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Some mathematician has said pleasure lies not in discovering truth,

but in seeking it.

(L. N. Tolstoy)





Abstract

This thesis presents a general approach to solve numerically parabolic In-

verse Problems, whose underlying mathematical model is discretized using

the Finite Element method. The proposed solution is based upon an adap-

tive parametrization and it is applied specifically to a geometric conduction

inverse problem of corrosion estimation and to a boundary convection in-

verse problem of pollution rate estimation, as explained below.

In Part I the convection-diffusion-reaction equation and the heat equation

are presented. These models are used to describe both a pollutant being

transported along a stream and the temperature field of a material. In

chapter 3 convection-dominated problems are analyzed: it is well known

that this kind of equations need special care when discretized by using

the Finite Element method. In section 3.6 a novel discretization strategy,

originally presented in (59), is analyzed and substantially improved: the

so called Best Approximation Weighted Residuals (BAWR) method (20).

It is formulated in a Petrov-Galerkin context: the corresponding weighting

function space is built such that the BAWR solution is optimal in the L2

norm. It is demonstrated that it performs substantially better, compared to

the Galerkin method. Moreover, it is a parameter-free method and, using a

localization technique for the weighting functions, it is also computationally

efficient.

Since in general problems from realistic situations have a large amount of

degrees of freedom and consequently a high computational cost, in Part II,

Model Order Reduction is considered. A largely used approach, adopted

to solve also problems describing complicated dynamics, is the Proper Or-

thogonal Decomposition (POD). This method is highly problem dependent,



since it is based upon the Singular Value Decomposition of a matrix of tra-

jectories. In section 6.6 the POD reduction of Navier Stokes equations is

studied.

Finally Part III is about computational parabolic Inverse Problems. In

particular the attention is focused on two problems, which are both solved

estimating a vector of parameters, using a particular Gauss Newton ap-

proach. The first one consists in corrosion estimation: it is solved using an

Infrared Thermographic Inspection. More precisely, supposing to know the

field of temperature on a face of the material, the profile of corrosion of the

unknown opposite face is estimated using a novel Predictor-Corrector strat-

egy, originally presented in (155) and here substantially improved (138).

The second problem consists in a pollution rate estimation: the pollutant is

released in a fluid through a part of the boundary and its concentration is

modeled by the convection-diffusion-reaction equation. Supposing to know

the concentration at the outflow, the inverse problem consists both in lo-

calizing the part of the boundary where immision occurs and in estimating

its intensity. It is solved with a novel algorithm, which uses both an adap-

tive parametrization and time localization (139). To solve the problem also

POD reduction is studied.



Abstract

In questa tesi viene presentato un approccio numerico volto alla risoluzione

di problemi inversi parabolici, basato sull’utilizzo di una parametrizzazione

adattativa. Come descritto in seguito, l’algoritmo risolutivo viene descritto

per due specifici problemi: mentre il primo consiste nella stima della cor-

rosione di una faccia incognita del dominio, il secondo ha come scopo la

quantificazione di inquinante immesso in un fiume.

La parte I della tesi si apre con la presentazione sia dell’equazione di con-

vezione - diffusione - reazione sia dell’equazione del calore: entrambe sono

usate nel seguito per descrivere rispettivamente un inquinante trasportato

dalla corrente e la temperatura di un materiale. Nel capitolo 3 invece ven-

gono analizzati problemi dominati dalla convezione: è risaputo che questo

tipo di equazioni necessitano di particolare attenzione quando sono discretiz-

zate usando il metodo degli Elementi Finiti. Nella sezione 3.6 una nuova

strategia, originariamente presentata in (59), viene analizzata e perfezion-

ata: essa è il metodo Best Approximation Weighted Residuals (BAWR) (20).

In un contesto di tipo Petrov-Galerkin, lo spazio di funzioni peso è costruito

in modo che la soluzione BAWR sia ottimale nella norma L2. E’ dimostrato

che questo metodo dà risultati sostanzialmente migliori rispetto a quello di

Galerkin. Inoltre non è parametrico e usando una tecnica di localizzazione

delle funzioni di peso, è anche computazionalmente efficiente.

Poichè in genere la discretizzazione numerica di problemi che descrivono

situazioni reali hanno molti gradi di libertà, e quindi elevato costo com-

putazionale, nella parte II della tesi viene considerata la Riduzione di Mo-

dello. Un metodo largamente usato, anche per problemi che descrivono

dinamiche complesse, è la Proper Orthogonal Decomposition (POD). Tut-

tavia essa è strettamente legato al problema, poichè si basa sulla decompo-



sizione ai valori singolari di una matrice di traiettorie. Nella sezione 6.6 è

considerata la riduzione POD delle equazioni di Navier Stokes.

Per concludere, la parte III della tesi riguarda problemi inversi computazio-

nali parabolici. Più nel dettaglio, due particolari problemi vengono analiz-

zati e risolti stimando un vettore di parametri, mediante un approccio di

tipo Gauss Newton. Il primo consiste nella stima della corrosione. Esso è

risolto usando un test termografico all’infrarosso: supponendo di conoscere

il campo di temperatura corrispondente ad una faccia del dominio, viene

stimato il profilo di corrosione che descrive la faccia opposta, che è sup-

posta incognita. L’algoritmo risolutivo consiste nell’utilizzo di una strategia

Predictor-Corrector, originariamente presentata in (155) e qui perfezionata

(138). Il secondo problema consiste nella stima della quantità di inquinante

rilasciato in un fiume attraverso una parte del dominio. La sua concen-

trazione è modellata usando l’equazione di convezione-diffusione-reazione.

Supponendo che essa sia nota all’outflow, il problema inverso consiste sia nel

localizzare la parte del bordo del dominio dove avviene l’immisione sia nella

stima della quantità di inquinante rilasciata. L’algoritmo risolutivo utilizza

sia una parametrizzazione adattativa sia la localizzazione nel tempo (139).

Nell’analisi del problema è studiata anche la riduzione POD.
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1

Introduction

The beauty of mathematical analysis is the elegant description of physical phenomena

through the definition of rigorous mathematical models that summarize their essential

aspects using partial differential equations (PDE’s). Given a model problem, first of

all it is important to study its well-posedness: suitable functional spaces are chosen to

prove the existence of a solution and, if possible, its uniqueness.

Usually it is difficult to find an explicit analytical solution of the problem: this

is the reason why numerical techniques are so important: they could be adopted to

approximate the infinite dimensional solution space, using ad hoc algorithms, like Finite

Differences (FD), Spectral Methods (SM), Finite Elements (FE) and Finite Volumes

(FV).

This thesis focuses on parabolic mathematical models coming from applications and

discretized using FE. These kind of models are the starting point to describe more

complicate ones, called Inverse Problems (IP), which in general are not well-posed and

must be solved adopting regularization techniques. In this thesis a solution approach is

presented, based upon the Gauss Newton method, to solve both a geometric conduction

inverse problem of corrosion estimation and a boundary convection inverse problem of

pollution rate estimation.

Since in general problems from realistic situations have a large amount of degrees

of freedom and consequently a high computational cost, also Model Order Reduction

(MOR) techniques are studied.

1



1. INTRODUCTION

1.1 Thesis outline

In more detail, Part I of this thesis introduces the parabolic models which are consid-

ered in the following parts. First of all in chapter 9 the convection-diffusion-reaction

equation is analyzed. It may model both the concentration of a pollutant being trans-

ported by a fluid and the temperature of a material, as a particular case. In chapter

3 convection-dominated problems are analyzed: since the FE method could present

spurious oscillations, stabilization methods are presented. Moreover a novel discretiza-

tion strategy, originally presented in (59), is analyzed and substantially improved: the

so called Best Approximation Weighted Residuals (BAWR) method (20). In chapter

4 incompressible Navier-Stokes equations are presented: they model the motion of an

incompressible viscous flow. The well-posedness of the problem is discussed and its FE

discretization is briefly described.

The second part of this thesis presents MOR techniques: discretizing PDE’s models

describing real problems means solving high dimensional algebraic systems. MOR

techniques tries to reduce their dimensions, keeping as much information as possible. A

largely used approach is to project the original system on a suitable subspace, the choice

of which characterizes different reduction methods. In chapter 5 a general overview of

linear and nonlinear strategies is presented. In this thesis we will focus on Proper

Orthogonal Decomposition (POD), based upon a Singular Value Decomposition (SVD)

of a matrix of trajectories of the unreduced model: this strategy is presented in chapter

6.Then the reduction of Navier Stokes equations is studied.

Finally, the third part is about parabolic inverse problems, which can be described

as situations where the answer is known, but not the question, or where the results,

or consequences are known, but not the cause. A general introduction to these kind of

problems is given in Chapter 7. In the following both a geometric conduction inverse

problem of corrosion estimation and a boundary convection inverse problem of pollution

rate estimation will be presented: the solution strategy consists in estimating a vector

of parameters using a Gauss Newton algorithm.

The corrosion estimation problem is described in chapter 8. It is based upon an

Infrared Thermographic Inspection: the known surface is heated with a flash, and ex-
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1.1 Thesis outline

perimental temperatures are collected through a thermographic camera to reconstruct

the eventual corrosion on the opposite unknown surface, as drawn in figure 1.1. This

Figure 1.1: Infrared thermographic inspection: the known surface is heated with a flash,

and experimental temperatures are collected through a thermographic camera.

inverse problem is based upon the heat equation and it is solved using a novel Predictor-

Corrector strategy, originally presented in (155) and here substantially improved (138).

The problem of pollution rate estimation introduced in chapter 9 is described by

the convection-diffusion-reaction model: given the concentration at the outflow, the

problem consists both in localizing the part of the boundary where immision occurs and

in estimating it, as depicted in figure 1.2. To solve this inverse problem a novel algorithm

Figure 1.2: Given the concentration at the outflow, localize the immision boundary and

quantify the concentration put in.

is formulated, considering both adaptive parametrization and time localization (139).
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1. INTRODUCTION

The model can be generalized describing the velocity field of the fluid with Navier-

Stokes equations, as briefly described in chapter 9. For the pollution problem also

POD reduction is considered, to decrease its computational cost.

1.2 Thesis contributions

In this thesis a new stabilization method for convection dominated problems, the BAWR

strategy, originally presented in (59), is analyzed and substantially improved (20).

The corrosion estimation problem is solved with a novel strategy, the Predictor-

Corrector method, originally presented in (155) and here substantially improved (138).

Moreover also for the pollution rate estimation problem a novel algorithm is presented,

based upon both the adaptive parametrization and time localization (139). To solve

this inverse problem also the POD reduction is studied.
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Part I

Parabolic models
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[The universe] cannot be read until we have learnt the language and

become familiar with the characters in which it is written. It is written in

mathematical language, and the letters are triangles, circles and other

geometrical figures, without which means it is humanly impossible to

comprehend a single word.

(G. Galilei)

In this part, the following parabolic problems are introduced: the convection-

diffusion-reaction equation, the heat equation and the Navier-Stokes equation. The

mathematical problem is described and its Finite Element discretization is presented.

Moreover convection dominated problems are considered and a novel stabilization tech-

nique, originally presented in (59), is analyzed and substantially improved: the so called

Best Approximation Weighted Residual (BAWR) method (20).

These models will be used in the following parts of this thesis.
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Convection Diffusion Reaction
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2.1 Convection - Diffusion - Reaction equation . . . . . . . . . . 9

2.2 Variational formulation and Finite Element discretization . 10
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2.2.3 Discretization of (2.9) . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Convection - Diffusion - Reaction equation

Let Ω be an open, limited and lipschitz continuous boundary subset of Rn, n ≥ 1.

Assume that it is sufficiently regular.

Consider the following convection - diffusion - reaction equation

∂Θ

∂t
− div(k∇Θ) + u · ∇Θ + σΘ = f . (2.1)

As described in (23), the unknown function Θ may represent the concentration of a

pollutant being transported along a stream, moving at velocity u, subject to diffusive

effects (k > 0): σ models its production (σ > 0) or destruction (σ < 0) by chemical

reaction, while f describes fixed sources or sinks.

Alternatively, (2.1) may model the temperature Θ of a material M, moving with

velocity u: the so called convective heat equation. In this case, u represents the velocity

9



2. CONVECTION DIFFUSION REACTION EQUATION

of M and f external sources of heat. Moreover σ is supposed to be zero. This equation

can be derived from the conservation of energy. A particular case is the heat equation

∂

∂t
Θ− k∆Θ = 0. (2.2)

In this thesis, while in the pollutant case we will rename Θ with c (cfr. chapter 9),

which stands for concentration, when Θ represents a temperature it will be denoted by

T (cfr. chapter 8). Since in this chapter we are not considering any particular situation,

we will denote the unknown variable with Θ.

2.2 Variational formulation and Finite Element discretiza-

tion

In this section we will briefly discuss the wellposedness of the general problem (2.1).

Let V and W be two Hilbert spaces on Ω, respectively, the trial (or solution) space

and the weighting (or test) space. We denote with ∂Ω the boundary of Ω, ∂Ω = Γd∪Γn,

Γd ∩ Γn = ∅, and with n the outward normal to ∂Ω. We also denote with ∂u
∂n = ∇u · n

the conormal derivative of Θ.

Let L be a linear elliptic n-dimensional differential operator on Ω

LΘ := −div(k∇Θ) + u · ∇Θ + σΘ, Θ ∈ V . (2.3)

In the following we will denote with (·, ·) the inner product in L2(Ω). Suppose that

k ∈ L∞(Ω), k(x) ≥ k0 > 0 ∀x ∈ Ω, σ ∈ L∞(Ω), σ(x) ≥ 0 a.e. in Ω, u ∈ [L∞(Ω)]n,

div(u) ∈ L2(Ω).

2.2.1 Stationary case

Let us consider the class of linear boundary-value problems: find Θ ∈ X ⊂ V such that
LΘ = f in Ω

Θ = Θd on Γd
∂Θ
∂n = Θn on Γn

(2.4)

where f ∈ L2(Ω), X is a suitable functional space and Θd ∈ H
1
2 (Γd) and Θn ∈ L2(Γn)

are assigned functions.
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2.2 Variational formulation and Finite Element discretization

If Γd = ∅, u = 0 and σ = 0, the following compatibility condition must be satisfied:∫
Ω fdω = −

∫
Γn

Θndγ and uniqueness is possible if σ(x) > 0 (64).

Let us now derive the weak (variational) formulation of the differential problem

(2.4) for L defined in (2.3).

Since
∫

Ω−div(k∇Θ)wdω =
∫

Ω−div(k∇Θw)dω+
∫

Ω k∇Θ∇wdω = (Divergence The-

orem) =
∫
∂Ω−k

∂Θ
∂nwdγ +

∫
Ω k∇Θ∇wdω, it follows that:

(LΘ, w) =

∫
∂Ω
−k∂Θ

∂n
wdγ+

∫
Ω
k∇Θ∇wdω+

∫
Ω

u·∇Θwdω+

∫
Ω
σΘwdω = (f, w). (2.5)

So the weak problem is well posed, that is the integrals are defined, if we consider V and

W subspaces of H1(Ω), such that they contain H1
0 (Ω) as a subspace, and we interpret

derivatives in a distributional sense (9, 64). In particular we choose W ⊆ H1
Γd

(Ω), i.e.

we impose that w = 0 on Γd.

Now, by imposing the boundary conditions (2.4), we are ready to define the weak

(variational) formulation of (2.4):

find Θ ∈ V s.t. a(Θ, w) = F (w), ∀w ∈W, (2.6)

where a(·, ·) is a continuous bilinear form a : V × W → R, defined as a(Θ, w) :=∫
Ω k∇Θ∇wdω +

∫
Ω u · ∇Θwdω +

∫
Ω σΘwdω, and F (·) is a continuous linear operator

F : W → R, F (w) := (f, w) +
∫

Γn
kΘnwdγ.

To obtain an approximate numerical solution, related to a finite element discretiza-

tion of the domain Ω whose refinement level is characterized by a parameter h, identify-

ing the computational domain Ωh with Ω, we will choose also two Nh finite-dimensional

families of Hilbert subspaces {Vh}h>0, Vh ⊂ V and {Wh}h>0, Wh ⊂W .

For simplicity we assume now that Γn = ∅, i.e. W ⊆ H1
0 (Ω), that is we impose that

w = 0 on ∂Ω.

Suppose moreover that W = V = H1
0 (Ω), and redefine

F (w) = (f, w) +

∫
Γn

kΘnwdγ − a(G,w),

where G is the Dirichlet lift of a boundary data g, i.e. G ∈ H1(Ω) and G |Γd = g.

It is possible to show (64) that, if −1
2div(u) + σ ≥ 0 a.e. in Ω, the bilinear form a is

coercive with a constant C = k0

1+C2
Ω

, where CΩ is the constant appearing in the Poincarè

inequality (‖w‖L2(Ω) ≤ CΩ ‖∇w‖L2(Ω)). Moreover a is also continuous with constant

γ = ‖k‖L∞(Ω) + ‖u‖L∞(Ω) + ‖σ‖L∞(Ω). Then Lax Milgram Lemma (Theorem A.2.1)

holds.
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2. CONVECTION DIFFUSION REACTION EQUATION

If we formulate the Galerkin approximation (A.3) of (2.6), applying Theorem A.3.1,

the following estimate holds:

|Θ−Θh|H1 ≤
γ

C
inf

vh∈Vh
‖Θ− vh‖H1 .

Observe now that γ
C =

‖k‖L∞(Ω)+‖u‖L∞(Ω)+‖σ‖L∞(Ω)

k0

(
1 + C2

Ω

)
, i.e. if the convection

coefficient u or the reaction one σ are much bigger than the diffusion one k0, the

constant in the estimate is big; thus it become useless and the approximation Θh could

be unsatisfactory. It is possible to show that in this kind of convection or reaction

dominated problems the Galerkin solution Θh presents spurious oscillations around the

real one, also when the last one is monotone (64, 65). Observe that in this case the

bilinear form a is not symmetric and then the Galerkin solution is not still the optimal

one. This is the reason that motivates the study of stabilization methods, as presented

in chapter 3.

Consider now a Generalized Galerkin approximation (A.6) of (2.6), supposing that

ah and Fh are approximants of a and F , s.t. supwh∈Vh,wh 6=0
|a(vh,wh)−ah(vh,wh)|

‖wh‖ and

supwh∈Wh,wh 6=0
|F (wh)−Fh(wh)|

‖wh‖ are small enough. Applying Theorem A.3.3 we deduce

that the Galerkin convergence rate will be improved choosing ah s.t. it is uniformly

coercive and C∗ is s.t. 1
C∗ and 1+ γ

C∗ are small. We will see examples of these methods

in chapter 3.

Finally consider the Petrov-Galerkin formulation (A.4) of the problem (2.6), with

ah = a and Fh = F , applying Theorem A.3.2 the following estimate holds:

|Θ−Θh|V ≤ inf
vh∈Vh

(
1 +

γ

Ch

)
|Θ− vh|V , (2.7)

which still depends on the coefficients of L as the Galerkin method, and on Wh and

Vh. Thus also a general Petrov Galerkin method could be inaccurate. Neverless it can

be shown that this kind of methods can be used to stabilize the problem: in chapter

3 standard stabilization methods are presented, while in section 3.6 a novel one is

analyzed, the so called Best Approximation Weighted Residual (BAWR) method.

2.2.2 Unstationary case

Until now we have discussed the steady problem: in this section we will introduce the

time-dependence. A general parabolic problem has the following structure
∂Θ
∂t + LΘ = f, in QT := (0, T )× Ω

BΘ = g on ΣT := (0, T )× ∂Ω

Θ |t=0 = Θ0, on Ω,

(2.8)
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2.2 Variational formulation and Finite Element discretization

where f = f(t,x), g = g(t,x), Θ0 = Θ0(x) are known data and BΘ = g denotes

boundary conditions (e.g. Dirichlet, Neumann, mixed, Robin).

As for the elliptic case, choose V a closed subspace of H1(Ω) s.t. H1
0 (Ω) ⊂ V ⊂

H1(Ω), which depends on L and B.

Define the following Banach spaces (24)

L2(0, T ;V ) :=

{
Θ : (0, T )→ V s.t. Θ is measurable and

∫ T

0
‖Θ(t)‖2V dt <∞

}
and

C0([0, T ];L2(Ω)) :=

{
Θ : [0, T ]→ L2(Ω) s.t. Θ is measurable and

∫ T

0
‖Θ(t)‖22 dt <∞

}
,

where Θ(t) := Θ(t, ·). Suppose that BΘ = g represents homogeneous boundary con-

ditions and consider V = H1
0 (Ω): thus the weak formulation of (2.8) is the following:

given f ∈ L2(QT ) and Θ0 ∈ L2(Ω), find Θ ∈ L2(0, T ;V ) ∩ C0([0, T ];L2(Ω)) s.t.{
d
dt(Θ(t), v) + a(Θ(t), v) = (f(t), v) ∀v ∈ V

Θ(0) = Θ0 on Ω,
(2.9)

where a is a suitable bilinear form depending on L.

Theorem 2.2.1 (J.L. Lions) If a is continuous and coercive, then, given f ∈ L2(QT )

and Θ0 ∈ L2(Ω), there exists a unique Θ ∈ L2(0, T ;V ) ∩ C0([0, T ];L2(Ω)) solution of

(2.9). Moreover ∂Θ
∂t ∈ L

2(0, T ;V
′
) and the following energy estimate holds:

max
t∈[0,T ]

‖Θ(t)‖20 + α

∫ T

0
‖Θ(t)‖2V dt ≤ ‖Θ0‖20 +

1

α

∫ T

0
‖f(t)‖20 dt.

For a proof cfr. e.g. (24, 65).

2.2.3 Discretization of (2.9)

The idea is to approximate the solution of (2.9) with the method of lines, which consists

in a first approximation in space applying the finite element method to (2.9) and then

in the numerical solution of an ordinary differential equation whose solution Θh(t) is an

approximation of the exact solution for each t ∈ [0, T ]. Consider a family of subspaces

of V , {Vh, h > 0}, Vh = Xk
h ∩H1

0 (Ω) (if we are not dealing with homogeneous Dirichlet

boundary conditions we choose Vh = Xk
h) and denotes with Θ0,h ∈ Vh a suitable

approximation of Θ0 ∈ L2(Ω). The semi-discrete approximate problem is the following:

given f ∈ L2(QT ) and Θ0,h ∈ Vh, for each t ∈ [0, T ] find Θh(t) ∈ Vh s.t.{
d
dt(Θh(t), vh) + a(Θh(t), vh) = (f(t), vh) ∀vh ∈ Vh, t ∈ (0, T )

Θh(0) = Θ0,h on Ω.
(2.10)
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2. CONVECTION DIFFUSION REACTION EQUATION

Remark 2.2.1 Observe that writing Θh(t) =
∑

j αj(t)φj, {φj}j=1,...,Nh
basis of Vh,

and Θ0,h =
∑

j α0,jφj, we obtain the equivalent ordinary differential problem{
M d

dtα(t) +Aα(t) = F(t)

α(0) = α0,
(2.11)

where Mij = (φi, φj), Aij = a(φj , φi), Fi(t) = (f(t), φi), i, j = 1, . . . , Nh. Since M is

positive definite, there exists a unique solution α(t) of the system.

Consider now a uniform subdivision of [0, T ] of step ∆t, whose nodes are

tn := n∆t, n = 0, . . . ,

[
T

∆t

]
.

The idea is to construct a sequence Θn
h(x), discretizing the ordinary differential equation

(2.11), to approximate the exact solution Θ(tn,x) of (2.9).

Various methods can be used to solve it numerically, e.g. multi-step or Runge-Kutta

methods (cfr. e.g. (66) for an introduction to these methods). Here we present only

the θ−method, which consists in defining a sequence {Θn
h}n=0,...,[ T∆t ]

s.t.

{
1

∆t(Θ
n+1
h −Θn

h, vh) + a(ϑΘn+1
h + (1− ϑ)Θn

h, vh) = (ϑf(tn+1) + (1− ϑ)f(tn), vh) ∀vh ∈ Vh,
Θ0
h = Θ0,h,

(2.12)

for each n. When ϑ = 0 or ϑ = 1 this scheme is called forward Euler or backward Euler

method respectively, for ϑ = 1
2 it is called Crank-Nicolson method. Observe that this

method is absolutely stablefor ϑ ≥ 1
2 (66).

Now we summarize the main results about stability and convergence of the (totally)

discretized method, cfr. (24, 65) for proofs and more details.

Theorem 2.2.2 (Stability) Assume that a is coercive and that t→ ‖f(t)‖0 is bounded

in [0, T ]. When 0 ≤ ϑ < 1
2 assume, moreover,

∆t(1 + Ch−2) <
2α

(1− 2ϑ)γ2
.

Then Θn
h satisfies

‖Θn
h‖0 ≤ Cϑ

(
‖Θ0,h‖0 + max

t∈[0,T ]
‖f(t)‖0

)
, n = 0, . . . ,

[
T

∆t

]
,

where Cϑ is a non-decreasing function of α−1, γ and T .

14



2.2 Variational formulation and Finite Element discretization

Theorem 2.2.3 (Convergence) Assume that a is coercive and that ∂Θh
∂t (0) ∈ L2(Ω),

f ∈ L2(QT ), ∂f
∂t ∈ L

2(QT ). When 0 ≤ ϑ < 1
2 assume, moreover,

∆t(1 + Ch−2) <
2α

(1− 2ϑ)γ2
.

Then

‖Θn
h −Θh(tn)‖0 ≤ Cϑ∆t

(∥∥∥∥∂Θh

∂t
(0)

∥∥∥∥2

0

+

∫ T

0

∥∥∥∥∂f∂t (r)

∥∥∥∥2

0

dr

) 1
2

, n = 0, . . . ,

[
T

∆t

]
,

where Cϑ is a non-decreasing function of α−1, γ and T .

If ϑ = 1
2 , ∂2f

∂t2
∈ L2(QT ) and ∂2Θh

∂t2
(0) ∈ L2(Ω), then

‖Θn
h −Θh(tn)‖0 ≤ Cϑ(∆t)2

(∥∥∥∥∂2Θh

∂t2
(0)

∥∥∥∥2

0

+

∫ T

0

∥∥∥∥∂2f

∂t2
(r)

∥∥∥∥2

0

dr

) 1
2

, n = 0, . . . ,

[
T

∆t

]
.
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3.1 Introduction

Consider problem (2.4): as mentioned e.g. in (54), if Γn = ∅, and convection dominates

diffusion, i.e. when ‖u‖ >> k, the solution Θ will vary rapidly in a layer of width O(k)

at the outflow boundary ∂Ω+ = {x ∈ ∂Ω s.t. n(x) · u(x) ≥ 0}. Thus a classical problem

in numerical analysis is to construct a finite difference or finite element method for
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3.1 Introduction

solving this kind of problems, using a mesh with mesh length h skew to the streamline

direction. It is required that the scheme is higher-order accurate and has good stability

properties without requiring h to be smaller than k (e.g. classical monotone upwind

schemes obtained by adding an artificial diffusion term, which are only first order

accurate).

More precisely convection dominated problems need to be stabilized when dis-

cretized using the Finite Element Method (FEM), see e.g. (26, 48). As mentioned

in (12),

”Convection-diffusion operators have perplexed numerical analysts for

decades. Historically they have been treated by methods which have either

compromised stability (e.g. central differences) or accuracy (e.g. upwind-

ing). In fact, one often hears in some circles of computational fluid dynam-

icists that stability and accuracy are in competition, and that one must be

sacrificed to attain the other. Stabilized methods represent a refutation of

this ancient religion.”.

To stabilize means to counteract a priori the effect that the small-scale, under-resolved

features of the solution would have on the discrete solution. For this reason, the stabi-

lization techniques are recently called sub grid modeling, see e.g. (10, 34). The practical

aim of the stabilizing techniques is to prevent the formation of spurious oscillations that

usually appear in the Galerkin solution for convection-dominated problems.

As observed in (8), many alternative variational formulations have been proposed

with the goal of recovering at least some advantages of the Galerkin formulation in a

more general setting. There are mainly two classes of alternative variational formula-

tions:

• for a given PDE problem, one may modify the variational principle with the goal

of defining better quasi-projections in a Generalized Galerkin (A.6) or Petrov-

Galerkin (A.4) context. One possible solution is to define stabilized methods,

such that the modified bilinear form ah is strongly coercive, or at least satisfy

the discrete inf-sup condition of Theorem A.3.2 for arbitrary discrete conforming

subspaces Vh and Wh. In this Chapter we analyze this kind of strategies which

can be classified into two different families: residual and non-residual based.

• replace the variational formulation by an externally defined one based on mini-

mizing the residuals of the PDE problem (Least Squares FEM (8)).
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3. STABILIZATION OF CONVECTION DOMINATED PROBLEMS

Residual-based methods belonging to the first class usually add a stabilizing term

to the weak formulation of the boundary value problem, in a Generalized Galerkin

context. Traditional methods are the Streamline Upwind Petrov Galerkin (SUPG)

(48), also known as the Streamline Diffusion Finite Element Method (SDFEM), the

Generalized Least Squares (GLS) method, the Douglas Wang (DW) method (22) and

the residual-free bubbles (12) (cfr. e.g. (65) for a general overview of these methods).

Common aspects of these methods are both a residual-based and a parameter dependent

formulation. More recently sub grid scale modeling (SGS) has been introduced, trying

to extend and generalize the previous ones (39). Although they are very effective, it is

well known that often the parameter tuning process is problematic.

In this chapter we will use the steady diffusion-convection-reaction operator (2.3),

introduced in section 2.2, as a model problem to study some standard stabilization

methods, following (64, 65). Finally in section 3.6 we present a stable FEM ap-

proximation following the Petrov-Galerkin approach: the so called Best-Approximation

Weighted-Residuals (BAWR), introduced in (59). The weighting function space is built

such that the corresponding BAWR solution is optimal in the L2 norm. Since it is an ap-

proximation in a least-squares sense, it oscillates but without spurious oscillations (60).

However, as it will be demonstrated, for convection dominated problems it performs

substantially better, compared to the Galerkin method. Moreover, it is a parameter-

free method and it will be demonstrated that, using a localization technique for the

weighting functions, it is also computationally efficient. In the recent literature there

is a renewed interest in optimal Petrov-Galerkin methods, e.g. the Nearly-Optimal

Petrov Galerkin (NOPG) method (35), focusing on H1-semi norm estimates.

3.2 Generalized Galerkin Methods

In this section we present stabilization strategies formulated as Generalized Galerkin

methods (A.6), choosing

ah(Θh, wh) = a(Θh, wh) + bh(Θh, wh),

Fh(wh) = F (wh) +Gh(wh).

The stabilization terms bh and Gh are operators chosen to limit Galerkin’s spurious

oscillations.
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3.2 Generalized Galerkin Methods

3.2.1 Artificial Diffusion and Streamline diffusion methods

Consider the simpler diffusion-convection problem −k∆Θ + u · ∇Θ = f in Ω

Θ = 0 on ∂Ω
(3.1)

whose weak formulation is (2.6), with a(Θ, w) :=
∫

Ω k∇Θ∇wdω +
∫

Ω u · ∇Θwdω and

F (w) := (f, w).

Then the artificial diffusion method consists in a Generalized Galerkin one, such

that bh(Θh, wh) = Qh
∫

Ω∇Θh∇whdω, which corresponds to solve problem (3.1) with

the Galerkin method, using k+hQ instead of k, where Q > 0 is a parameter. Otherwise

this approach introduces diffusion in all directions, and not only along the vectorial

space generated by u. We refer to (67) for other upwind methods for the diffusion-

convection-reaction operator.

The streamline diffusion method consists in choosing bh(Θh, wh) = Qh
∫

Ω u ·∇Θh u ·
∇whdω, which corresponds to add to the original problem (3.1) −Qhdiv ((∇Θ · u)u),

i.e. to introduce artificial diffusion only along the streamlines (40).

Observe that the error estimate for the artificial diffusion method can be obtained

applying proposition A.3.1, using V = H1(Ω), (65):

‖Θ−Θh‖ ≤ c(C, γ,Q)

(
inf

wh∈Vh
‖Θ− wh‖+ h ‖Θ‖

)
,

where c(C, γ,Q) > 0 is a constant depending on a and Q.

Figure 3.1 compares the artificial diffusion and the Galerkin methods.

Finally observe that, using definition A.3.1, streamline and artificial diffusion meth-

ods are only consistent, in fact

ah(Θ, wh)−F (wh) = ah(Θ, wh)−a(Θ, wh) =

{
Qh(∇Θ,∇wh), artificial diffusion

Qh(∇Θ · u,∇wh · u), streamline diffusion,

(3.2)

thus τh(Θ) = O(h). This means that they are accurate of order h, no matter how large

the degree of the finite element space is.

3.2.2 Strongly Consistent Stabilized Finite Element methods

Consider the differential diffusion-convection-reaction operator LΘ = f introduced in

section 2.2, with homogeneous Dirichlet boundary conditions on Ω. Let V = H1
0 (Ω):

we recall that its continuous weak formulation is

find Θ ∈ V s.t. a(Θ, w) = F (w), ∀w ∈ V. (3.3)
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3. STABILIZATION OF CONVECTION DOMINATED PROBLEMS

Figure 3.1: This pictures represents the Galerkin (left) and the artificial diffusion (right)

solutions for the two dimensional convection-dominated operator (3.1). They has been

taken from (65). Artificial diffusion is more stable, but less accurate in the boundary layer.

A strongly consistent stabilization method is a Generalized Galerkin one, and con-

sists in adding to the standard Galerkin method variational terms that are mesh-

dependent, consistent and numerically stabilizing : find Θh ∈ Vh s.t.

a(Θh, wh) + Lh(Θh, f ;wh) = F (wh), ∀wh ∈ Vh,
Lh(Θ, f ;wh) = 0, ∀wh ∈ Vh.

(3.4)

A possible choice is

Lh(Θh, f ;wh) = L
ρ
h(Θh, f ;wh) =

∑
K∈Th τK(LΘh − f, S

(ρ)
K (wh))L2(K),

S
(ρ)
K (wh) = hK

|u| (LSwh + ρLSSwh) ,
(3.5)

where Th denotes a discretization of Ω with elements K whose diameter is hK , τK are

parameters which have the dimension of time and LS and LSS are respectively the

symmetric and the skewsymmetric part of L.

Define now

ah(Θh, wh) := a(Θh, wh) +
∑
K∈Th

τK(LΘh, S
(ρ)
K (wh))L2(K)

and

Fh(wh) := F (wh) +
∑
K∈Th

τK(f, S
(ρ)
K (wh))L2(K),

20



3.2 Generalized Galerkin Methods

then, if Θ is the real solution of (3.3), it follows that

ah(Θ, wh)− Fh(wh) = Lh(Θ, f ;wh) =
∑
K∈Th

τK(LΘ− f, S(ρ)
K (wh))L2(K) = 0 :

the trick consists in using the residual LΘh − f which is zero in Θ. So these methods

are strongly consistent.

Let us see some examples (ρ-methods):

• Galerkin Least Squares (GLS): (ρ = 1, (47))

S
(1)
K (wh) =

hK
|u|

Lwh;

(Least Square control of the residual)

• Streamline Upwind Petrov Galerkin (SUPG): (ρ = 0, (48, 49))

S
(0)
K (wh) =

hK
|u|

LSSwh;

(control of the convective part of the residual). It is also called Streamline Dif-

fusion Finite Element Method (SDFEM), (67). More details on SUPG can be

found e.g. in (41, 42, 53, 62, 67, 72).

• Douglas Wang (DW): (ρ = −1, it was introduced in (22) for the Stokes problem

and generalized for the diffusion-convection operator in (31))

S
(−1)
K (wh) = −hK

|u|
L∗wh.

It is also called unusual stabilized FEM (USFEM), and can be interpreted as

static condensation of bubbles added to Vh (27). For an error analysis cfr. (28).

In (31) it is underlined that DW presents nicer stability characteristics than GLS,

employing high order interpolation. In fact, for the operator (2.3), if σ = 0 and Vh

is the linear finite element space, then all the previous methods coincide: on every

K the laplacian term is zero. The superiority of DW for the Stokes problem, can be

quantified: in fact GLS has a more restrictive condition on τ to ensure stability than

DW (31).

Although these are Generalized Galerkin methods, as explained in (65) proposition

A.3.1 cannot be applied because the corresponding bilinear form ah does not satisfy the
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3. STABILIZATION OF CONVECTION DOMINATED PROBLEMS

continuity requirement. Moreover results of Theorem A.3.3 do not imply convergence

for them. So these methods need an ad hoc analysis.

In particular, consider η > 0 such that η ≤ −1
2divu + σ and define the following

norm:

‖v‖(ρ) =

[
k ‖∇v‖2L2(Ω) + ‖ηv‖2L2(Ω) +

∑
K

τK((LSS + ρLS)v, S
(ρ)
K (v))L2(K)

] 1
2

.

Observe that for large Peclet numbers, Pe = uL
2k , where L is a characteristic length

of the domain, the character of the solution Θ is dominated by its behavior along

the streamlines. Therefore, this norm, in which the streamline derivative u · ∇v plays

an important rule, through
∑

K τK((LSS + ρLS)v, S
(ρ)
K (v))L2(K), is a more meaningful

measure than using only ‖∇v‖2L2(Ω) (23).

Then there exist C∗ > 0 and c > 0 such that the following stability and convergence

estimates can be proven (64, 65):

‖Θh‖(ρ) ≤
γ
C∗ ‖f‖L2(Ω)

‖Θ−Θh‖(ρ) ≤ c̃hr+
1
2 |Θ|Hr+1(Ω) ,

(3.6)

where c̃ and r are constants independent of h. While the Galerkin method has order of

convergence hr+1, these methods behave a little bit worse with respect to h (O(hr+
1
2 )),

but they prevent spurious oscillation, i.e. c̃ will be smaller than the Galerkin one. It is

important to note also that an higher order of polynomial approximation corresponds

to a better approximation (unlike only consistent methods). As an example cfr. figure

3.2.

It is interesting to note (54) that for SUPG,

‖v‖(0) =

[
k ‖∇v‖2L2(Ω) + ‖ηv‖2L2(Ω) +

∑
K

τKhK
|u|

‖u · ∇v‖2L2(K)

] 1
2

,

and
∑

K
τKhK
|u| ‖u · ∇v‖

2
L2(K) means that the streamline diffusion method has an im-

proved stability for the streamline derivative u·∇, as compared to the standard Galerkin

method.

3.2.3 The choice of τ

A problematic issue using these methods is the quantification of the parameter τK ,

which measures the amount of artificial viscosity introduced in the formulation. As

mentioned in (67), the optimal choice of τK for ρ-methods is still an open question:

only in some special cases they can be derived from problem data.
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3.2 Generalized Galerkin Methods

Figure 3.2: These pictures represent the GLS solution when u is parallel to the discon-

tinuity line (left) and when is not (right). In the latter case the scheme is diffusive and

there are some under- and over-shootings, which is a prove of the non monotonicity of the

scheme (they can be avoided introducing a shock-capturing non linear viscosity term, (42)).

