1
k XT

k+1U
T
k+1ck+1

∥∥
Thanks to the DPC, there exists α > 1/2 such that∣∣∣[UTk+1ck+1

]
j

∣∣∣ = O(j−ασ
(k+1)
j ) , j = 1, . . . , k + 1 ,

and hence

∣∣[Σ−1
k XT

k+1U
T
k+1ck+1

]
i

∣∣ =
1

σ
(k)
i

k+1∑
j=1

[
x

(k+1)
i

]
j

[
UTk+1ck+1

]
j

= O(i−α) , i = 1, . . . , k ,

where we have exploited (22). This concludes the proof.

Remark 2. The hypothesis (22) substantially means that each row of XT
k+1 is a dis-

cretization of the Delta function, or, in other words, that Xk+1 must be close to the
identity matrix. Despite this may appear as a very strong hypothesis, in practice we

can easily see that it is true thanks to the fast convergence of {σ(k)
i }k. Indeed, defining

the quantities

ε
(k+1)
ij := (σ

(k+1)
j )2 − (σ

(k)
i )2, j = 1, . . . , k + 1, (23)

we can write

[
x

(k+1)
i

]2

i
=

k+1∑
j=1

[
w(k+1)

]2
j

ε
(k+1)2
ij

−1
[
w

(k+1)
i

]2

i

ε
(k+1)2
ii

=

1 +
ε

(k+1)2
ii[
w(k+1)

]2
i

k+1∑
j=1
j 6=i

[
w(k+1)

]2
j

ε
(k+1)2
ij


−1

.

In this way,
∣∣∣[x(k+1)

i ]i

∣∣∣ ' 1 provided that ε
(k+1)
ii /ε(k+1)

ij ' 0 for i 6= j, which is true if the

convergence of {σ(k)
i }k is fast, and if σ

(k)
i and σ

(k+1)
j are well-separated for i 6= j. As a

clear consequence of ‖x(k+1)
i ‖ = 1 (see (19)),

∣∣∣[x(k+1)
i ]j

∣∣∣ ' 0 for i 6= j. This allows to

write
x

(k+1)
i = ei − δ(k+1)

i (24)

where

0 ≤ [δ
(k+1)
i ]i ≤

ε
(k+1)2
ii[
w(k+1)

]2
i

k+1∑
j=1
j 6=i

[
w(k+1)

]2
j

ε
(k+1)2
ij

(25)
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and
k+1∑
j=1
j 6=i

[
δ

(k+1)
i

]2

j
≤ 2

[
δ

(k+1)
i

]
i
. (26)

To support the above derivations, in Figure 2 we show the behavior of the singular
values of the matrices H̄k (8) when two consecutive steps of the Arnoldi algorithm
applied to the test problem baart are performed. We also display the structure of the
matrix Xk+1 appearing in (18). Referring to (21), for this test problem it is evident

that σ
(k)
i ' σ(k+1)

i , i = 1, . . . , k. Referring to (24), we can clearly see that, as far as the
singular values are well-separated, the k columns of the matrices Xk+1 are essentially
the first k columns of the identity matrix Ik+1: for instance, this is the case for X6.
However, as soon as some clustering of the singular values happens (typically, the
clustered singular values are the smallest ones), the columns of Xk+1 corresponding to
the clustered singular values are not anymore comparable to the columns of Ik+1. This
behavior is particularly evident when we consider the k = 19 case, where we have a
cluster starting from the 11th singular value. Correspondingly, the ith element of the
ith column of Xk+1, 11 ≤ i ≤ 19, is of the same order as its neighbors. In Figure 3 we
give some examples of Picard plots for the projected problems (10) associated to the
baart test problem. In this setting, by Picard plot we mean a graph of the Fourier

coefficients |(u(k)
i )T ck| and of the singular values σ

(k)
i versus i (where i = 1, . . . , k and

k = 1, . . . , N). Looking at the Picard plot is perhaps the most immediate way to assess
if the considered problem satisfies the DPC (i.e., the DPC is satisfied if the numerically
nonzero Fourier coefficients lie approximately below the numerically nonzero singular
values). Figures 4 and 5 are analogous to Figure 2, except that the test problems
shaw and deriv2 are taken into account, respectively. For the shaw test problem we
know that the coefficient matrix has σi ' exp(−2i), i = 1, . . . , N (see Figure 1) and,
therefore, it is severely ill-posed (cf. [14, Chapter 1]). Looking at the plots in the first

row of Figure 4 we can state that, typically, σ
(k)
i ' σ

(k+1)
i , i = 1, . . . , k. In this case

(and, more in general, whenever an analytical expression of the decay of the singular
values is available), we can derive more precise estimates in Theorem 1 and Remark 2.