Figures has been taken form (65).

As a special case, consider n = 1, σ = 0 and k and u constant. Suppose moreover

that Ω = [0, 1], Γn = ∅ and that homogeneous Dirichlet boundary conditions are

imposed. If the partition of Ω is uniform with step h, then it is possible to show that,

using linear finite elements, the SUPG solution is nodally exact (viz. superconvergence)

if τ = αh
2u , with the upwind function α = α(Peloc) = coth(Peloc) − 1

Peloc
(16). This

analysis can be extended to a one dimensional convection-diffusion-reaction operator,

as explained in (35) for GLS.

A more general expression for τK in SUPG, which accounts both n > 1 and nonlinear

finite element approximations is the following (23):

τK =

{
hK

2‖u‖

(
1− 1

PeK

)
, if PeK > 1

0, if PeK ∈ [0, 1],
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3. STABILIZATION OF CONVECTION DOMINATED PROBLEMS

where PeK = uhK
2k . Another possible choice for τ for DW, can be found in (27, 31):

τK = hK
2|u|p

ξ(PeK),

P eK :=
mK |u|phK

2k ,

ξ(PeK) :=

{
PeK , P eK ∈ [0, 1)

1, P eK ≥ 1
,

|u|p := (
∑n

i=1 |ui|
p)

1
p , p ≥ 1,

mK = min
{

1
3 , 2CK

}
, CK s.t. CK

∑
K h

2
K ‖∆v‖

2
L2(K) ≤ ‖∇v‖

2
L2(Ω) , ∀v ∈ H1

0 (Ω).

(3.7)

It is evident that it is quite complicated, although the definition of τ is a crucial point for

method’s performance. The usual definition of Peclet number is a little bit modified by

the presence of mK , which accounts for the specific finite element polynomial employed.

We conclude this paragraph underlining that the SUPG solution and these sta-

bilization methods in general limit the damage caused by poor resolution of layers

and leads to a more accurate solution outside them, where the solution is not varying

rapidly. Neverless in general they are not free of oscillations (68): in fact in (23) it

is demonstrated that if τ is large enough there are not oscillations, but the solution

is overly diffusive, with boundary layers which are much wider than those displayed

by the exact solution. An alternative is to choose a smaller τ whose solution presents

small oscillation, but is less diffusive. Moreover these oscillations may be controlled by

nonlinear modifications, e.g. it is possible to add a shock-capturing non linear viscosity

term to (3.4) which guarantees extra control in directions different form the streamline

one, over the strong gradients that causes oscillations (cfr. e.g. (41, 42) and (46) for

the multimensional case).

3.3 Bubble functions

The Bubble functions method consists in applying the classical Galerkin method to

(3.3), using an enriched discretizing space

V b
h := Vh ⊕B,

as approximating space. Thus (3.3) is equivalent to

find Θh + ΘB ∈ V b
h s.t. a(Θh+ΘB, wh+wB) = F (wh+wB), ∀wh+wB ∈ V b

h , (3.8)

where Vh is a standard finite elements space while the finite dimensional space of bubble

functions is B := ⊕BK , BK ⊂ V is a finite dimensional subspace whose dimension
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3.4 Subgrid-scale (or variational multiscale) methods

depends on K. The idea is to enhances the quality of the discrete solution on Vh

incorporating information interior to elements, where the Galerkin method provides no

information.

Let us see briefly how a particular kind of BK can be defined: the residual free one

(29).

Suppose that V = H1
0 (Ω); since a and F are linear, (3.8) is equivalent to find

Θh + ΘB ∈ V b
h s.t.

a(Θh + ΘB, wh) = F (wh), ∀wh ∈ Vh,
a(Θh + ΘB, wB) = F (wB), ∀wB ∈ B.

(3.9)

Since B := ⊕BK we can rewrite the last equation

a(ΘB,K , wB,K)K = −(a(Θh, ·)K − F (·)K)(wB,K), ∀wB,K ∈ BK ,

where we have restricted functions and integrals over K. The residual-free space BK ,

derives the bubbles from certain element-level boundary-value problems, i.e. it is de-

fined s.t. ΘB,K ∈ H1
0 (K) is a solution of

a(ΘB,K , w)K = −(a(Θh, ·)K − F (·)K)(w), ∀w ∈ H1
0 (K), (3.10)

viz. such that Θh + ΘB,K solves exactly equation (3.8) in the interior of K. Observe

that BK can be thought as the image of the affine operator RK : Vh |K → H1
0 (K), s.t.

RK(Θh |K) = ΘB,K , where Vh |K is the restriction of Vh over K. A basis of BK can be

defined starting from a basis of Vh (29).

The conceptual viewpoint of bubble functions method, is to attack the original

problem first with the Galerkin method involving standard and simple polynomial finite

element spaces and correct any deficiencies with regard to stability, by systematically

enriching the space with residual-free bubbles (12).

3.4 Subgrid-scale (or variational multiscale) methods

The Subgrid-scale methods (SGS) were first introduced in (39) and compared to other

stabilization methods in (16) and (37): they can be viewed as an extension of ρ-methods

and also of stabilization methods based on the introduction of bubble functions to

the finite element space. The idea is resumed in (12): since the standard Galerkin

method with simple polynomial space is an inadequate numerical paradigm for many

practically important problems (in particular, those involving fine scale features that

are numerically unresolvable due to the length scale of elements composing the mesh) a
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3. STABILIZATION OF CONVECTION DOMINATED PROBLEMS

new method is presented which accounted for fine scales, in order to accurately calculate

the coarse scales. The variational multiscale procedure consists in two steps: a first

subproblem is solved for the fine scales in terms of the coarse scales; then the result

is substituted into a second subproblem involving only the coarse scales (subgrid-scale

model), solvable with the standard Galerkin method.

Figure 3.3: Example of resolved (left) and unresolved scales (right). This picture is taken

from (39)

Consider the general scalar linear problem (2.4) with Γn = ∅ and the corresponding

variational formulation

find Θ ∈ V s.t. a(Θ, w) = F (w), ∀w ∈ V, (3.11)

where a(Θ, w) = (LΘ, w) and F (w) = (f, w), for a suitable space V (which accounts

for Dirichlet boundary conditions, e.g. V = H1
0 (Ω)). Suppose that V = V̄ ⊕ V ′ , i.e.

the unknown

Θ = Θ̄ + Θ
′
,

(cfr. figure 3.3) where Θ̄ (resolvable (or coarse) scale) is the part which can be described

using the finite element mesh, whereas Θ
′

represents the unresolvable (or subgrid, or

fine) scales of Θ, i.e. the variations that cannot be reproduced: e.g. in the case of

convection-dominated diffusion phenomena Θ
′

consists in thin layers with steep gradi-

ents (39). In general the coarse and the fine scales may overlap or be disjoint, and the

fine scales may be globally or locally defined.

A strong hypothesis is the following: it is assumed that Θ
′

vanishes on the bound-

aries of the elements, viz. Θ
′

= 0 on ∂K, for all K ∈ Th. This means that V
′

=

⊕KH1
0 (K). Then Θ

′
is a solution of{

LΘ
′

= f − LΘ̄, in K

Θ
′

= 0 on ∂K.
(3.12)

The aim is not to describe unresolvable scales in details, instead we wish to compute

their effect on resolvable scales. Observed that (3.11) leads to two subproblems, as-
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3.4 Subgrid-scale (or variational multiscale) methods

suming Θ = Θ̄ + Θ
′

and v = v̄ + v
′
:

a(Θ̄, w̄) + a(Θ
′
, w̄) = F (w̄), ∀w̄ ∈ V̄

a(Θ̄, w
′
) + a(Θ

′
, w
′
) = F (w

′
), ∀w′ ∈ V ′

⇔
a(Θ̄, w̄) + (Θ

′
,L∗w̄) = F (w̄), ∀w̄ ∈ V̄

(LΘ̄, w
′
) + (LΘ

′
, w
′
) = F (w

′
), ∀w′ ∈ V ′ .

(3.13)

Let g(x, y) : Ω×Ω→ R be the Green’s function of (3.12), i.e., for every fixed y ∈ Ω

it is a solution of {
(Lg(·,y)) (x) = δ(x− y) for x ∈ K

g(·,y)(x) = 0 for x ∈ ∂K,
(3.14)

where δ(x−y) :=

{
0, x 6= y,

1, x = y,
is the Dirac delta distribution. If L∗ is the adjoint of

L, then (67) {
(L∗g(x, ·)) (y) = δ(x− y), for y ∈ K

g(x, ·)(y) = 0, for y ∈ ∂K.
(3.15)

Then it is possible to write the solution of (3.12) in terms of g:

Θ
′
(y) = −

∑
K∈Th

∫
K
g(x,y)

(
LΘ

′
)

(x)dω(x) = −
∑
K∈Th

∫
K
g(x,y)

(
f − LΘ̄

)
(x)dω(x).

Let us define the bounded integral operator M : H−1(Ω)→ H1
0 (Ω) s.t.

M(s)(·) := −
∑
K∈Th

∫
K
g(x, ·)s(x)dω(x)

for every L2(Ω) function s. Then

Θ
′
(y) = M

(
LΘ̄− f

)
(y).

Observed that ”the subgrid scales Θ
′

are driven by the residual of the resolved scales”

(39).

Then, using (3.13), Θ̄ must satisfy

a(Θ̄, v̄) + (L∗(v̄),M
(
LΘ̄− f

)
) = F (v̄),

which is a restatement of the continuous problem (3.11). As Hughes says (39):

”The multiscale interpretation amounts to assuming that unresolvable,

fine-scale behavior exists within each element, but not on element bound-

aries. Up to this assumption, the effect of the unresolved, fine scales on the

resolved coarse-scales behavior is exactly accounted for”.
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3. STABILIZATION OF CONVECTION DOMINATED PROBLEMS

To discretize it, consider Θh ∈ V̄h ⊆ V̄ and vh ∈ V̄h, finite element approximations of

Θ̄ and v̄ respectively. Moreover observe that in general also the Green’s function is

unknown, thus it must be approximated, using Mh instead of M obtaining:

find Θh ∈ V̄h s.t. a(Θh, vh) + (L∗(vh),Mh (LΘh − f)) = F (vh), ∀vh ∈ V̄h. (3.16)

As underlined in (16), different approximations of M , i.e. of g, will lead to different

subgrid scale models. A general picture of variational methods is given in (50), where

all previous results are collected and generalized. It is presented a paradigm for a

variational multiscale method, not assuming that u
′

is zero at boundary elements ∂K.

This is a strong hypothesis which is equivalent to state that the subgrid scales are

completely confined within element interiors, being only locally significative, although

in the physical situation they are nonlocal and affect (pollute) all the solution. A way

to overcome this assumption is to interpret equation

(LΘ̄, w
′
) + (LΘ

′
, w
′
) = F (w

′
), ∀w′ ∈ V ′ ,

in (3.13) as an L2 projection on V
′
, i.e. considering{

Π
′
LΘ

′
= −Π

′
(LΘ̄− f), in Ω

Θ
′

= 0, on ∂Ω,
(3.17)

where Π
′

: H−1(Ω) → V
′

is the L2 projection and we suppose that Θ̄ is exact on ∂Ω,

for a linear second order operator L, with Γn = ∅.
Then consider the following Green’s function problem:{

Π
′
(
L∗g

′
(x, ·)

)
(y) = Π

′
δ(x− y), for y ∈ Ω

g
′
(x, ·)(y) = 0, for y ∈ ∂Ω.

(3.18)

This is not the usual Green’s function and it is called fine scales Green’s function.

Then

Θ
′
(y) = −

∫
Ω
g
′
(x,y)

(
LΘ̄− f

)
(x)dω(x) = M

′ (
LΘ̄− f

)
,

for a suitable integral operator M
′
. Finally the problem to be solved is finding Θ̄ ∈ V̄

such that

a(Θ̄, v̄) + (L∗(v̄),M
′ (
LΘ̄− f

)
) = F (v̄),

for every v̄ ∈ V̄ , where the effect of the fine scales on the coarse scales are nonlocal.

This construction holds if Θ̄, v̄, Θ
′

and v
′

are smooth functions, which is too restrictive

if finite element spaces are used, since Θ̄, v̄ are smooth only on elements interiors, but
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3.5 Some other stabilization methods

have slope discontinuities across element boundaries. These means that when we split

the integral over Ω in the sum of integrals over elements K and apply integration-by-

parts, we must consider nonvanishing element boundary terms.

For a comparison of all these methods in the one-dimensional case, cfr. e.g. (37).

3.5 Some other stabilization methods

For solutions that requires a stronger control of the gradients the Galerkin \ Gradient-

Least-Squares method (GGLS) has been introduced: in (3.4) Lh is defined as

Lh(Θh, f ;wh) =
∑
K

τK(∇(LΘh − f),∇(Lwh)),

if L is a diffusion-convection operator (cfr. (27) and references therein). To ensure

more control, especially when both convection and reaction dominate diffusion, another

method, Galerkin-Least-Squares \ Gradient-Least-Squares method (GLSGLS), was pre-

sented in (35) and consists in combining GLS and GGLS. For the one dimensional

problem

Lh(Θh, f ;wh) =
∑
K

τK(LΘh − f,Lwh) +
∑
K

γK(∇(LΘh − f),∇(Lwh)).

As presented in (68) local projection stabilization methods, are based on the obser-

vation that for SUPG, only the term∑
K

τk(u · ∇Θh,u · ∇vh)K

in ah in (3.4) is responsible for increased stability. The idea is to use two finite element

spaces Vh and Dh and subtract from u · ∇Θh its L2-projection πh into Dh, obtaining∑
K

τk(u · ∇Θh − πh(u · ∇Θh),u · ∇vh − πh(u · ∇vh))K .

Observe that Vh and Dh can live on different meshes or on the same mesh. These

projection techniques are also applied to the Stokes problem (18, 21).

Another method presented in (68) is Edge Stabilization (or Continuous Interior

Penalty) method: the idea is to add to the Galerkin bilinear form a certain jump

terms, on interior edges {E}, viz.

bh(Θh, vh) =
∑
E

τE(u · [∇Θh]E ,u · [∇vh]E)E ,
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3. STABILIZATION OF CONVECTION DOMINATED PROBLEMS

and incorporating boundary conditions in the weak sense. Also the Discountinuos

Galerkin method and its variants are used for stabilization: substantially they uses

discontinuous weighting functions, i.e.

bh(Θh, vh) =
∑
E

τE([Θh]E , [vh]E)E .

As mentioned in (16), for the transient diffusion-convection-reaction problem, the

Characteristic Galerkin method (which coincides with SUPG under some restrictions)

and the Taylor-Galerkin method (considered as the finite element counterpart of the

Lax-Wendroff scheme for finite difference methods) are alternatives to the previously

introduced methods.

It is also possible to stabilize a problem using adaptive techniques, which are based

on a posteriori error analysis, viz. as a function of the residual of the problem. The

basic principle is to refine the mesh wherever an a posteriori error estimator indicates

the presence of large local errors in the computed solution. In this way hopefully are

identified regions affected by local singularities, shocks or interior layers. The aim is to

achieve a balance between refined and unrefined regions so that good global accuracy

is attained without introducing too mesh points (for an introduction to these methods

cfr. e.g. (59, 67)).

In (68) it is underlined that stabilized methods provide good approximations in

subdomains that exclude layers. To resolve them, it is possible to use layer-adapted

meshes, constructed a priori based on precise information on the structure of the layer

(67). In (55) SUPG (or SDFEM) behavior in layer regions is analyzed, in presence of

anisotropic layer-adapted meshes.

Finally the Adjoint Weighted Equation method (AWE) has been presented for

advection-reaction problems (63) and extended to the heat equation (6) and incom-

pressible plane-stress elasticity (2). Observe that the Least Squares method can be

derived from the Galerkin-Least Squares, for τ → ∞: the AWE method can be inter-

preted as the same limit of the DW method.

For example consider the linear first order advection-reaction operator

L := u · ∇Θ + σΘ

and define a(u, v) := (Lu,L∗v), where L∗ = −u ·∇Θ +σΘ is the adjoint operator. The

Adjoint Weighted Equation method consists in finding Θ ∈ V s.t.

a(Θ, v) = (f,L∗v), ∀v ∈ V. (3.19)
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Given an Hilbert space Vh ⊂ V ⊂ L2(Ω) the discrete method consists in finding Θh ∈ Vh
s.t.

a(Θh, vh) = (f,L∗vh), ∀vh ∈ Vh. (3.20)

As for the Least Squares method, stability and convergence results are based on Lax

Milgram lemma (Theorem A.2.1).

AWE has been used also for solving inverse problems, based on heat equation (6)

and incompressible plane-stress elasticity (2).

3.6 The Best Approximation Weighted Residual (BAWR)

method

In this section we will follow (20).

Consider the boundary value problem (2.4).Given two Hilbert spaces V = H1(Ω)

and W = H1
Γd

(Ω), where H1
Γd

(Ω) :=
{
v ∈ H1(Ω), v |Γd = 0

}
, the weak (variational)

formulation of (2.4) is the following (cfr. section 2.2):

find Θ ∈ V s.t. a(Θ, w) = F (w), ∀w ∈W, (3.21)

where a(·, ·) is a bilinear form a : V ×W → R, defined as

a(Θ, w) :=

∫
Ω
k∇Θ∇wdω +

∫
Ω

u · ∇Θwdω +

∫
Ω
σΘwdω,

and F (·) is a continuous linear operator F : W → R,

F (w) := (f, w) +

∫
Γn

kΘnwdγ.

Observe that defining F̃ (w) := F (w) − a(G,w), where G ∈ H1(Ω) is the Dirichlet

lift of g, i.e. G |Γd = g, and considering V = W = H1
Γd

(Ω) we obtain a variational

formulation equivalent to (3.21):

find Θ ∈W s.t. a(Θ, w) = F̃ (w), ∀w ∈W. (3.22)

Then for the well-posedness of the continuous problem (2.4) it suffices Lax Milgram’s

Lemma (64).

Consider now a finite element discretization of the domain Ω, whose refinement

level is characterized by a parameter h, and identify the computational domain Ωh with

Ω. To obtain an approximate numerical solution of (3.21), two Nh finite-dimensional
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3. STABILIZATION OF CONVECTION DOMINATED PROBLEMS

Hilbert subspaces Vh ⊂ V and Wh ⊂W are chosen. The Petrov Galerkin finite element

approximation of (3.21) is formulated as follows:

find Θh ∈ Vh s.t. a(Θh, wh) = F (wh), ∀wh ∈Wh. (3.23)

Observing that F (wh) − a(Θh, wh) is equivalent, in the distributional sense, for

suitable a, F , V and W to (f − LΘh, wh), the discrete problem (3.23) can be restated

equivalently in the following way:

find Θh ∈ Vh s.t. 0 = (f − LΘh, wh) = (L(Θ−Θh), wh) ∀wh ∈Wh. (3.24)

(3.24) is called also a weighted-residuals method (71): the solution will satisfy an or-

thogonality condition between the residual of the strong form of the differential problem

and the space of weighting-functions.

The aim of this section is to present a parameter-free, analytic method of choosing

the space of weighting-functions Wh that brings to the best-approximation in the norm

induced by the inner-product adopted in the weighted-residuals formulation, and to

propose an efficient numerical realization for this strategy. We call it the Best Ap-

proximation Weighted Residuals (BAWR) method. Note that this optimality is always

achievable, while the standard Galerkin method is optimal in a stronger norm but only

for problems dominated by diffusion.

To derive the method, first homogeneous boundary conditions are considered in

(2.4), i.e. Θd = 0 = Θn. The general case, with inhomogeneous boundary conditions,

will be discussed later on. Suppose that D(L) ⊂ V is a dense subset of V identified

by boundary conditions on L, then the adjoint operator of L : D(L) ⊂ V → W
′
, is a

differential operator, L∗ : D(L∗) ⊂ W → V
′
, such that for every v ∈ V , w ∈ W the

Lagrange identity holds, i.e.

(Lv, w) = (v,L∗w) , (3.25)

where D(L∗) is chosen such that (3.25) is verified (33, 57). Observe that we are iden-

tifying V and W with their dual spaces respectively V
′

and W
′

in the definition of L∗:

this is justified by the Riesz theorem, since we are dealing with Hilbert spaces (57).

Moreover we are identifying the duality pairing between V
′

and W or W
′

and V with

the L2 scalar product on Ω: 〈Lv, w〉 = (Lv, w) and 〈v,L∗w〉 = (v,L∗w); this is possible

because we are dealing with L2 functions.

The following Theorem 3.6.1 defines the BAWR method, i.e. it tells how to choose

Wh in (3.24) in such a way that the approximation error Θ − Θh is L2-orthogonal to

the space Vh of the approximating functions.
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Theorem 3.6.1 Given the model problem (2.4), with homogeneous boundary condi-

tions, i.e. Θd = 0 = Θn, and the numerical method (3.24), let
{
φih
}
i=1,...,Nh

be a basis

of Vh ⊂ V . Let L : V →W be a one-to-one linear differential operator (isomorphism).

Consider the following adjoint boundary-value-problems:

for each φih ∈ Vh, i = 1, . . . , Nh, find wi ∈W such that

L∗wi = φih (3.26)

where L∗ is the adjoint of L and D(L∗) is defined imposing adjoint boundary conditions.

Define Wh := span
{
wi
}
i=1,...,Nh

.

Then Wh is a finite Nh-dimensional Hilbert space. Moreover using it as weighting

space in (3.24), Θh is the L2-projection of Θ ∈ V onto Vh, i.e.

(vh,Θ−Θh) = 0 ∀vh ∈ Vh . (3.27)

Proof. Since L∗ is an isomorphism (9), the existence of wi in (3.26) is guaranteed

for every i = 1, . . . , Nh.

Let us first demonstrate that
{
wi
}
i

are linearly independent, i.e. they form a basis

of Wh. In fact, choosing αi ∈ R for all i,
∑

i αiw
i = 0 ⇔ (by the linearity of L∗)⇔∑

i αiL
∗wi = 0 ⇔ (3.26) ⇔

∑
i αiφ

i
h = 0 ⇔ αi = 0 ∀i, since

{
φih
}
i

is a basis of Vh.

As a consequence dimWh = Nh. Moreover as a finite dimensional vectorial subspace

of W , it is also an Hilbert space, with the induced norm.

Considering now (3.24) and applying Lagrange identity (3.25), there exists D(L∗),

defined imposing adjoint boundary conditions (33), s.t. the following holds:

find Θh ∈ Vh s.t. 0 = (L∗wh,Θ−Θh) ,∀wh ∈Wh. (3.28)

Since
{
wi
}
i

is a basis of Wh, there exists β ∈ RNh s.t. wh =
∑

i βiw
i. Using the

linearity of L∗, 0 = (L∗wh,Θ−Θh) =
∑

i βi
(
L∗wi,Θ−Θh

)
.

Using now (3.26) for every i = 1, . . . , Nh, (3.28) is equivalent to

find Θh ∈ Vh s.t. 0 =
∑
i

βi
(
φih,Θ−Θh

)
,∀β ∈ RNh . (3.29)

Since
{
φih
}
i

is a basis of Vh, there exists β s.t. every vh ∈ Vh can be written as
∑

i βiφ
i
h.

Thus (3.29) is equivalent to

find Θh ∈ Vh s.t. 0 = (vh,Θ−Θh) ,∀vh ∈ Vh. (3.30)

�

The above Theorem holds in general for weighted-residuals methods. Here we will

consider the case of Vh being a space of Finite Elements and Wh a space of continuous

test functions.
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3. STABILIZATION OF CONVECTION DOMINATED PROBLEMS

3.6.1 Application to the steady diffusion-convection-reaction equa-

tion

Consider the model problem (2.4). First of all we need to define the adjoint operator

of L, L∗, applying both the identity (3.25) and the Green’s formula.∫
Ω
−div(k∇Θ)wdω = (Green’s formula) =

∫
∂Ω
−k ∂Θ

∂nwdγ +
∫

Ω
k∇Θ∇wdω

=
∫
∂Ω
−k ∂Θ

∂nwdγ +
∫

Ω
div(kΘ∇w)dω −

∫
Ω

Θdiv(k∇w)dω

= (Green’s formula) =
∫
∂Ω
k
[
−∂Θ
∂nw + ∂w

∂nΘ
]
dγ −

∫
Ω

Θdiv(k∇w)dω

.

∫
Ω

u · ∇Θwdω =
∫

Ω
div(uwΘ)dω −

∫
Ω
div(uw)Θdω

= (Green’s formula) =
∫
∂Ω
wΘu · ndγ −

∫
Ω
div(uw)Θdω

.

(LΘ, w) =

∫
∂Ω

[
−k∂Θ

∂n
w + k

∂w

∂n
Θ + wΘu · n

]
dγ+

∫
Ω

[−div(k∇w)− div(uw) + σw]udω.

(3.31)

If we define L∗w = −div(k∇w)− div(uw) + σw, so

(LΘ, w) =

∫
∂Ω

[
−k∂Θ

∂n
w + k

∂w

∂n
Θ + wΘu · n

]
dγ + (Θ,L∗w) . (3.32)

3.6.1.1 The case of homogeneous boundary conditions

To satisfy the Lagrange identity (3.25) it is necessary to choose D(L) ⊂ V and D(L∗) ⊂
W such that∫
∂Ω

[
−k ∂Θ

∂nw + k ∂w∂nΘ + wΘu · n
]
dγ = 0 (33). To do this we consider the following

homogeneous boundary-value problem
LΘ = f, on Ω

Θ = 0, on Γd
∂Θ
∂n = 0, on Γn.

(3.33)

where f ∈ L2(Ω) is assigned. Choosing D(L) ⊂ V = H1(Ω) such that every v ∈ D(L)

satisfies boundary conditions of the problem (3.33), we obtain the condition:∫
Γn

[
k
∂w

∂n
+ wu · n

]
Θdγ = 0.

So we can define the adjoint operator associated to (3.33):
L∗w = −div(k∇w)− div(uw) + σw

w = 0 on Γd

k ∂w∂n + (u · n)w = 0 on Γn

(3.34)

where D(L∗) ⊂ W = H1(Ω) is the set of functions w that satisfy the boundary condi-

tions of (3.34). Now we have all the ingredients to apply the BAWR method to (3.33):
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3.6 The Best Approximation Weighted Residual (BAWR) method

∀i = 1, . . . , Nh,

find Θh ∈ Vh s.t. 0 = (wi, f − LΘh)

= (wi,L(Θ−Θh)) = (L∗wi,Θ−Θh) = (φih,Θ−Θh)
(3.35)

using as Wh = span
{
wi
}
i=1,...,Nh

the H1(Ω) Nh- finite dimensional subspace defined

in Theorem 3.6.1.

3.6.1.2 The case of non homogeneous boundary conditions

Our aim is now to extend results derived for the homogeneous boundary conditions

case (3.33) to the general non homogeneous linear differential boundary-value problem

(2.4). As mentioned in (33), in the general non homogeneous case we cannot construct

an adjoint differential operator, i.e. an operator like (3.34) with its own boundary

conditions, such that Lagrange identity (3.25) holds. Consider the corresponding ho-

mogeneous problem (3.33) and its adjoint operator (3.34). Suppose that u and w satisfy

(2.4)’s and (3.34)’s boundary conditions respectively. Then (3.32) is equivalent to:

(LΘ, w) =

∫
Γn

−kΘnwdγ + (Θ,L∗w) +

∫
Γd

k
∂w

∂n
Θddγ. (3.36)

For inhomogeneous boundary conditions, using (3.36), the BAWR method can be re-

stated as follows: ∀i = 1, . . . , Nh

find Θh ∈ Vh s.t.0 = (wi,L(Θ−Θh))

=
∫

Γn
−k(Θn −Θnh)widγ +

(
Θ−Θh,L

∗wi
)

+
∫

Γd
k ∂w

i

∂n (Θd −Θdh)dγ

=
∫

Γn
−k(Θn −Θnh)widγ +

(
Θ−Θh, φ

i
h

)
+
∫

Γd
k ∂w

i

∂n (Θd −Θdh)dγ,

(3.37)

where Θnh , Θdh ∈ Vh are approximations on the h-step grid of boundary data Θn and

Θd respectively. The term
∫

Γn
−k(Θn − Θnh)widγ +

∫
Γd
k ∂w

i

∂n (Θd − Θdh)dγ quantifies

the deviation from orthogonality. This is meaningful because it tells us that to control

it, it is sufficient to guarantee an accurate approximation of the boundary terms Θn

and Θd:∣∣∣∫Γn
−k(Θn −Θnh)widγ

∣∣∣ ≤ ‖k‖∞ ‖Θn −Θnh‖L2(Γn)

∥∥wi∥∥
L2(Γn)

≤ C(Ω) ‖k‖∞ ‖Θn −Θnh‖L2(Γn)

∥∥wi∥∥
H1

,∣∣∣∫Γd
−k ∂wi∂n (Θd −Θdh)dγ

∣∣∣ ≤ ‖k‖∞ ‖Θd −Θdh‖L2(Γd)

∥∥∇wi · n∥∥
L2(Γd)

≤ C
′
(Ω) ‖k‖∞ ‖Θd −Θdh‖L2(Γd)

∥∥wi∥∥
H1

,

where C(Ω) and C
′
(Ω) are constants and we have used the Cauchy Schwarz inequality

and the continuity of the trace operator (15).
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3.6.2 BAWR stability and convergence estimates

3.6.2.1 Optimality in L2-norm

Lemma 3.6.1 Under the assumptions of Theorem 3.6.1, the BAWR solution Θh is

optimal in the L2−norm.

Proof. This is an immediate consequence of Theorem 3.6.1, which shows that Θh

is the L2-projection of Θ onto Vh, thus it verifies the following L2 convergence estimate

of minimal distance:

‖Θ−Θh‖L2 = inf
vh∈Vh

‖Θ− vh‖L2 . (3.38)

The well known Projection Theorem (19) guarantees that Θh is the best approximation

of Θ in the L2-norm, and this best-approximation always exists, in the hypotheses

made, and is unique.

�

3.6.2.2 Convergence and stability estimates using H1-norm

In the following part of this section we analyze BAWR’s convergence in H1− norm.

As stated in the generalization of the Lax Milgram’s Lemma for Petrov Galerkin

problems, i.e. Theorem A.3.2 (4, 65), if Wh and Vh in (3.23) are chosen such that a

verifies

supΘh∈Vh |a(Θh, wh)| > 0, ∀wh ∈Wh, wh 6= 0,

∃ Ch > 0 s.t. supwh∈Wh,‖wh‖W 6=0
|a(Θh,wh)|
‖wh‖W

≥ Ch ‖Θh‖V ∀Θh ∈ Vh
, (3.39)

then it follows existence and uniqueness of the solution of (3.23) and the following

stability and convergence estimates hold:

‖Θh‖V ≤
‖F‖W ′
Ch

‖Θ−Θh‖V ≤
(

1 + γ
Ch

)
infvh∈Vh ‖Θ− vh‖V .

(3.40)

It is important to note that in estimates (3.40) the constants are functions of the

coefficients of the differential operator (2.3) and depends on the choice of Vh and Wh.

In the following it will be proved that estimates (3.40) hold for the BAWR method.

Lemma 3.6.2 Under the assumptions of Theorem 3.6.1, supΘh∈Vh |a(Θh, wh)| > 0, ∀wh ∈
Wh, wh 6= 0.
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3.6 The Best Approximation Weighted Residual (BAWR) method

Proof. First of all observe that, since wh ∈ Wh, there exists α ∈ RNh such that

wh =
∑Nh

i=1 αiw
i. Then a(Θh, wh) =

∑
i αia(Θh, w

i) =
∑

i αi(LΘh, w
i) =

∑
i αi(Θh,L

∗wi)

= (Theorem 3.6.1) =
∑

i αi(Θh, φ
i
h), for every wh ∈Wh and Θh ∈ Vh.

Thus supΘh∈Vh |a(Θh, wh)| = supΘh∈Vh
∣∣∑

i αi(Θh, φ
i
h)
∣∣ = supΘh∈Vh

∣∣(Θh,
∑

i αiφ
i
h)
∣∣.

Define now vh :=
∑

i αiφ
i
h: observe that vh = 0 iff αi = 0, ∀i iff wh = 0. Thus

supΘh∈Vh |a(Θh, wh)| = supΘh∈Vh |(Θh, vh)| ≥ |(vh, vh)| = ‖vh‖22 > 0, for every wh ∈
Wh, wh 6= 0.

�

Lemma 3.6.3 Under the assumptions of Theorem 3.6.1, there exists a constant Ch > 0

s.t.

sup
wh∈Wh,‖wh‖1 6=0

|a(Θh, wh)|
‖wh‖1

≥ Ch ‖Θh‖1 ∀Θh ∈ Vh. (3.41)

Proof. For all wh ∈Wh, there exists α ∈ RNh such that wh =
∑Nh

i=1 αiw
i: then, as

proved in Lemma 3.6.2, a(Θh, wh) =
∑

i αi(Θh, φ
i
h), for every wh ∈Wh and Θh ∈ Vh.

Using this fact we can restate (3.41) in the following equivalent way: there exists a

constant Ch > 0 s.t.

sup
α∈RNh ,α 6=0

∣∣∑
i αi(Θh, φ

i
h)
∣∣

‖
∑

i αiw
i‖1

≥ Ch ‖Θh‖1 ∀Θh ∈ Vh. (3.42)

First observe that for every Ch > 0, Θh = 0 satisfies inequality (3.41), since

a(Θh, wh) = 0. Thus it can be assumed that Θh 6= 0.

To prove the existence of a suitable constant Ch, first of all observe that, using the

triangular inequality ∥∥∥∥∥∑
i

αiw
i

∥∥∥∥∥
1

≤
∑
i

|αi|
∥∥wi∥∥

1
,

it holds

sup
α

∣∣∑
i αi(Θh, φ

i
h)
∣∣

‖
∑

i αiw
i‖1

≥ sup
α

∣∣∑
i αi(Θh, φ

i
h)
∣∣∑

i |αi| ‖wi‖1
(3.43)

Now for all Θh ∈ Vh, choose ᾱ ∈ RNh such that for all i = 1, . . . , Nh

ᾱi =

{
1, if (Θh, φ

i
h) ≥ 0,

−1, if (Θh, φ
i
h) < 0

Thus the following inequality holds:
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sup
α

∣∣∑
i αi(Θh, φ

i
h)
∣∣∑

i |αi| ‖wi‖1
≥ 1∑

i ‖wi‖1

∑
i

∣∣(Θh, φ
i
h)
∣∣ . (3.44)

Finally define Dh(Θh) := 1∑
i‖wi‖1

∑
i

∣∣(Θh, φ
i
h)
∣∣: since Θh 6= 0 Dh(Θh) > 0.

If Ch is sufficiently small such that Ch ≤ infΘh∈Vh,Θh 6=0
Dh(Θh)
‖Θh‖1

, then for all Θh ∈ Vh,

Θh 6= 0

Dh(Θh) ≥ Ch ‖Θh‖1 ,

thus, using (3.43) and (3.44), it holds

sup
α

∣∣∑
i αi(Θh, φ

i
h)
∣∣

‖
∑

i αiw
i‖1

≥ Ch ‖Θh‖1 (3.45)

for all Θh 6= 0, i.e. (3.42).

To conclude the proof, it remains to prove that

inf
Θh∈Vh,Θh 6=0

Dh(Θh)

‖Θh‖1
> 0. (3.46)

For all Θh ∈ Vh, there exists a vector β ∈ RNh such that Θh =
∑

i βiφ
i
h. Then (3.46) is

equivalent to

inf
β 6=0

Φ(β) > 0, (3.47)

defining Φ(β) :=
∑
i|(
∑
j βjφ

j
h,φ

i
h)|∑

i‖wi‖1 ‖
∑
j βjφ

j
h‖1

. Observe that Φ : RNh \ {0} → 0 is a continuous

positive function. Consider the bidimensional case (Nh = 2): Φ = Φ(β1, β2) and

restrict Φ along straight lines, i.e. consider ψ(m)(β1) := Φ(β1, β2) |β2=mβ1
, m ∈ R.

Since ψ(m)(β1) = ψ(m) ∈ R, Φ is constant along each straight line of slope m passing

trought the origin. Moreover ψ(m) is a positive continuous function with respect to m

and has an infimum greater than zero. Thus infβ 6=0 Φ(β) > 0.

�

Proposition 3.6.1 Under the assumptions of Theorem 3.6.1, estimates (3.40) hold,

i.e.
‖Θh‖1 ≤ ‖F‖1

Ch

‖Θ−Θh‖1 ≤
(

1 + γ
Ch

)
infvh∈Vh ‖Θ− vh‖1 ,

(3.48)

where Ch is a suitable positive constant.

Proof. Since Lemmas 3.6.2 and 3.6.3 hold, it is sufficient to apply the generalization of the

Lax Milgram’s Lemma for Petrov Galerkin problems (64, 65).
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�

Lemma 3.6.4 Under the assumptions of Proposition 3.6.1, denote with r the degree of

polynomials used in the approximation finite element space. If there exists p ≥ r such

that u ∈ Hp+1(Ω), then

‖Θ−Θh‖1 ≤ C̃h,rh
r |Θ|r+1 , (3.49)

for a suitable C̃h,r > 0, function of h and r.

Proof. It is a consequence of proposition 3.6.1 and of interpolation estimates

(64, 65).

More precisely, let Πr
hΘ be the r-degree polynomial interpolant of Θ upon the

discretization of Ω characterized by h, then, for a suitable constant Cr > 0, it holds

‖Θ−Θh‖1 ≤
(

1 + γ
Ch

)
infvh∈Vh ‖Θ− vh‖1 ≤

(
1 + γ

Ch

)
‖Θ−Πr

hΘ‖1
≤ (64, 65) ≤

(
1 + γ

Ch

)
Crh

r |u|r+1 = C̃h,rh
r |Θ|r+1 ,

for C̃h,r :=
(

1 + γ
Ch

)
Cr.

�

3.6.2.3 Numerical study of the order of convergence

An analytic study of (3.49) is not simple, since it is not evident how the constant C̃h,r

depends on h. Thus, to conclude this section, the order of convergence in H1-norm of

BAWR is estimated numerically, using as a test case the example of section 3.6.4.1,

solved using the implementation described in section 3.6.3 and P1 finite elements (i.e.

r = 1). For completeness also the L2-norm estimate of the order of convergence has

been included.

As it can be seen in Figure 3.4, the order of convergence of BAWR is asyntotically

two and one, using respectively L2 and H1 norms to compute the error. A Galerkin

approximation computed on a much finer grid is used as real solution Θ.

Moreover, Figure 3.4 shows the optimality of BAWR in the L2 norm and a behaviour

much more independent from h for the constant C̃h,r (i.e. the error curve in logarithmic

scale is more straight), with respect to the Galerkin method. It is interesting to note

that the BAWR method performs better also for small h steps, and the gap between the

two methods becomes more evident as the Peclet number grows (i.e. as ν increases).