For instance, assuming that σ
(k+1)
i ' exp(−2i), i = 1, . . . , k + 1, we can consider the

first-order approximation

exp(−4i)︸ ︷︷ ︸
(σ

(k+1)
i )2

− exp(−4(i+ ε̃i))︸ ︷︷ ︸
(σ

(k)
i )2

' 4 exp(−4i)ε̃i, ε̃i > 0, ε̃i ' 0,

which gives a more precise estimate for the quantities in (23). We again see that, as
soon as clustered singular values appear, Xk+1 is not anymore comparable to an identity
matrix. If we focus on frames (b’) and (c”), the 18th and the 19th columns of X20 are
not comparable to the 18th and 19th columns of I20; correspondingly, looking at frame

(b), σ
(20)
18 and σ

(20)
19 are clustered. We remark that σ

(20)
18 and σ

(20)
19 are the only clustered

singular values of H̄20; indeed, also the first singular values seem clustered, but we have
to take into account that they are displayed in logarithmic scale. Analogous remarks
hold for the deriv2 test problem: in this case, we know that the coefficient matrix has
σi ' (iπ)−2, i = 1, . . . , N (see again Figure 1) and, therefore, it is moderately ill-posed
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Figure 2: Test problem baart. (a) singular values of H̄6 and H̄5; (b) singular values
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Figure 3: Test problem baart: Picard plots for the kth projected problems computed
by the Arnoldi algorithm.
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(cf. again [14, Chapter 1]). Looking at the plots in the first row of Figure 5, we can

still state that, typically, σ
(k)
i ' σ

(k+1)
i , i = 1, . . . , k. Also in this case, assuming that

σ
(k+1)
i ' (iπ)−2, i = 1, . . . , k + 1, we can consider the first-order approximation

(iπ)−4︸ ︷︷ ︸
(σ

(k+1)
i )2

− ((i+ ε̃i)π)−4︸ ︷︷ ︸
(σ

(k)
i )2

' 4

π4
i−5ε̃i, ε̃i > 0, ε̃i ' 0,

which is still analogous to (23).

In [6, Corollary 3], the authors give an estimate on the norm of the GMRES residual
by assuming that the FOM inherits the DPC; more precisely, they prove that

‖rk‖ = O(k
3/2σk) . (27)

In this setting we can rigorously prove that the FOM inherits the DPC by employing
essentially the same arguments as Theorem 1. More precisely, in the transition from
the (k + 1)th to the kth FOM iteration, we delete the (k + 1)th column of Hk+1 so to
obtain H̄k, and we delete the (k+ 1)th row of H̄k so to obtain Hk. Just in this setting,
we will denote the SVDs of the involved matrices in the following way:

Hk+1 = Uk+1Σk+1V
T
k+1, H̄k = ŪkΣ̄kV̄

T
k , Hk = UkΣkV

T
k .

To estimate the SVD of Hk, one should twice apply an update formula that is analogous
to (18), and that is still derived in [2]. In particular: recalling that H̄k = Hk+1[Ik , 0]T ,
going from Hk+1 to H̄k we get

Ūk = Uk+1X̄k+1 ;

recalling that Hk = [Ik , 0]H̄k, going from H̄k+1 to Hk we get

Uk = [Ik , 0]ŪkΣ̄kXkΣ
−1
k .

At this point, the vector yk in (9) is such that

‖yk‖ =
∥∥Σ−1

k UTk ck
∥∥ =

∥∥∥∥∥∥∥∥∥Σ−2
k XT

k Σ̄kŪ
T
k

[
Ik
0

]
ck︸ ︷︷ ︸

ck+1

∥∥∥∥∥∥∥∥∥ =
∥∥Σ−2

k XT
k Σ̄kX̄

T
k+1U

T
k+1ck+1

∥∥ ,
Let us assume that[

XT
k z̄
]
j

= [z̄]j ∀z̄ ∈ Rk, and
[
X̄T
k+1

¯̄z
]
j

= [¯̄z]j ∀¯̄z ∈ Rk+1;

these assumptions are analogous to (22), and can be justified as in Remark 2. Since

there exists α > 1/2 such that
∣∣∣[UTk+1ck+1

]
j

∣∣∣ = O(j−ασ
(k+1)
j ), we get

∣∣∣[Σ−2
k XT

k+1Σ̄kX̄
T
k+1U

T
k+1ck+1

]
j

∣∣∣ =
1

(σ
(k)
j )2

σ̄
(k)
j O(j−ασ

(k+1)
j ) .

14



(a) (b)

10
−20

10
−15

10
−10

10
−5

10
0

10
5

 

 

σ
i

(20)

σ
i

(21)

10
−15

10
−10

10
−5

10
0

10
5

 

 

σ
i

(20)

σ
i

(20)

(a’) (b’)

Figure 6: Test problem baart. (a) singular values of H21 and H̄20; (b) singular values
of H̄20 and H20; (a’) matrix X̄21; (b’) matrix X20.

Thanks to the interlacing property of the singular values (which is twice applied: to
Hk+1 and H̄k, and to H̄k and Hk), we can conclude that ‖yk‖ < ∞. In Figure 6 we
display the interlacing property of the singular values, and the matrices X̄k+1 and Xk

for k = 20 and the test problem baart.

Alternatively, under stricter assumptions, in the following proposition we give a new
estimate on the norm of the GMRES residual without relying on the behavior of the
FOM solution.

Proposition 3. Assume that (4) satisfies the DPC, and let rk = b − Axk be the kth
residual of GMRES applied to (4). Assume that the condition (24) holds. Then there
exists α > 1/2 such that

‖rk‖ = O
(

(k + 1)−ασ
(k+1)
k+1

)
+O

(∥∥∥δ(k+2)
k+1

∥∥∥) (28)

where the components of δ
(k+2)
k+1 are analogous to (25), (26).

Proof. Thanks to relations (8) and (10),

rk = Wk+1

(
ck − H̄kyk

)
= Wk+1

(
Ik+1 − H̄kH̄

†
k

)
ck

= Wk+1

(
Ik+1 − UkUTk

)
ck, (29)

where Uk is the matrix appearing in (17). If we consider the complete SVD of H̄k,
given by

H̄k = ÛkΣ̂kV
T
k , Ûk ∈ R(k+1)×(k+1), Σ̂k+1 ∈ R(k+1)×k,

we have that Ûk = [Uk , u
(k)
k+1]. Therefore, equality (29) can be rewritten as

rk = Wk+1u
(k)
k+1(u

(k)
k+1)T ck. Thanks to the orthonormality of the columns of Wk+1

15



and u
(k)
k+1, we immediately get

‖rk‖ =
∣∣∣(u(k)

k+1)T ck

∣∣∣ . (30)

Let us consider the reduced and complete SVDs of the matrices H̄0
k (defined in (11))

and H̄k+1, given by

H̄0
k = U0

kΣkV
T
k = Û0

k Σ̂0
kV

T
k and H̄k+1 = Uk+1Σk+1V

T
k+1 = Ûk+1Σ̂k+1V

T
k+1,

respectively. We remark that, in the above equalities,

U0
k =

[
Uk
0

]
, U0

k = Û0
k

 Ik
0
0

 , Uk+1 = Ûk+1

[
Ik+1

0

]
. (31)

Analogously to (18), let us consider Xk+1 = UTk+1U
0
k ∈ R(k+1)×k, and

X̂k+1 := ÛTk+1Û
0
k ∈ R(k+2)×(k+2). We can immediately state that X̂k+1 is orthogo-

nal and, directly from (31),

Xk+1 = [Ik+1 , 0] X̂k+1

 Ik
0
0

 .
At this point, we can express u

(k)
k+1 in the following way:

u
(k)
k+1 = [Ik+1 , 0] Û0

kek+1 = [Ik+1 , 0] Ûk+1X̂k+1ek+1 = [Ik+1 , 0] Ûk+1x̂
(k+1)
k+1 , (32)

where x̂
(k+1)
k+1 is the (k+ 1)th column of X̂k+1. Thanks to (24) and the orthogonality of

X̂k+1, we can write∣∣∣x̂(k+1)
i

∣∣∣ = ei − δ(k+2)
i ∈ Rk+2, for 1 ≤ i ≤ k + 1 , (33)

where the components of δ
(k+2)
i are defined as in (25) and (26). Directly from (30),

thanks to relations (32) and (33), the Cauchy-Schwarz inequality, and Theorem 1, we
can conclude that