Moreover, as a Petrov Galerkin method in which the operators a and F are not

approximated, the BAWR method is strongly consistent.
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Figure 3.4: Numerical estimate of the order of convergence of BAWR and of Galerkin,

obtained solving example of section 3.6.4.1 for different values of the mesh step h. Using

logarithmic scales: step size h vs. L2 and H1 norms of BAWR and Galerkin errors. A

Galerkin approximation computed on a much finer grid is used as real solution Θ. From

left to right, from the top to the bottom: example 3.6.4.1 solved for different values of the

convection parameter ν: 200, 600, 2000, 10000.

3.6.3 BAWR finite elements

The crucial part of the BAWR method is the definition of Wh, which consists in solving

the following Nh adjoint problems: for each φih ∈ Vh, i = 1, . . . , Nh, find wi ∈ W such

that 
L∗wi = φih in Ω

wi = 0 on Γd

k ∂w
i

∂n + (u · n)wi = 0 on Γn.

(3.50)

These are boundary-value problems defined on the same domain of the original

one, but with an highly localized forcing term. For all i = 1, . . . , Nh, the numerical

approximation of wi can be obtained e.g. using a standard Galerkin finite element
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3.6 The Best Approximation Weighted Residual (BAWR) method

approximation, i.e. finding wih ∈ V w
h ⊂ W , such that for all χh ∈ V w

h , χh |Γd = 0 we

have ∫
Ω

[
k∇wih∇χh + u · wih∇χh + σwihχh

]
dω =

∫
Ω
φiχhdω. (3.51)

To obtain useful weighting functions {wih} there are two possibilities. The first is to

adopt for V w
h a finer discretization than that used for Vh, e.g. V w

h = Vh
2

or V w
h = Vh

4
,

while the second is to use higher order polynomials on the same discretization.

Then Wh is approximated by span{wih}. Observe that, to define it, it is necessary

to solve (3.50), for all i, i.e. Nh distinct adjoint problems all defined on Ω. Clearly this

is not efficient, thus an alternative implementation of the method is proposed in the

following section.

3.6.3.1 Efficient computation of the weighting functions

In this section we derive an efficient numerical method to approximate wi, i = 1, . . . , Nh.

To have an idea of what will be presented, observe that from the computational point-

of-view, the strong locality of the right-hand-side in the adjoint problems (3.50) sug-

gests that also the solution could be only locally meaningful, thus requiring a reduced

computational cost. Moreover, the Nh adjoint problems (3.50) are very similar among

them: the forcing term is very local and always the same; it only changes its point of

application. These observations suggest at the same time to localize the problem, i.e.

to approximate wih which in general have support Ω with a function only with a local

support, and also to compute only one reference weighting function. Let’s analyze this

idea.

Assume that
{
φih
}
i

is a lagrangian basis of Vh. For every i = 1, . . . , Nh we ap-

proximate wi ∈ W , solution of (3.50), with a compactly supported function ŵi ∈ W .

Without loss of generality, in this section we suppose that Ωi
loc := suppŵi = suppφih,

for all i, and we denote its boundary with Γiloc = ∂Ωi
loc. In general it is sufficient that

Ωi
loc ⊇ suppφih.

Define ŵi in the following way:

ŵi =

{
w̃i, on Ωi

loc

0, on Ω \ Ωi
loc,

(3.52)

where w̃i is the solution of the i-th localized adjoint problem:{
L∗w̃i = φih |Ωiloc on Ωi

loc

w̃i = 0 on Γiloc .
(3.53)
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3. STABILIZATION OF CONVECTION DOMINATED PROBLEMS

It is important to note that although the adjoint problems (3.50) depend by con-

struction on the boundary conditions on u imposed in the original problem (3.33), the

localized problems (3.53) are independent from these conditions: they only depend on

the PDE coefficients and the choice of the space of approximating functions φih. This is

important because if the PDE coefficients are constant on Ω we can compute only one

(reference) w̃i and translate it to define
{
ŵk
}

. In fact for every k = 1, . . . , Nh consider

a projection function Πk s.t. ΠkΩ
k
loc ⊆ Ωi

loc is the part of Ωi
loc corresponding to the k-th

node: ΠkΩ
k
loc ⊂ Ωi

loc if k is a boundary node, whereas ΠkΩ
k
loc ≡ Ωi

loc if k is an internal

node (cfr. Figure 3.5).

Figure 3.5: Examples of the projection ΠkΩkloc: it coincides with Ωiloc for internal nodes,

whereas it is a part of it for boundary nodes.

Define now

ŵk =

{
w̃i|ΠkΩkloc

, on Ωk
loc

0, on Ω \ Ωk
loc

. (3.54)

The approximated weighting function space is defined as Ŵh = span
{
ŵk
}
k

and we de-

note with ûh the corresponding approximate solution. Moreover for every i = 1, . . . , Nh

we approximate w̃i with w̃ih, Galerkin’s solution of (3.53), obtained using a finer dis-

cretization than that corresponding to Vh. Then for every k = 1, . . . , Nh we define

ŵkh =

{
w̃ih |ΠkΩkloc

, on Ωk
loc

0, on Ω \ Ωk
loc.

(3.55)

Thus we approximate Ŵh with span
{
ŵkh
}

, for simplicity in the following we will identify

them.
Now, it is important to identify the error that we introduce in the BAWR solution

by approximating the space Wh, defined by Theorem 3.6.1, with Ŵh. We denote by
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3.6 The Best Approximation Weighted Residual (BAWR) method

ûh the corresponding BAWR approximate solution, obtained using Ŵh as weighting
function space in (3.23).
Using identity (3.24) we obtain ∀ i = 1, . . . , Nh

0 =
(
ŵi,L(Θ− Θ̂h)

)
=
∫

Ω
L(Θ− Θ̂h)ŵidω =

∫
Ωi
loc

L(Θ− Θ̂h)ŵidω +
∫

Ω\Ωi
loc

L(Θ− Θ̂h)ŵidω

= (3.52) =
∫

Ωi
loc

L(Θ− Θ̂h)w̃i

=
∫

Ωi
loc
−div(k∇(Θ− Θ̂h))w̃idω +

∫
Ωi
loc

u · ∇(Θ− Θ̂h)w̃idω +
∫

Ωi
loc
σ(Θ− Θ̂h)w̃idω

= (3.31) = IΓi
loc

+
∫

Ωi
loc

[
−div(k∇w̃i)− u · ∇w̃i − div(u)w̃i + σw̃i

]
(Θ− Θ̂h)dω

= IΓi
loc

+
(
L∗w̃i,Θ− Θ̂h

)
L2(Ωi

loc
)
,

denoting with

IΓi
loc

:=
∫

Γi
loc

[
−k ∂(Θ−Θ̂h)

∂n
w̃i + k ∂w̃

i

∂n
(Θ− Θ̂h) + w̃i(Θ− Θ̂h)u · n

]
dγ

= (3.53) =
∫

Γi
loc
k ∂w̃

i

∂n
(Θ− Θ̂h)dγ

(3.56)

the localization error.

Moreover, observing that(
L∗ŵi,Θ− Θ̂h

)
L2(Ω)

= (3.52) =
(
L∗w̃i,Θ− Θ̂h

)
L2(Ωiloc)

= (3.53) =

=
(
φih,Θ− Θ̂h

)
L2(Ωiloc)

=
(
φih,Θ− Θ̂h

)
L2(Ω)

,

we obtain the following approximation of the BAWR method (3.37): ∀i = 1, . . . , Nh

find Θ̂h ∈ Vh s.t.0 =
(
ŵi,L(Θ− Θ̂h)

)
=
(
L∗ŵi,Θ− Θ̂h

)
+IΓiloc

=
(
φih,Θ− Θ̂h

)
+IΓiloc

.

(3.57)

If we are dealing with homogeneous boundary conditions (i.e. Θd = 0 = Θn), we

observe that although the BAWR formulation (3.35) gives the optimal L2-solution, the

approximation BAWR method (3.57) introduce a global localization error
∑Nh

i=1 IΓiloc

which is proportional to the exactness of Θ̂h on Γiloc, for all i. Consider Θ
′

such

that Θ = Θ̂h + Θ
′
: observe that Θ

′
represents the unresolved scales (50). Assuming

that Θ = Θ̂h on Γiloc, is equivalent to consider Θ
′

= 0 on Γiloc: this is similar to the

assumption made by Hughes in (39), presenting the subgrid-scale model (cfr. section

3.4), where Θ
′

is chosen equal to zero on the boundary of every element of Ω. Observe

moreover that this hypothesis can be relaxed using the approximation BAWR method:

in fact it is possible to reduce the localization error, choosing a bigger support for ŵi,

for all i. We estimate the global localization error
∑Nh

i=1 IΓiloc
numerically, using as a

test case the example described in section 3.6.4.1: the error estimates are obtained

comparing the BAWR solution on an h-step grid with the Galerkin approximation on

a h
8 -grid, which is assumed to be the reference true solution. For different increasing

Peclet values, obtained considering ν equal to 50, 200, 600, 1000, we obtain respectively

0.0011159, 0.00018404, 4.6108 ·10−5, 4.0047 ·10−5 as estimates of the global localization

error.
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3. STABILIZATION OF CONVECTION DOMINATED PROBLEMS

In particular, suppose now that Γn 6= ∅. Solving (3.52) for every i means that we

are imposing homogeneous Dirichlet boundary conditions on Γiloc∩∂Ω, for all i, i.e. we

are neglecting the Neumann component on Γn, i.e.

(k
∂wi

∂n
+ (u · n)wi = 0) ≈

(
wi = 0

)
. (3.58)

in (3.50). Observe that for convection dominated problems it is proper to neglect k ∂w
i

∂n

at least where the convection field u is not tangential to the boundary.

To understand the consequences of neglecting Neumann boundary conditions on

Γiloc ∩ Γn for the localized adjoint problems (cfr. approsimation 3.58), choose Ωi
loc s.t.

Γiloc ∩ Γn 6= ∅ and let w̃iloc be the solution of the following problem, which is a local

problem on Ωi
loc derived from (3.50):

L∗w̃iloc = φi |Ωiloc in Ωi
loc

w̃iloc = 0 on Γiloc ∩ Γd
⋃

Γiloc \ ∂Ω

k
∂w̃iloc
∂n + (u · n)w̃iloc = 0 on Γiloc ∩ Γn.

(3.59)

Comparing boundary conditions of problems (3.59) defined on Ωi
loc and (3.53), we

observe that they are different iff Γiloc ∩ Γn 6= ∅. Through a numerical example, we

analyze numerically this difference, choosing a square Ωi
loc = [−h, h] × [−h, h], h =

0.0625, Γiloc∩Γn = {(ξ, h), (h, ζ), ξ, ζ ∈ [0, h]}. The resulting w̃iloc are shown in Figure

3.6: they could be compared with the corresponding w̃ih, i.e. the one with Dirichlet

homogeneous boundary conditions (cfr. Figure 3.8). As explained in section 3.6.4, all

weighting functions are the P1-Galerkin solutions of local problems (3.59) and (3.53)

on Ωi
loc, whose uniform local grid has step size h

4 . Note that in Figure 3.6 the error

becomes negligible as Peclet number grows, i.e., dealing with convection dominated

problems, using Ŵh is proper also when Γn 6= ∅.
If we are dealing with inhomogeneous boundary conditions (i.e. ud 6= 0 6= un),

comparing the approximate BAWR method (3.57) with the BAWR one (3.37), it can

be observed that the deviation from orthogonality term in (3.37) is replaced by the

localization error in (3.57).

In section 3.6.4 Ŵh has been used, instead of the real BAWR weighting function

space Wh.

Finally, before describing numerical results, we observe that thanks to the local-

ization and the use of a single reference test function, there is only a relatively small

increase in the cost of the BAWR method compared to the standard Galerkin method,

analogous to the increase in the computational cost required by other existing stabi-

lization methods. More precisely, the computation of the reference test function w̃ih on
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3.6 The Best Approximation Weighted Residual (BAWR) method

Figure 3.6: The function w̃ihloc on the domain Ωiloc chosen s.t. Γiloc ∩ Γn 6= 0. Different

values of the convection parameter ν are considered: 50, 200, 600, 1000.

Ωi
loc is negligible even for middle-small sized problems, while an O(Nh) increase occurs

in the computation of the element matrices, since the test function w̃ih is defined on a

finer mesh and thus each h-grid element integral must be computed on this finer mesh.

3.6.4 Numerical examples

In this section we present few examples to demonstrate the effectiveness of the BAWR

method for convection dominated problems. Consider the two dimensional convection-

diffusion equation (2.4) on Ω = [0, 1] × [0, 1], with constant coefficients k = 1, σ = 0,

u = ν(cosϑ, sinϑ), where ν > 0 is constant in space and varying across the experiments

to test different values of the ratio between convection and diffusion (the Peclet number

Pe := ν
k ). Suppose that P1 elements are used for both BAWR and Galerkin meth-

ods. Weighting functions are computed in an approximated way (cfr. section 3.6.3.1),

choosing Ωi
loc = [−h, h] × [−h, h], and considering a grid of step h

4 over it, denoting

with h Ω’s uniform grid step (cfr. Figure 3.7). Thus only one reference adjoint problem

(3.53) is solved on Ωi
loc, using a P1 Galerkin method, on a finer discretization of step

h
4 (i.e. V w

h = Vh
4
).

The chosen step h = 0.0625 is not too small, to show that the BAWR method

behaves better than the Galerkin one on coarser grids, as already observed through the
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3. STABILIZATION OF CONVECTION DOMINATED PROBLEMS

Figure 3.7: The domain Ω (left), a P1 shape function on an internal node of Ω (center)

and the local domain Ωiloc for the adjoint problems. In this example Ωiloc ⊃ suppφi

convergence analysis (cfr. Figure 3.4).

3.6.4.1 Dirichlet homogeneous boundary conditions and point wise forcing

term

Consider ϑ = π
4 and a point-load f , applied at the point (0.71, 0.79).

In this test we apply homogeneous Dirichlet boundary conditions in all ∂Ω, i.e. Γd =

∂Ω and Θd = 0, thus the localized weighting functions w̃i, solutions of (3.53), satisfy

exactly the corresponding adjoint boundary conditions (3.50) on ∂Ω. An analogous

example is given also in (59), where BAWR is compared in 1D problems with other

stabilized methods, in particular SUPG (originally presented in (48)).

In Figure 3.8 are represented the reference w̃ih on Ωi
loc for different values of the

convection parameter ν: 50, 200, 600, 1000. Note that, with large Peclet numbers, w̃ih
becomes oscillatory. This is not surprising, since w̃ih is a Galerkin approximation (on a

locally refined grid). It is noteworthy that the corresponding BAWR solution (Figure

3.9) does not suffer from such instability. This is another way to see that the BAWR

solution ûh is more stable than the Galerkin one.

In Table 3.1 we report L2 and H1 error estimates obtained solving this example,

for different values of the convection parameter ν: 50, 200, 600, 1000 (column 1). The

values in the table are the error results in the L2-norm and H1-norm, obtained on an

h-step grid with the BAWR method (Θ − Θ̂h) and the Galerkin method (Θ − ΘGal
h ).

The error is computed assuming as true solution a Galerkin approximation computed

on an h
8 -grid. The comparison between the second and the third columns of the table is

useful to confirm the L2-optimality of BAWR stated in Lemma 3.6.1. Moreover it can

be seen that the BAWR solution results progressively more accurate than the Galerkin

one, as the Peclet number grows, even using H1-norm.
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3.6 The Best Approximation Weighted Residual (BAWR) method

Figure 3.8: The reference w̃ih on Ωiloc for different values of the Peclet number: 50, 200,

600, 1000.

Example 3.6.4.1

ν
∥∥∥Θ− Θ̂h

∥∥∥
2

∥∥Θ−ΘGal
h

∥∥
2

∥∥∥Θ− Θ̂h

∥∥∥
H1

∥∥Θ−ΘGal
h

∥∥
H1 ‖Θ‖2 ‖Θ‖H1

50 0.00021004 0.00023707 0.055512 0.048982 0.0090632 0.1571

200 0.00011652 0.00012898 0.032797 0.034742 0.0014733 0.060604

600 4.7675·10−5 6.9811·10−5 0.016595 0.02203 0.00027831 0.023921

1000 2.8021·10−5 4.8036·10−5 0.011666 0.016145 0.00012303 0.015057

Table 3.1: Global approximation error results in the L2-norm for example 3.6.4.1, for

the BAWR solution Θ̂h and the Galerkin solution ΘGal
h , for various Peclet numbers. The

exact solution is a Galerkin one on a mesh of size h
8 .
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Figure 3.9: Example 3.6.4.1. Left: BAWR solution for homogeneous boundary conditions

for different values of the convection parameter ν (and corresponding Peclet number): 1,

50, 200, 600, 1000. Center: Galerkin solution on the same mesh of step size h. Right:

Galerkin solution on a finer mesh of step size h
8 .

3.6.4.2 Inhomogeneous dirichlet boundary conditions and null forcing term

In this section few examples are given, similar to those presented e.g. in (14, 27, 35).

Boundary conditions are sketched in Figure 3.10.
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3.6 The Best Approximation Weighted Residual (BAWR) method

Figure 3.10: Problem statement of example 3.6.4.2.

ϑ = π
4

As in example of section (3.6.4.1), ϑ = π
4 , i.e. the velocity field is aligned to the

mesh. It is known that this is a more stable choice dealing with convection dominated

problems (36). In this example a discontinuity in Dirichlet boundary conditions at the

inflow causes the formation of an internal boundary layer. Choosing f = 0 and ν = 106,

the BAWR method works pretty well (cfr. figure 3.12), also compared to SUPG and

bubbles (cfr. figure 3.11 taken from (14) for a comparison).

ϑ = π
3

This example is analogous to the previous one, but the vector field is not aligned

with the mesh. Thus Dirichlet boundary condition at the outflow give rise to an outflow

boundary layer (cfr. figure 3.13). Considering ν = 103 the error results in the L2-norm

of BAWR and Galerkin, are respectively 0.11478 and 0.53283. The error is computed

assuming as the true solution a Galerkin approximation obtained on a h
8 -grid (cfr.

Figure 3.13).

ϑ = 2π
3

As in the previous example, the vector field is not aligned with the mesh. We

consider ν = 103 and ν = 104 and compare BAWR and Galerkin solutions (cfr. Figures

3.14 and 3.15). For ν = 103, the error results in the L2-norm of BAWR and Galerkin,

are respectively 0.50822 and 1.7268. The error is computed assuming as the true

solution a Galerkin approximation obtained on a h
8 -grid (cfr. Figure 3.14). For ν = 104
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Figure 3.11: Bubble solution for non homogeneous Dirichlet boundary conditions, ϑ = π
4 ,

ν = 106 (left) and SUPG solution (right). Down: corresponding contour plots.This figure

are taken from (14).

it can be seen also that the BAWR solution on an h-step grid is much more accurate

than the Galerkin reference one, computed using h
8 as step (cfr. Figure 3.15).
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Figure 3.12: Up: Galerkin solution for non homogeneous Dirichlet boundary conditions,

ϑ = π
4 , ν = 106 (left) and BAWR solution (right). Down: corresponding contour plots.

Figure 3.13: Example ϑ = π
3 , ν = 103. Up: Galerkin solution (left), BAWR solution on

the same mesh (center), Galerkin solution on a finer mesh h
4 (right). Down: corresponding

contour plots.
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Figure 3.14: Example ϑ = 2π
3 , ν = 103. Up: Galerkin solution (left), BAWR solution on

the same mesh (center), Galerkin solution on a finer mesh h
4 (right). Down: corresponding

contour plots.

Figure 3.15: Example ϑ = 2π
3 , ν = 104. Up: Galerkin solution (left), BAWR solution on

the same mesh (center), Galerkin solution on a finer mesh h
4 (right). Down: corresponding

contour plots.
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Navier Stokes equations
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4.3.1 Explicit treatment of the nonlinear term . . . . . . . . . . . . 67

4.3.2 Semi-implicit treatment of the nonlinear term . . . . . . . . . 67
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4.4.1 Test case: Backward facing step . . . . . . . . . . . . . . . . 69

4.4.2 Test case: Square obstacle . . . . . . . . . . . . . . . . . . . . 71

4.1 Navier Stokes equations

Consider a fluid of density ρ which is moving in Ω ⊂ Rn, n ≥ 1, with velocity u =

u(t,x), u = (ui)i=1,...,n, t ∈ [t0, tf ] and denote its pressure with p.

In (23) the mathematical model describing fluid flow motion is derived from the

fundamental principles of conservation of mass and momentum: to deepen the physic

underlying fluid flow modeling (1) or (5) could be consulted; moreover an introduction

of the microscopic one can be found in (58).
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Following (23), the conservation of mass can be expressed as follow:

d

dt

∫
D
ρ(t,x)dω = −

∫
∂D

ρ(t,x)u(t,x) · n(x)dγ,

for every fixed D ⊆ Ω: the rate of change of mass in D equals the amount of fluid

flowing into D across ∂D. Applying the Green’s lemma

0 =
d

dt

∫
D
ρ(t,x)dω +

∫
D
div(ρ(t,x)u(t,x))dω =

∫
D

∂

∂t
ρ(t,x) + div(ρ(t,x)u(t,x))dω.

Using D arbitrariness, it follows the conservation equation:

∂

∂t
ρ+ div(ρu) = 0 in Ω. (4.1)

Modeling an incompressible fluid, that is a fluid such that any amount of it does

not change its volume along the motion, is equivalent to impose the incompressibility

constraint

divu = 0.

Substituting this constraint in (4.1) the following equation holds:

d

dt
ρ =

∂

∂t
ρ+∇ρ · u = 0 in Ω,

since div(ρu) = ρdiv(u) +∇ρ · u.

Consider now the momentum equation. First of all observe that d
dtu(t,x) =

(
d
dtui(t,x)

)
i=1,...,n

and for every i

d

dt
ui(t,x) =

∂

∂t
ui +

n∑
j=1

∂ui
∂xj

∂xj
∂t

=
∂

∂t
ui +

n∑
j=1

∂ui
∂xj

uj =
∂

∂t
ui +∇ui · u.

Defining

(u · ∇)(•) := (∇(•i) · u)i=1,...,n ,

d

dt
u(t,x) =

∂u

∂t
+ (u · ∇)(u),

represents the fluid acceleration, which is nonlinear in u.

Observe that d(•)
dt = ∂(•)

∂t + (u · ∇)(•) is the so called convective derivative, and

expresses the rate of change of either a scalar quantity (or of each scalar component of

a vector quantity) that is ”following the fluid”.

For a fixed volume D ⊆ Ω, the rate of change of momentum is the product of the

mass and the acceleration, i.e.∫
D
ρ

(
∂u

∂t
+ (u · ∇)(u)

)
dω.
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This rate must be equal to the sum of forces acting on the fluid.

For a viscous fluid, each small volume of fluid D is not only acted on by pressure

forces (normal stresses), and any external body force F, e.g. gravity, but also by

tangential stresses (or shear stresses). While normal stresses give rise to∫
∂D
−pndγ =

∫
∂D
−pIndγ,

where In is the n dimensional unit diagonal tensor, the shear stresses act in any direction

at different points of ∂D: then a full n× n tensor T is needed, and the corresponding

force is ∫
∂D

Tndγ

which is equal to ∫
D
divTdω,

applying the Green’s lemma and denoting with divT an n-dimensional vector such that

(divT)i =
∑n

j=1 Tij .

A Newtonian fluid is characterized by the fact that the shear stress tensor is a linear

function of the rate of strain tensor

D :=
1

2

[
∇u + (∇u)t

]
,

where ∇u in an n× n matrix such that ∇uij =
∂uj
∂xi

. More precisely

T = µD + [−p+ λTr(D)] I,

where Tr(D) =
∑n

i=1Dii and µ and λ are parameters describing how sticky the fluid

is: λ = ζ− µ
n , where µ and ζ are called shear and bulk viscosity coefficients respectively

(cfr. (65) for more details).

For an incompressible Newtonian fluid Tr(D) = divu = 0, thus

T = µD− p.

The molecular viscosity µ measures the resistance of the fluid to shearing.

µD = µ∆u.

Applying now the Second Law of Motion:∫
D
ρ

(
∂u

∂t
+ (u · ∇)(u)

)
dω =

∫
D
−∇p+ ρF + µ∆udω :
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4. NAVIER STOKES EQUATIONS

thus, for arbitrariness of D, we obtain the Navier Stokes equations{
∂u
∂t + (u · ∇)(u) = −1

ρ∇p+ F + ν∆u, in Ω,

divu = 0, in Ω,
(4.2)

where ν = µ
ρ is called kinematic viscosity.

If U is a reference value for u, e.g. the maximum magnitude of velocity on the

inflow, and L is the characteristic length scale for the domain, the relative contributions

of convection and diffusion are defined by the Reynolds number

Re =
UL

ν
:

if Re ≤ 1 then the fluid is diffusion dominated and the solution can be shown to be

uniquely defined (23), whereas, if Re > 1 the fluid is convection dominated. If Re→∞
we obtain the Euler system. Observe that in general the larger is Re, the more difficult

is the problem to handle.

A linear simplification of (4.2) is the Stokes problem
∂u
∂t − ν∆u +∇p = f, on Ω

divu = 0, on Ω

u = 0, on Γd.

(4.3)

The Stokes problem describes the flow at low Reynolds number of an incompressible

fluid: the nonlinear convection term is neglected because it is assumed that the flow is

moving with ”low-speed”, e.g. it is very viscous or tightly confined (e.g. the flow of

blood in parts of the human body).

A particular example: Poiseuille flow

As presented in (25), consider the following steady Stokes problem, defined in Ω =

[0, 1]× [0, 1] ⊂ R2, representing steady horizontal flow in a channel driven by a pressure

difference between the two ends:
−ν∆u +∇p = 0, in Ω

divu = 0, in Ω

u = g, on∂Ω,

(4.4)

g ∈ H
1
2 (∂Ω). Suppose moreover that g =

(
g1

g2

)
,

g2 = 0, g1 =

{
0 for y = 0, y = 1, x ∈ (0, 1)

y − y2 for x = 0, x = 1, y ∈ (0, 1).
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4.2 Variational formulation and FE discretization

It is possible to show (25) that an analytical solution of (4.5) is the following:

u =

(
y − y2

0

)
, p = −2νx+ ν,

also known as bidimensional Poiseuille flow.

Observe that this is also the analytical solution of Navier-Stokes problem
−ν∆u + (u · ∇)u +∇p = 0, in Ω

divu = 0, in Ω

u = g1, on∂Ω,

(4.5)

for g1 = g and also for

g1 =


0 on x ∈ [0, 1], y = 0, y = 1

pn− ν∇u · n = −2νn on x = 0, y ∈ [0, 1]

pn− ν∇u · n = 0 on x = 1, y ∈ [0, 1].

4.2 Variational formulation and FE discretization

4.2.1 Steady Stokes problem

Following (65), consider the constrained Stokes problem:
a0u− ν∆u +∇p = f, on Ω

divu = 0, on Ω

u = 0, on Γd

ν ∂u∂n − pn = 0, on Γn

(4.6)

where a0 ≥ 0 and ν > 0 are real constant values. Suppose moreover that f ∈ L2(Ω) :=

(L2(Ω))n (body force acting on the fluid) and for simplicity that Γn = ∅. Observe that in

this case, if we are dealing with non-homogeneous Dirichlet boundary conditions (u = g,

on Γd), integrating the incompressibility constraint, we obtain
∫

Ω divudω =
∫

Γd
g ·ndσ,

thus g must satisfy a compatibility condition.

The fact that the incompressibility constraint does not involve the pressure vari-

able makes the construction of finite element approximations problematic: the discrete

spaces used to approximate the velocity and pressure fields cannot be chosen indepen-

dently of one another (infsup condition).

It is possible to derive two variational formulations of (4.6), which lead to two

different strategies to solve it numerically. We introduce both of them for completeness,

remanding to (65) for more details.
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4. NAVIER STOKES EQUATIONS

4.2.1.1 Variational formulation of (4.6): constrained formulation

Define the Hilbert spaceX = V = H1
0(Ω) := (H1

0 (Ω))n and Vdiv := {v ∈ V s.t. divv = 0}:
it can be demonstrated (65) that it is a closed subset of V and it is an Hilbert space

for the norm ‖v‖ := ‖∇v‖L2(Ω).

Observe that multiplying the first equation of (4.6) by a test function v ∈ V and

applying the Green’s lemma we obtain

a0(u,v) + ν(∇u,∇v)− (p, divv) = (f,v).

and then

a0(u,v) + ν(∇u,∇v) = (f,v), ∀v ∈ Vdiv.

Consider now the bilinear form a(w,v) := a0(w,v) + ν(∇w,∇v), ∀w,v ∈ V. It

can be proved that it is coercive over Vdiv ×Vdiv. Moreover F (v) := (f,v) is linear

and continuous over Vdiv. Then, applying Theorem A.2.1, the problem

find u ∈ Vdiv s.t. a(u,v) = F (v), ∀v ∈ Vdiv (4.7)

admits a unique stable solution.

Theorem 4.2.1 Let Ω be a bounded domain in Rn, with a Lipschitz continuous bound-

ary, and for each f ∈ L2(Ω) let u be the solution of (4.7). Then there exists a function

p ∈ L2(Ω), which is unique up to an additive constant, s.t.

a(u, v)− (p, divv) = (f, v), ∀v ∈ V. (4.8)

For a proof cfr. (32, 65). This Theorem is meaningful because it tells us that the

pressure is well defined if it is known the velocity field of the problem. Moreover the

rule of the pressure field in the weak formulation is substantially to force the velocity

field to be solenoidal.

Observe that from (4.7) we obtain u, then p can be derived using (4.8).

Consider now the Galerkin approximation of (4.7) (cfr. section A.3.1):

find uh ∈ Vdiv,h s.t. a(uh,vh) = F (vh), ∀vh ∈ Vdiv,h, (4.9)

where {Vdiv,h}h is a family of finite dimensional subspaces of Vdiv satisfying the con-

sistency assumption

∀v ∈ Vdiv : inf
vh∈Vdiv,h

‖v− vh‖ → 0, as h→ 0.
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4.2 Variational formulation and FE discretization

Applying Theorem A.3.1 we deduce existence and uniqueness of (4.9)’s solution,

which is also stable and convergent.

In practice this formulation is scarcely used because it is difficult to find approxi-

mants Vdiv,h of Vdiv s.t. the convergence estimate of Cea Lemma (cfr. Theorem A.3.1)

is useful. Moreover it could be very difficult to construct a basis for Vdiv,h. A possible

solution is to substitute it with a space Zh which is not a subspace of Vdiv leading to

a non-conforming approximation to (4.7) (65).

4.2.1.2 Variational formulation of (4.6): mixed formulation

Consider another Hilbert space M = Q = L2
0(Ω) denoting the space of functions of

L2(Ω) with zero mean and the bilinear form b(v, q) := −(q, divv), v ∈ V and q ∈ Q.

Multiply now the first equation of (4.6) by a test function v ∈ V and the second

by q ∈ Q and integrate on Ω obtaining the weak formulation of (4.6): find u ∈ V and

p ∈ Q s.t. {
a(u,v) + b(v, p) = (f,v), ∀v ∈ V

b(u, q) = 0, ∀q ∈ Q.
(4.10)

Observe that from Theorem 4.2.1 we deduce that (4.10) has a unique solution (65). Fi-

nally it remains to prove that the solution of (4.10) is also a solution of (4.6), supposing

that the last one exists: this can be done using a classical density argument (65).

Consider now two families of finite dimensional subspaces Vh ⊂ V and Qh ⊂ Q

and approximate (4.10): find uh ∈ Vh and ph ∈ Qh s.t.{
a(uh,vh) + b(vh, ph) = (f,vh), ∀vh ∈ Vh

b(uh, qh) = 0, ∀qh ∈ Qh.
(4.11)

Defining the space of discretely divergence-free functions

Zh := {vh ∈ Vh s.t. (qh, divvh) = 0, ∀qh ∈ Qh} ,

the bilinear form a is coercive in Zh, i.e. there exists C > 0 s.t.

a0 ‖vh‖2L2 + ν ‖∇vh‖2L2 ≥ ‖vh‖2V , ∀vh ∈ Zh.

Moreover a and b are continuous over V ×V and V × Q respectively, i.e. there exist

γ > 0 and δ > 0 s.t.

|a(w,v)| ≤ γ ‖w‖ ‖v‖ , ∀v,w ∈ V

|b(v, q)| ≤ δ ‖v‖V ‖q‖L2 , ∀v,w ∈ V.
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4. NAVIER STOKES EQUATIONS

Suppose moreover that Vh and Qh satisfy the compatibility (or inf-sup, or LBB)

condition (A.16), i.e.

there exists β > 0 s.t. ∀qh ∈ Qh ∃vh ∈ Vh,vh 6= 0: b(vh, qh) ≥ β ‖vh‖ ‖qh‖ . (4.12)

Observe that this condition states that the space of discrete velocities Vh is sufficiently

rich compared with the one of discrete pressures Qh. Moreover, as introduced in

section A.4, it ensures that no spurious pressure mode is allowed, i.e. there exists no

p∗h ∈ Qh, p∗h 6= 0 s.t.

b(vh, p
∗
h) = 0, ∀vh ∈ Vh.

Avoiding spurious modes is important because they cause spurious oscillation in the

computed pressure, destroying the simulation of real dynamics.

Under these assumptions, Theorem A.4.2 yields existence and uniqueness for the

solution of (4.11) whereas Theorem A.4.3 guarantees convergence (for Stokes problem

σ is the null operator, ηh = ph, µh = qh, Xh = Vh and Mh = Qh):

‖u− uh‖1 ≤
(

1 +
γ

C

)
inf

vh∈Zh
‖u− vh‖1 +

δ

C
inf

qh∈Qh
‖p− qh‖0

‖p− ph‖0 ≤
γ

β

(
1 +

γ

C

)
inf

vh∈Zh
‖u− vh‖1 +

(
1 +

δ

β
+
γδ

Cβ

)
inf

qh∈Qh
‖p− qh‖0 .

Since β is independent of h, the solution is stable and convergence is optimal.

Under some assumptions on the approximating spaces (32), it is possible to improve

the convergence estimate in the following way:

|u− uh|1 + ‖p− ph‖0 ≤ Ch
m
(
‖u‖m+1 + ‖p‖m

)
,

where m depends upon the regularity of u and p. Moreover if Stokes problem is regular,

i.e. if (u, p)→ −ν∆u +∇p is an isomorphism, u ∈ Hm+1(Ω), p ∈ Hm(Ω)∩L2
0(Ω), the

following error bound holds:

‖u− uh‖0 + ≤ Chm+1
(
‖u‖m+1 + ‖p‖m

)
.

Also a posteriori estimators can be derived: cfr. (23) and references therein.

Finally observe that if the finite dimensional subspaces do not satisfy the inf-sup

condition, anyway the velocity field can be obtained in a stable an convergent way,

because the corresponding estimates given by Theorems A.4.2 and A.4.3 (with ‖σ‖ = 0)

are independent from β. Thus only the pressure field are affected by spurious modes.

If we define the operator Bh : Vh → Q
′
h such that

〈Bhvh, qh〉 = b(vh, qh),
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4.2 Variational formulation and FE discretization

for all vh ∈ Vh and qh ∈ Qh, the inf-sup condition is not satisfied iff B∗h : Qh → V
′
h is

not injective (i.e. iff the corresponding matrix BT has not full column rank, cfr. section

4.2.1.3). Equivalently the inf-sup condition is not satisfied iff Bh is not surjective (24).

To guarantee a good approximation of the pressure field, there are different possibil-

ities: first the choice of discrete spaces that satisfy the inf-sup condition; an alternative

is to filter the spurious modes out of the computed pressure (65). Finally it is possible

to stabilize (4.11) relaxing the incomprimibility constraint on uh: in fact in this case

stability and convergence results can be proved, regardless of the inf-sup condition.

4.2.1.3 Algebraic Formulation

Let
{
φj
}
j=1,...,Nu

h

and {ψl}l=1,...,Np
h

be bases of Vh and Qh respectively. Consider

uh(x) =

Nu
h∑

j=1

ujφj(x), ph(x) =

Np
h∑

l=1

plψl(x),

then the linear system associated with (4.11) is(
A BT

B 0

)(
u

p

)
=

(
f

0

)
, (4.13)

where

Aij = a(φj ,φi), Bli = b(φi, ψl), fi = F (φi).

Observe that A (vector-Laplacian matrix) is an Nu
h × Nu

h symmetric and positive

definite matrix (which corresponds to ah’s coerciveness), while B (divergence matrix) is

Np
h ×N

u
h . It is important to note that the compatibility condition (A.16) on bh holds iff

kerBT = 0 (cfr. e.g. (25)). In this case the global matrix

(
A BT

B 0

)
is non singular.

If Np
h > Nu

h then

(
A BT

B 0

)
is rank deficient by at least Np

h −N
u
h , since B has rank

less or equal to Nu
h (cfr. (23)). This is another proof of the impossibility of choosing

too high dimensional approximation for pressure, compared to the velocity one.

In (23) some properties of the system (4.13) are discussed. Observe that the system

matrix in (4.13) is neither positive nor definite, although is symmetric. The simplest

strategy is to solve the system using a direct method, for example the LU factoriza-

tion. An alternative is to use iterative methods or penalty (or artificial compressibility)

techniques which replace this system with the perturbed one(
A BT

B −εM

)(
u

p

)
=

(
f

0

)
, (4.14)
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4. NAVIER STOKES EQUATIONS

where ε > 0 is the penalty coefficient and M is the pressure mass matrix, Mij =

a(ψj , ψi). Observe that it corresponds to solve the following problem
a0u

ε − ν∆uε +∇pε = f, on Ω

divuε = −εpε, on Ω

u = 0, on Γd.

(4.15)

Another strategy is the pressure-matrix method, which is based on the elimination

procedure

u = A−1(f−BTp)

Rp = BA−1f.

the idea is to generate an independent linear system for p after elimination of u.

The Uzawa method, given p0, consists in solving for any k > 0 the continuous

problem

a0u
k+1 − ν∆uk+1 = f−∇pk,

with uk+1 = 0 on ∂Ω, and then

pk+1 − pk = −ρdivuk+1,

where 0 < ρ < 2ν is an acceleration parameter. The corresponding discrete algebraic

formulation reads {
Auk+1 = f−BTpk

P (pk+1 − pk) = ρBuk+1,

where P is a suitable preconditioner for R. For convergence results cfr. (65) and

references therein.

Finally the Augmented-Lagrangian method, given p0, consists in solving for any

k ≥ 0

a0u
k+1 − ν∆uk+1 +∇pk+1 = f,

pk+1 − pk = −ρdivuk+1.

The corresponding algebraic system is{
Auk+1 +BTpk+1 = f

J(pk+1 − pk) = ρBuk+1,

where Jlm = (ψl, ψm), which is non singular. Thus (A+ ρBTJ−1B)uk+1 = f− BTpk,

which is a symmetric positive definite system for uk+1. Then pk+1 = ρJ−1Buk+1 +pk.
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4.2 Variational formulation and FE discretization

4.2.2 Unsteady Navier-Stokes equation

Consider the unsteady Navier-Stokes model:
∂u
∂t − ν∆u + (u · ∇)(u) +∇p = f, in QT := (0, T )× Ω,

divu = 0, in QT ,

u = 0 on ΣT := (0, T )× ∂Ω

u |t=0 = u0, on Ω,

(4.16)

where f = f(t, x) and u0 = u0(x) are given data and a0 = 0.

The corresponding weak formulation is the following one: given f ∈ L2(0, T ;Hdiv),

u0 ∈ Hdiv, find u ∈ L2(0, T ;Vdiv) ∩ L∞(0, T ;Hdiv) s.t.{
d(u(t),v)

dt + a(u(t),v) + c(u(t); u(t),v) = (f(t),v), ∀v ∈ Vdiv,

u(0) = u0,
(4.17)

where the trilinear form c is such that c(u; z,v) :=
∫

Ω((u · ∇)z) · v.

The existence of a solution of this problem has been proven by Leray (44) and Hopf

(38). Uniqueness is still an open problem in the three-dimensional case, whereas for

n = 2 the solution u has been shown to belong to C0([0, T ];Hdiv) and to be unique

(43, 56).

Moreover any solution of (4.17) satisfies the following energy estimate

sup
t∈(0,T )

‖u(t)‖20 + ν

∫ T

0
‖∇u(t)‖20 ≤ ‖u0‖20 +

CΩ

ν

∫ T

0
‖f(t)‖20 ,

where CΩ is the constant of the Poincarè inequality.

The alternative weak formulation is find u(t) ∈ V and p(t) ∈ Q such that for a.e.

t ∈ (0, T )
d(u(t),v)

dt + a(u(t),v) + c(u(t); u(t),v) + b(v, p) = (f(t),v), ∀v ∈ V

b(u(t), q) = 0, ∀q ∈ Q
u(0) = u0.

(4.18)

A complete stability analysis of Navier Stokes equations could be found in (69) and

(23).

In particular in the 2D context it holds (69):

Theorem 4.2.2 Let f and u0 belong to Hdiv, then there exists a unique solution of

(4.18) such that u ∈ C([0, T ];Hdiv) ∩ L2(0, T ;Vdiv), for all T > 0. Moreover u is

analytic in t > 0 with values in H2(Ω) ∩Vdiv and u0 7→ u(t) is continuous from Hdiv

to H2(Ω)∩Vdiv. Finally if u0 ∈ Vdiv, then u ∈ C([0, T ];Hdiv)∩L2(0, T ;H2(Ω)∩Vdiv).
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4.2.2.1 Space discretization of (4.17) and (4.18)

Consider (4.17) and choose a finite dimensional subspace of Vdiv, Vdiv,h: for each t ∈
[0, T ] find uh(t, ·) ∈ Vdiv,h s.t.{

d(uh(t),vh)
dt + a(uh(t),vh) + c(uh(t); uh(t),vh) = (f(t),vh), ∀vh ∈ Vdiv,h, t ∈ (0, T )

uh(0) = u0,h ,

(4.19)

where u0,h ∈ Vdiv,h is an approximation to the initial data u0.

To approximate (4.18) choose Vh ⊂ V and Qh ⊂ Q: thus for each t ∈ [0, T ] find

uh(t, ·) ∈ Vh and ph(t, ·) ∈ Qh s.t.
d(uh(t),vh)

dt + a(uh(t),vh) + c(uh(t); uh(t),vh) + b(vh, ph(t)) = (f(t),vh), ∀vh ∈ Vh, t ∈ (0, T )

b(uh(t), qh) = 0, ∀qh ∈ Qh, t ∈ (0, T )

uh(0) = u0,h ,

(4.20)

u0,h ∈ Vh.

If Vh and Qh satisfy the inf-sup condition, suppose moreover that for all v ∈ V and

q ∈ Q
inf

vh∈Vh
‖v− vh‖1 + inf

qh∈Qh
‖q − qh‖0 = O(h).

Thus the following error estimate holds

‖u(t)− uh(t)‖0 ≤ C1(t)h2,

‖p(t)− ph(t)‖0 ≤ C2(t)h,

C1(t) ≤ KeKT and C2(t) ≤ Kτ(t)−
1
2 eKT , τ(t) := min(t, 1) (65). The estimate can be

improved assuming more regularity on boundary and initial data (65):

‖u(t)− uh(t)‖0 ≤ C1(t)hk,

‖p(t)− ph(t)‖0 ≤ C2(t)hk−1,

k = 2, . . . , 5. In numerical tests, in this thesis we will use P2-P1 approximation, as

explained in section 4.3: thus the above error estimates hold with k = 3.

As for Stokes problem, the algebraic formulation of (4.20) can be derived. Let{
ϕj
}
j=1,...,Nu

h

and {ψl}l=1,...,Np
h

be basis of Vh and Qh respectively. Thus uh(t, x) =∑Nu
h

j=1 uj(t)ϕj(x), ph(t, x) =
∑Np

h
l=1 pl(t)ψl(x). The system of differential algebraic equa-

tions (DAE) is the following:
M du(t)

dt +Au(t) + C(u(t))u(t) +BTp(t) = f(t), t ∈ (0, T )

Bu(t) = 0, t ∈ (0, T )

u(0) = u0,

(4.21)
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4.2 Variational formulation and FE discretization

defining Mij := (ϕi,ϕj), Aij := a(ϕj ,ϕi), C(w)ij :=
∑Nu

h
m=1wmc(ϕm;ϕj ,ϕi), Bli :=

b(ϕi, ψl) and fi(t) := (f(t),ϕi).

4.2.2.2 Time discretization of (4.21)

ϑ-methods

Defining tn+1 = (n+ 1)∆t, n = 1, . . . , N − 1 a discretization of [0, T ] we obtain{
M un+1−un

∆t +Aun+1
ϑ + C(un+1

ϑ )un+1
ϑ +BTpn+1

ϑ = f(ϑtn+1 + (1− ϑ)tn)

Bun+1 = 0,
(4.22)

with vn+1
ϑ := ϑvn+1 + (1− ϑ)vn.

Observe that when ϑ = 1 (backward Euler) at each time-level we obtain the following

nonlinear system { (
A+ M

∆t

)
u + C(u)u +BTp = G

Bu = 0,
(4.23)

where G is known. Observe that it requires the solution of a nonlinear system at every

time step. A possible solution is to consider semi-implicit methods, linearizing (4.22),

e.g.{
M un+1−un

∆t +Aun+1
ϑ + C(unϑ)un+1

ϑ +BTpn+1
ϑ = f(ϑtn+1 + (1− ϑ)tn)

Bun+1 = 0.
(4.24)

Other algorithms can be obtained using second order accurate methods, instead of first

order (for details cfr. e.g. (65)).

Another approach to solve (4.16) is the fractional-step (or projection) method, pro-

posed by Chorin and Temam (and presented in (64)). It is based upon an operator-

splitting technique and on a subdivision of the time interval [tn, tn+1], considering an

intermediate time t̃n (e.g. t̃n = tn+ 1
2
).

1. Solve for ũn+1{
ũn+1−un

∆t − ν∆ũn+1 + (u∗ · ∇)(u∗∗) +∇p = f, in Ω,

ũn+1 = 0, on ∂Ω
(4.25)

where u∗ and u∗∗ could be both ũn+1 and un (explicit, implicit or semi-implicit

treatment of the convection term).
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2. Solve for un+1 
un+1−ũn+1

∆t +∇pn+1 = 0, in Ω,

divun+1 = 0, in Ω,

un+1 · n = 0, on ∂Ω.

(4.26)

Applying the divergence operator to the first equation we can rewrite it with the

equivalent system 
−∆pn+1 = −div ũn+1

∆t , in Ω,

divun+1 = 0, in Ω,
∂pn+1

∂n = 0, on ∂Ω.

(4.27)

The last system gives pn+1, which can be used to solve (4.26): un+1 = ũn+1 −
∆t∇pn+1 in Ω. Observe moreover that in (4.26) we are imposing a condition only

on the normal component of un+1: this causes a splitting error, due to the free

tangential component.

Other methods are described in (65), while in (70) a scheme (Navier-Stokes tree)

is presented, summarizing the most used techniques for solving the incompressible

unstationary Navier Stokes equation (4.16).

4.3 Numerical simulation of Navier Stokes equation

In this section it is briefly described the numerical discretization of Navier Stokes equa-

tion adopted in the simulations of this thesis.

Consider the nondimensional version of the Navier-Stokes model problem (4.16):
∂u
∂t −

1
Re∆u + (u · ∇)(u) +∇p = f, in QT := (0, T )× Ω,

divu = 0, in QT ,

u = 0 on ΣT := (0, T )× ∂Ω

u |t=0 = u0, on Ω,

(4.28)

which does not depend directly on the physical sizes.

Solving it with P2-P1 FEM, we obtain the system of ODE’s (4.21) that can be

written equivalently in the following way(
M u̇(t)

0

)
+

(
A+ C((u(t))) BT

B 0

)(
u(t)

p(t)

)
=

(
f

fp

)
, (4.29)
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4.3 Numerical simulation of Navier Stokes equation

or, if n = 2, u = (u1,u2) equivalently M u̇1(t)

M u̇2(t)

0

+

 A+ C((u(t))) 0 −BT
1

0 A+ C((u(t))) −BT
2

−B1 −B2 0


 u1(t)

u2(t)

p(t)

 =

 f1

f2

fp

 ,

(4.30)

where B1,li := (ψl,
d
dxϕi), B2,li := (ψl,

d
dyϕi), B = −B1−B2. In the numerical solution

that will be presented, model (4.30) will be used.

4.3.1 Explicit treatment of the nonlinear term

A first discretization technique consists in using Crank Nicolson in time (θ = 1
2) and

Adams-Bashfort multistep method for the nonlinear term, obtaining
A
2 + M

∆t 0 −BT1
0 A

2 + M
∆t −BT2

−B1 −B2 0


 un+1

1

un+1
2

pn+1

 =

 f1

f2

fp

+

 (M∆t −
A
2 −

3
2C(un))un1 + 1

2C(un−1)un−1
1

(M∆t −
A
2 −

3
2C(un))un2 + 1

2C(un−1)un−1
2

0

 .

(4.31)

Observe that this discretization corresponds to solve at each iteration a Stokes’ problem,

with a different forcing term: A 0 −BT
1

0 A −BT
2

−B1 −B2 0


 u

(n+1)
1

u
(n+1)
2

p(n+1)

 =

 F
(n)
1

F
(n)
2

F
(n)
p

 . (4.32)

To solve it in our simulations we will use the LU factorization.

4.3.2 Semi-implicit treatment of the nonlinear term

Using a Crank Nicolson algorithm in time this corresponds to solve
A
2 + C(un)

2 + M
∆t 0 −BT1

0 A
2 + C(un)

2 + M
∆t −BT2

−B1 −B2 0


 un+1

1

un+1
2

pn+1

 =

 f1

f2

fp

+

 (M∆t −
A
2 −

C(un)
2 )un1

(M∆t −
A
2 −

C(un)
2 )un2

0

 .

(4.33)

Observe that this semi-implicit discretization in time is more expensive, since at every

iteration both the system matrix and the right term must be computed, but it permits

to deal with a bigger temporal step. This is equivalent to solve A(n) 0 −BT
1

0 A(n) −BT
2

−B1 −B2 0


 u

(n+1)
1

u
(n+1)
2

p(n+1)

 =

 F
(n)
1

F
(n)
2

F
(n)
p

 . (4.34)
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Remark 4.3.1 To obtain a more accurate approximation (order two), in previous sys-

tems, instead of C(un), consider C(2un − un−1), using extrapolation.

As for the explicit algorithm, we solve the system using an LU-factorization of the

system matrix.

4.3.3 Equivalent problem using homogeneous Dirichlet boundary con-

ditions

Consider the general case, in which inhomogeneous stationary Dirichlet boundary con-

ditions are applied. Denote with ū := (ū1, ū2) the temporal mean velocity in each

node. Then we can write

u(t) = ũ(t) + ū,

where ũ satisfies homogeneous Dirichlet boundary conditions (this is useful dealing

with reduced systems, cfr. remark 6.4.2).
Then (4.30) is equivalent to the following system: M ˙̃u1(t)

M ˙̃u2(t)

0

+

 A+ C(ũ(t) + ū) 0 −BT1
0 A+ C(ũ(t) + ū) −BT2
−B1 −B2 0


 ũ1(t)

ũ2(t)

p(t)

+

+

 C(ũ(t) + ū) 0 −BT1
0 C(ũ(t) + ū) −BT2
−B1 −B2 0


 ū1

ū2

0

 =

=

 f1 −Aū1

f2 −Aū2

fp +B1ū1 +B2ū2


, (4.35)

ũ(0) = u(0)− ū.

Suppose for simplicity of notations that the backward euler method is used in time.

If there is an explicit treatment of the convective term then we hand up with
M
∆t +A 0 −BT1

0 M
∆t +A −BT2

−B1 −B2 0


 ũn+1

1

ũn+1
2

pn+1

 =

 f1 + M
∆t ũ

n
1 −Aū1

f2 + M
∆t ũ

n
2 −Aū2

fp +B1ū1 +B2ū2

−
 C(ũn + ū)(ũn1 + ū1)

C(ũn + ū)(ũn2 + ū2)

0

 .

(4.36)

Otherwise, using a semi-implicit treatment
M
∆t +A+ C(ũn + ū) 0 −BT1

0 M
∆t +A+ C(ũn + ū) −BT2

−B1 −B2 0


 ũn+1

1

ũn+1
2

pn+1

 =

=

 f1 + M
∆t ũ

n
1 −Aū1

f2 + M
∆t ũ

n
2 −Aū2

fp +B1ū1 +B2ū2

−
 C(ũn + ū)ū1

C(ũn + ū)ū2

0

 .

(4.37)
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4.4 Test problems

As we will see, applying reduction techniques is less costly using an explicit treat-

ment of the convective term and solving the system for the fluctuation velocity ũ: in

fact in this way only the right-hand side vector is computed at each iteration and it

is not necessary to build the system matrix to impose Dirichlet conditions at each

iteration.

4.4 Test problems

4.4.1 Test case: Backward facing step

The flow over a backward facing step is an example of complex flow: in fact it is

characterized by a recirculation area between the step and the reattachment point, as

sketched in figure 4.1. We will consider the bottom configuration.

Figure 4.1: Backward facing step: sketch of two equivalent problems.

Let Ω be a rectangular domain [0, L]×[0, 1], and consider the nondimensional Navier

Stokes problem:

∂u
∂t −

1
Re∆u + (u · ∇)u +∇p = f, on Ω× [0, T ]

divu = 0, on Ω× [0, T ]

u = ud, on Γd × [0, T ]

(pI2 + ν∇u) · n = 0, on Γn × [0, T ]

u = u0, on Ω× {0}

(4.38)

where Γn = {L}×[0, 1], Γd = ∂Ω\Γn, u : Ω→ R2, p : Ω→ R2, f ∈ L2(Ω) := (L2(Ω))2,

f = 0, u0 is the solution of the stationary Stokes equation, depicted in figure 4.3 and

ud(x, y) =

{
(ay2 − 3

2ay + a
2 , 0), x = 0, y ∈ [0.5, 1],

(0, 0)t, elsewhere on Γd
,

Re = 400, L = 10, a = − 4
75Re, T = 25, Dt = 0.025. The grid used for numerical

computations is depicted in figure 4.2. The backward facing step is analyzed for example

in (7).
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4. NAVIER STOKES EQUATIONS

Figure 4.2: Uniform grid used to discretize the backward facing step problem: 120 hori-

zontal segments vs. 40 vertical segments).

Figure 4.3: Initial condition of the backward facing step problem: solution of the station-

ary Stokes problem. Streamlines and Isobars (left), τ (right).

Consider the shearing stress

τxy :=
1

Re

(
∂u1(x, y)

∂y
+
∂u2(x, y)

∂x

)
,

for every (x, y) ∈ Ω. As can be seen in figure 4.4, before reaching the stationary solution,

the dynamic presents small vortexes in both horizontal sides of Ω. The corresponding

attachment points (xi, yi) of [0, L]× {0, 1} are such that τxiyi = 0.

Other interesting quantities to describe the fluid flow are isobars, isolines of pressure

and streamlines, isolines of ψ, where the stream function ψ is a scalar function such

that u1(x, t) = ∂ψ
∂y (x, t) and u2(x, t) = ∂ψ

∂x (x, t), calculated solving a Poisson problem.

As can be seen in figures 4.4 and 4.5, this test problem describes a transitional

dynamic, starting from the initial solution, and reaching the stationary Navier-Stokes

solution around T = 25.
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4.4 Test problems

Figure 4.4: Re = 400 streamlines and pressure contour plots at different time instances

[Dt : 5 +Dt : 40 +Dt].

4.4.2 Test case: Square obstacle

Let Ω be the domain of figure 4.6, where the obstacle O is a square centered in (0, 0)

and with side length 1, and consider the nondimensional Navier Stokes problem:

∂u
∂t −

1
Re∆u + (u · ∇)u +∇p = f, on Ω× [0, T ]

divu = 0, on Ω× [0, T ]

u = ud, on Γd × [0, T ]

(pI2 + ν∇u) · n = 0, on Γn × [0, T ]

u = u0, on Ω× {0}

(4.39)

where Γn = {21.5} × [−4.5, 4.5], Γd = ∂Ω \ Γn, u : Ω→ R2, p : Ω→ R2, f ∈ L2(Ω) :=

(L2(Ω))2, f = 0, Re = 100, and

ud(x, y) =

{
(1, 0), x = 0, y ∈ [−4.5, 4.5],

(0, 0)t, elsewhere on Γd
.

To study the dynamic we consider the isolines of the vorticity ω, i.e. a scalar

function s.t. ω(x, t) = ∂u2
∂x1

(x, t)− ∂u1
∂x2

(x, t). Moreover we consider the drag Cd and the
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4. NAVIER STOKES EQUATIONS

Figure 4.5: Re = 400 evolution of τ corresponding to figure 4.4 at different time instances

[Dt : 5 +Dt : 40 +Dt].

lift Cl, coefficients defined respectively as

Cd =

∫
∂O
pnx −

1

Re

∂u1

∂x
nx −

1

Re

∂u1

∂y
nydl,

Cl =

∫
∂O
pny −

1

Re

∂u2

∂x
nx −

1

Re

∂u2

∂y
nydl.

In figure 4.7 it can be seen the dynamic until the periodic solution is reached,

obtained using a semi-implicit discretization, whereas in figures 4.8 and 4.9 the dynamic

of the periodic regime is plotted. The period is [0, 5.2] and it is discretized using an

explicit treatment of the nonlinear term with time step Dt = 0.002.

72



4.4 Test problems

Figure 4.6: Grid used to discretize the obstacle problem: 116 horizontal segments vs. 60

vertical segments).

Figure 4.7: Re = 100 Mean kinetic energy, lift and drag before the periodic regime.

73



4. NAVIER STOKES EQUATIONS

Figure 4.8: Re = 100 Mean kinetic energy, lift and drag before the period [0, 5.52].

Figure 4.9: Re = 100 streamlines, pressure and vorticity isolines at different time in-

stances in the period [0, 5.52].
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Part II

Reduced Order Modeling (ROM)

75



76



How can it be that mathematics, being after all a product of human thought

independent of experience, is so admirably adapted to the objects of reality?

(A. Einstein)

In this part Model Order Reduction (MOR) techniques are introduced, fundamental

tools for solving realistic problems. In particular we will describe the Proper Orthogonal

Decomposition (POD) method and we will consider fluid dynamic problems, focusing

on the reduction of Navier-Stokes equation.
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5

Model Order Reduction (MOR):

a general overview

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Reduction of linear dynamical systems . . . . . . . . . . . . 80

5.3 Reduction of nonlinear dynamical systems . . . . . . . . . . 82

5.1 Introduction

Computational models are useful primarily for two reasons: for simulation and con-

trol (74). However any realistic model will have high complexity, i.e. it will require

many state variables to be adequately described: thus a simplification or model order

reduction will be needed in order to perform a simulation in an amount of time which

is acceptable or for the design of a low order controller. As mentioned in (144), for

realistic simulations, many thousands or even millions of degrees of freedom are often

required to obtain useful approximations. Thus, if one needs to do multiple simulations

or to do a simulation in real time, the use of traditional discretization methods, e.g.,

finite element, finite volume, or spectral methods, may not be feasible.

Moreover important issues with large-scale systems are storage, computational speed,

accuracy and preservation of system’s properties (76). Figure 5.1 summarize briefly the

genesis of a reduced model.

Consider a continuous linear dynamical system in state space form, t ∈ R+:

Σ :

{
d
dtx(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(5.1)
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5. MODEL ORDER REDUCTION (MOR): A GENERAL OVERVIEW

Figure 5.1: This picture is taken from (76).

A ∈ Rn×n (state space matrix), B ∈ Rn×p (input map), C ∈ Rp×n (output map),

D ∈ Rp×m (direct transmission map), u(t) ∈ Rm is called input or control, y(t) ∈ Rp is

the output, x(t) ∈ Rn is the state vector and n is the order or complexity of the system.

We will denote it briefly Σ = (A,B,C,D). If p,m > 1, then Σ is a multiple input-

multiple output (MIMO) system, whereas if p = 1 = m, it is called single input-single

output (SISO).

The corresponding discrete problem has the following expression, t ∈ N

Σ :

{
x(k + 1) = Acx(k) +Bcu(k),

y(k) = Ccx(k) +Dcu(k).
(5.2)

and can be obtained discretizing in time (5.1).

5.2 Reduction of linear dynamical systems

The model reduction problem consists in approximating Σ defined in (5.1) with Σ̂ =

(Â, B̂, Ĉ, D̂) Â ∈ Rk×n, B̂ ∈ Rk×p, Ĉ ∈ Rp×k, D̂ ∈ Rp×m,

k << n

such that (76)

1. the approximation error is small ;
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5.2 Reduction of linear dynamical systems

2. system properties, like stability and passivity, are preserved;

3. the algorithm is computationally stable and efficient.

The unifying feature of model reduction methods is that they are obtained choos-

ing a suitable Petrov-Galerkin projection. Let π = VW ∗ be a projection, then the

corresponding reduced model of (5.1) is obtained as follows{
d
dt x̂ = (W ∗AV )x̂+ (W ∗B)u,

ŷ = (CV )x̂+Du.
(5.3)

Observe that the input u(t) ∈ Rm is not touched, while the output and the state are

now denoted respectively by ŷ(t) ∈ Rp and x̂(t) ∈ Rk.
There are basically two sets of methods (74)

1. SVD based methods (Balanced Model Reduction, Hankel Norm Approximation,

Singular Perturbation Approximation),

2. moment matching based (or Krylov) methods.

SVD-based (or full space) methods (Balanced truncation (107), Hankel norm ap-

proximation (90), Singular Perturbation Approximation (98)) have their roots in the

Singular Value Decomposition and in the lower-rank approximation: they preserve sta-

bility and provide error upper bounds. The limitation of this approaches is that they

involve the solution of two Lyapunov equations, which requires dense computation (the

cost is O(n3) irrespective of the sparsity): hence they are only applicable to moderately

sized problems. Moreover there could be problems with ill-conditioned problems, i.e.

those ones with at least one eigenvalue of A (or equivalently one pole of H(s)) close to

imaginary axis.

Instead Krylov methods (like Lanczos and Arnoldi) are iterative ones, thus they can

be applied to high order systems (the cost is O(kn2)) and they are based on moment

matching of the transfer function H(iω) = C(iωI − A)−1B of the system Σ. These

methods are applied both in iterative eigenvalue computations (117) and in model

order reduction (rational interpolation, realization), but the resulting reduced systems

have no guaranteed error bound and stability is not necessarily preserved. More recent

algorithms are Padè via Lanczos (PVL) (78) and multipoint rational interpolation (92),

which requires that the selection of interpolation points is done by the user. However

all these methods are local in nature, thus it is difficult to establish global error bounds.

The methods differ in the way the bases are computed.
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5.3 Reduction of nonlinear dynamical systems

The linear problem can be generalized in the following way:

Σ :

{
d
dtx(t) = f(x(t),u(t)),

y(t) = g(x(t),u(t)),
(5.4)

where f : Rn×Rm → Rn describes the dynamics of Σ and g : Rn×Rm → Rp describes

the way that the observations are deduced from the state and the input. Observe that

the linear system (5.1) can be seen as a particular case of (5.4). Thus a first way to

solve nonlinear problems is to linearize them, and apply techniques presented above.

Neverless there exist methods, like e.g. Proper Orthogonal Decomposition (POD) and

Reduced Basis (RB) methods, which are suitable for nonlinear systems.

In this context we can extend the concept of Petrov-Galerkin projection, introduced

before for linear dynamical systems. Using projection-based MOR techniques we define

a system of order k, considering a projection matrix V , whose columns are a basis of

the reduced state space, such that V x̂ ≈ x. Moreover to construct equations for the

reduced system, we consider the residual r = − d
dtV x̂(t) + f(V x̂(t), u(t)) and require

that it is orthogonal to a reduced order space, spanned by the columns of a matrix

W : W T r = 0. Thus we consider the projection π = VW ∗, such that W ∗V = Ik,

V,W ∈ Rn×k. The reduced model can be defined in the following way

Σ̂ :

{
d
dt x̂(t) = W ∗f(V x̂(t),u(t)),

y(t) = g(V x̂(t),u(t)),
(5.5)

whose trajectories x̂ = W ∗x evolve in a k-dimensional subspace. For linear reduced

systems (5.3), the cost of building the reduced model is independent on N : it depends

only on the reduced size k. Thus, by applying MOR we immediately reduce the nu-

merical cost of simulating a given system. In the nonlinear case the situation is more

involved (116): although the number of equations is reduced to k, and the unknown

vector is of dimension k, this does not imply that the reduced system is inexpensive to

simulate. In fact the cost of evaluating W ∗f(V x̂(t),u(t)) and g(V x̂(t),u(t)) must be

considered: firstly we must compute x = V x̂, then we must evaluate f(x) and g(x),

and finally we multiply the first by W T . If the evaluation of f and g costs O(nα)

operations, α ≥ 1, then the previous procedure costs O(nα + 2nk). Moreover if we

solve the reduced system using backward Euler, we also need to apply the Newton’s

method, and then we must compute the Jacobian of f and g. Thus in the nonlinear

case reduction of the order of a system at hand does not automatically imply reduction

of numerical cost associated with simulating the reduced order model: this is one of

the main differences between linear and nonlinear MOR.
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5.3 Reduction of nonlinear dynamical systems

In this thesis, starting from next chapter, we will focus on POD as a reduction

strategy; some other methods for solving nonlinear problems can be found in the litera-

ture e.g. Reduced Basis (RB) (91, 111, 113, 118), Trajectory Piecewise Linear (TPWL)

(116), Volterra Series Representations and Harmonic Balance (104), Empirical Grami-

ans (88, 101).
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6.1 Introduction

6.1 Introduction

Proper Orthogonal Decomposition (POD) method (or Empirical Eigenfunctions Method,

or Karhunen-Loève decomposition) was introduced in (103) for the study of weather

prediction: it is a strategy of finding compact representations of an ensemble of data in

the form of a set of countable, orthonormal basis functions. One of the central issues

of POD is the reduction of data expressing their essential information by means of a

few basis vectors (76, 94, 124).

As mentioned in (115), POD is a model reduction technique used mainly for com-

plex non-linear problems. It was first proposed by Karhunen (97) and Loeve (102),

independently, thus is sometimes called the Karhunen-Loève expansion. Subsequently,

it has been applied in various applications. In (120) an important progress was made

and the method of snapshots was incorporated into the POD framework. In (105), the

method was first called POD and it was used to study turbulent flows. In general POD

was successfully used in a variety of fields (94): signal analysis and pattern recognition

(87), fluidynamics and coherent structures (95, 108, 120, 121), control theory (73) and

inverse problems (79).

As underlined in (77), the idea of expanding physical quantities with respect to an

orthonormal basis, it dates back to the work of Joseph Fourier in his memoir On the

Propagation of Heat in Solid Bodies written in 1805, where he proposed to expands an

arbitrary function in a series of trigonometric basis functions: the Fourier expansion.

When discretizing non-linear PDE’s with finite volume, finite difference, finite element

or spectral methods, one uses basis functions that have very little connection with

the problem or with the underlying PDE’s: instead, POD uses basis functions that

are generated from the numerical solutions of the system or from the experimental

measurements. Thus POD bases are better in approximating a set of data because

they are derived directly from the data, while the other orthonormal bases are defined

without any relation with the data. This property brings advantages and disadvantages

of POD basis. Indeed, the POD basis can better approximate data from which they

are generated than other orthonormal bases. The basis functions therefore reflect the

relevant dynamics of the data, provided that these dynamics are captured in the data.

However, the validity of POD’s approximations is limited to how well the first k basis

functions represent the dynamics of the system. Substantially the main idea of POD

is to select a certain number of patterns such that the effects of the neglected patterns

are minimized (77).

In the literature, the POD method is presented both as a way to construct directly
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an approximated solution of a PDE problem in an Hilbert space, using continuous in

space POD functions, in the Reduced Order Modeling (ROM) context (94), and as a

Model Order Reduction (MOR) technique applied to a discrete in space state-space

system (X = Rn) (77). In the following we will focus firstly on the MOR formulation:

the continuous in space formulation is summarized in section 6.4, while their equivalence

is analyzed in appendix B.

6.2 POD in the finite dimensional context

Consider the nonlinear state space system (5.4): for a fixed input u compute the state

x(t) in N time-instances 0 < t1 < t2 < . . . < tN and define

X = [x(t1), . . . ,x(tN )] ∈ Rn×N .

This collection of data is called matrix of snapshots of the state.

6.2.1 Computation of the POD basis

Consider the following optimization problem: let u1 be the solution of

max
u1∈Rn

N∑
j=1

|x(tj) · u1|2 , s.t. ‖u1‖Rn = 1,

where we are using the euclidian scalar product. The corresponding Lagrangian func-

tion is L(u1, λ) =
∑N

j=1 |x(tj) · u1|2 + λ(1 − ‖u1‖Rn), and applying the first order

necessary conditions for optimality: ∇L(u1, λ) = 0, which are also sufficient, it can be

proved (124) that the solution of the optimization problem u1 must satisfy

XXTu1 = λu1, ‖u1‖Rn = 1,

i.e. the solution of the optimization problem is the first eigenfunction.

Moreover,

max
u1∈Rn

N∑
j=1

|x(tj) · u1|2 = λ1,

the largest eigwnvalue of XXT .

Iterating this procedure the following Theorem can be proved (124).
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6.2 POD in the finite dimensional context

Theorem 6.2.1 Let X ∈ Rn×N be a given matrix of rank d and let X = USV ∗ be its

SVD, U = [u1, . . . ,un], S = diag(σ1, . . . , σn). Then for any k ≤ d the solution of

max
ξ1,...,ξk∈Rn

k∑
i=1

N∑
j=1

|x(tj) · ξi|
2 , s.t. ξi · ξj = δij , 1 ≤ i, j ≤ k (6.1)

is given by the left singular vectors {ui}i=1,...,k. Moreover

k∑
i=1

N∑
j=1

|x(tj) · ui|2 =
∑
i

σ2
i .

As a consequence the computation of the first k POD eigenfunctions {u1, . . . ,uk} is

equivalent to find the eigenvalue decomposition of XXT , or, analogously, to compute

the SVD of X and considering its first k left singular vectors, i.e.

X = USV ∗ ≈ UkSkV ∗k , k << n,

defining Uk = [u1, . . . , uk]. This approximation corresponds to approximate

x(ti) ≈ x̂(ti) =

k∑
j=1

aijuj , i = 1, . . . , N

for suitable coefficients aij .

Remark 6.2.1 Observe that the maximization problem (6.1) is equivalent to the fol-

lowing minimization one

min
ξ1,...,ξk∈Rn

N∑
j=1

∣∣∣∣∣x(tj)−
k∑
i=1

(x(tj) · ξi)ξi

∣∣∣∣∣
2

, s.t. ξi · ξj = δij , 1 ≤ i, j ≤ k,

(6.2)

which corresponds to find a proper k-dimensional subspace of Rn of minimal distance

from the snapshots. Thus POD consists in choosing the orthonormal basis such that for

every k ≤ d the mean square error between the elements x(tj) and the corresponding

k − th partial sum of
∑k

i=1(x(tj) · ξi)ξi is minimized on average.

For completeness we collect some properties of the POD basis (124).

Theorem 6.2.2 (Optimality of the POD basis) Let all the assumptions of Theorem

6.2.1 be satisfied. Suppose that Z ∈ Rn×d denotes a matrix with pairwise orthonormal

vectors zi, and define Cij = zi · x(tj), i = 1, . . . , d, j = 1, . . . , N , thus X = ZC.
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Then for every k = 1, . . . , d

‖X− UkAk‖F ≤ ‖X− ZkCk‖F ,

denoting with Zk and Ck the first k columns of Z and C respectively (‖A‖F =
√
trace(ATA),

A ∈ Rn×N ).

Thus the POD basis of rank k is optimal in the sense of representing in the mean the

columns of X as a linear combination of k orthonormal basis vectors (124) :

k∑
i=1

N∑
j=1

|x(tj) · ui|2 =
∑
i

σ2
i ≥

k∑
i=1

N∑
j=1

|x(tj) · zi|2 ,

for any set of orthonormal vectors {zi}.
Interpreting Xij as the velocity of a fluid at location xi and at time tj , this property

means that the first k POD-basis functions capture more energy on average than the

first k functions of any other basis.

Another important property is the following:

Corollary 6.2.1 (Uncorrelated POD coefficients) Let all the hypothesis of Theorem

6.2.1 hold. Then
N∑
j=1

(x(tj) · ui)(x(tj) · uk) = σ2
i δik,

(t-average of coefficients).

Observe that the error depends on the basis choice. A possible way to choose an

optimal k is to consider the smallest k s.t.∑k
i σi∑n
i σi

< tolerance,

where σi are X’s singular values (77, 124). Another strategy consists in using a threshold

on singular values.

Remark 6.2.2 If N < n, an alternative way to compute the basis U is by solving

XTXvi = λivi, i = 1, . . . , k

ui = 1√
λi
Xvi.

(6.3)

For historical reasons (120) this method is known as method of snapshots. Both it

and the problem

XXTui = λiui, i = 1, . . . , k
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6.2 POD in the finite dimensional context

are equivalent to compute the truncated SVD of X.

Although it permits to work with an N × N matrix, the method of snapshots is

not stable as an algorithm to compute singular values (123). Thus in the following we

prefer to use the SVD for the computation of singular vectors and values. The infinite

dimensional counter-party is described in Remark 6.4.1.

6.2.1.1 Generalization using a weighted inner product in Rn

It is possible to extend previous results, considering a weighted inner product in Rn

(124): (u,v)W := vTWu, where W is a symmetric positive definite matrix. This

formulation can be interpreted for example as a quadrature rule, used to approximate

an integral
∫

Ω φvφudx, φu, φv ∈ L2(Ω). In this framework W is a diagonal matrix whose

elements are the weights and the vectors v and u are thought as nodal values of the

continuous functions φu and φv.

Consider the optimization problem

max
u1∈Rn

N∑
j=1

|(x(tj),u1)W |2 , s.t. ‖u1‖W = 1,

using a Lagrangian formulation (124) it can be proved that it is equivalent to solve

(WX)(WX)Tu1 = λWu1.

Setting ū1 = W 1/2u1 and X̄ = W 1/2X, we obtain the eigenvalue problem

X̄X̄T ū1 = λū1,

which can be solved also computing the SVD of X̄ = Ū S̄V̄ ∗. It can be shown that the

solution is

u1 = W−1/2ū1.

Thus Theorem 6.2.1 can be restated in the following way

Corollary 6.2.2 Let X ∈ Rn×N be a given matrix of rank d and let X̄ = Ū S̄V̄ ∗ be its

SVD. Then for any k ≤ d the solution of

max
ξ1,...,ξk∈Rn

k∑
i=1

N∑
j=1

|(x(tj), ξi)W |
2 , s.t. (ξi, ξj)W = δij , 1 ≤ i, j ≤ k

is given by ui = W−1/2ūi, i = 1, . . . , k. Moreover

k∑
i=1

N∑
j=1

|(x(tj),ui)W |2 =
∑
i

σ2
i .
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Remark 6.2.3 If N < n the method of snapshots can be used, solving

X̄T X̄v̄i = XTWXv̄i = λiW v̄i, i = 1, . . . , k

ui = W−1/2ūi = 1√
λi
Xv̄i.

(6.4)

More generally consider the following optimization problem (cfr. Remark 6.2.1.1):

min
ξ1,...,ξk∈Rn

N∑
j=1

αj

∥∥∥∥∥x(tj)−
k∑
i=1

(x(tj), ξi)W ξi

∥∥∥∥∥
2

W

, s.t. (ξi, ξj)W = δij , 1 ≤ i, j ≤ k.

(6.5)

Using the Lagrangian conditions, and defining D = diag(α1, . . . , αN ), (6.5) is equiv-

alent to solve (124)

XDXTWui = λiui.

Setting ū = W 1/2u and X̄ = W 1/2XD1/2, we obtain the eigenvalue problem

X̄X̄T ūi = λiūi,

(ū, ūj)W = δij i, j = 1, . . . , k.
(6.6)

Consider RN : Rn → Rn, a linear, bounded non-negative and self adjoint operator

defined as

RNu :=
N∑
j=1

αj(x(tj),u)Wx(tj) = XDXTWu (6.7)

Thus (6.6) can be written equivalently

RNui = λiui, i = 1, . . . , n.

6.2.2 Using POD as a MOR technique

This formulation of POD is given for example in (76, 77).

Consider the general nonlinear state-space model (5.4). Having defined Uk ∈ Rn×k,
consider the following transformation

x(t) ≈ Uka(t), a(t) := (a1, . . . , ak)
T ∈ Rk,

which implies the reduced order state equation

Σ :

{
d
dta(t) = U∗kf(Uka(t),u(t)),

y(t) = g(Uka(t),u(t)),
(6.8)

a particular case of (5.5): observe in fact that we can interpret POD as a projection,

choosing V = W = Uk. Thus a(t) evolves on a lower-dimensional space, which is
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6.2 POD in the finite dimensional context

spanned by the k leading columns of U , i.e. by the leading left singular vectors of X

(125). It is important to note that the reduced model strictly depends on the data

X, thus they must reflect the typical operating condition of the system. For example

if the state space model (5.4) is obtained discretizing in space a PDE (thus the order

of the system n corresponds to the number of degrees of freedom of x), the reduced

model can approximate properly only the states x(t) corresponding to boundary or

initial conditions considered collecting data X (77).