‖rk‖ =
∣∣∣(u(k)

k+1)T ck

∣∣∣ =

∣∣∣∣∣∣∣∣∣(x̂
(k+1)
k+1 )T ÛTk+1

[
Ik
0

]
ck︸ ︷︷ ︸

ck+1

∣∣∣∣∣∣∣∣∣
≤

∣∣∣eTk+1Û
T
k+1ck+1

∣∣∣+
∣∣∣(δ(k+2)

k+1 )T ÛTk+1ck+1

∣∣∣
≤

∣∣∣(û(k+1)
k+1 )T ck+1

∣∣∣+ ‖δ(k+2)
k+1 ‖‖b‖

= O
(

(k + 1)−ασ
(k+1)
k+1

)
+O

(∥∥∥δ(k+2)
i

∥∥∥) , α > 1/2 ,

where û
(k+1)
k+1 is the (k + 1)th column of Ûk+1.
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We remark that the assumptions of Proposition 3 hold for all the considered test prob-
lems (see Figures 2, 4, and 5). Moreover, the new estimate (28) is more accurate than
(27). In Figure 7 we consider the ideally exact systems (4), we perform 30 iterations of
the Arnoldi algorithm, and we compare the values of ‖rk‖ with the estimates (27) and

(28); in the latter we take α = 1/2, and δ
(k+2)
k+1 = 0.

baart shaw wing

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

10
5

 

 

||r
k
||

||r
k
||,  (3.12)

||r
k
||,  (3.13)

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

10
5

 

 

||r
k
||

||r
k
||,  (3.12)

||r
k
||,  (3.13)

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

 

 

||r
k
||

||r
k
||,  (3.12)

||r
k
||,  (3.13)

Figure 7: History of the GMRES residuals for three ideally exact test problems. The
asterisks mark ‖rk‖, while the circles mark the estimates of Proposition 3.

When the right-hand side vector of problem (4) is perturbed, i.e., when b = bex + e (e
Gaussian white noise), relation (28) is not valid anymore. The reason behind this is

that, when σ
(k+1)
k+1 < ‖e‖, (u

(k+1)
k+1 )T ck ' ‖e‖: this typically happens when a few, say k̄,

iterations of the GMRES have been performed. Therefore, with derivations analogous
to the ones of Proposition 3, in the perturbed case we can conclude that

‖rk‖ = O(‖e‖) , k ≥ k̄ . (34)

Estimate (34) agrees with the ones derived in [6]. In Figure 8 we illustrate the
above estimate for some common test problems affected by additive noise e such that
‖e‖/‖bex‖ = 10−2 and ‖e‖/‖bex‖ = 10−3; we perform 60 iterations of the Arnoldi algorithm,
which is simply implemented by standard Gram-Schmidt orthogonalization. As exten-
sively explained in [6], (34) is particularly useful when a stopping criterion for problem
(10) has to be set, or when a parameter selection strategy for problem (13) has to be
considered.

3.2 Methods based on the Lanczos bidiagonalization algorithm

When analyzing the LSQR method, we can adopt a strategy similar to the one exploited
to prove
Theorem 1; namely, referring to (14), we can consider the relations between the SVD
of the matrix B̄0

k given by

B̄0
k =

[
B̄k
0

]
= U0

kΣkV
T
k ∈ R(k+2)×k,

and the SVD of the matrix B̄k+1 = Uk+1Σk+1V
T
k+1. As in the GMRES case, we should

assume that the columns of the matrix Xk+1 = UTk+1U
0
k ∈ R(k+1)×k behave as described
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Figure 8: History of the GMRES relative residuals ‖rk‖/‖b‖ for three test problems
corrupted by different noises. The noise levels ‖e‖/‖bex‖ are 10−2 and 10−3, and they
are highlighted by two horizontal lines. The residuals relative to the more corrupted
problems are marked by asterisks, the residuals relative to the less corrupted problems
are marked by squares.

in (24). In Figure 9 we show some examples of the interlacing property of the singular
values, and of the behavior of the matrix Xk+1, for two consecutive iterates of LSQR
applied to the baart test problem.

However, in the LSQR case, we can prove the inheritance of the DPC in a much simpler
way (see also [7]). Basically, we exploit the fact that the LSQR is mathematically
equivalent to the CGLS method, and the property that the norms of the approximate
solutions computed by CGLS are increasing (cf. [14, Chapter 6]).

Theorem 4. If (4) satisfies the discrete Picard condition, then the projected least
squares problems (14) satisfy the discrete Picard condition for k = 1, . . . , N .

Proof. Since the solutions of (14) are such that ‖xk‖ = ‖yk‖ ≤ ‖yk+1‖ = ‖xk+1‖,
k = 1, . . . , N − 1, we can conclude that

‖y1‖ ≤ ‖y2‖ ≤ · · · ≤ ‖yN‖ = ‖x‖ ≤ C <∞,

where x is the solution of (4).