6.2.3 Error estimation of POD technique

As a particular case of (5.4), consider the following dynamical system

d
dtx(t) = f(x(t),u(t)),

x(0) = x0.
(6.9)

Suppose now that x ∈ C([0, T ];Rn) ∩ C1([0, T ];Rn) is the unique solution of it and

{ui}i=1,...,k is the unique POD basis obtained solving

min
ξ1,...,ξk∈Rn

∫ T

0

∥∥∥∥∥x(t)−
k∑
i=1

(x(t), ξi)W ξi

∥∥∥∥∥
2

W

dt, s.t. (ξi, ξj)W = δij , 1 ≤ i, j ≤ k.

(6.10)

Observe that (6.5) can be obtained using a quadrature rule to approximate the time

integral, with weights αj and nodes tj : thus αj must be chosen s.t. the quadrature rule

converges to the integral. For example using the trapezoidal rule we obtain (124) W =

Dx diag(1
2 , 1, . . . , 1,

1
2), where Dx denotes a uniform step in the space discretization.

The corresponding reduced model thus is

d
dta(t) = U∗kf(Uka(t),u(t)),

a(0) = U∗kx0,
(6.11)

a particular case of (6.8).

Now we are interested in estimating the error∫ T

0
‖x(t)− x̂(t)‖2W dt,

where x̂(t) := Uka(t) (124).

Theorem 6.2.3 With the above assumptions, it holds∫ T

0
‖x(t)− x̂(t)‖2W dt ≤ C

n∑
i=k+1

(λi +

∫ T

0
|(ẋ(t),ui)W |2 dt)

for a constant C > 0.

91



6. PROPER ORTHOGONAL DECOMPOSITION (POD) METHOD

Observe now that from a practical point of view we do not have the information on

the whole trajectory in [0, T ], i.e. in general we cannot solve the reduced order model

analytically. Thus suppose to discretize it in time, using e.g. backward Euler, with a

uniform time step ∆t denoting with x̂ the vector corresponding to the solution of the

discretized reduced system, i.e. x̂i = x̂(ti), ti = i∆t.

We are interested in estimating

N∑
j=1

αj ‖x(tj)− x̂j‖2W .

Theorem 6.2.4 With the above assumptions, suppose moreover that ẍ ∈ L2(0, T ;Rn)

and that
{
uNi
}
i=1,...,k

is a POD basis solving (6.5). Then it holds

N∑
j=1

αj ‖x(tj)− x̂j‖2W ≤ C

(∆t)2 +
n∑

i=k+1

(λNi +
N∑
j=1

αj
∣∣(ẋ(tj),u

N
i )W

∣∣2)

 ,

for a constant C > 0, if ∆t is sufficiently small and f is Lipschitz-continuous with

respect to the second argument.

One strength of POD is that models can be efficiently tuned to capture physics in a

high-fidelity manner, using samples. However at the same time it is needed to compute

samples and there could be a possible lack of model robustness to change in parameters

(104). In the following sections we apply POD to two simple 1D problems, to better

understand how the choice of the number of modes k is important and depends on the

underlying dynamic.

6.3 Examples of application of POD

6.3.1 One dimensional linear heat equation

Consider x ∈ Ω = [0, L], L = 10, t ∈ [0, T ], T = 1, and the one dimensional heat

equation

∂T
∂t + c∂

2T
∂x2 = 0, in [0, T ]× Ω

T (0, x) = g0(x) = 20,
(6.12)
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with different types of boundary conditions:

Neumann−Neumann : ∂T
∂x (t, 0) = f0(t) = 100; ∂T

∂x (t, L) = 0;

Dirichlet−Dirichlet : T (t, 0) = 0; T (t, 0) = 0;

Dirichlet−Dirichlet : T (t, 0) = 10; T (t, 0) = 5;

Neumann−Dirichlet : ∂T
∂x (t, 0) = 100; T (t, 0) = 5;

Dirichlet−Neumann : T (t, 0) = 10; ∂T
∂x (t, L) = 0.

(6.13)

Suppose moreover that c = 10. Results are plotted in figure (6.2).

If we discretize the heat equation in space, using the finite difference method, with

a uniform step ∆x = 0.01 in [0, L], and ∆t = 0.01 in [0, T ] we obtain the following

linear state space system (5.1):

dT
dt = cA+ b(t), in [0, T ]× Ω

T(0) = (g0(xi)), i = 1 . . . , N,
(6.14)

where the matrix A and the vector b(t) represent the discretization of the laplacian and

the right-hand side term respectively and T(t) = (T (xi, t))i.

Thus we can solve this system of ODE’s using e.g. backward euler, and obtain a

model, which is useful to construct the matrix of snapshots χ = (T(tj)), j = 1, . . . , 100:

(IN − c∆xA)Tk+1 = Tk + ∆xb(k + 1),

T0 = (g0(xi)), i = 1 . . . , N,
(6.15)

Then we compute χ = USV ∗ ≈ UkSkV
∗
k , Uk = U(:, 1 : k), Sk = S(1 : k, 1 : k),

Vk = V (:, 1 : k), for a suitable k << N , and finally we solve

Ara
n+1 = A0,ra

n +Bru
n, an+1 ∈ Rk

Ar = U∗k (IN − c∆xA)Uk ∈ Rk×k, A0,r = U∗k INUk = Ik ∈ Rk×k and Br(k + 1) =

U∗k∆xb(k + 1).

T ≈ T̂ = Uka.

Using k = 20 (2% of N), is sufficient to reconstruct well the dynamic (cfr. figure

6.2).

6.3.2 One dimensional nonlinear heat equation

Consider now the more interesting nonlinear reformulation of the heat problem:

∂T
∂t + c(T )∂

2T
∂x2 = 0, in [0, T ]× Ω,

c(T ) = e−10T + 0.01 · T 3.
(6.16)
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Figure 6.1: Solution of the heat equation: Neumann-Neumann, Dirichlet-Dirichlet ho-

mogeneous; Dirichlet-Dirichlet nonhomogeneous; Neumann-Dirichlet; Dirichlet-Neumann.

The main difference is that the discretized-in-space model is now

dT
dt = A(T )T + b(t), in [0, T ]× Ω

T(0) = (g0(xi)), i = 1 . . . , N,
(6.17)

and using backward euler we obtain the following nonlinear system

(IN −∆xA(T k+1))Tk+1 = Tk + ∆xb(k + 1), in [0, T ]× Ω

T0 = (g0(xi)), i = 1 . . . , N.
(6.18)

We decided to modify it, solving a semi-implicit problem

(IN −∆xA(T k))Tk+1 = Tk + ∆xb(k + 1), in [0, T ]× Ω

T0 = (g0(xi)), i = 1 . . . , N.
(6.19)

This is important because we avoid the application of Newton’s method, but it is

accurate enough for our problem. However at each time step, we must compute the

matrix A(T k). Computing once the SVD of χ, Uk is determined: A0,r = U∗k INUk =

Ik ∈ Rk×k, Ar(T k) = U∗kA(T k)Uk ∈ Rk×k and Br(k + 1) = U∗k∆xb(k + 1). Neverless,

this procedure can be time consuming too, since it is necessary first to build A(T k) for

the full system and then to compute Ar(Tk) for every time step. In figure 6.3 we solve

the reduced problem with k = 20.

A problem related to POD is that it is not robust to changes e.g. in boundary

conditions: this means that it is very important to construct a suitable matrix of

snapshots χ, which contains useful information.
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Figure 6.2: From left to right, from the top to the bottom: Neumann-Neumann,

Dirichlet-Dirichlet homogeneous; Dirichlet-Dirichlet nonhomogeneous; Neumann-Dirichlet;

Dirichlet-Neumann. Real dynamic (blue), POD (red).

Suppose for example that we want to solve the nonlinear heat equation presented

above, for homogeneous boundary conditions, using k = 20, but using the matrix χ1

obtained solving the same problem with Neumann boundary conditions. The result is

very inaccurate (cfr. figure 6.4). A way to solve the problem is to consider more infor-

mation. For example consider also the nonlinear heat problem with nonhomogeneous

boundary conditions, and collect χ2. Then define χ as the union of these subsets and

apply the POD method. Using k = 20 the result now is more accurate (cfr. figure 6.4).

Observe that this is a weak nonlinear problem: lets consider now strong nonlinear-

ities (e.g. shocks).

6.3.3 One dimensional Burgers’ equation

This example is taken from (116). Our aim is to consider an example of shock movement

in a fluid, which is a strongly nonlinear phenomenon. Consider the one dimensional

Burgers’ equation: f : R→ R, f(u) = u2

2 ,

∂u(t,x)
∂t + ∂f(u(t,x))

∂x = g(x),

u(0, x) = u0(x),

u(t, 0) = φ(t),

(6.20)

where u : I × Ω → R, I = [0, T ], Ω = [0, L] is the unknown conserved quantity (e.g.

mass, density, heat), u0(x) is the initial condition and u(t, 0) = φ(t) is the inflow one.
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Figure 6.3: From left to right, from the top to the bottom: Neumann-Neumann,

Dirichlet-Dirichlet homogeneous; Dirichlet-Dirichlet nonhomogeneous; Neumann-Dirichlet;

Dirichlet-Neumann. Real dynamic (blue), POD (red).

Using this model, we present two different examples, the first is taken from (116),

the second is the motion of the Heaviside function.

6.3.3.1 First example

Consider g(x) = ξeξx, ξ = 0.02, u0(x) ≡ 1, φ(t) ≡
√

5. Moreover we use ∆x = 0.1

and ∆t = 0.01 as space and time discretization steps respectively. Define xi = i∆x,

i = 1, . . . , N , N = 1000 and U = (Ui)i, Ui = U(xi). Applying the Godunov’s scheme

for approximating the space derivative, we obtain the following equation at node i > 0:

dUi
dx

= −
Fi+ 1

2
− Fi− 1

2

∆x
+ g(xi),

where

Fi+ 1
2

=

{
minU∈[Ui,Ui+1] f(U), if Ui < Ui+1

maxU∈[Ui,Ui+1] f(U), if Ui > Ui+1

Since f(U) = U2

2 , if all Ui ≥ 0, then Fi+ 1
2

=
U2
i

2 . Discretizing in space Burgers

equation and incorporating also boundary conditions, we obtain the following dynam-

ical system:

dU

dt
= F (U) +G+Bφ2, (6.21)
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Figure 6.4: POD reconstruction of Dirichlet-Dirichlet homogeneous boundary condi-

tions using k = 20 and χ obtained solving only Neumann-Neumann problem (left), only

Dirichlet-Dirichlet nonhomogeneous problem (right), Dirichlet-Dirichlet nonhomogeneous

and Neumann-Neumann problems (center). Real dynamic (blue), POD (red).

G = (g(xi))i, B = [ 1
2∆x , 0, . . . , 0]T ∈ RN and

F (U) =
1

∆x


−U2

1
2

U2
1−U2

2
2
...

U2
N−1−U

2
N

2

 .

This nonlinear system can be solved e.g. using a ϑ-method:

Un+1 −Un

∆t
= θF (Un+1) + (1− θ)F (Un) +G+Bφ2.

We used both forward Euler (θ = 0) and backward Euler (θ = 1): in the last case we

must solve a nonlinear system of equations at every iteration n, e.g. applying Newton’s

method. If

Φ(Un+1) := Un+1 + ∆t(F (Un+1) +G+Bφ2)−Un,

Φ(Un+1) ≈ Φ(Un) + JΦ(Un)(Un+1 −Un), thus, to obtain Un+1 we must solve itera-

tively (until a convergence criterion is satisfied)

JΦ(sk)dk+1 = −Φ(sk)

sk+1 = sk + dk+1

starting from s0 = Un, with

JΦ(U) = IN −
∆t

∆x


−U1 U1

−U2 U2

. . .
. . .

−UN

 .
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After convergence, Un+1 = sk+1.

The solution of a nonlinear system is very expensive, since it involves evaluations

both of f , to compute Φ(sk), and of its Jacobian, to compute JΦ(sk). Observe that

for nonlinear problems, the reduced system still depends on N . A possible solution is

to evaluate JΦ(sk) not at every iteration, but this strategy does not reduced the cost

of the algorithm appreciably.

Observe that an alternative way to solve (6.21) is to linearize it once around a fixed

point U0 ∈ RN (cfr. figure 6.5), obtaining the following linear system

dU

dt
= F (U) +G+Bφ2 ≈ F (U0) + JF (U0)(U−U0) +G+Bφ2,

and the corresponding time discretization

Un+1 −Un

∆t
= F (U0) + JF (U0)(Un −U0) +G+Bφ2.

The problem is that in general linearized dynamics are suitable only if nonlinearities

Figure 6.5: Left: evolution of the solution of the first example of Burgers’ equation (blue)

and POD reconstruction (red), k = 50. Right: linearization of the problem around the

initial point. It does not represent the dynamic.

are stationary (104) and is unable to reproduce the nonlinear dynamic, e.g. the time

propagation of the shock in Burgers’ equation. In fact the previous Taylor approxima-

tion is accurate only if U−U0 is small enough: suppose that at time n Un −U0 < ε,

where ε > 0 is a suitable threshold. Nobody could guarantee us that Ul −U0 < ε for

every l > n, because the nonlinearity is rapidly propagating in time, and Ul could be

distant from Un, even if l − n is small. When the nonlinearities are moving a possible

solution is to consider U0 a time function, U0 : I → RN , U0 = U0(t). Thus we deal

with a constant re-linearization:

Un+1 −Un

∆t
= F (Un

0 ) + JF (Un
0 )(Un −Un

0 ) +G+Bφ2,
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s.t. Ul −Ul
0 < ε, for every l ≥ 0 but these techniques are impractical, due to compu-

tational costs.

In figure (6.6) are represented solutions using forward Euler (θ = 0), for the time

discretization: although it is considerably less expensive, it needs a greater k: k = 80

instead of k = 50.

Figure 6.6: Left: evolution of the solution of the first example of Burgers’ equation (blue)

and POD reconstruction (red) using forward euler, k = 50. Right: k = 80.

Due to time efficiency, we can try to approximate the model increasing T , T = 5000

(cfr. figure 6.7), selecting time instants to define χ (e.g. every 5 time istants).

Figure 6.7: Dynamic for T = 5000: k = 80 (left), k = 160 (right) (116).

Observe that in general in presence of time varying shocks it is important to consider

a sufficiently rich data set, to capture all shocks dynamics: this corresponds to the need

of an higher number k of eigenfunctions.

99



6. PROPER ORTHOGONAL DECOMPOSITION (POD) METHOD

6.3.3.2 Second example

The procedure is analogue to the previous example, but we consider different data:

g(x) ≡ 0, u0(x) =

{
1, if x ≤ j
0, if x > j

, φ(t) ≡
√

5. Moreover we use ∆x = 0.1 and

∆t = 0.1 as discretization space and time steps respectively.

Figure 6.8: Evolution of the solution of the second example of Burgers’ equation (blue)

and POD reconstruction (red), k = 50.

In figure (6.9) are represented solutions using forward Euler (θ = 0), for the time

discretization. Although k is considerably greater, it is convenient to use forward euler,

because much less time consuming.

Figure 6.9: Left: evolution of the solution of the second example of Burgers’ equation

(blue) and POD reconstruction (red) using forward euler, k = 50. Right: k = 200.

100



6.4 POD in an infinite dimensional context

6.4 POD in an infinite dimensional context

In this section we present the main ideas of the POD formulation in an infinite dimen-

sional context: the corresponding algebraic reduced system is equivalent to the one

introduced in section 6.2 (cfr. appendix B): for more details we refer to (124).

Let V be a real separable Hilbert space: consider a : V × V → R a bilinear,

symmetric bounded and coercive form; b : V × V → V
′

bilinear and continuous and

R : V → V
′

linear and continuous. For given f ∈ C([0, T ];V ), y0 ∈ V we state the

nonlinear evolution problem: find y(t) ∈ V s.t. ∀φ ∈ V

d
dt(y(t), φ)V + a(y(t), φ) + 〈b(y(t), y(t)) +Ry(t), φ〉V ′ ,V = (f(t), φ)V , for a.e. t ∈ (0, T ]

y(0) = y0 in V.

(6.22)

Suppose that b and R satisfy suitable assumptions (94, 124) such that for every

f ∈ C([0, T ];V ) and y0 ∈ V , (6.22) has a unique solution y satisfying y ∈ C([0, T ];V )∩
L2([0, T ];V ) ∩H1([0, T ];V ).

For given N ∈ N, let 0 = t0 < t1 < . . . < tN ≤ T denote a grid in [0, T ] and

denote by ∆t and δt the maximum and minimum step respectively. Suppose to know

the snapshots y(tj), taken in tj , j = 0, . . . , N . Define

V = span {y(t0), . . . , y(tN )} ⊂ V

the ensamble of snapshots.

Let {ψi}di=1 denote an orthonormal basis of V, d = dimV: thus

y =
∞∑
i=1

(y, ψi)V ψi.

For every k ≤ d, the POD method consists in choosing an orthonormal basis of V

solution of the following optimization problem:

minψ1...,ψk∈V
∑N

j=0 αj

∥∥∥y(tj)−
∑k

i=1(y(tj), ψi)V ψi

∥∥∥2

V
,

(ψi, ψj)V = δij , 1 ≤ i, j ≤ k,
(6.23)

for suitable weights αj : e.g. they can be thought as weights of a quadrature rule for the

approximation of the integral
∫ T

0

∥∥∥y(t)−
∑k

i=1(y(t), ψi)V ψi

∥∥∥2

V
dt, using {t0, . . . , tN} as

temporal nodes.

{ψ1 . . . , ψk} is called POD basis of rank k.
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Consider now the following bounded linear operator

YN : RN+1 → V, YNv :=
N∑
j=0

αjvjy(tj).

The corresponding adjoint Y∗N : V → RN+1 is given by

Y∗Nz = (〈z, y(t0)〉V , . . . , 〈z, y(tn)〉V )T .

Thus the bounded and linear operator on V

RN = YNY
∗
N ,

and the matrix

KN = Y∗NYN ∈ R(N+1)×(N+1)

are given by

RNz =
N∑
j=0

αj(z, y(tj))V y(tj), z ∈ V

and

(KN )ij = 〈y(tj), y(ti)〉V .

Since RN is bounded, self-adjoint and non-negative, with finite dimensional image,

it is also compact (124). Thus, by Hilbert-Schmidt theory, there exists an orthonormal

basis {ψi}i∈N of V and a non-negative sequence of decreasing real numbers {λi}i∈N
such that

RNψi = λiψi,

λi = 0, i > d,
(6.24)

moreover V = span {ψi}i≤d. Using the Lagrangian framework (124) it follows that

V k = span {ψi}i≤k is the optimal solution of (6.23).

Proposition 6.4.1 Under the above assumptions, {ψi}i≤k, chosen such that (6.24)

holds, is a POD basis of rank k ≤ d and

n∑
j=0

αj

∥∥∥∥∥y(tj)−
k∑
i=1

(y(tj), ψi)V ψi

∥∥∥∥∥
2

V

=
d∑

i=l+1

λi.

Remark 6.4.1 Setting

vi =
1√
λi

Y∗Nψi, i = 1, . . . , d
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6.4 POD in an infinite dimensional context

we find KNvi = λivi and 〈vi, vj〉RN+1 = δij, i.e. {vi}di=1 are an orthonormal basis of

eigenvectors of KN .

Conversely, given {vi}di=1, then

ψi =
1√
λi

YNvi, i = 1, . . . , d.

It is important to note that the last equation is a generalization of the method of

snapshots (6.3) introduced in the finite dimensional context.

More details can be found in (124), e.g. what happens if ∆t→ 0.

Thus, given f ∈ C([0, T ];V ) and y0 ∈ V , the POD-Galerkin reduction of (6.22)

consists in finding ŷ(t) ∈ V k s.t. ∀ψ ∈ V k

d
dt(ŷ(t), ψ)V + a(ŷ(t), ψ) + 〈b(ŷ(t), ŷ(t)) +Rŷ(t), ψ〉V ′ ,V = (f(t), ψ)V , a.e. t ∈ (0, T ]

(ŷ(0), ψ)V = ŷ0.

(6.25)

Remark 6.4.2 Assuming that y =
∑k

i=1 αiψi (POD-Galerkin ansatz), substituting it

in (6.22), the POD-Galerkin system (6.25) is equivalent to find α ∈ Rk s.t. ∀ψi ∈ V k

d

dt
αi+

∑
j

αja(ψj , ψi)+
∑
j

∑
s

αjαs 〈b(ψj , ψs), ψi〉+
∑
j

αj 〈Rψj , ψi〉 = (f(τl), ψi)V , ∀ψi ∈ V k.

(6.26)

Suppose now that y = ym+
∑k

i=1 βiψ̃i, where
{
ψ̃i

}
is the POD basis of the transformed

snapshots matrix {y(tj)− ym}, for a fixed ym ∈ V . Thus y(t) = (y(t) − ym) + ym =:

ỹ + ym. Suppose that ym is chosen such that ψ̃i are all solenoidal and y(t) − ym

verifies homogeneous Dirichlet boundary conditions: e.g. consider ym = 1
N

∑N
j=1 y(tj),

independent on time. Thus the POD-Galerkin problem consists in finding β ∈ Rk s.t.

∀ψ̃i

d
dtβi +

∑
j βj

(
a(ψ̃j , ψ̃i) +

〈
b(ψ̃j , ym) + b(ym, ψ̃j), ψ̃i

〉
+
〈
Rψ̃j , ψ̃i

〉)
+

+
∑

js βjβs

〈
b(ψ̃j , ψ̃s), ψ̃i

〉
=

= (f(τl), ψ̃i)V − a(ym, ψ̃i)−
〈
Rym, ψ̃i

〉
−
〈
b(ym, ym), ψ̃i

〉
,

(6.27)

then y(t) = ỹ(t) + ym. The advantage is that this system has homogeneous Dirichlet

boundary conditions, thus it is less costly to solve.

In (93) the more general case of time varying parameter dependent boundary con-

ditions is treated.
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To discretize (6.25) in time, consider another grid in [0, T ] 0 = τ0 < τ1 < . . . <

τm = T and denote by ∆τ and δτ the maximum and minimum step respectively. Using

the backward euler method we solve the following POD-Galerkin problem:

find a sequence {Yl}ml=0 ∈ V k s.t.

(
Yl−Yl−1

δτl
, ψ)V + a(Yl, ψ) + 〈b(Yl, Yl) +RYl, ψ〉V ′ ,V = (f(τl), ψ)V , ∀ψ ∈ V k

(Y0, ψ)V = (y0, ψ)V , ∀ ψ ∈ V k.

(6.28)

If ∆τ is sufficiently small, the sequence {Yl}ml=0 is uniquely determined.

Theorem 6.4.1 (Error estimation) If y is regular enough (124) and if ∆τ is suffi-

ciently small, there exists a constant C depending only on T , s.t.∑m
j=0 βj ‖y(τj)− Yj‖2H ≤ C

∑d
i=k+1

(
|(ψi, y0)V |2 + σn

δt

(
1
δτ + ∆τ

)
λi

)
+ Cσn∆τ∆t ‖yt‖2L2(0,T ;V )

+ Cσn(1 + c2
P )∆τ

(
∆t ‖yt‖2L2(0,T ;H) + (∆t+ ∆τ) ‖ytt‖2L2(0,T ;H)

)
where σn is related to the two temporal grids, cP is such that

∥∥Pk∥∥
L(V )

≤ cP and βj

are suitable weights.

Observe that the estimate depends (through ψi, d) on the way in which the snapshots

are taken, on the number k of basis elements and on the relative location of the snap-

shots and the time discretization (through σn). The linear and semi-nonlinear case is

treated in (99), while the nonlinear case is treated in (100).

6.5 POD applied to Computational Fluid Dynamics (CFD)

problems

POD is largely used to solve inverse or optimal control fluid problems: in (163) it

is observed that the control of fluid flows is an important area of technological and

scientific research having important applications in industrial processes, such as the

viscous drag reduction to minimize the drag force on a submerged body or the control

of mixing patterns in chemical reactors to enhance the reactor performance by using

several control mechanisms. Also in (114, 115) is presented the application of POD as

a reduced order technique useful to solve an optimal control problem.

Following e.g. (94), the 2D incompressible Navier Stokes equations can be seen as a

particular case of (6.22), as proved in (122): if boundary data are sufficiently smooth,

there exists a unique solution. In (94) an optimal control problem of a flow around a
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6.5 POD applied to Computational Fluid Dynamics (CFD) problems

cylinder is taken as example. Given the velocity trajectories {u1, . . . ,uN} the POD

basis {ψ1, . . . , ψN} is computed and the ansatz ui = ū+
∑N

i=1 aiψi is considered, where

ū is the mean of the snapshots (cfr. Remark 6.4.2). Thus the reduced model has the

following form:

〈ut, ψj〉V + ν 〈∇u,∇ψj〉V + 〈(u · ∇)u, ψj〉V = 〈f, ψj〉V ,

for a suitable f . Observe that in (94) pressure is not taken into account, because

the authors assume that ψj is solenoidal, as a linear combination of velocities, thus

〈∇p, ψj〉V = −〈p, divψj〉V = 0. We underline that from a numerical point of view

velocities are not solenoidal, due to approximation errors, thus not considering the

pressure could be a possible source of instabilities: in the following we will considered

also pressure in the reduced model. In fact in (109) it is demonstrated how the accuracy

of empirical Galerkin models for shear flows can be significantly improved by introduc-

ing an appropriate pressure-term representation. Also in (121) it is underlined the need

of considering the pressure in the model, to correct velocity predictions. In (106) the

approach of (100) and (94) has been extended: both velocity and pressure fields are

simultaneously approximated, and the pressure appears in the reduced system:〈
ut, ψ

u
j

〉
Vu

+ ν
〈
∇u,∇ψuj

〉
Vu

+
〈

(u · ∇)u, ψuj

〉
Vu

+
〈
−∇p,∇ψuj

〉
Vu

=
〈
f, ψuj

〉
Vu
,〈

divu,∇ψpj
〉
Vp

= 0;

where (u, p) ∈ V = Vu × Vp.
The standard POD formulation has been analyzed and modified by different au-

thors, expecially when inverse or optimal control problems are considered: in the fol-

lowing we mention some proposed strategies. In (114) the idea is to improve the POD

base through an adaptive procedure, beginning with an ensemble and deriving a POD

base which is then used to compute a control. A new ensemble is next generated by

applying the control to the original flow model. The new ensemble is used to replace the

current and a new POD base is computed. This process is repeated until convergence

is achieved.

In (80) optimal control theory is used to minimize the total mean drag for a circular

cylinder wake flow in the laminar regime (Re = 200). To adapt the POD basis to

changes in physics when the flow is altered by a control, a first a priori approach consists

in distributing uniformly in the control parameter space the snapshot ensemble to be

used for POD. However, in this case, a lot of runs of the high-dimensional code would

be necessary to generate the snapshots (81). The second a posteriori approach consists

in an adaptive method in which new snapshots are regularly determined during the
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optimization process when the effectiveness of the existing POD to represent accurately

the controlled flow is considered to be insufficient (80).

In (110) a viscous flow in a two-dimensional grooved cavity is considered, when the

lid velocity varies.

POD method has been largely used also to study turbulence (121): POD may be

applied to obtain a basis that captures more of the kinetic energy of the system on

average, since POD modes are optimal in the sense of capturing, on average, the great-

est possible fraction of total energy for a projection onto a given number of modes.

Thus relatively high (O(1000)) dimensional projections onto POD modes can capture

observed modal energy budgets and provide acceptable short-term tracking of individ-

ual solutions for turbolent flows. In applications, however, one often wants to consider

much lower (O(10)) dimensional projections: with suitable modeling of the neglected

modes, very low dimensional models are able to capture many aspects of turbolent

flows (121).

Weighted POD is a variation of POD which gives more weight to some members

of the snapshot set and can be accomplished, e.g., by including multiple copies of an

”important” snapshot in the snapshot set. In (86) it is observed that, while POD gives

a good description of the structure for a fixed dynamical system, problems occur when

parameter variations are included (for example considering dynamical systems depend-

ing on the parameter Re). Different modes may be important at different parameter

values or events may be short in time.

POD with derivatives get more information into the snapshot set in order to get a

better POD basis, adding time derivatives of simulated states to the snapshot set.

H1 POD change the error measure for POD using H1 norms and inner products

(instead of L2) in the definition and construction of POD bases (89).

Constrained POD impose a constraint (e.g. symmetry) on the POD basis.

Adaptive POD change the POD basis when it no longer seems to be working, re-

quires detection of failure of the POD basis, the determination of new snapshot vectors,

and the computation of the SVD for the new snapshot matrix determined from the new

snapshot vectors.

In (108) the Galerkin-POD reduction of the circular cylinder test is carefully ex-

amined and the shift-mode is included to significantly improve the resolution of the

transient dynamics from the onset of vortex shedding to the periodic von Karman

vortex street.

In (77) it is proposed the Missing Point Estimation (MPE) strategy: the Galerkin

projection is conducted only on equations describing the dynamics of several points in
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6.6 POD applied to the Navier Stokes problem

the spatial domain instead of the equations of all grid points.

To recover the effects of the truncated modes, that is generally of the small scales, in

(112) eddy viscosities are used, i.e. the viscous terms of the POD-Galerkin system are

perturbed. An alternative is calibrated reduced-order POD-Galerkin method presented

in (85) and tested on two examples (2D square obstacle, Re=100 and 3D backward

facing step, Re 7432, considering periodic regimes). To correct the behavior of a low-

order POD-Galerkin system, the polynomial coefficients which define the POD-Galerkin

system are adjusted by solving a minimization problem.

Finally in (83) and (84) the POD-Discrete Empirical Interpolation Method (DEIM)

is presented, to reduce the POD’s complexity for computing a projected nonlinear term,

which still depends on the dimension of the original full-order system.

6.6 POD applied to the Navier Stokes problem

In this section we describe with more details the POD reduction of Navier Stokes

equations that we have adopted.

First of all collect snapshots: let {t1, . . . , tN} be a subdivision of the time interval

[0, T ] and (u1(ti),u2(ti)) ∈ RNu×2, p(ti) ∈ RNp be respectively the velocity and the

pressure FE solutions at time ti. Consider

χ1 = (u1(tj))j=1,...,T ∈ RNu×T , χ2 = (u2(tj))j=1,...,T ∈ RNu×T χp = (p(tj))j=1,...,T ∈ RNp×T

the matrices of snapshots of the first component of velocity, of the second one and of

the pressure, respectively.

To obtain the POD basis we compute their SVD’s: denoting with U1, U2 and Up the

corresponding matrices of left singular values, we truncate them, defining the projection

spaces

Ur1 = U1(:, 1 : k1), Ur2 = U2(:, 1 : k2), Urp = Up(:, 1 : m),

choosing appropriate thresholds k1, k2 and kp, depending on the magnitude of the

corresponding singular values. We present now two possible reductions, corresponding

to the two treatments of the nonlinear convection term presented in section 4.3.

6.6.1 Explicit treatment of the nonlinear term: reduced system

Consider system (4.32): compute the reduced matrices

Ak1,1 = UTr1AUr1, Ak2,2 = UTr2AUr2, Bk1,1 = UTrpB1Ur1, Bk2,2 = UTrpB2Ur2.
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Thus the reduced system is Ak1,1 0 −BT
k1,1

0 Ak2,2 −BT
k2,2

−Bk1,1 −Bk2,2 0


 a1

a2

ap

 =

 UTr1F1

UTr2F2

UTrpFp

 . (6.29)

Finally

u1 ≈ Ur1a1, u2 ≈ Ur2a2, p ≈ Urpap.

Observe that the reduced system can be solved directly (e.g. LU-factorization) or

using the Pressure-matrix method as the unreduced one. Moreover observe that, if A,

B1 and B2 does not depend on t the numerical method could be optimized, computing

the reduced matrices only once at the beginning.

6.6.2 Semi-implicit treatment of the nonlinear term: reduced system

Consider now the system (4.34): now at each iteration the system matrix must be

reduced, computing

A
(n)
k1,1

= UTr1A
(n)Ur1, A

(n)
k2,2

= UTr2A
(n)Ur2.

Thus the reduced system is A
(n)
k1,1

0 −BT
k1,1

0 A
(n)
k2,2

−BT
k2,2

−Bk1,1 −Bk2,2 0


 a1

a2

ap

 =

 UTr1F
n
1

UTr2F
n
2

UTrpF
n
p

 . (6.30)

Finally

u1 ≈ Ur1a1, u2 ≈ Ur2a2, p ≈ Urpap.

Here we need to compute at every iteration the system matrices.

Although the semi-implicit method could be useful when dealing with long intervals,

the explicit treatment of the convection term, in combination with the deviation from

the mean velocity field (cfr. Remark 6.4.2), is much less expensive as a reduction

technique, as in the unreduced case. Thus a possible strategy should be the following:

if we are interested in analyzing the dynamic in a reference interval [ti, T ], ti > 0 (e.g.

where the period regime is achieved), we start applying the semi-implicit method in

[0, ti], with a bigger time step, and then continue applying the explicit one in [ti, T ],

using a smaller step.
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6.6.3 Application of POD to the backward facing step problem

In this section we see how this reduction works, using as a model the POD reduction

of the backward facing step problem, presented in section 4.4.1, considering t ∈ [0, 75].

6.6.3.1 Modes computation

In figure 6.11 the first 8 singular vectors (POD modes) (U1(:, 1 : 8) and U2(:, 1 :

8)) of the matrix of all snapshots, are plotted. As can be seen, the horizontal and

vertical components are close to each other. Observe that the bigger the index of the

singular vector in the basis is, the smaller the corresponding structures are: these modes

represent the main dynamics in the data set. In figure 6.10 are plotted the singular

values of the matrices of snapshots for both components of velocity and pressure. Some

values are given in table 6.1.

Figure 6.10: Re = 400: First row: Singular values, second row: percentage of energy

(e(k) :=
∑k
j=1 σj∑n
j=1 σj

), Left: velocity; Right: pressure
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Figure 6.11: Re = 400: First eight singular (POD) vectors computed using two different

SVD’s for the velocity (X1 and X2).
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k1, k2, kp Percentage of energy of u1 Percentage of energy of u2 Percentage of energy of p

1 0.558390252354875 0.166134151527396 0.510498357703101

10 0.925686479743807 0.723035393116410 0.840069110689584

50 0.997457932701127 0.988205126770044 0.995215497553616

100 0.999792472546980 0.999054839808156 0.999826401003764

150 0.999981270336716 0.999905978307868 0.999989253036818

200 0.999998351854391 0.999992115103012 0.999999162219908

250 0.999999881137085 0.999999470928219 0.999999935672432

300 0.999999993949290 0.999999974323508 0.999999996448935

350 0.999999999790786 0.999999999225040 0.999999999852688

400 0.999999999992858 0.999999999976311 0.999999999994602

450 0.999999999999674 0.999999999999071 0.999999999999784

500 0.999999999999986 0.999999999999962 0.999999999999990

Table 6.1: Percentage of energy for various k1, k2 and kp.

6.6.3.2 Criteria to evaluate POD’s performance

First of all we apply POD without truncation to estimate the maximum level of accuracy

reachable: the result is depicted in figure 6.12 and is approximately 10−11 in RN .

Given the matrices of snapshots, to evaluate POD’s performance truncating at k1,

k2 and kp, the first strategy consists in computing the L2-error in Rn, i.e. computing

directly
∥∥ue − upod

∥∥
2
, and

∥∥pe − ppod∥∥
2
, where the apex e stands for exact solution

while pod stands for POD approximation. Consider the backward facing step test case

in [0, 75]: it can be seen that the dynamic is still well represented, although the L2

error is not very small in the last part, as depicted in figure 6.13. Thus the error could

not be a good indicator.
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Figure 6.12: Re = 400: Application of POD without truncation. First row Left: ”Real

streamlines and pressure contour plots of the semi-implicit NS stationary solution”. First

row Right: streamlines and pressure contour plots of POD NS stationary solution. Second

row Left: real τ , Second row Right: τ of the POD solution. Third row Left: real mean

kinetic energy, Third row Right: POD mean kinetic energy. Fourth row Left: velocity

error at each iteration, Fourth row Right: pressure error at each iteration.
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Figure 6.13: Re = 400: k1 = k2 = kp = 400. First row Left: ”Real streamlines

and pressure contour plots of the semi-implicit NS stationary solution”. First row Right:

streamlines and pressure contour plots of POD NS stationary solution. Second row Left:

real τ , Second row Right: τ of the POD solution. Third row Left: real mean kinetic

energy, Third row Right: POD mean kinetic energy. Fourth row Left: velocity error at

each iteration, Fourth row Right: pressure error at each iteration.
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Observe that, given the POD basis for the velocity
{
ψu1i

, ψu2j

}
, i = 1, . . . , k1,

j = 1, . . . , k2 and the POD basis for the pressure {ψpl}, l = 1, . . . , kp

upod1 =

k1∑
i=1

apodu1,i
ψu1i

, upod2 =

k2∑
i=1

apodu2,i
ψu2i

ppod =

kp∑
i=1

apodpi ψpi ,

the coefficients apodu1,i ,a
pod
u2,i and apodpi are found numerically, solving a k1 + k2 + kp dimen-

sional ODE (equations 6.29 or 6.30).

Otherwise the exact solution is

ue1 =

Nu∑
i=1

aeu1,i
ψu1i

, ue2 =

Nu∑
i=1

aeu2,i
ψu2i

pe =

Np∑
i=1

aepiψpi

where aeul,i := (ue, ψuli), l = 1, 2, and aepi := (pe, ψpi). Thus another indicator of POD

performance corresponds to compute at each iteration for each mode
∥∥∥aeul(1 : kl)− apodul

∥∥∥
2
,

l = 1, 2, and
∥∥∥aep(1 : kp)− apodp

∥∥∥
2
.

As a consequence the quality of the approximation can be tested considering the

temporal evolution of the coefficients of POD modes, comparing the exact ones (ob-

tained projecting the matrix of snapshots) and the approximated ones (obtained pro-

jected the POD approximation trajectories matrix): cfr. figure 6.14. Observe that

when the streamlines are well approximated, the corresponding coefficients of the POD

modes are well approximated too. Thus this could be a way to quantify how good the

reconstruction of the dynamic is.
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6.6 POD applied to the Navier Stokes problem

Figure 6.14: Re = 400. First column: Comparison between real temporal evolution of

coefficients of the first 3 POD modes (red) and approximated ones (blue) for the velocity

field. Second column: Approximated streamlines and isobars. Third column: Approximated

τ . First line: k1 = k2 = kp = 500. Second line: k1 = k2 = kp = 400. Third line:

k1 = k2 = kp = 300. Fourth line: k1 = k2 = kp = 250.

Observe moreover that the dynamic is lost in the final part of the interval: this is

due to the truncation of smaller modes, in fact it grows while k1, k2 and kp decrease:

the more energetic modes correspond to the first part of the kinetic energy, where there

is a higher energy variation. Thus truncating the smaller modes corresponds to neglect

the information about the stationary part of the solution. Thus we restrict to the

subinterval [0, 25], in which the transitional dynamic occurs.

Observe that the behavior of the coefficients explains why the error is increasing

in the last part of the time interval. In fact, the coefficients differ in this subinterval
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and in the error the effects of all coefficients of all modes is summed up, and thus it is

amplified.

6.6.3.3 Application of POD to the backward facing step problem in the

interval [0, 25] of transitional dynamic

For [0, 25] (1000 snapshots), in figures 6.15 and 6.16 it is depicted the reduced dynamic

using k1 = k2 = kp = 200 and k1 = k2 = kp = 150 respectively. For larger trunca-

tion thresholds the approximation is better. In figure 6.17 it is shown the analysis of

the dynamic of the coefficients of the 3 dominant modes: the approximation is more

accurate when the reduced system has higher dimension.

6.6.3.4 Application of POD to the backward facing step problem in the

interval [25, 75] of transitional dynamic

For [25, 75] (2000 snapshots), in figures 6.19 and 6.20 it is depicted the reduced dynamic

using k1 = k2 = kp = 50 and k1 = k2 = kp = 10 respectively, while in figure 6.18 it

is shown the analysis of the dynamic of the coefficients of the dominant modes. It

is evident how in the stationary regime a lower number of modes can describe the

dynamic.
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6.6 POD applied to the Navier Stokes problem

Figure 6.15: Re = 400: [0, 25], k1 = k2 = kp = 200. First row Left: ”Real streamlines

and pressure contour plots of the semi-implicit NS stationary solution”. First row Right:

streamlines and pressure contour plots of POD NS stationary solution. Second row Left:

real τ , Second row Right: τ of the POD solution. Third row Left: real mean kinetic

energy, Third row Right: POD mean kinetic energy. Fourth row Left: velocity error at

each iteration, Fourth row Right: pressure error at each iteration.
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Figure 6.16: Re = 400: [0, 25], k1 = k2 = kp = 150. First row Left: ”Real streamlines

and pressure contour plots of the semi-implicit NS stationary solution”. First row Right:

streamlines and pressure contour plots of POD NS stationary solution. Second row Left:

real τ , Second row Right: τ of the POD solution. Third row Left: real mean kinetic

energy, Third row Right: POD mean kinetic energy. Fourth row Left: velocity error at

each iteration, Fourth row Right: pressure error at each iteration.
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6.6 POD applied to the Navier Stokes problem

Figure 6.17: Re = 400: [0, 25]. Comparison between real temporal evolution of coefficients

of the first 3 POD modes (red) and approximated ones (blue). Left: k1 = k2 = kp = 200.

Right: k1 = k2 = kp = 150.

Figure 6.18: Re = 400: [25, 75]. Comparison between real temporal evolution of co-

efficients of the first 3 POD modes (red) and approximated ones (blue). First line:

k1 = k2 = kp = 50. Second line: k1 = k2 = kp = 10. .
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Figure 6.19: Re = 400: [25, 75], k1 = k2 = kp = 50. First row Left: ”Real streamlines

and pressure contour plots of the semi-implicit NS stationary solution”. First row Right:

streamlines and pressure contour plots of POD NS stationary solution. Second row Left:

real τ , Second row Right: τ of the POD solution. Third row Left: real mean kinetic

energy, Third row Right: POD mean kinetic energy. Fourth row Left: velocity error at

each iteration, Fourth row Right: pressure error at each iteration.
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6.6 POD applied to the Navier Stokes problem

Figure 6.20: Re = 400: [25, 75], k1 = k2 = kp = 10. First row Left: ”Real streamlines

and pressure contour plots of the semi-implicit NS stationary solution”. First row Right:

streamlines and pressure contour plots of POD NS stationary solution. Second row Left:

real τ , Second row Right: τ of the POD solution. Third row Left: real mean kinetic

energy, Third row Right: POD mean kinetic energy. Fourth row Left: velocity error at

each iteration, Fourth row Right: pressure error at each iteration.
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6.7 Corrected POD

As mentioned in section 6.5, dealing with complicate dynamics, like transitional phe-

nomena, POD performs well if the projection space is large enough, or equivalently, if

a sufficiently high number k of POD’s modes are taken into account. The larger is k,

the bigger is the reduced system. Thus the idea is to keep k as low as possible, trying

to model in some way the truncated dynamics.

In this section we present an idea to take into account truncated dynamics. Nu-

merical tests show us that it is not easy to reduce the dimension of the POD reduced

system, dealing with complicate dynamics.

As observed in Remark 6.4.2, assuming that y =
∑k

i=1 αiψi (POD-Galerkin ansatz),

the POD-Galerkin system (6.28) consists in finding α ∈ Rk s.t. ∀ψi ∈ V k

d

dt
αi +

k∑
j=1

αja(ψj , ψi) +

k∑
j=1

k∑
s=1

αjαs 〈b(ψj , ψs), ψi〉+

k∑
j=1

αj 〈Rψj , ψi〉 = (f(τl), ψi)V .

(6.31)

This is a system of k ODE’s, in k unknowns α1, . . . , αk.

Consider now k̄ < k, thus 6.31 can be written equivalently ∀i = 1, . . . , k̄, . . . , k solve

d

dt
αi+

k̄∑
j=1

αja(ψj , ψi)+
k̄∑
j=1

k̄∑
s=1

αjαs 〈b(ψj , ψs), ψi〉+
k̄∑
j=1

αj 〈Rψj , ψi〉 = (f(τl), ψi)V−r(α1, . . . , αk),

(6.32)

where

r(α1, . . . , αk) =
∑k

j=k̄+1 αj (a(ψj , ψi) + 〈Rψj , ψi〉) +
∑k̄

j=1

∑k
s=k̄+1 αjαs 〈b(ψj , ψs), ψi〉

+
∑k

j=k̄+1

∑k̄
s=1 αjαs 〈b(ψj , ψs), ψi〉+

∑k
j=1+k̄

∑k
s=k̄+1 αjαs 〈b(ψj , ψs), ψi〉 .

The idea now is to consider the first k̄ equations of (6.32), ∀i = 1, . . . , k̄ solve

d

dt
αi+

k̄∑
j=1

αja(ψj , ψi)+

k̄∑
j=1

k̄∑
s=1

αjαs 〈b(ψj , ψs), ψi〉+
k̄∑
j=1

αj 〈Rψj , ψi〉 = (f(τl), ψi)V−r(α1, . . . , αk),

(6.33)

obtaining an underdeterminate system of k̄ equations in k unknowns. How to fix the

remaining k − k̄ unknowns? At some time instances, when a suitable criterium is

satisfied, as will be presented in the following, compute αk̄+1, . . . , αk, and then use

these values in (6.32) to correct the right-hand side of the ODE’s system corresponding

to the first k̄ equations (using r(α1, . . . , αk)).

The idea is sketched in algorithm 1.
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Algorithm 1 Corrected POD:

1: Given the matrix of snapshots χ ∈ Rn×N , and its left singular vectors U ∈ Rn×n, compute the

thresholds k̄ < k.

2: Initialize αk̄+1 = αk = 0;

3: for all time steps do

4: solve the system (6.33)

5: if A suitable criterium is satisfied then { %% update αk̄+1, . . . , αk}
6: Solve the bigger system (6.31), obtaining a new estimate also for αk̄+1, . . . , αk

7: end if

8: end for

Some criteria used to determine when it is necessary to correct will be presented in

the following section, where some numerical tests are considered.

6.7.1 Algebraic formulation

To better understand the method, now we present its albebraic formulation. Consider

the reduction of Navier Stokes equation presented in section 6.6. Assume that k1 =

k2 = k and consider the 2k + kp dimensional POD reduced algebraic system, obtained

after discretizing in time (6.31) using an explicit or semi-implicit treatment of the

nonlinear term,  Ak,1 0 −BT
k,1

0 Ak,2 −BT
k,2

−Bk,1 −Bk,2 0


 a1

a2

ap

 =

 UTr1F1

UTr2F2

UTrpFp

 , (6.34)

where α(ti) = (a
(i)
1 ,a

(i)
2 ,a

(i)
p )T , coefficients corresponding to the first and second com-

ponents of velocity and to the pressure respectively.

Define U
(c)
j := Uj(:, 1 : k̄) and U

(f)
j := Uj(:, k̄ + 1 : k). Since Urj = [U

(c)
j , U

(f)
j ] ⊃

Uk̄,j = U
(c)
j , j = 1, 2, the computation on the k-th dimensional space could be seen as

a correction of the k̄-dimensional one. Observe that

Ak,1 =

(
(U

(c)
1 )TAU

(c)
1 (U

(c)
1 )TAU

(f)
1

(U
(f)
1 )TAU

(c)
1 (U

(f)
1 )TAU

(f)
1

)
,

Ak,2 =

(
(U

(c)
2 )TAU

(c)
2 (U

(c)
2 )TAU

(f)
2

(U
(f)
2 )TAU

(c)
2 (U

(f)
2 )TAU

(f)
2

)
,

Bk,1 =
(
UTp B1U

(c)
1 UTp B1U

(f)
1

)
,

Bk,2 =
(
UTp B2U

(c)
2 UTp B2U

(f)
2

)
.

In particular given the solution of the system of order 2k̄+kp, this could be corrected

to obtain an approximation of the solution of the 2k+kp-th dimensional system. More
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precisely, at iteration n, given (a1,old,a2,old,ap,old)
T ∈ R2k̄+kp , instead of solving the

POD 2k̄ + kp-dimensional system


Ak̄,1 0 −BT

k̄,1

0 Ak̄,2 −BT
k̄,2

−Bk̄,1 −Bk̄,2 0


 ā1

ā2

āp

 =

 (U
(c)
1 )TF1

(U
(c)
2 )TF2

UTrpFp

 , (6.35)

solve


Ak̄,1 0 −BT

k̄,1

0 Ak̄,2 −BT
k̄,2

−Bk̄,1 −Bk̄,2 0


 ā1

ā2

āp

 =

 (U
(c)
1 )TF1 − (U

(c)
1 )TAU

(f)
1 a1,old(:, k̄ + 1 : k)

(U
(c)
2 )TF2 − (U

(c)
2 )TAU

(f)
2 a2,old(:, k̄ + 1 : k)

UTrpFp

 ,

(6.36)

To update the 2k + kp dimensional vector of coefficients, the original 2k + kp-

dimensional POD system is solved only at properly chosen instances (correction). In

the following section some ideas to correct the approximation will be introduced.

Remark 6.7.1 Previous ideas can be extended considering also a correction of pres-

sure (k̄p), and distinguishing the two components of velocities (i.e. using two different

thresholds k1 and k2).

6.7.2 Numerical simulations

Consider two different thresholds k1 and k2 for u1 and u2 respectively.

As will be shown in this section, although this strategy allow one to deal with a

smaller system, the quality of the approximation is good only if the correction is done

a high number of times.

This can be seen for example in figure 6.21, where corrected POD is applied, cor-

recting (i.e. solving the higher k1 + k2 + kp dimensional system) when the errors of the

POD modes
∥∥∥aeu1

(1 : k1)− apodu1

∥∥∥
2
,
∥∥∥aeu2

(1 : k2)− apodu2

∥∥∥
2

and
∥∥∥aep − apodp

∥∥∥
2

are greater

than tolerance Tol = 0.001. We consider what happens using different dimensions of

the reduced systems.
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Figure 6.21: Tol = 0.001. Using an explicit method in [0, 1]. First row: k̄1 = 33, k̄2 = 34,

m̄ = 27 and k1 = k2 = 61, kp = 58. Second row: Levels k̄1 = 16, k̄2 = 19, m̄ = 12 and

k1 = k2 = 61, kp = 58. Third row: k̄1 = 16, k̄2 = 19, m̄ = 12 and k1 = k2 = 49, kp = 45.

Left: error, Right: truncation levels and divergence.

Since we observe that there are peaks both in the velocity and in the divergence

curves, instead of considering the coefficients error, we impose a constraint on the

divergence: the method solves the higher dimensional POD system when the divergence

of the solution becomes greater than a fixed threshold (cfr. figure 6.22). As before,

the correction is done a moderate number of times and POD approximation on the

smallest space is not improved substantialy.

Consider now a periodic regime, using as a test case the obstacle problem, presented
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6. PROPER ORTHOGONAL DECOMPOSITION (POD) METHOD

Figure 6.22: k̄1 = 33, k̄2 = 34, m̄ = 27 and k1 = k2 = 61, m = 58. Criterium on the

divergence: threshold 1e− 5. Using an explicit method in [0, 1].

in section 4.4.2, restricted to the interval [0, 1.4] (700 time steps). Impose to correct

using a theshold on the divergence and also every fixed number of iterations (e.g. 10

iterations): cfr. figure 6.23.

Figure 6.23: Obstacle. Correcting also every 10 iterations. Left: k̄ = 10 and k =

30.Right: k̄ = 10 and k = 100. toldiv = 5e− 5.

The approximation is good in the first part of the interval, where correction is done

often, but gets worse in the second one, where it corrects only every 10 iterations.

All these tests show that dealing with complicated dynamics means a high variability

in POD coefficients, which could not be considered constant for a too high number

of iterations. Thus standard POD performance on the smaller space is only slightly

improved by this method.
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Part III

Parabolic inverse problems
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A lack of information cannot be remedied by any mathematical trickery!

(Lanczos)

In this last part two Inverse Problems are solved, starting from numerically simu-

lated experimental data and some a priori knowledge.

In particular first of all we will consider a geometric conduction inverse problem

of corrosion estimation, based upon the heat equation: it is solved with a novel strat-

egy, the so called Predictor-Corrector method, originally presented in (155) and here

substantially improved (138). This strategy deals with an adaptive parametrization.

In the last chapter concepts introduced previously will be summarized to solve

a boundary convection inverse problem of pollution rate estimation. The motion of

the pollutant is described by the convection-diffusion-reaction equation and can be

generalized considering also Navier-Stokes equation. The inverse problem is solved with

a novel strategy considering both an adaptive parametrization and time localization

(139); moreover to reduce its computational cost, POD reduction is studied.
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Inverse problems

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
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7.2.1 First optimize than discretize strategy . . . . . . . . . . . . . 135

7.2.2 First discretize than optimize strategy . . . . . . . . . . . . . 137

7.1 Introduction

As presented in (150), inverse problems are largely used in applications, for solving,

among the others, medical (e.g. in tomographical methods), industrial (e.g. monitoring

oil pipelines), image analysis and mine detection problems (e.g. ground penetration

radar and electromagnetic induction).

In this preliminary chapter the general problem will be presented, describing briefly

classical solution strategies and focusing at the end on least-squares problems, a class

of models that will be treated deeply in the following chapters.

The first point is to understand what inverse problem means. As presented in (149),

an exhaustive description can be found in the following quotation, taken by A Study

in Scarlet, of Arthur Conan Doyle:

”Most people if you describe a train of events to them, will tell you what

the result would be. They can put those events together in their minds, and

argue from them that something will come to pass. There are few people,

however, who, if you tell them a result, would be able to evolve from their

own inner consciousness what the steps were which led up that result. This

power is what I mean when I talk of reasoning backward.”
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Thus inverse problems could be described as problems where the answer is known, but

not the question, or where the results, or consequences are known, but not the cause.

Following (151) to characterize them mathematically, we present some examples.

Example 7.1.1 Find a polynomial p of degree n with given zeros x1, . . . , xn. Inverse

problem solution is simply p(x) = c(x − x1) . . . (x − xn), c ∈ R. The corresponding

direct problem reads: find the zeros x1, . . . , xn of a given polynomial p.

Example 7.1.2 (Inverse scattering problem) Find the shape of a scattering ob-

ject, given the intensity (and phase) of sound or electromagnetic waves scattered by this

object. The corresponding direct problem is that of calculating the scattered wave for a

given object. The rigorous mathematical description could be found in (151).

Example 7.1.3 (Computer tomography) Consider a fixed plane through a human

body: let ρ(x, y) denote the change of density at the point (x, y). Suppose that we

direct a thin beam of X-rays into the body along a line L of the plane, and measure

how much the intensity is attenuated by going through the body. The inverse problem

consists in determining the density ρ given the attenuation of the intensity along all

line integrals (Radon transform of ρ). The rigorous mathematical description could be

found in (151).

Example 7.1.4 (Sturm-Liouville eigenvalue problem) Let a string of length L

and mass density ρ = ρ(x) > 0, 0 ≤ x ≤ L, be fixed at the endpoints x = 0 and

x = L. Plucking the string produces tones due to vibrations. Let v(x, t) t > 0 be the

displacement at x and time t. Consider a pure tone, i.e. a displacement of the form

v(x, t) = w(x)(a cosωt + b sinωt). In the inverse problem one tries to determine the

mass density ρ from a number of measured frequencies ω.

Example 7.1.5 (Backward heat equation) Consider the one-dimensional heat equa-

tion
∂u(x, t)

∂t
=
∂2u(x, t)

∂x2

with boundary conditions

u(0, t) = u(π, t) = 0, t ≥ 0

and initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ π.

In the inverse problem one measures the final temperature distribution u(·, T ) and tries

to determine the initial temperature u(·, 0).
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Example 7.1.6 (Diffusion in inhomogeneous medium) The equation of diffusion

in an inhomogeneous medium is

∂u(x, t)

∂t
=

1

c
div(k∇u(x, t)), x ∈ D, t > 0,

where c is a constant and k = k(x) is a parameter describing the medium. In the inverse

problem one measures u and the flux ∂u
∂n on the boundary ∂D and tries to determine

the unknown function k in D.

This is an example of parameter identification for a partial differential equation.

Further examples could be found e.g. in (149).

As noted in (151), given two normed space X and Y , an operator K : X → Y and

a measurement y, in all of these examples we can formulate the inverse problem as the

solution of the equation

K(x) = y. (7.1)

In order to formulate an inverse problem, the definition of the operator K, including

its domain and range, has to be given. In general the evaluation of K(x) means solving

a boundary value problem for a differential equation or evaluating an integral.

Usually inverse problems are ill-posed or improperly posed in the sense of Hadamard

(145), while the corresponding direct problem is well-posed.

Definition 7.1.1 Let X and Y be normed spaces, K : X → Y a (linear or nonlinear)

mapping. The equation K(x) = y is called properly posed or well-posed if the

following holds:

1. Existence: for every y ∈ Y there is at least one x ∈ X s.t. K(x) = y.

2. Uniqueness: for every y ∈ Y there is at most one x ∈ X with K(x) = y.

3. Stability: the solution x depends continuously on y, i.e. for every sequence (xn)

with K(xn)→ K(x) as n→∞, it follows that xn → x.

Equations for which at least one of these properties does not hold are called improperly

posed or ill-posed.

As mentioned in (151), observe that mathematically the existence of a solution

can be enforced by enlarging the solution space. Moreover if a problem has more
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than one solution, then information about the model is missing. The requirement of

stability is the most important one: if a problem lacks stability, then its solution is

difficult to compute because any measurement or numerical computation is polluted by

unavoidable errors.

Usually inverse problems are characterized by an intrinsic loss of information (131),

due to the smoothing properties of the operator K: also from a discrete point of view,

when we discretize the infinite dimensional operator K, we deal with a sequence of

linear algebraic system of the form Akx = y, which inherits the intrinsic ill-posedness

in the form of ill-conditioning of the system matrix Ak, for every iteration step k. Thus

the direct inversion is not a good strategy to reconstruct x, due to the amplification of

data’s noise: we must search an approximate solution, satisfying additional constraints

coming from the physics of the problem (131). To compensate the loss of information we

use some additional a priori knowledge about the problem, i.e. we adopt a regularization

method.

Remark 7.1.1 In this thesis we are particularly interested in differential models. In

a direct well-posed problem, it is required to find a solution that satisfies a given partial

differential equation and some initial and boundary conditions. In inverse problems, the

PDE and/or initial conditions and/or boundary conditions are not fully specified but,

instead, some additional information is available. So separating out inverse mathemat-

ical physics problems (166), we can speak of coefficient inverse problems (in which the

equation is not specified completely as some equation coefficients and/or right-hand side

are unknown), boundary inverse problems (in which boundary conditions are unknown),

geometric inverse problems (in which the domain is unknown) and evolutionary inverse

problems (in which initial conditions are unknown).

In the following chapters a geometric conduction inverse problem of corrosion esti-

mation and a boundary convection inverse problem of pollution rate estimation will be

presented.

7.2 Solution strategies

As explained above, since noise in measurement data may lead to significant misinter-

pretations of the solution, the ill-posedness must be handled either by incorporating a

priori information via the use of transformations, which stabilizes the problem, or by

using appropriate numerical methods, called regularization techniques (150).

More precisely to solve an inverse problem two different approaches can be adopted:
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7.2 Solution strategies

1. first optimize than discretize strategy: given (7.1), first an optimization problem

is defined, and then it is discretized;

2. first discretize than optimize strategy: first (7.1) is discretized and then a discrete

optimization problem is solved.

7.2.1 First optimize than discretize strategy

Following (150), we denote the measured perturbed data by y(δ) and assume that these

noisy data satisfy ∥∥∥y(δ) − y
∥∥∥ ≤ δ,

δ > 0.

7.2.1.1 Tikhonov regularization

The most well-known method for solving ill-posed problems is Tikhonov regularization:

it consists in approximating a solution of (7.1) by a minimizer x
(δ)
α of

J(x) := ‖K(x)− y‖2 + α ‖x− x0‖2 , (7.2)

where x0 ∈ X typically unifies all available a priori information on the solution and

α > 0 is the regularization parameter.

As summarized in (150), under mild assumptions on the operator K it can be

shown that, for α > 0 fixed, the minimizers x
(δ)
α of (7.2) are stable with respect to

perturbations of the data y. Moreover, if (7.1) is solvable and if the regularization

parameter α = α(δ) satisfies that α → 0 and δ2

α → 0 as δ → 0, then x
(δ)
α converges to

a solution of (7.1). In general, this convergence can be arbitrarily slow (150).

7.2.1.2 Iterative regularization methods

A detailed treatment of regularizing techniques for linear problems could be found in

(151), here we follow (150), describing the more general nonlinear case.

While for linear ill-posed problems iterative regularization methods are an alterna-

tive to Tikhonov regularization, also the minimization of (7.1) for nonlinear ill-posed

problems is usually realized via iterative methods, i.e. methods s.t.

x
(δ)
k+1 = x

(δ)
k +Gk(x

(δ)
k , y(δ)), k ∈ N
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for various choices of Gk. In general for iterative methods the regularization parameter

is the number of iterations itself.

Here we briefly present classical methods, referring to (150) for more details.

Assuming that K has a continuous Fréchet derivative K
′
, the nonlinear Landweber

iteration is defined via

x
(δ)
k+1 = x

(δ)
k + K

′
(x

(δ)
k )∗(y(δ) −K(x

(δ)
k )), k ∈ N, (7.3)

starting from an initial guess x
(δ)
0 = x0.

In case of noisy data, the iteration procedure has to be combined with a stopping

rule in order to act as a regularization method. The discrepancy principle consists in

stopping the iteration after k∗ = k∗(δ, y
(δ)) steps s.t.∥∥∥y(δ) −K(x

(δ)
k∗

)
∥∥∥ ≤ τδ ≤ ∥∥∥y(δ) −K(x

(δ)
k )
∥∥∥ , 0 ≤ k < k∗, (7.4)

where τ is an appropriately chosen positive number.

Usually this method converges slowly to the real solution: details could be found in

(150). Better rates may be obtained either for solutions that satisfy stronger smoothness

conditions if the iteration is performed in a subspace of X with a stronger norm or by

adding an additional penalty term to the iteration scheme. An example of the last

method is the iteratively regularized Landweber iteration (150)

x
(δ)
k+1 = x

(δ)
k + K

′
(x

(δ)
k )∗(y(δ) −K(x

(δ)
k )) + βk(x0 − x(δ)

k ), 0 < βk <
1

2
. (7.5)

Another largely used method is the steepest descent

x
(δ)
k+1 = x

(δ)
k + w

(δ)
k K

′
(x

(δ)
k )∗(y(δ) −K(x

(δ)
k )), k ∈ N, (7.6)

where w
(δ)
k :=

∥∥∥K′ (x(δ)
k )∗(y(δ)−K(x

(δ)
k ))

∥∥∥2∥∥∥K′ (x(δ)
k )K′ (x

(δ)
k )∗(y(δ)−K(x

(δ)
k ))

∥∥∥2 .

Faster methods are Newton type algorithms: the key idea consists in repeatedly

linearize the operator equation (7.1) around an approximate solution x
(δ)
k . However,

usually these linearized problems are also ill-posed if the nonlinear problem is ill-posed

and, therefore, they have to be regularized. If we apply Tikhonov regularization to the

linearized problem, we end up with the Levenberg-Marquardt method :

x
(δ)
k+1 = x

(δ)
k + (K

′
(x

(δ)
k )∗K

′
(x

(δ)
k ) + αkI)−1(K

′
(x

(δ)
k )∗(y(δ) −K(x

(δ)
k ))), k ∈ N, (7.7)

where αk is such that∥∥∥y(δ) −K(x
(δ)
k )−K

′
(x

(δ)
k )(x

(δ)
k+1(αk)− x

(δ)
k )
∥∥∥ = q

∥∥∥y(δ) −K(x
(δ)
k )
∥∥∥ ,

136



7.2 Solution strategies

for some fixed q ∈ (0, 1) (discrepancy principle).

Adding a penalty term to the linearized problem yields the regularizing algorithm

x
(δ)
k+1 = x

(δ)
k +(K

′
(x

(δ)
k )∗K

′
(x

(δ)
k )+αkI)−1(K

′
(x

(δ)
k )∗(y(δ)−K(x

(δ)
k )))+αk(x0−x(δ)

k ), (7.8)

From a more general point of view, given α > 0, define the regularizing operator

Rα(K
′
(x)) ≈ K

′
(x)∗, i.e. an operator s.t.

Rα(K)y → K∗y as α→ 0, ∀ y ∈ K(X),

‖Rα(K)‖ ≤ Φ(α), ‖Rα(K)K‖ ≤ cK , ∀ K ∈ L(X,Y ), with ‖K‖ ≤ cs
(7.9)

for some positive function Φ(α) and some positive constants cK and cs.

Within this class many well-known regularization methods can be found, such as

Tikhonov regularization and Landweber iteration. For example the special choice

Rαk(F
′
(x)) = (K

′
(x

(δ)
k )∗K

′
(x

(δ)
k ) + αkI)−1(K

′
(x

(δ)
k )∗

corresponds to the Levenberg-Marquardt method. However, this slightly more general

concept additionally includes regularization by discretization (150). This last approach

is motivated by the fact that for the numerical treatment of such equations one has to

discretize the continuous problem and reduce it to a finite system of linear or nonlinear

equations. As explained in (151), discretization schemes themselves are regularization

strategies, e.g. Galerkin methods: in this case the regularization parameter coincides

e.g. with the mesh size.

7.2.2 First discretize than optimize strategy

This methodology will be adopted in the following chapters of this thesis.

First of all, we assume that the unknown x ∈ X, solution of (7.1), can be described

by a vector ϑ ∈ Rnθ of non negative parameters. The way this assumption is imposed is

problem dependent: we are going to see how this can be done in the following chapters.

Thus we can restate the continuous problem (7.1) as a discrete one: given the

operator K̃ : Rnθ → RNny and a measurement y ∈ RNny , find ϑ ∈ Rnθ such that

K̃(ϑ) = y. (7.10)

7.2.2.1 Least-squares approach

To solve (7.10), we minimize the following functional

J̃(ϑ) :=
1

N
‖eθ‖22 , (7.11)
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where the residual or prediction error eθ : Rnθ → RNny , eθ := K̃(ϑ) − y. This

methodology is called least squares.

Observe that in this context regularization is done using an adaptive parametriza-

tion, as will be explained in the following chapters.

As summarized in (162), least-squares problems have been a fruitful area of study

for over 30 years, mainly because of their applicability to many practical problems

(chemical, physical, financial, or economic) to measure the discrepancy between the

model and the output of the system at various observation points. By minimizing this

function, they select values for the parameters that best match the model to the data.

The computation of J̃
′

can be done in different ways. A first strategy consists in

adopting the adjoint model (170): this choice is preferred especially when the quantity

to be estimated corresponds to a large number of parameters. When parameters are not

too many, or when a sparse parametrization is used, we consider instead the sensitivity

matrix :

ψϑ :=

(
∂eθ(j)

∂ϑi

)
j=1,...,Nny ; i=1,...,nθ

.

Thus
∇J̃(ϑ) =

∑Nny
j=1 eθ(j)∇eθ(j) = ψTϑ eθ,

∇2J̃(ϑ) =
∑Nny

j=1 ∇eθ∇eTθ +
∑Nny

j=1 eθ(j)∇2eθ(j)

= ψTϑψϑ +
∑Nny

j=1 eθ(j)∇2eθ(j).

(7.12)

The distinctive feature of least-squares problems is that by knowing the Jacobian we

can compute the first part of the Hessian ∇2J̃ for free. Moreover, this term ψTϑψϑ is

often more important than the second summation term, either because of near-linearity

of the model near the solution (that is ∇2eθ(j) small) or because of small residuals (that

is, eθ(j) small).

To solve the least-squares minimization problem, in the sequel we will adopt a line

search method: starting from ϑ0, we compute a sequence

ϑk+1 = ϑk + αksk.

Instead of generating the search direction sk by solving the standard Newton equations

∇2J̃(ϑk)sk = −∇J̃(ϑk),

we exclude the second-order term form ∇2J̃ obtaining the Gauss Newton equation

ψTϑkψϑksk = −ψTϑkeϑk . (7.13)

As underlined in (162), this approximation gives some advantages over the plain New-

ton’s method. First, it is not necessary to compute the individual Hessians ∇2eθ(j) of

138



7.2 Solution strategies

the residuals. Second, in practice there are many interesting situations in which ψTϑψϑ

is much more significant than
∑Nny

j=1 eθ(j)∇2eθ(j), so that the Gauss-Newton method

gives performance quite similar to that of Newton’s method. A sufficient condition for

the dominance of ψTϑψϑ is that the size of each second order term
∥∥eθ(j)∇2eθ(j)

∥∥ be

smaller than the eigenvalues of ψTϑψϑ. This happens, for instance, when the residuals

are small, or when each eθ(j) is nearly a linear function. Also the speed of convergence

of Gauss-Newton near a solution ϑ∗ depends on how much the leading term ψTϑψϑ

dominates the second-order term in the Hessian. A third advantage of Gauss-Newton

is that whenever ψϑk has full rank and ∇J̃ is nonzero, then sk is a descent direction for

J̃ :

sTk∇J̃(ϑk) = sTk ψ
T
ϑk

eϑk = −sTk ψ
T
ϑk
ψϑksk = −‖ψϑksk‖

2
2 < 0.

Finally observe that (7.13) at each iteration are normal equations, thus the problem

can be solved using e.g. QR or SVD decompositions of ψϑk . More details can be found

in (162).
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Inverse heat conduction problem
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8.4.2 Projected damped Gauss-Newton iterations . . . . . . . . . . 151

8.4.3 Convergence properties of the projected damped Gauss-Newton

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.4.4 Predictor-Corrector algorithm . . . . . . . . . . . . . . . . . . 156

8.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.1 Introduction

In this chapter we solve numerically an inverse geometric conduction problem of corro-

sion detection in an unobservable surface of a metal slab, whose thickness and thermo

physical properties are known: this study can be found in (138).

Since the corrosion is not directly measurable, we estimate it using a nondestructive

infrared thermographic inspection. The a priori knowledge about the material object

allows us to use a physical-mathematical model to support the estimate. Given a

suitable discretization of the corrosion geometric profile, the mathematical problem
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consists in estimating the corroded model domain, in particular the corrosion depth at

each interval of the discrete profile, starting from the reference (sound) one.

Pulsed infrared thermography becomes practical in detecting hidden corrosion when

induced temperature signals are high enough, even if they exist for short time intervals.

The 1D approach models only the depth dimension and it therefore assumes that tran-

sient thermal events occur simultaneously in sound and corroded areas of the surface:

the defects have to be very large so that the boundary heat diffusion effect can be

neglected in their center. In such a case an analytical approach is possible. However,

when dealing with small defects, the lateral heat diffusion is no longer negligible and

must be taken into account (2D and 3D cases) (157). This chapter is focused on the

2D problem: a Finite Element (FE) model is used in an optimization loop to solve the

inverse heat transfer problem.

In the framework of the two-dimensional (2D) approach, it has been shown that

pulse heating is capable of producing high temperature contrasts but absolute tem-

perature signals might be low due to the insufficient amount of total energy injected

into the sample. Oppositely, long heating can significantly warm up the tested object

but provides lower contrasts over defects (171). In the literature, different aspects and

solution methods for this kind of problems have been studied. In (132, 148) the au-

thors consider the time-harmonic case. Uniqueness and stability have been studied in

(134, 135, 158).

In the numerical model adopted in this chapter, the corrosion profile is approxi-

mated by a general piecewise-constant function. Since the corrosion profile can have

high gradients in unknown positions, the simplest strategy consists in unsing a uniform

small subdivision step. However, this corresponds to a large number of parameters

to be estimated, increasing the computational complexity of the estimation problem.

Considering also its ill-conditioning, it may ask for prohibitive computing times for

a real-time diagnostic instrument. In principle less parameters could be sufficient to

have a good approximation of the profile, for example where the profile possesses small

gradients. In identification theory using a model of complexity not higher than neces-

sary is a guideline (153). In the problem at hand, this can be accomplished by using

an adaptive subdivision of the profile, based on a posteriori indicators, obtained af-

ter iterative comparisons between the experimental measurements and the predictions

given by a reference adaptive FE model. In (155), two different algorithms were pre-

sented to solve the corrosion estimation problem from the experimental data produced

by infrared thermography. While the first one (inner-outer loop algorithm) estimates

the values of parameters using two nested loops, in the second one (predictor-corrector
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algorithm), to reduce computational costs, the adaptation of the parametrization is

done by a linear predictor step, while parameter estimation is done in the nonlinear

corrector step. Following (138), in this chapter a novel formulation of the prediction

step is presented.

In section 8.2, the mathematical problem is presented in the general and 2D cases.

In section 8.3 a suitable parametrization is chosen for the discrete inverse problem at

hand. The numerical strategy is described in section 8.4 and tested in section 8.5.

8.2 Problem formulation

Figure 8.1: Infrared thermographic inspection: in the time interval [0, tf ], tf > 0, S is

heated with a thermal flash q(t) and experimental temperatures are collected.

Suppose to deal with a metal slab, D
(0)
c , whose thickness and thermo physical prop-

erties are known, and to interact only with one face S, which is provided with ny

temperature sensors. A nondestructive test is used, consisting of an infrared thermo-

graphic inspection: in the time interval [0, tf ], tf > 0, S is heated with a thermal flash

q(t) and experimental temperatures are collected (cfr. figure 8.1). Suppose that the

material surface, excluding S, is adiabatic: there is no heat exchange with the outside

environment (cfr. Remark 8.2.1).

The underlying mathematical model is based on solving the heat equation on the

corroded domain.

More precisely, let D
(0)
c = [0, 1] × [0, L] × [−z0, z0] be the reference uncorroded

(sound) domain (Figure 8.2 left), S := {(x, 0, z), x ∈ [0, 1], z ∈ [−z0, z0]} and solve
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Figure 8.2: 3D problem: corroded piece of material (red), absorbs the heat flux q (left);

2D reduction, dealing with its section over z = 0 (right).

the following linear heat conduction problem
ρC ∂

∂tT
(0) = k ∆T (0), in D

(0)
c × [0, tf ]

k ∇T (0) · nS = q(t), on S × [0, tf ]

k ∇T (0) · n = 0, on δD
(0)
c /S × [0, tf ]

T (0)(0, ·) = T0(·), in D
(0)
c .

(8.1)

ρC is the heat capacity of the material, k is its thermal conductivity, and nS and n are

respectively the outward normal to S and δD
(0)
c /S. Suppose to know ρC, k and the

heat flux q(t) = −q(t)nS , which is assumed to be approximately a Dirac impulse in

time, centered in t = 0, and constant over S. In section 8.5 the heat flux is modelled by

q(t) = Wt
σ2
q
e
−
√
t

σq , with σq > 0 sufficiently small to have a narrow pulse and W > 0. The

initial condition T0(·) is simply set as a constant temperature over the spatial domain.

Observe that (8.1) is the reference sound model. Consider a temporal discretization of

[0, tf ], {t0, . . . , tN−1}, t0 = 0, tN−1 = tf . The experimental data of the sound model are

denoted by T suc ∈ Rny×N , such that (T suc)ij represents the temperature in the i-th sensor

at time tj−1. The FE solution of (8.1) in S’ ny nodes is denoted by T
(0)
h ∈ Rny×N . The

quantity

σ :=
∥∥∥T suc − T (0)

h

∥∥∥
2

is a measure of the goodness of the model.

Consider now the real corroded domain D
(ϑ)
c (cfr. the dashed domain in Figure
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8.2), described by a scalar function ϑ ∈ L2(S). The corresponding PDE over D
(ϑ)
c is

the following 
ρC ∂

∂tT
(ϑ) = k ∆T (ϑ), in D

(ϑ)
c × [0, tf ]

k ∇T (ϑ) · nS = q(t), on S × [0, tf ]

k ∇T (ϑ) · n = 0, on δD
(ϑ)
c /S × [0, tf ]

T (ϑ)(0, ·) = T0(·), in D
(ϑ)
c .

(8.2)

Assume that the corrosion does not modify the boundary conditions, but only the

geometry of the domain. The experimental data of the corroded model are denoted

by T sc ∈ Rny×N , such that (T sc )ij represents the temperature in the i-th sensor at time

tj−1.

Supposing that the temperatures T sc are known, the inverse problem consists in

finding a suitable approximation of the real corrosion profile, using a non-destructive

approach. This strategy is physically motivated by the fact that, in presence of corro-

sion, the heat supplied at the surface accessible from the source, S, has less material

to diffuse within and the superficial temperature in S remains locally higher for a non-

trivial time-interval [0, tf ]: a mathematical proof of this property is given in Lemma

8.4.1.

In the following it is assumed that, if we are able to accurately describe the profile

of the corrosion, we can describe the thermal response of the corroded system at the

same level of accuracy that we do with the uncorroded one, measured by σ.

Remark 8.2.1 The adiabatic hypothesis is usually invoked in thermal Non-Destructive

Evaluation when dealing with thin metal slab. Indeed the key parameter is the Biot

number which is defined as the ratio of the heat transfer resistances inside of and at

the surface of a body. The smaller the Biot number is the better the approximation of

the real thermal process with an adiabatic one is. In figure 8.3, the surface temperature

evolutions (analytically computed) for a 5 mm thick slab heated by a Dirac energy pulse

in adiabatic and non-adiabatic conditions are shown, for two different materials: metal

and plastic. In case of plastic, the Biot number is more than 600 times larger than

metal. In this example, the assumption of adiabatic thermal process causes errors in

temperature less than 0.1% in case of metal and less than 10% for plastic.