In Figure 10 we give some examples of Picard plots for the projected problems (14)
associated to the baart test problem.

Concerning the behavior of the residual vector, we can again repeat the reasoning
exploited in Proposition 3 and conclude that, if (4) satisfies the DPC, then the residual
associated to the approximate solutions xk in (14) are analogous to (28); if the right-
hand side vector of (4) is corrupted, then ‖rk‖ = O(‖e‖). The latter estimate agrees
with the one given in [16], where the authors essentially propose to recover ‖e‖ by
evaluating the norm of the LSQR residual. Some examples about the behavior of the
LSQR residuals are provided in Figure 11, where we display the residuals relative to
both the exact and the corrupted problems (the noise level ‖e‖/‖bex‖ is 10−2), and we
perform 20 iterations of the Lanczos bidiagonalization algorithm. As in the Arnoldi
case, these estimates can be employed when a stopping criterion for problem (14) has
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Figure 10: Test problem baart: Picard plots for the kth projected problems computed
by the Lanczos bidiagonalization algorithm.
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to be set, or when a parameter selection strategy for problem (15) has to be considered.

baart shaw wing
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Figure 11: History of the LSQR residuals. The residuals of the ideally exact problems
are marked by asterisks, the last singular value of the matrix B̄k+1, k = 1, . . . , 20 is
marked by a circle, the relative residuals of the corrupted problems are marked by
squares, the noise level is highlighted by an horizontal line.

In the LSQR case, some theoretical estimates have been derived to prove that the
biggest singular values of A are well approximated by the biggest singular values of
B̄k during the early iterations of the Lanczos bidiagonalization algorithm (cf. [1]
and the references therein): thanks to this fact, we can formally justify the semi-

convergence phenomenon. Indeed, when k is small, i.e., when σ
(k)
i > ‖e‖ for all

i = 1, . . . , k, the Fourier coefficients are such that |(u(k)
i )T ck| ' i−ασ

(k)
i , α > 1/2,

and the norm of the vector yk is finite; in other words, as far as k is small, a sort of

DPC holds. However, if at the k̄th iteration σ
(k̄)
i ≤ ‖e‖ for some i = 1, . . . , k̄, then the

corresponding Fourier coefficients are such that |(u(k̄)
i )T ck̄| = O(‖e‖). When computing

‖yk̄‖, i.e., when considering the sum of the components
(

(u
(k̄)
i )T ck̄

)2

/(σ
(k̄)
i )2, i = 1, . . . , k̄,

the contribution of the Fourier coefficients laying around ‖e‖ dominates, and the pro-
jected solution begins to diverge from the exact one. Furthermore, we can qualitatively
explain why LSQR is a regularization method (in the classical sense recalled in the In-
troduction). Indeed, LSQR can deliver meaningful solutions whenever all the singular
values of the projected matrices lie above the quantity ‖e‖: as ‖e‖ approaches zero,
an increasing number of iterations can be performed, and the corresponding projected
solutions are limited because a sort of DPC is satisfied above ‖e‖. Eventually, when
‖e‖ is numerically zero, N iterations of the LSQR can be performed, and the computed
solution coincides with the exact one. The same derivations cannot be applied to the
GMRES case, since no estimate about the approximation of the singular values has
been proved, yet. From many numerical experiments (cf. for instance [7]), we learn
that the biggest singular values of A are well approximated by the biggest singular
values of H̄k during the first iterations of the Arnoldi algorithm. If we assume this
behavior of the singular values, then we can extend the above considerations to the
Arnoldi case.
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4 Conclusions

In this paper we proved that the DPC is inherited when the GMRES and the LSQR
methods are employed to solve linear problems satisfying the DPC: to do this we
exploited some general SVD update formulas. For this reason we believe that the same
reasoning can be applied to other Krylov subspace methods based on the Arnoldi and
Lanczos bidiagonalization algorithms (including their range-restricted variants), and
can be extended to other generic projection methods (for instance, the ones based on
the nonsymmetric Lanczos algorithm, [22, Chapter 7]). Starting from the inheritance
of the DPC, other properties of the GMRES and LSQR methods have been recovered:
more precisely, we revisited some estimates on the behavior of the residuals, and we gave
a further justification of the semiconvergence phenomenon. We believe that, thanks
to the inheritance of the DPC, similar properties can be proved for a wider class of
projection methods.
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