8.2.1 Reduction to a 2D problem

In the following, we assume that the corrosion does not vary along the z-axis, such

that (8.1) and (8.2) can be restated as 2D problems, considering S = [0, 1] and D
(0)
c =
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Figure 8.3: First row: metal slab. Left: comparison between surface temperature evolution

of a 5 mm thick metal slab in adiabatic and non-adiabatic conditions. Right: Relative error

caused by modeling the non-adiabatic process with an adiabatic one. Second row: plastic

slab. Left: comparison between surface temperature evolution of a 5 mm thick plastic slab

in adiabatic and non-adiabatic conditions. Right: Relative error caused by modeling the

non-adiabatic process with an adiabatic one.

[0, 1]× [0, L] (Figure 8.2 right). Thus we can describe analytically the corroded region

in the following way:

D(ϑ)
c := {(x, y) s.t. x ∈ [0, 1], 0 ≤ y ≤ L− ϑ(x)} ,

where ϑ(x) : [0, 1] → [0, L] is a suitable smooth non negative function, such that

ϑ(0) = 0 = ϑ(1), which represents the corrosion profile.

8.2.2 Choice of a numerical solution strategy

The idea now is to restate (8.2), defining it on D
(0)
c × [0, tf ], i.e. on the sound do-

main, modifying properly the PDE coefficients. This is important because in (8.2) it

is intuitive that the shape of corrosion influences the temperature profile, but it is not

evident how it enters in the PDE, since it characterizes only the geometrical domain.

To obtain an equivalent analytical problem defined in D
(0)
c × [0, tf ], we use some ideas

introduced in (132).
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Let F : D
(ϑ)
c → D

(0)
c , (x, y) 7→ (ξ, ζ) be a smooth change of coordinates such that

ξ = F1(x, y) = x,

ζ = F2(x, y) = y + ϑ(x)ψ(y),

where ψ(y) : [0, L] → R is a suitable smooth non decreasing function, such that

ψ(0) = 0, ψ(L) = 1. Define now

Figure 8.4: Bidimensional study: corroded and uncorroded domains.

v := T ◦ F−1 : D(0)
c → R,

v(ξ, ζ) = T (x, y) |(x,y)=F−1(ξ,ζ).

It can be shown (132) that such v satisfies the following heat equation
ρC
|JF |

∂
∂tv = ∇ · (k JF JFT

|JF | )∇v, in D
(0)
c × [0, tf ]

k ∇v · nS = q(t), on S × [0, tf ]

k ∇v · n = 0, on δD
(0)
c /S × [0, tf ]

v(t0, ξ, ζ) = T0 ◦ F−1(ξ, ζ), in D
(0)
c ,

(8.3)

using the hypothesis on ϑ and ψ, and where JF is the Jacobian matrix of F :

JF (x, y) |(x,y)=F−1(ξ,ζ) =

(
1 ϑ

′
(x)ψ(y)

0 1 + ϑ(x)ψ
′
(y)

)
|(x,y)=F−1(ξ,ζ)

.

In (132), under suitable hypothesis, the corrosion estimation problem has been

solved analytically: assuming a sinusoidal impulse q(t), using a change of coordinates,

(8.2) is rewritten as a heat equation over the sound domain D
(0)
c × [0, tf ], with its

PDE coefficients depending on ϑ. However, we assume that the heating flux q(t) is

approximately a Dirac pulse heating : this choice is motivated by higher contrast signal

and shorter test duration. Indeed pulse thermography, that is a transient technique,

does not require the sample to reach the stationary periodic regime, as in case of an

harmonic heating. Since the analytical solution of the corresponding heat equation

becomes very difficult, a numerical approach has been adopted.
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8.3 The discrete inverse problem

First of all a particular approximation of the real corrosion profile ϑ(x) is introduced,

choosing a piecewise constant function (cfr. figure 8.5). This approach characterize

Figure 8.5: 2D study: corroded domain (left) and a piecewise constant approximation

(right).

the inverse problem from a geometrical point of view and it can be seen as additional

a priori information about the problem. As explained below, under this hypothesis,

instead of estimating a continous unknown ϑ(x), we hand up with a vectorial parameter

estimation problem, and thus with a discrete inverse problem.

To understand how this can be done, consider a subdivision of [0, 1], coincident

with a subset of the ny temperature sensors’ locations, with distinct spatial nodes

{xi}i=1,...,nθ
, nθ ≤ ny, x0 = 0, xnθ = 1, and a uniform subdivision of [0, L], with step

hy, {yi}i=0,...,nL
, y0 = 0, ynL = L. Define

θj :=
1

hc(j)

∫ xj+1

xj

ϑ(x)dx ≈ L− yk,

for a suitable k ∈ {0, . . . , nL}, hc(j) := |xj+1 − xj | , j = 1, . . . , nθ − 1.

Consider now the set of functions

P =

ϑ̃ s.t. ϑ̃ : [0, 1] −→ [0, L], ϑ̃(x) =

nθ−1∑
j=1

θjχ[xi,xi+1)(x)

 ,

where χ[xi−xi+1)(x) =

{
1, x ∈ [xi − xi+1)

0, elsewhere
is the characteristic function of [xi, xi+1).

The approximated corroded domain is defined as follows

D(θ̃)
c := D(0)

c \
∫ 1

0
ϑ̃(x)dx.
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Thus D
(θ̃)
c is identified by the vector of parameters θ ∈ Rnθ−1.

Define now the matrix of prediction errors Eθ := T sc − T
(θ)
h ∈ Rny×N where T

(θ)
h ∈

Rny×N denotes the FE solution at every time discretization point in S’ ny nodes, solving

(8.2) on the approximated corroded domain D
(θ̃)
c .

Consider the real valued function J̃ : Rnθ−1 → R,

J̃(θ) :=
1

N

N∑
n=1

‖Eθ(·, n)‖22 . (8.4)

It corresponds to find the optimal ϑ̃∗ ∈ P, or equivalently the optimal parameters

θ∗j , j = 1, . . . , nθ − 1 such that

θ∗ = arg min
θ∈Rnθ−1

J̃(θ). (8.5)

Reshaping the matrices, define eθ,y, ŷθ ∈ RnyN such that

eθ((n− 1)ny + 1 : nny) = Eθ(:, n),

y((n− 1)ny + 1 : nny) = T sc (:, n),

ŷθ((n− 1)ny + 1 : nny) = T hθ (:, n)

n = 1, . . . , N . The sensitivity matrix ψ ∈ RnyN×nθ is such that ψθ(:, i) := ∂
∂θi
ŷθ, for all

i = 1, . . . , nθ.

Thus

J̃(θ) =
1

N

N∑
n=1

‖eθ((n− 1)ny + 1 : nny)‖22 =
1

N

N∑
n=1

‖y− ŷθ((n− 1)ny + 1 : nny)‖22 .

Observe that

J̃(θ) = 1
N

∑N
n=1 ‖y− ŷθ((n− 1)ny + 1 : nny)‖22 = 1

N

∑N
n=1

∑ny
l=1(y(l)− ŷθ(l))2

= 1
N

∑nyN
k=1 (y(k)− ŷθ(k))2 = 1

N ‖y− ŷ‖
2
2 .

Thus our functional coincides with the minimization of the square of the 2-norm in

RnyN of the prediction error. Observe that this is a least-squares problem of the form

(7.11).

Since a piecewise constant approximation of the corrosion profile ϑ(x) is chosen, it

must be assumed that every parameter corresponds to a well-defined piece of the real

corrosion profile, whose length strictly depends on the local behavior of ϑ(x). Moreover

it is assumed to deal with non overlapping parameters.

In the following the approximated corroded profile is identified with the real cor-

roded one, which is thus assumed to be piecewise constant. Also numerical experimental

data are collected assuming a profile belonging to P.
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8.4 Adopted numerical approach

Assuming that the corrosion profile is a parametric piecewise constant function, the

aim of the numerical algorithm is to estimate the real shape of the domain. It solves

the discrete inverse problem (8.5), using (8.2) as the underlying direct model, solved in

the approximated corroded domain D
(θ̃)
c .

8.4.1 Key assumption

Let ī ∈ [1, nθ − 1], a key assumption in the development of the algorithm is that when

at iteration k + 1, k ≥ 0, the estimation algorithm changes the ī-th component of

the estimate θ̂(k)(̄i) to a value θ̂(k+1)(̄i) closer to the real one, leaving unchanged the

others, the cost function diminishes monotonically. This property is an immediate

consequence of the following physical principle: in [0, tf ], under the same initial and

boundary conditions, if Dc,1 ⊂ Dc,2, then temperatures corresponding to the smallest

domain Dc,1 are higher supposing that we are dealing with initial constant temperatures

and a thermal flux q which is independent on the space variable. In fact, assuming that

D
(θ)∗
c ⊂ D

(θ̂(k+1))
c ⊂ D

(θ̂(k))
c , it can be deduced that T cs > T

(θ̂(k+1))
h > T

(θ̂(k))
h and thus

J̃(θ̂
(k+1)

) < J̃(θ̂
(k)

). A rigorous proof of this property is given in the following Lemma.

Lemma 8.4.1 Consider the heat problems represented in Figure 8.6, solving the heat

Figure 8.6:

equation model 
ρC ∂

∂tTi = k ∆Ti, in Dc,i × [0, tf ]

kTi,y = −q(t), on S × [0, tf ]

k ∇Ti · n = 0, on δDc,i \ S × [0, tf ]

Ti(0, x, y) = T0(x, y), in Dc,i.

(8.6)
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where i = 1, 2 and S = [0, 1]. Moreover define ∂Ti
∂x = Ti,x and ∂Ti

∂y = Ti,y. Suppose

that temperatures at t = 0 are constant in space, T0(x, y) = T0 ∈ R, and that q(t, x) =

q(t) > 0. Then T1(x, y) > T2(x, y) for every (x, y) ∈ Dc,1.

Proof. The proof is a consequence of the maximum principle for parabolic operators

(141). To compare temperatures T1 and T2 in Dc,1, it is necessary to collect information

about the values taken by T2 in Dc,1. To do this, define v := T2,x: v satisfies the heat

equation ∂v
∂t = ∆v, under the boundary conditions of Figure 8.7 (up left), where we have

used vy = T2,xy = (T2,y),x. Thus, using the maximum principle for parabolic operators,

we know that strictly maximum and minimum values are taken at the boundary, where

Dirichlet boundary conditions are applied, or at t = 0. Since we assume that T0 is

constant, v = 0 at t = 0. It follows that

T2,x(t, x, y) = v(t, x, y) = 0

for every (t, x, y) ∈ [0, tf ]×Dc,2. Moreover define z := T2,y: z is a solution of the heat

Figure 8.7: v := T2,x, z := T2,y, w := T2 − T1.

equation ∂z
∂t = ∆z, under the boundary conditions of Figure 8.7 (up right), where we

have used zx = T2,yx = (T2,x),y. Using again the maximum principle we conclude that

−q(t) ≤ T2,y(t, x, y) = z(t, x, y) ≤ 0,
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for every t ∈ [0, tf ] and (x, y) in the interior of Dc,2. All this information is summarized

in Figure 8.7 (bottom left). Now we can compare directly T1 and T2 over Dc,1 ⊂ Dc,2:

define w := T2 − T1, which solves the heat equation ∂w
∂t = ∆w, under the boundary

conditions of Figure 8.7 (bottom right). Now we can again apply the maximum prin-

ciple. Since we suppose that at t = 0 T2 = T1, w = 0 in t = 0. Moreover if a maximum

is taken, then it must be placed on the boundary, where ∂w
∂n > 0 (141). Since is always

∂w
∂n ≤ 0, then a maximum does not exists, thus w < 0 over Dc,1.

�

8.4.2 Projected damped Gauss-Newton iterations

Given a subdivision of the interval S, the inner loop consists in solving the discrete in-

verse problem (8.5) using a projected damped Gauss-Newton method : at every iteration

k, the inner loop finds an estimate θ̂
k
, k ≥ 0 of θ∗.

The Damped Newton method for this problem is sketched in algorithm 2. Now

Algorithm 2 Damped Newton:

1: θ̂
0

= 0, µ0 = 1;

2: for k = 0 : nmax do

3: solve J̃
′′

(θ̂
k
)sk = −J̃

′
(θ̂
k
), J̃

′′
(θ̂
k
) ∈ Rnθ−1×nθ−1, J̃

′
(θ̂
k
) ∈ Rnθ−1 ;

4: θ̂
k+1

= θ̂
k

+ µksk

5: compute J̃(θ̂
k+1

)

6: if J̃(θ̂
k+1

) < J̃(θ̂
k
) then

7: µk+1 = µk

8: else

9: l = 0;

10: µk,l = µk

2

11: while J̃(θ̂
k+1

) < J̃(θ̂
k
) do

12: θ̂
k+1

= θ̂
k

+ µk,lsk

13: l = l + 1;

14: µk,l = µk,l

2

15: end while

16: µk+1 = µk,l

17: end if

18: end for

some computations are done to simplify numerically the algorithm, computing J̃
′′
(θ)

and J̃
′
(θ), Hessian and Jacobian of J̃(θ) respectively, as explained in section 7.2.2.1.

Suppose that i, j = 1, . . . , nθ.
∂J̃
∂θi

= 1
N

∑N
n=1

∂
∂θi

[(y− ŷθ((n− 1)ny + 1 : nny)) · (y− ŷθ((n− 1)ny + 1 : nny))]

= − 2
N

∑N
n=1 eθ((n− 1)ny + 1 : nny) · ∂

∂θi
(ŷθ((n− 1)ny + 1 : nny)) .
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Define now the sensitivity matrix

ψθ ∈ RnyN×nθ , ψθ(:, i) :=
∂

∂θi
ŷθ.

∂J̃
∂θi

= − 2
N

∑N
n=1 eθ((n− 1)ny + 1 : nny) · ψθ((n− 1)ny + 1 : nny, i)

= − 2
N

∑nyN
k=1 eθ(k)ψθ(k, i).

Finally

J̃
′
(θ) = − 2

N
ψTθ eθ.

∂2J̃
∂θiθj

= − 2
N

∑nyN
k=1

∂
∂θj
eθ(k)ψθ(k, i)− 2

N

∑nyN
k=1 eθ(k) ∂

∂θj
ψθ(k, i)

= 2
N

∑nyN
k=1 ψθ(k, j)ψθ(k, i)−

2
N

∑nyN
k=1 eθ(k) ∂

∂θj
ψθ(k, i).

Thus

J̃
′′
(θ) ≈ 2

N
ψTθ ψθ :

this approximation corresponds to use a Gauss-Newton method (cfr. equation (7.13)).

As explained in the previous chapter, given the damping parameter µk and θ̂
k
, the

k+ 1-th iteration θ̂
k+1

= θ̂
k

+µksk, is obtained substituting the standard Newton step

J̃
′′
(θ̂
k
)sk = −J̃ ′(θ̂k)

by the Gauss-Newton approximation. The last one corresponds to solve 2
Nψ

T
θ̂k
ψθ̂ks

k =
2
Nψ

T
θ̂k

eθ̂k , i.e. the following overdetermined system

ψθ̂ks
k = eθ̂k

in a least square sense (cfr. algorithm 3).

To compute numerically the sensitivity matrix a centered finite difference scheme is

needed: making the dependence of ŷ ∈ RnyN on θ explicit, ŷ = ŷ(θ) = ŷ(θ1, . . . , θnθ−1)

we wrote

ψθ(:, i) = − ∂

∂θi
ŷ =

1

δθ
[ŷ(θ1, . . . , θi +

δϑ

2
, . . . , θnθ−1)− ŷ(θ1, . . . , θi −

δϑ

2
, . . . , θnθ−1)].

Computing ψθ is expensive, since two different predicted temperatures, corresponding

to the perturbations of the i-th parameter, must be computed in order to estimate one

single column: this is computationally expensive, since, in order to estimate one single

column, two different temperatures predictions must be computed. It can be used if

the number of parameters to be estimated is sufficiently small.

The perturbation of different parameters may produce quite similar responses in

the simulation data, generating couples of columns in the matrix ψθ which are close

to linear dependence. In our problem, this is related to the length of the corrosion
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Algorithm 3 Projected Gauss-Newton method (INNER LOOP):

1: Given a fixed subdivision of [0, 1], {x1, . . . , xnθ}:
2: θ̂0 = 0, µ0 = 1;

3: for k = 1 : nmax do

4: solve ψθ̂ksk = eθ̂k ;

5: θ̂
k+1

= θ̂
k

+ µksk

6: projection: for every j ∈ [0, nθ−1] s.t. θ̂k+1(j) < 0, impose θ̂k+1(j) = 0; for every m ∈ [0, nθ−1]

s.t. θ̂k+1(m) > L, impose θ̂k+1(m) = L

7: compute J̃(θ̂
k+1

)

8: if J̃(θ̂
k+1

) < J̃(θ̂
k
) then

9: µk+1 = µk

10: else

11: l = 0;

12: µk,l = µk

2

13: while J̃(θ̂
k+1

) < J̃(θ̂
k
) do

14: θ̂
k+1

= θ̂
k

+ µk,lsk

15: l = l + 1;

16: µk,l = µk,l

2

17: end while

18: µk+1 = µk,l

19: end if

20: end for

21: θ̂ ∈ Rnθ−1 is the optimal parameter estimation on {x1, . . . , xnθ}
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profile segment corresponding to each parameter. Thus, the presence of short segments

hc(i), i = 1, . . . , nθ − 1, produces, in general, an ill-conditioned matrix ψθ. Therefore,

the search for a better accuracy in the determination of the corrosion profile, which

means to reduce the size of a few parameters, brings to higher numerical problems,

as usually happens solving inverse problems (131). Thus a regularization technique is

needed (155): we choose to adopt an adaptive parametrization, using also the Truncated

Singular Value Decomposition (TSVD).

8.4.3 Convergence properties of the projected damped Gauss-Newton

method

In this section it will be proved that, if the finer parametrization is chosen and the

sites of corrosion are known, then the inverse problem of corrosion estimation does not

admit local minima.

Suppose to use the finer parametrization and to know exactly the sites of corrosion

{̄i1, . . . , īl} of the real corroded profile θ∗, īj ∈ [1, ny]. Thus J̃(θ∗) < J̃(θ) for every

θ ∈ Ψ, where Ψ denotes the set of profiles with corrosion sites {̄i1, . . . , īl}:

Ψ =
{
θ ∈ Rnθ−1 s.t. nθ = ny, θ(j) = 0, ∀j /∈ {̄i1, . . . , īl}

}
.

A local minima θ̄, is a corrosion profiles such that J̃(θ̄) < J̃(θ) for every θ ∈ Ψθ̄,

where Ψθ̄ is the set of Ψ’s profiles perturbed of a quantity δ:

Ψθ̄ =
{
θ ∈ Ψ, θ(j) = θ̄(j) + δj , ∀j ∈ {̄i1, . . . , īl}

}
, δj ∈ {0, hy,−hy} , δ 6= 0.

The following Proposition is equivalent to prove that there are no local minima.

Proposition 8.4.1 For every θ̄ ∈ Ψ, θ̄ 6= θ∗, there exists at least a sequence of profiles

{θ}n, θ0 = θ̄, θn+1 ∈ Ψθn, converging decreasing in L2(Rnθ−1) to the real profile θ∗,

such that J̃(θn) ↓ J̃(θ∗).

First of all we demonstrate the following Lemma.

Lemma 8.4.2 Given {̄i1, . . . , īl}, for every θ̄ ∈ Ψ, θ̄ 6= θ∗, and for every k ∈ [1, l]

such that θ∗(ik) 6= θ̄(ik), define

θ∗,k(j) :=

{
θ̄(j), j 6= īk

θ∗(j), j = īk
, (8.7)

j = 1, . . . , nθ−1. Thus for every θ̄ ∈ Ψ there exists at least a sequence of profiles {θn}n,

θ0 = θ̄, θn+1 ∈ Ψθn, converging decreasing in L2(Rnθ−1) to θ∗,k: J̃(θn) ↓ J̃(θ∗,k).

154



8.4 Adopted numerical approach

Figure 8.8: Converging sequence (8.8) (left) and (8.9) (right): in blue θ̄(̄ik), in black the

optimal profile θ∗,k (̄ik), in red θj (̄ik) and in green θj+1(̄ik).

Proof.(Lemma 8.4.2)

We indicate with T s,kc temperatures corresponding to θ∗,k.

Let r ∈ Z such that θ̄(̄ik)− θ∗,k (̄ik) = rhy 6= 0 by hypothesis.

Suppose that r > 0: consider the following converging sequence

θn(j) :=

{
θ̄(j), j 6= īk

θ̄(j)− nhy, j = īk
, (8.8)

for n = 0, . . . , r, θr = θ∗,k by construction, and θs := θr, s ≥ n. An example is

sketched in Figure 8.8 (left). By definition θ0(̄ik) > . . . > θj (̄ik) > θj+1(̄ik) > . . . >

θ∗,k (̄ik), or equivalently D
(θ0)
c ⊂ . . . ⊂ D

(θj)
c ⊂ . . . ⊂ D

(θ∗,k)
c . Thus the underlying heat

equation operator tells us that temperatures corresponding to θj are greater than those

corresponding to θj+1, and they are both greater than T s,kc , applying Lemma 8.4.1.

Thus J̃(θ0) > . . . > J̃(θ∗,k).

Finally observe that if r < 0, the proof is analogous considering

θn(j) :=

{
θ̄(j), j 6= īk

θ̄(j) + nhy, j = īk
, (8.9)

for n = 0, . . . , |r| instead of (8.8) (Figure 8.8 (right)).

�

Proof. (Proposition 8.4.1).

We use the above Lemma 8.4.2. In fact, suppose that the corrosion sites are

{̄i1, . . . , īl}. Thus we can construct the sequence {θn}n in the following way. Sup-

pose that k1 ∈ [1, l] is the first index such that θ̄(̄ik1) − θ∗(̄ik1) = r1hy, r1 ∈ Z \ {0}.
Thus

θn(j) :=


θ̄(j), j ∈ [1, nθ − 1] \ {̄ik1}
θ̄(j) + nhy, j = īk1 , r1 < 0

θ̄(j)− nhy, j = īk1 , r1 > 0

, (8.10)
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for n = 0, . . . , |r1|. Using Lemma 8.4.2 we know that J̃(θ0) > J̃(θ1) > . . . > J̃(θ|r1|)

and by construction

θ|r1|(j) =

{
θ̄(j), j ∈ [1, nθ − 1] \ {̄ik1}
θ∗(j), j = īk1

.

Now we choose the second index k2 ∈ [1, l] such that θ̄(̄ik2) − θ∗(̄ik2) = r2hy, r2 ∈
Z \ {0} and define θ|r1|+1, . . . ,θ|r1|+|r2|, using (9.20), replacing r1 with r2 and k1 with

k2. Using Lemma 8.4.2 we know that J̃(θ|r1|) > J̃(θ|r1|+1) > . . . > J̃(θ|r2|) and by

construction

θ|r2|(j) =

{
θ̄(j), j ∈ [1, nθ − 1] \ {̄ik1 , īk2}
θ∗(j), j ∈ {̄ik1 , īk2}

.

This idea can be repeated for every k ∈ [1, l] such that θ̄(̄ik) − θ∗(̄ik) 6= 0. Finally

we obtain the desired decreasing sequence {θn}n, converging in L2(Rnθ−1) to the real

profile θ∗, such that J̃(θn) ↓ J̃(θ∗).

�

8.4.4 Predictor-Corrector algorithm

As demonstrated in the previous section, the problem has no local minima, if the finer

discretization is used and the sites of corrosion are known. Unfortunately the last ones

are unknown and using the finer discretization is very expensive and ill-conditioned.

To deal with the intrinsic ill-posedness of the inverse problem of corrosion detection,

an adaptive formulation is adopted, to reduce the computational cost. The adaptive

parametrization is determined starting from an initial subdivision of the corrosion pro-

file with a quite large hc(i), i = 1, . . . , nθ − 1. According to a suitable a posteriori

indicator, the algorithm decides where eventually to refine locally the subdivision of

the corrosion profile. The refinement operation corresponds to a bisection of the indi-

cated segments, with a consequent increase in the number of segments and, therefore,

of parameters of the model. This is iteratively made until the comparison between the

actual value of the cost function and the reference value, previously obtained for the

sound (uncorroded) system, shows that the model describes the experimental data in

an optimal way. As in (155), the a posteriori indicator is based upon parameter esti-

mates, obtained at previous iterations. In general these values are accurate only when

the parameterization is good, thus they are not always reliable estimates of the cor-

rosion depth; otherwise they are reliable indicators of the regions where the corrosion

exists. Note that the accuracy of this localization is disturbed by the strong diffusive

character of the heat conduction process.
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It is assumed to use as initial point the null profile over a chosen coarse subdivision

of S,
{
x0

1, . . . , x
0
n0
θ

}
, x0

1 = 0, x0
n0
θ

= 1. Observe that this assumption is motivated by the

physical problem: first of all it is important to understand if the material is uncorroded.

If not, it is meaningful to adopt a proper research strategy.

8.4.4.1 Inner-Outer loop algorithm

The inner-outer loop strategy is the simplest one and it is sketch in algorithm 4. Given

two estimates of θ∗, θ̂
l−1 ∈ Rn

l−1
θ and θ̂

l ∈ Rn
l−1
θ , if there exists at least one j ∈

[1, nlθ − 1] such that θl(j) > θl−1(j), Θ is defined as the set of all indices j satisfying

this property. Otherwise, Θ is the set of j such that θl(j) > 0. The new iteration

θ̂
l+1

is obtained bisecting every segment [xlj , x
l
j+1] of the l-th subdivision of S, such

that j ∈ Θ. Then, in the inner loop, the projected damped Gauss-Newton method is

applied with respect to the refined subdivision. This method in general converges, but

it is slow, due to the computational cost of two nested loops. In fact while the outer

loop adapts the parametrization, the inner one estimates model parameters’ values for

the current refinement level of [0, 1]. Moreover this strategy tends to over-refine S.

Algorithm 4 Outer Loop:

1: Fix a uniform step in [0, 1], ∆0x. Consider the coarse subdivision
{
x0

1, . . . , x
0
n0
θ

}
, x0

1 = 0, x0
i =

(i− 1)∆0x, x0
n0
θ

= 1, h0
c(i) = ∆0x, i = 1, . . . , n0

θ − 1, l = 0;

2: θ̂
0

= 0n0
θ
−1 ∈ Rn

0
θ−1;

3: while J̃(θ̂
l
) ≈ σ do {σ is the reference value of the cost function obtained for the sound model }

4:

{
xl+1

1 , . . . , xl+1

nl+1
θ

}
=
{
xl1, . . . , x

l
nl
θ

}
5: hl+1

c (i) = hlc(i), i = 1, . . . , nlθ − 1

6: ∆l+1x = ∆lx
2

7: for all θ̂l(i) > 0, i = 1, . . . , nlθ − 1 do

8: nl+1
θ = nl+1

θ + 1

9:

{
xl+1

1 , . . . , xl+1

nl+1
θ

,
xl+1
i+1−x

l+1
i

2

}
, hl+1

c (i) = hl+1
c (i + 1) = ∆l+1x, hl+1

c (i + 2 : end) = hlc(i + 1 :

end).

10: end for

11: solve the INNER LOOP, obtaining θ̂
l+1 ∈ Rn

l+1
θ
−1

12: l = l + 1;

13: end while

8.4.4.2 Formulation of the predictor-corrector algorithm

The high computational cost of the inner-outer loop algorithm has motivated the re-

search of a smarter algorithm: the idea is to reorganize it in a predictor-corrector form
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(155). Observe that, since it is assumed to start from the null corrosion profile θ̂
0

it

is known that, if the material is corroded, we are underestimating its corrosion profile.

The idea is to try to build a sequence of estimated corroded domains,
{
θ̂
l
}

, l ≥ 0,

avoiding huge overestimations of θ̂
∗
. In fact in practice small overestimations are usu-

ally allowed and preferred to underestimations. To limit progressive refinements and

to obtain a better conditioned matrix ψ, two estimators are used: the L2 norm and

the mean of the prediction error eθ respectively. While the norm is a measure of the

distance between θ̂
l

and θ̂
∗
, the mean permits to understand if θ̂

l
is a big overestimate

of the profile. In fact, using Lemma 8.4.1, it is known that a local big overestimate cor-

responds to local negative values of the prediction error, whose absolute values are big

too. More precisely, the predictor step works as follows: given Λ = ∅, which represents

the set of parameters to be estimated in the corrector step, given a fixed scalar pertur-

bation δ > 0 and two suitable thresholds αη, αν > 0, substitute the outer loop with the

linear predictor step. Given θ̂
l ∈ Rnlθ−1 and the l-th subdivision of S,

{
xl1, . . . , x

l
nlθ

}
,

for every i ∈ [1, nlθ − 1], consider the perturbed parameter

θ̂
l
δ,i :=

{
θ̂l(k) + δ, if k = i

θ̂l(k), elsewhere
(8.11)

and compute the corresponding prediction error Eθ̂lδ,i
∈ Rnlθ×N . Then for all j ∈

[1, nlθ], η
l
δ(i, j) and νlδ(i, j) are computed, the norm and the temporal mean of Eθ̂lδ,i

(j, :)

respectively.

Given ηlδ, ν
l
δ ∈ Rnlθ−1×nlθ , the algorithm proceeds as follows: initialize

{
xl+1

1 , . . . , xl+1

nl+1
θ

}
={

xl1, . . . , x
l
nlθ

}
. Given I := [1, nlθ − 1], for all i ∈ I

• if the perturbation θ̂
l
δ,i improves significatively the cost function, or equivalently

if ηlδ(i, i) and ηlδ(i, i + 1) are both less than αη and it does not correspond to a

big overestimate, or likewise if νlδ(i, i) and νlδ(i, i+ 1) are both greater than −αν ,

then Λ = Λ ∪ {i};

• otherwise, if there is a small improvement in the cost function in at least one node

using θ̂
l
δ,i, or equivalently the minimum of ηlδ(i, :) is less than αη and it does not

correspond to a big overestimate, or likewise if νlδ(i, i) and νlδ(i, i + 1) are both

greater than −αν , or if there is a change of sign between νlδ(i, i) and νlδ(i, i+ 1),

bisect the segment [xl+1
i , xl+1

i+1]:

{
xl+1

1 , . . . , xl+1

nl+1
θ

}
∪ xl+1

i +xl+1
i+1

2 . Consider I = I+ 1
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and compute θ̂
l
δ,s, where s represents the indexes of parameters corresponding to

the new two subsegments. Then ηlδ and νlδ are updated considering also those

values.

Observe that only nθ−1 matrix-vector products are needed in this phase. The choice

of the thresholds αη and αν characterized the parametrization: in fact if αη is chosen

too big the algorithm will refine the parameterization less than necessary, whether if it

is too small the algorithm will over-refine the parameterization. Instead αν is a limit

for the allowed overestimation permitted. The optimal choice depends obviously on

the specific application, but its tuning is not a problem. Instead, a general auto-tuning

strategy is not easy to formulate.

In the corrector step, the projected damped Gauss-Newton method (algorithm 5)

is applied only to those parameters whose indexes belongs to Λ. Observe that this

strategy reduce the ill-conditioning of ψθ, since we choose not to optimize parameters

which do not improve the value of the cost function, or equivalently parameters whose

perturbations do not change significatively the predicted temperatures.

The detailed description of the predictor-corrector is given in algorithm 5.

Remark 8.4.1 Observe that to obtain more reliable estimates, in the predictor step it is

better to consider two different perturbation parameters δ1, δ2, and then to consider for

every node the minimum value between ηlδ1 and ηlδ2 and between νlδ1 and νlδ2 respectively.

8.5 Numerical results

In this section some numerical experiments are described, to validate the algorithms

presented. In particular in (8.1) and (8.2) the following values of constants are used:

tf = 1.51 s, L = 0.1 m; ρC = 3.2 · 106 J
m3 ◦C , k = 3.77 · 103 W

m◦C , and

q(t) =
Wt

σ2
q

e
−
√
t

σq , t ∈ (0, tf ] (8.12)

where σq = 0.0106, W = 2.9511 · 1017 J . The initial condition is set to T0(·) = 20◦C.

In this section the backward Euler method is adopted for the time discretization, using

a temporal step ∆t = 0.0005 in (0, 0.1] and ∆t = 0.05 in (0.1, tf ]. A P1-FE method

is used for space discretization, on a variable mesh, whose step length along y is hy =

0.01 m or hy = 0.005 m, and a variable step along x, depending on the adaptive

parametrization. The sensors are supposed to be ny = 11 or ny = 21, distributed with
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Algorithm 5 Predictor-Corrector algorithm:

1: Fix a uniform step in [0, 1], ∆0x. Consider the coarse subdivision
{
x0

1, . . . , x
0
n0
θ

}
, x0

1 = 0, x0
i =

(i− 1)∆0x, x0
n0
θ

= 1, h0
c(i) = ∆0x, i = 1, . . . , n0

θ − 1;

2: fix αη, αν , l = 0, a small parameter perturbation δ;

3: θ̂
0

= 0n0
θ
−1 ∈ Rn

0
θ−1;

4: while J̃(θ̂
l
) ≈ σ do {% σ is the reference value of the cost function obtained for the sound model }

5:

{
xl+1

1 , . . . , xl+1

nl+1
θ

}
=
{
xl1, . . . , x

l
nl
θ

}
, hl+1

c (i) = hlc(i), i = 1, . . . , nlθ − 1

6: ∆l+1x = ∆lx
2

, nl+1
θ = nlθ, I = nl+1

θ − 1

7: Λ = ∅, set of indexes of parameters to be optimized

8: for all i ∈ [1, I] do

9: compute θ̂
l

δ,i, η
l
δ(i, :) and νlδ(i, :)

10: end for

11: for all i ∈ [1, I] do

12: if max
{
ηlδ(i, i), η

l
δ(i, i+ 1)

}
< αη and min

{
νlδ(i, i), ν

l
δ(i, i+ 1)

}
> −αν then {substantial

decrease of the cost function, without overestimating }
13: Λ = Λ ∪ {i} % this is a parameter to be optimized

14: i = i+ 1;

15: end if

16: if minj
{
ηlδ(i, j)

}
< αη and min

{
νlδ(i, i), ν

l
δ(i, i+ 1)

}
> −αν , or νlδ(i, i) · νlδ(i, i+ 1) < 0 then

{ moderate decrease of the cost function, without overestimating or change of sign in ν }
17: nl+1

θ = nl+1
θ + 1, I = I + 1; % bisect the corresponding segment

18:

{
xl+1

1 , . . . , xl+1

nl+1
θ

}
∪ xl+1

i+1−x
l+1
i

2
,

19: hl+1
c (i) = hl+1

c (i+ 1) = ∆l+1x, hl+1
c (i+ 2 : end) = hlc(i+ 1 : end),

20: ηlδ(i+ 2 : end+ 1, :) = ηlδ(i+ 1 : end, :), νlδ(i+ 2 : end+ 1, :) = νlδ(i+ 1 : end, :).

21: for all i ∈ [i, i+ 1] do

22: compute θ̂
l

δ,i, η
l
δ(i, :) and νlδ(i, :)

23: end for

24: end if

25: end for

26: given the subdivision

{
xl+1

1 , . . . , xl+1

nl+1
θ

}
27: apply the projected damped Gauss-Newton method, optimizing only parameters whose indexes

belong to Λ obtaining θ̂
l+1 ∈ Rn

l+1
θ
−1

28: l = l + 1;

29: end while

160



8.5 Numerical results

uniform distance hx = 0.1 m or hx = 0.05 m respectively. Numerical experiments are

carried out using MATLAB.

In all the examples presented, experimental temperatures are simulated numerically.

The first step is to validate the numerical model: dealing with pure experimental data,

this step is fundamental also to decide the optimal values of the coefficients of the

model. In our simulated context, it is still important to estimate the reference minimal

value of the cost function σ. To obtain a significative threshold σ, the validation is

done using the initial coarse grid used in the estimation of the corroded one. Thus the

predictor-corrector strategy reveals uncorroded domains, comparing their cost functions

with σ.

In this section the predictor step is applied considering two distinct perturbation

parameters, δ1 = 2hy and δ2 = 0.03 (cfr. Remark 8.4.1), while the inner-outer strategy

builds the sensitivity matrix using a perturbation δ = 0.02.

In Figure 8.11 the real corroded profiles (left) are compared to the inner-outer

(center) and predictor-corrector (right) estimates respectively. As can be seen the

predictor strategy tends to refine less and it is also less computationally expensive, due

to its linear predictor step. It is important to note that it is formulated such that small

overestimates are preferred to underestimates: as a consequence usually the estimated

corroded domain is contained in the optimal one, but the distance is small enough. In

contrast, although inner-outer algorithm is a simpler strategy, it is more expensive and

also tends to over-refine the profile, bisecting also segments which corresponds to null

corrosion in the real profile.

In Figure 8.9, given the real corrosion profile represented in the up-left picture,

some iterations of the predictor-corrector algorithm are collected. The algorithm refines

properly the segment S: thus ψθ in the Newton method is computed only for a small

subset of parameters, improving its ill-conditioning. Observe that predictor-corrector

overestimates only just outside the corrosion front, due to the diffusive nature of the

underlying heat equation. In Figure 8.10 both the L2-norm of the error (left) and the

O(1) estimate of the order of convergence are presented. Thus the adaptive refinement

strategy, although it diminishes the computational cost, it causes a slow down in the

convergence of a Newton-type algorithm, which is usually O(2), starting near enough

to the optimum. Finally observe that, in contrast to the inner-outer algorithm, the

predictor-corrector convergence is approximately monotonic, since the refinement of S

is entirely done before the local optimization of parameters.

Figure 8.12 (left) shows a real profile difficult to estimate, due to the presence

of two deep corrosion fronts, close to each other. The predictor-corrector strategy
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8. INVERSE HEAT CONDUCTION PROBLEM

Figure 8.9: Real profile (first row left) and some iterations of the predictor-corrector

method.

Figure 8.10: L2-norm of the error and estimates of the order of convergence.

162



8.5 Numerical results

Figure 8.11: Real corroded profiles (left), inner-outer (center) and predictor-corrector

(right) estimates.

converges to a local minimum (Figure 8.12 (right)). In fact, as mentioned in section

8.4.4, the adaptive strategy could introduce local minima in the problem. Observe that

inner-outer algorithm could be more robust (Figure 8.12, center), although it is more

computationally expensive. However the estimated predictor-corrector’s minimum is a

satisfying one, because it reveals both the local position of corrosion and its shape.
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Figure 8.12: Real profile (left), inner-outer (center) and predictor-corrector (right) esti-

mates.
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9.7 The importance of stabilizing the problem . . . . . . . . . . 201

9.1 Introduction

Inverse heat or mass convection problems, classically deal with the estimation of wall

heat flux densities or intensities of source terms (143, 160, 161, 163). As presented

in chapter 7, inverse problems are usually mathematically ill-posed and regularization

methods have been developed to ensure stable solutions (149, 151, 172). Classical

methods are penalization such as Tikhonov’s regularization (169), or Bayesian methods

using prior information (129), iterative regularization (128) and regularization using

singular value decomposition followed by truncation of the singular values spectrum

(167).

This chapter follows (139): we are interested in solving an inverse convection prob-

lem, whose direct model coincides with a parabolic convection diffusion reaction equa-

tion on a fixed domain. To deal with its ill-posedness we adopt a regularization al-

gorithm based upon Truncated Singular Value Decomposition (TSVD) and diagonal

scaling (162); moreover an adaptive parametrization with time localization is formu-

lated.

Convection-diffusion-reaction equation can be used to model a variety of physical

problems. For example in (146), this equation is used to predict water quality in

rivers, by measuring the quantity of organic matter contained. The importance of these

pollution is estimated by the measures of the so-called BOD (Biologic Oxygen Demand)

and COD (Chemical Oxygen Demand). In (146) the problem of identifying the location

and the magnitude (intensity) of pollution point sources from the measurements of BOD

on a part of the river is considered: the problem of source term identification is solved

using an algorithm based on the minimization of a cost function of Kohn and Vogelius

type. Also in (165) water pollution is considered: knowing the origin of the source of

contamination is probably the most important aspect when attempting to understand,

and therefore to control, the pollution transport process. Thus, a challenging issue in

environmental problems is the identification of sources of pollution in waters. (165)

deals with source identification problem, using Boundary Element Method (BEM). In

(142), the same problem of source estimation is considered to estimate the time-varying

emission rates of pollutant sources in a ventilated enclosure, assuming that the velocity

field is stationary: in fact in the frame of occupational risk prevention, the knowledge

of both space and time distributions of contaminant concentration is a crucial issue

to evaluate the workers exposure. Although air pollution is considered, instead of
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water, the underlying model is still a convection-diffusion-reaction equation, with a

different convective velocity field. In (142) source’s location is supposed to be known.

Possible applications of this study are concerned with cartography of pollutants in

buildings, estimation of contaminant emission rates inside manufactures, leak detection,

environment and process control through ’intelligent sensors’ (controlled ventilation

with closed-loop function of pollution threshold). A similar problem is considered in

(133). Finally in (137), a convection inverse problem is solved to determine an estimate

of the source term as a function of the altitude and the temporal of iodine-131, caesium-

134 and caesium-137 in the Chernobyl disaster.

In general, in inverse convection problems, either distributed control (142, 165),

or boundary control (173) or both (154) are considered. In the present chapter we

are interested in estimating location and intensity of pollution, and we assume to deal

with boundary control, i.e. we suppose that the sources are located along domain’s

boundary. Thus, as in (173), we deal with an inverse problem in which one is looking

for the unknown conditions in a part of the boundary, while overspecified boundary

conditions are supplied in another part of the boundary (here the outflow region). As

mentioned above, this type of problem can model both water and air pollution.

As mentioned e.g. in (144), in inverse problems or optimal control or optimization

settings, one is faced with the need to do multiple state solves during an iterative process

that determines the optimal solution. If one approximates the state in the reduced,

k-dimensional space and if k is small, then the cost of each iteration of the optimizer

would be very small with respect to that using full, high-fidelity state approximations.

Thus Proper Orthogonal Decomposition (POD) will be studied in this paper as a model

reduction technique, to bring our study closer to a real time problem.

In section 9.2 the direct problem is described, introducing also POD reduction. In

sections 9.3 and 9.4.2 the continuous and the discrete inverse problems are formulated,

respectively. Section 9.5 deals with the problem of known source location, while in

section 9.6 also source position is estimated. Finally in section 9.7 the importance of

stabilizing the problem is underlined.

9.2 Description of the direct problem

Let [0, tf ) ⊂ R and Ω be an open, limited and Lipschitz continuous boundary subset

Ω ⊂ R2, sufficiently regular. We denote with ∂Ω the boundary of Ω. Let c : [0, tf )×Ω→
R, c = c(t,x) be the solution of the following (direct) parabolic convection-diffusion-
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9. INVERSE CONVECTION PROBLEM

reaction equation:

∂c
∂t − µ∆c+∇ · (uc) + σc = 0, in (0, tf )× Ω

c = c0, on {0} × Ω

c = cin, on (0, tf )× Γin

c = cup, on (0, tf )× Γup

µ ∂c∂n = 0, on (0, tf )× Γdown

c = 0, on (0, tf )× Γr

(9.1)

where Γin, Γup, Γdown and Γr are given disjoint sets such that ∂Ω = Γin∪Γup∪Γdown∪Γr.

Suppose that cin ∈ H
1
2 (Γin), cup ∈ H

1
2 (Γup), the initial condition c0 ∈ L2(Ω) and

the coefficients are independent on time, moreover µ ∈ L∞(Ω), µ(x) ≥ µ0 > 0 for all

x ∈ Ω, σ ∈ L∞(Ω), σ(x) ≥ 0 a.e. in Ω, u ∈ [L∞(Ω)]2, div(u) ∈ L2(Ω) are known.

The direct problem consists in finding the concentration c over Ω at time tf . A model

example for the stationary problem is given e.g. in (140).

As in (142), we assume that the physical properties of the fluid are constant and

that the transported contaminant is considered as a passive scalar, which means that

it does not affect the velocity field. Thus we suppose to know u.

An example of the 2D domain Ω is illustrated in figure 9.1.

Figure 9.1: Example of problem’s domain Ω.

9.2.1 Wellposedness of the direct problem and finite element dis-

cretization

As analyzed in chapter 9, let H1
Γr∪Γup∪Γin

(Ω) be the set of v ∈ H1(Ω) such that

v |Γr∪Γup∪Γin
= 0. Given V ⊂ H1

Γr∪Γup∪Γin
(Ω), the weak formulation of (9.1) consists in

finding c ∈ L2(0, tf ;H1(Ω)) ∩ C0([0, tf );L2(Ω)) such that

d
dt(c(t), v) + a(u(t); c(t), v) = 0, ∀v ∈ V,

c(0) = c0, in Ω,
(9.2)
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where a(u; ·, ·) is a bilinear form defined as

a(u;w, v) :=

∫
Ω
k∇w∇vdω +

∫
Ω

u · ∇wvdω +

∫
Ω
σwvdω.

Consider now two families of subspaces {Wh, h > 0} and {Vh, h > 0} of H1(Ω) and

V respectively, and let c0,h ∈ Wh be a suitable approximation of c0. Then the Finite

Element (FE) discretization of (9.2) consists in finding ch ∈Wh such that

d
dt(ch(t), vh) + a(u(t); ch(t), vh) = 0, ∀vh ∈ Vh,

ch(0) = c0,h, in Ω.
(9.3)

Given a basis of Wh, {φi}, i = 1, . . . , Nh, where Nh denotes the number of nodes in

Ω, the FE discretization is equivalent to the solution of the following system of ODE’s:

MĊ(t) +A(u(t))C(t) = F(cin),

C(0) = C0.
(9.4)

where Mij = (φi, φj), A(u)ij = a(u;φi, φj) and F(cin) involves boundary conditions, in

particular cin.

Given a time step ∆t, consider a uniform subdivision of [0, tf ) {tj}, j = 0, . . . , N−1

such that (N − 1)∆t = tf . Discretizing (9.4) in time, using e.g. the backward euler

method, we obtain

(M + ∆tA(u(k + 1))) C(k + 1) = MC(k) + ∆tF(cin),

C(0) = C0.
(9.5)

9.2.2 Proper Orthogonal Decomposition (POD) reduction

To obtain a faster solution algorithm, a reduction technique can be used. As described

in chapter 5.1, a complete overview of all classical methods can be found e.g. in

(127, 168). Since system matrices in (9.4) vary with iterations, techniques largely used

for linear constant matrices problems, like e.g. Balanced Truncation (BT), becomes

too costly to be used. Thus we choose to adopt the Proper Orthogonal Decomposition

(POD) method, presented in chapter 6: although its basis is strictly related to local

dynamics, it is less costly to compute.

As described in chapter 6, given a time step ∆τ > 0 (which could be different from

∆t), consider tm ∈ (0, tf ) and N̄ such that N̄∆τ = tm: first the unreduced model (9.4)

is solved in [0, tm], collecting the snapshots X = (Cj), where Cj ∈ RNh is the nodal

vector of the FE discretization at time tj = j∆τ , j = 0, . . . , N̄ . After computing the
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Singular Value Decomposition (SVD) of X, X = USV t, a suitable threshold k is chosen.

A largely used strategy is to choose k such that∑k
i=1 S(i, i)2∑min(Nh,N̄)

i=1 S(i, i)2

is greater than a fixed tolerance. Another possibility is to impose that the first k

singular values are greater than a fixed tolerance τσ > 0.

Finally (9.4) is projected on the space generated by the first k POD basis vectors,

i.e. we solve the reduced system

U tkMUkȧ(t) + U tkA(u)Uka(t) = U tkF(cin),

a(0) = U tkC0.
(9.6)

in (tm, tf ), where Uk := U(:, 1 : k), i.e. the system is projected on the subspace

generated by the first k columns of U . We denote with C̃(t) := Uka(t) the estimate of

C(t), t ∈ (tm, tf ) computed using POD.

9.3 Inverse problem formulation

Figure 9.2: Given the concentration Cs on Γdown, localize Γin and quantify the concen-

tration released in Cin.

We are interested in solving the following inverse problem (cfr. figure 9.2): given

the additional a priori information

c = cs, on [0, tf )× Γdown, (9.7)

where cs ∈ L2([0, tf ]×Γdown) is a known scalar function, determine c∗in ∈ H
1
2 (Γin) such

that

c∗in = arg min
cin∈H

1
2 (Γin)

J(cin), (9.8)
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where the cost function is

J(cin) := ‖c(cin; t,x)− cs(t,x)‖2L2([0,tf ]×Γdown) =

∫ tf

0

∫
Γdown

(c(cin; t,x)− cs(t,x))2dγdt

and we have made explicit the dependence of c, solution of (9.1), on cin: c(cin; t,x) :=

c(t,x) such that c(t,x) = cin(x), if x ∈ Γin .

As mentioned in (173), one may consider cs to be a desired one. In that case, the

present inverse problem is a design problem where the boundary flux cin is controlled

such that a desired concentration is achieved on the boundary Γdown. cs can also be

considered to represent a continuous approximation of a set of discrete experimental

temperature measurements obtained at a finite number of locations in the boundary

Γdown and at discrete time instances within the interval [0, tf ). In this chapter we

refer to this second case. Observe that this class of inverse problems are of significant

experimental interest for situations where the direct measurement of the heat flux cin

is not possible.

9.4 Solution strategies

As indicated in (173), the main difficulty with the minimization problem (9.8) is the

calculation of the gradient of J . Mainly two different approaches could be used: the

first discretize than optimize or vice versa the first optimize than discretize. A solution

strategy belonging to the last class is based e.g. upon the formulation of the continuous

adjoint problem (cfr. section 9.4.1). In this chapter we mainly focus on the first

strategy: in particular we adopt a discrete approximation of J
′
(cin), combined with a

Gauss-Newton approach, as explained starting from section 9.4.2.

9.4.1 First optimize than discretize strategy: main ideas

In this section we will present the main ideas of the first optimize than discretize strat-

egy, based upon the formulation of the adjoint model.

As indicated in (173), we introduce the directional derivative

D∆cinJ(cin) := (J
′
(cin),∆cin)L2([0,tf ]×Γin)

= (c(t,x; cin)− cs(t,x),Θ(t,x; cin,∆cin))L2([0,tf ]×Γdown)

(9.9)

where the sensitivity concentration field Θ(t,x; cin,∆cin) := D∆cinc(t,x; cin) is such

that

c(t,x; cin + ∆cin) = c(t,x; cin) + Θ(t,x; cin,∆cin) +O(‖∆cin‖2L2([0,tf ]×Γdown)).
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Taking the directional derivative of (9.1) in the direction ∆cin and calculated at

c(t,x; cin), gives the following linear sensitivity natural convection problem:

∂Θ
∂t − µ∆Θ +∇ · (uΘ) + σΘ = 0, in Ω

Θ = 0, on {0} × ∂Ω

Θ = ∆cin, on [0, tf ]× Γin

Θ = 0, on [0, tf ]× Γup

µ∂Θ
∂n = 0, on [0, tf ]× Γdown

Θ = 0, on [0, tf ]× Γr

(9.10)

which is useful to define the adjoint operator L∗, i.e. an operator such that it satisfies

the Lagrange identity

(L∗ψ,Θ)L2([0,tf ]×Ω) = (ψ,LΘ)L2([0,tf ]×Ω) ≡ 0,

where L denotes the differential operator associated to (9.1).

∫
[0,tf ]×Ω(∂Θ

∂t − µ∆Θ +∇ · (uΘ) + σΘ)ψdtdx =
∫

[0,tf ]×Ω(−∂ψ
∂t − µ∆ψ − u∇ψ + σψ)Θdtdx

+ ψ(tf )Θ(tf )

+
∫

[0,tf ]×∂Ω Θ(µ∇ψ + ψu) · n− µψ∇Θ · ndtdγ

where we have applied the Divergence Theorem and we have used initial and boundary

conditions of Θ and divu = 0.

Define the adjoint problem in the following manner:

−∂ψ
∂t − µ∆ψ − u · ∇ψ + σψ = 0, in Ω

ψ = 0, on {tf} × ∂Ω

µ∂ψ∂n + ψu · n = −(c− cs), on [0, tf ]× Γdown

ψ = 0, on [0, tf ]× Γup

ψ = 0, on [0, tf ]× Γin

ψ = 0, on [0, tf ]× Γr

(9.11)

then∫
[0,tf ]×Ω(∂Θ

∂t − µ∆Θ +∇ · (uΘ) + σΘ)ψdtdx =
∫

[0,tf ]×Ω(−∂ψ
∂t − µ∆ψ − u∇ψ + σψ)Θdtdx

−
∫

[0,tf ]×Γdown
Θ(c− cs)dtdγ +

∫
[0,tf ]×Γin

µ∂ψ∂n∆cindtdγ.

Observe that ∫
[0,tf ]×Γdown

Θ(c− cs)dtdγ =

∫
[0,tf ]×Γin

µ
∂ψ

∂n
∆cindtdγ
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iff (using (9.9))

J
′
(cin) = µ

∂ψ

∂n
,

on [0, tf ]× Γin.

The minimization strategy of the cost functional is presented in (173) and is sketched

in algorithm 6.

Algorithm 6 k-th iteration of the algorithm which solves the inverse problem using adjoint

variables:

1: while c
(k)
in < tol, k ≥ 0 do

2: given c
(k)
in , solve the direct problem for c(t,x; c

(k)
in );

3: compute the prediction error cs(t,x)− c(t,x; c
(k)
in ) on [0, tf ]× Γdown;

4: solve the adjoint problem backward in time for ψ(t,x; c
(k)
in );

5: set J
′
(c

(k)
in ) = µ ∂ψ

∂n
, on [0, tf ]× Γin;

6: if k = 0 then

7: set γ(k) = 0

8: else

9: γ(k) =
(J
′
(c

(k)
in ),J

′
(c

(k)
in )−J

′
(c

(k−1)
in ))

L2([0,tf ]×Γin)∥∥∥J′ (c(k−1)
in )

∥∥∥
L2([0,tf ]×Γin)

;

10: end if

11: if k = 0 then

12: define p(k) = −J
′
(c

(k)
in )

13: else

14: p(k) = −J
′
(c

(k)
in ) + γ(k)p(k−1);

15: end if

16: to calculate the optimal step α(k) use the bisection method;

17: c
(k+1)
in = c

(k)
in + α(k)p(k)

18: end while

The finite element discretization of (9.11) is equivalent to the solution of the fol-

lowing system of ODE’s:

−M ṗ + Ã(u(t))C = G,

p(tf ) = 0,
(9.12)

where Ã(u)ij = ã(u;φi, φj), ã(u;w, v) :=
∫

Ω k∇w∇vdω +
∫

Ω u · ∇vwdω +
∫

Ω σwvdω

and G is such that Gi = −
∫

Γdown
φi(c− cs)dγ.

9.4.1.1 POD reduction of the adjoint model

It works similarly to the primal problem: first we solve the unreduced model (9.12)

in [tf − tm, tf ], collecting the matrix of snapshots Xa = (pj), where pj is the nodal

vector of the finite element discretization at tj = (N − 1 − j)∆t, j = 0, . . . ,M . After
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computing the SVD of Xa, Xa = UaSaV
t
a , and choosing a suitable threshold ka, we

solve the reduced system

−U ta,kMUa,kq̇ + U ta,kÃ(u(t))Ua,kq̇ = U ta,kG,

q(tf ) = 0k,a,
(9.13)

where the projection space is Ua,k := Ua(:, 1 : ka). The estimate is p̃ := Ua,kq.

9.4.1.2 Numerical results

Consider now Ω = [0, 8] × [0, 1], Γh = [0, 8] × {1} ∪ [0, 8] × {0}; the velocity field u is

modeled as a Poiseuille flow i.e.

u(x1, x2) =

(
−4νx2

2 + 4νx2

0

)
.

We assume that ν = 50, µ = 0.1, σ = 0.1, cup = 0.1 and Γin = [4, 4.5]× {1}, ϑ = 100.

In figure 9.3 the cost function of the first optimize then discretize method is depicted.

Figure 9.3: Convergence results applying the adjoint method, supposing that Γin is known.

The adjoint method is useful mainly if the number of parameters to be estimated in

the discretized problem is high. Since we expect that pollution sources are concentrated

only in a small part of the boundary, in the following we will suppose that the number

of parameters to be estimated when Γin is known is low. Thus we will adopt a Gauss

Newton approach, as explained starting from next section.
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9.4.2 First discretize than optimize strategy

Consider the set of time instants

{tj}, j = 0, . . . , N − 1. (9.14)

In the first discretize than optimize context, we assume that cs(t,x) is known only in

the ny nodes of Γdown, for every discrete time tj . Let Cs(tj) ∈ Rny be the vector of

measured concentration at t = tj . For simplicity we suppose that

Γin =

nθ⋃
l=1

Γ
(l)
in ,

being Γ
(l)
in disjoint sets, such that cin is constant on each Γ

(l)
in , for all l = 1, . . . , nθ. Thus

we have to estimate a vector ϑ of nθ non negative parameters: equivalently we assume

that the function cin ∈ H
1
2 (Γin) is a piecewise constant function such that

cin(x) = ϑ(l), x ∈ Γ
(l)
in .

In this context the nodal vector solution is C(tj) = C(ϑ; tj), where we have made

explicit its dependence on ϑ.

Let cdown(cin; t,x) := c(cin; t,x) |Γdown , be the predicted concentration on Γdown,

obtained by solving (9.1) imposing cin on Γin, and Cdown(ϑ; tj) the corresponding

nodal vector, computed at time t = tj . In a space-time discrete setting, (9.8) could be

restated as the following discrete inverse problem

ϑ̂ = arg min
ϑ∈Rnθ+

J̃(ϑ), (9.15)

where the discrete cost function is defined as

J̃(ϑ) :=
1

N

N∑
j=1

‖Cdown(ϑ; tj)−Cs(tj)‖22 . (9.16)

Observe that this is a least squares problem (cfr. section 7.2.2.1).

9.4.2.1 POD reduction

Using model order reduction techniques to solve (9.8), consists in replacing the cost

function (9.16) in (9.15) with the following one

J̃(ϑ) :=
1

N

N∑
j=1

∥∥∥C̃down(ϑ; tj)−Cs(tj)
∥∥∥2

2
(9.17)
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where C̃ is the solution of (9.6). An example of application of POD to solve optimal

control problems can be found e.g. in (147).

Since the POD basis depends on the collected snapshots, it is necessary to update

the projection space as the estimated control Cin varies. Let n̄ a small positive integer:

at every iteration i in this chapter we adopt the following index

I(i) :=
1

n̄

∥∥∥∥∥∥
n̄∑
j=1

C̃(ϑ(i); tj)−C(ϑ(i); tj)

∥∥∥∥∥∥
2

2

,

i.e. we compare the first iterations of the unreduced system with those obtained pro-

jecting on the old POD basis used at iteration i− 1. Only if I(i) is greater than a fixed

threshold, the i-th basis is updated, computing new snapshots, as described in section

9.2.2. Two strategies can be used (147): old snapshots can be discarded or not. In

practice this consists in adding POD modes computed in the i − 1-th iteration to the

new snapshots ensemble: in this case the projection space is more robust to control

variations but usually is slightly bigger. For our experimental tests we prefer to discard

old snapshots. We obverse that in (147) a new basis is computed at every iteration,

without considering an index I.

In the following sections the first discretize than optimize strategy is described,

starting from the simpler case of known source location, and then extending it to the

unknown case.

9.5 Known source location Γin

As a first step toward the solution strategy, we consider a simpler problem, assuming

that the source location Γin is known.

9.5.1 Solution uniqueness

In this section we demonstrate that if Γin is known, then the discrete inverse problem

admits a unique solution, since there are no local minima. Moreover changes in cin

corresponds to changes in the registered concentration.

First of all we prove the following Lemma, which justifies mathematically the phys-

ical principle that, as cin increases on Γin, the concentration on Γdown increases too.
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Lemma 9.5.1 Consider the two problems

∂ci
∂t − µ∆ci +∇ · (uci) + σci = 0, in (0, tf )× Ω

ci = c0, on {0} × Ω

ci = c
(i)
in , on (0, tf )× Γin

ci = cup, on (0, tf )× Γup

µ∂Ci∂n = 0, on (0, tf )× Γdown

ci = 0, on (0, tf )× Γr

(9.18)

represented in Figure 9.4 (up), where i = 1, 2. Suppose that c
(2)
in (x) > c

(1)
in (x), for every

x ∈ Γin. Then c2(t,x) > c1(t,x) for every t ∈ (0, tf ) and x ∈ Γdown.

Figure 9.4:

Proof.

Define w := c2 − c1, which solves

∂w
∂t − µ∆w +∇ · (uw) + σw = 0, in (0, tf )× Ω

w = 0, on {0} × Ω

w = c
(2)
in − c

(1)
in , on (0, tf )× Γin

w = 0, on (0, tf )× Γup

µ∂w∂n = 0, on (0, tf )× Γdown

w = 0, on (0, tf )× Γr

(9.19)

as illustrated in figure 9.4 (down). Observe that w is smooth only inside the domain,

but it is not continuous near the boundary, where it admits discontinuities of the first

kind: thus generalized solutions must be considered. The strong minimum principle for

parabolic operators can be extended for generalized solutions (141, 152): thus we know

that the minimum is assumed at the boundary. Moreover, for every open neighbourhood

U of Γdown, such that w is regular inside U ∩ Ω, ∂w
∂n = 0 on Γdown implies that the
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maximum and the minimum of w over U ∩ Ω cannot belong to Γdown (cfr. (141)). As

a consequence, w ≥ 0 in (0, tf )× Ω and, since the minimum is not attained on Γdown,

w = c2 − c1 > 0 on Γdown, for all t ∈ (0, tf ) i.e. the thesis holds true.

�

The following Proposition is equivalent to prove that there are no local minima.

Proposition 9.5.1 For every ϑ̄ ∈ Rnθ+ , ϑ̄ 6= ϑ∗, there exists at least a sequence of

profiles {ϑ}n, ϑ0 = ϑ̄, converging in L2(Rnθ) to the real profile ϑ∗, such that J̃(ϑn) ↓
J̃(ϑ∗).

Proof. We can construct the sequence {ϑn}n in the following way. For every

k = 1, . . . , nθ

ϑk(j) :=

{
ϑk−1(j), j 6= k

ϑ̄(j)− (ϑ̄(j)− ϑ∗(j)), j = k
. (9.20)

Thus ϑnθ = ϑ∗ by construction. Moreover the corresponding sequence of cost functions

is decreasing : J̃(ϑ1) > J̃(ϑ2) > . . . > J̃(ϑ∗). This fact is a direct consequence of the

application of Lemma 9.5.1: suppose that ϑk−1(k) < ϑ∗(k). Then ϑk(k) > ϑk−1(k) by

construction and thus Cdown(ϑk; t) will be higher than Cdown(ϑk−1; t) for every t ∈
(0, tf ) (Lemma 9.5.1) and thus closer to Cdown(ϑ∗; t). Analogously if ϑk−1(k) > ϑ∗(k),

applying Lemma 9.5.1, Cdown(ϑk; t) will be lower than Cdown(ϑk−1; t) for all t and

thus closer to Cdown(ϑ∗; t).

�

9.5.2 Numerical solution strategy

As explained in section 7.2.2.1, starting from an initial guess ϑ̂
(0)

, line search algorithms

find the k + 1-iteration starting from the k-th one in the following way:

ϑ̂
(k+1)

= ϑ̂
(k)

+ α(k)s(k),

where the damping parameter α(k) is obtained using a bisection procedure.

Let R : Rny×N → RnyN be the reshape map such that starting from an ny × N

matrix B = [b1, . . . ,bN ], it gives R(B) :=


b1

...

bN

.
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The Gauss-Newton approximation (cfr. section 7.2.2.1 (162)), consists in solving at

each iteration

Ψ
ϑ̂

(k)s(k) = e
ϑ̂

(k) , (9.21)

where the sensitivity matrix Ψ
ϑ̂

(k) ∈ RnyN×nθ is such that

Ψ
ϑ̂

(k)(:, i) :=
∂

∂ϑ̂
(k)

(i)
R(Cdown(ϑ̂

(k)
; ·)), (9.22)

for all i = 1, . . . , nθ and the prediction error is defined as follows:

e
ϑ̂

(k) := R(Cs(·))− R(Cdown(ϑ̂
(k)

; ·)). (9.23)

System (9.21) is solved using TSVD.

To compute numerically the sensitivity matrix a finite difference scheme is needed:

Ψ
ϑ̂

(k)(:, j) ≈
1

δ

[
R(Cdown(ϑ̂

(k)
(1), . . . , ϑ̂

(k)
(j) + δ, . . . , ϑ̂

(k)
(nθ); ·))− R(Cdown(ϑ̂

(k)
; ·))
]
,

where δ > 0 is a small perturbation parameter.

Observe that in general this approximation is computationally expensive, since, it

requires the computation of the concentration also for the perturbed input. When

Γin is known, only very few parameters are considered, thus this approximation is

effective. The problem becomes more involving when Γin is unknown, since the number

of parameters is higher: in section 9.6 we will explain how the adaptive parametrization

and time localization can reduce the computational cost.

If δ > 0 is too small, the finite difference estimate could be inaccurate, since at the

numerator we are considering the difference between two quantities which has approxi-

mately the same absolute value, and this is divided by a very small denominator, which

amplifies the error. A possible solution e.g. is to adopt the Complex-Step Derivative

Approximation (159), in which an imaginary increment iδ is used, approximating

Ψ
ϑ̂

(k)(:, j) ≈
1

δ
Im
(
R(Cdown(ϑ̂

(k)
(1), . . . , ϑ̂

(k)
(j) + iδ, . . . , ϑ̂

(k)
(nθ); ·))

)
.

Finally observe that we are assuming that the pollutant is put into the domain,

thus

Cin ≥ 0 :

as a consequence we need also a projection step onto [0,+∞) of each component of

ϑ̂
(k)

, after its computation.
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9.5.3 Numerical results

In this section the projected damped Gauss Newton (PDGN) is compared to other

classical solution strategies. Experimental data are simulated numerically, on Ω =

[0, 8] × [0, 1], Γh = [0, 8] × {1} ∪ [0, 8] × {0}. Moreover the velocity field u is modeled

as a Poiseuille flow i.e.

u(x1, x2) =

(
−4νx2

2 + 4νx2

0

)
.

We assume that ν = 50, µ = 0.1, σ = 0.1 and cup = 0.1. Moreover in this section a

Gaussian error of variance 0.05 and mean zero is added.

Classical solution strategies cited in this section are well described e.g. in (150).

As a regularization parameter, when needed, we use α = 0.01, moreover we choose a

maximum number of iterations maxit = 20. Consider the following two examples:

1. Γin = [4, 4.5]× {1}, ϑ = 100;

2. Γin = [4.5, 5]× {1} ∪ [1.5, 2]× {0} , ϑ = (100, 80);

and see how different techniques approximate them. First of all we consider the

example 1. Performances of different methods are depicted in figure 9.5. In the second

example, two parameters have to be estimated: results are plotted in figure 9.6.

Observe that in both cases the projected damped Gauss Newton algorithm performs

well, converging faster to the optimal solution. It should be noted that, in contrast to

Tikhonov and Levenberg-Marquardt it does not need a regularization parameter.

9.5.4 Reduce the order of the system using POD

In this section we analyze the POD reduction introduced in section 9.2.2 on a test case.

Consider example 2 introduced in the previous section; in POD reduction two param-

eters play a central role: tm, which characterizes the interval [t0, tm] when snapshots

are collected, and the threshold τσ on the singular values of the snapshots matrix. As

can be seen in table 9.1, increasing tm corresponds to a better approximation, since

more snapshots are collected. To obtain higher accuracy decreasing tm, it is necessary

to increase τσ, considering a higher number of left singular vectors, corresponding to

bigger reduced model.

180



9.5 Known source location Γin

Figure 9.5: First example: different strategies. Left: cost function and error, right: con-

vergence. First row: projected damped Gauss Newton, second row: Levenberg Marquardt,

third row: steepest descent, fourth row: Tikhonov method.

181



9. INVERSE CONVECTION PROBLEM

Figure 9.6: Second example: different strategies. Left: cost function and error, right: con-

vergence. First row: projected damped Gauss Newton, second row: Levenberg Marquardt,

third row: steepest descent, fourth row: Tikhonov method.
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L1 error: J̃(ϑ) Dim. model num. it.

up down

Unreduced model 0 0 10−20 1071 2

Reduced models:

tm τσ

2.5 0.01 0.117 4.8 0.113 23 5

2.5 10−4 0.083 1.24 0.089 32 4

3.75 0.01 0.08 0.08 6 · 10−4 25 3

3.75 10−4 0.02 0.02 3 · 10−5 39 4

5 0.01 0.0015 0.0015 10−6 29 3

Table 9.1: Example 2 of section 9.5.3, choosing different intervals [t0, tm] to collect snap-

shots and different thresholds τσ on singular values of the snapshots matrix.

It is important to note that the reduction is significative with respect to the unre-

duced model, which has dimension 1071. However, as described in section 9.2.2, it

should be noted that it is necessary to update the POD basis: in all these examples

the basis is updated at every new iteration, imposing 0.1 as a threshold on I(i).

9.5.5 Using Navier Stokes equation: generalization to a time varying

velocity field

More generally, problem (9.1) can be completed adding a model for the velocity field u:

for an incompressible fluid flow, the incompressible Navier Stokes model can be used:

∂u
∂t − ν∆u + (u · ∇)(u) +∇p = 0, in (t0, tf )× Ω,

divu = 0, in (t0, tf )× Ω,

u = u0, on {0} × ∂Ω

u = uup, on [0, tf ]× Γup

ν ∂u∂n = 0, on [0, tf ]× Γdown ∪ Γr ∪ Γin

(9.24)

where p denotes the pressure of the flow field.

In this context, using a reduced order technique is important to limit the computa-

tional cost. POD has been adopted to reduced both (9.1), as explained in section 9.2.2

and (9.24), as explained in chapter 6. Consider example 1 described in section 9.5.3:

suppose that uup = 10, Re = 100, tf = 14 and tm = 7. Navier Stokes reduced system

has dimensions k1 = 1326, k2 = 1898, and kp = 3501, respectively for the two compo-

nents of the velocity and the pressure. The unreduced finite element discretization uses

19521 nodes for each component of the velocity and 4961 for the pressure. The reduced

system for (9.1) has dimension 33, instead of 4961, for τσ = 0.01. Convergence results
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for the inverse problem are shown in figure 9.7. The estimated control is 99.9902, thus

the error is of order 0.01, and the cost function has order 10−9.

Figure 9.7: Convergence results for example 1 of section 9.6.4, supposing that Γin is

known.

In the following we will model the velocity field as a Poiseuille flow, since it is more

convenient from a computational point of view. However all presented strategies can

be applied also to more general velocity fields, e.g. numerical solutions of Navier Stokes

equations.

A more involving problem is considered in section 9.6, where it is assumed that also

the source location Γin is unknown. In general in that case projected damped Gauss

Newton could not be sufficient and it is too costly, thus it is necessary to adopt a suitable

solution strategy based upon an adaptive parametrization and time localization.

9.6 Unknown source location Γin

Suppose now that the location Γin is unknown.

9.6.1 Introduction: ill-posedness of the problem

To study analytically what happens when Γin is unknown, we consider a simplified

model problem: let c = c(x), x ∈ [x1, x2] ⊂ R, x2 > x1 be the solution of the following
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one dimensional ODE:
−µc′′(x) + uc

′
(x) = f(x), in (x1, x2),

c(x1) = cup,

c
′
(x2) = 0,

(9.25)

where f(x) =

{
M, |x− xm| ≤ h
0, elsewhere in (x1, x2)

, M > 0, xm ∈ (x1, x2), h ∈ (0, 1) s.t.

xm±h ∈ (x1, x2). Observe that (9.25) can be viewed as the one dimensional stationary

counterpart of (9.1) when σ = 0 and considering only the x-axis in figure 9.1: the

unknown immision boundary Γin can be represented by an unknown forcing term f ,

applied in [xm − h, xm + h], of intensity M . In this context the inverse problem (9.8)

is equivalent to determine the source position (h and xm) and intensity (M) given the

measured concentration Cs ∈ R in x2 = 1 (cfr. figure 9.8).

Figure 9.8: Reduction of the 2D problem to a 1D one with forcing term f .

The anaytical solution of (9.25) is

c(x) =


d1 + d2e

u
µ
x
, x < xm − h,

d3 + M
u x+ d4e

u
µ
x
, |x− xm| ≤ h,

d5 + d6e
u
µ
x
, x > xm + h,

where d1, . . . , d6 are suitable real coefficients obtained imposing boundary conditions

and continuity of u and u
′

in xm ± h. In particular we are interested in estimating the

concentration at the measurement point x = x2. For simplicity we assume that x1 = 0

and x2 = 1. It can be derived that

d6 = 0, d5 =
1

u2
exp
−u(xm + h)

µ

(
2uhM exp

u(xm + h)

µ
+ µM

(
1− exp

2uh

µ

))
.

Thus c(x) is constantly equal to d5 in [xm+h, 1]. We can now study how c(1) depends on

M , h, L. We consider µ = 0.5 and u = 10 (Peclet number Pe = u
2µ = 10, quantity that
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9. INVERSE CONVECTION PROBLEM

Figure 9.9: Solution of (9.25) at the measurement point x2 = 1 for different values of M

(left), h and xm (center), xm (right).

characterize convection diffusion problems). As can be seen in figure 9.9, varying only

M , fixing h and xm (i.e. knowing the source location), corresponds to a linear striclty

increasing c(1) (cfr. figure 9.9 (left)). On the contrary fixing M but varying h and xm

corresponds to the surface plotted in figure 9.9 (center): fixing h for different values

of xm we obtain almost the same c(1) (cfr. figure 9.9 (right)). Thus measuring c(1),

the problem of determining the source is ill-posed in the stationary regime. Increasing

the Peclet number this phenomenum is stressed. Even for this simplified 1D stationary

problem, in general unknown source position gives rise to an ill-conditioned problem.

9.6.2 Numerical solution of the discrete inverse problem

The problem consists both in localizing Γin in the horizontal segments Γh := Γr ∪ Γin

and in estimating the intensity cin.

9.6.2.1 Algorithm 1: working on the finest subdivision

First of all we consider

{
x1, . . . , xnf

θ
2

+1

}
a reference uniform finest subdivision of Γh

of step length ∆x, which represents the minimum width of estimated source emissions.

The simplest strategy consists in applying the Gauss Newton method directly on the

finest subdivision, i.e. in estimating nfθ parameters (cfr. algorithm 7). This problem

is particularly demanding for its high computational cost, due to the large number of

parameters to be estimated at each Newton’s iteration.

9.6.2.2 Algorithm 2: working on the finest subdivision with time localiza-

tion

As explained in section 9.6.1, in the stationary regime the problem is illposed: time

localization corresponds to a better conditioned problem, since it consists in selecting
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9.6 Unknown source location Γin

Algorithm 7 Sketch of the algorithm working on the finest subdivision:

1: Given the finest subdivision of Γh, θ̂
0

= 0, µ0 = 1;

2: while J̃(ϑ̂
l
) < tol do

3: solve ψθ̂ksk = eθ̂k ;

4: θ̂
k+1

= θ̂
k

+ µksk

5: projection: for every j ∈ [0, nθ − 1] s.t. θ̂k+1(j) < 0, impose θ̂k+1(j) = 0

6: compute J̃(θ̂
k+1

)

7: if J̃(θ̂
k+1

) > J̃(θ̂
k
) then

8: l = 0;

9: µk,l = µk

2

10: while J̃(θ̂
k+1

) < J̃(θ̂
k
) do

11: θ̂
k+1

= θ̂
k

+ µk,lsk

12: l = l + 1;

13: µk,l = µk,l

2

14: end while

15: end if

16: end while

only those rows of the sensitivity matrix which are significative, i.e. corresponding to

the transitional dynamics.

Figure 9.10: Example of partition of Ω in sections.

More precisely, the idea is to partition the domain Ω in a suitable number ns > 1

of sections U = {sj}, j = 1, . . . , ns (cfr. e.g. figure 9.10). Referring to figure 9.1,

we suppose that sj := [ξj , ξj+1] × [y1, y2], ξ1 = x1, ξns+1 = x2. In particular in

algorithm 2 we assume that {ξ1, . . . , ξns+1} =

{
x1, . . . , xnf

θ
2

+1

}
, i.e. it coincides with

the finest subdivision. Denote with I(j), the set of parameters belonging to sj . The

parameters belonging to I(j) are estimated using the PDGN method with a TSVD

regularization: Starting from sns , first it computes the sensitivity matrix only of those

parameters belonging to I(ns) and only in the time interval [t
(ns)
0 , t

(ns)
f ], t

(ns)
0 ≥ t0,

t
(ns)
f ≤ tf ; below it is explained how to choose the interval. Then, it considers sections

sns−1, sns−2, . . . , s1. If we denote with O(j), j = 1, . . . , ns − 1, the set of parameters
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9. INVERSE CONVECTION PROBLEM

estimated in section sj+1 greater than a threshold ε3 > 0, then in section sj all the n
(j)
θ

parameters belonging to O(j)∪I(j) will be estimated, only in the time interval [t
(j)
0 , t

(j)
f ].

In algorithm 8 previous ideas are summarized.

Algorithm 8 Sketch of the algorithm working on the finest subdivision with time localization:

1: Given {ξ1, . . . , ξns+1} coincident with the finest subdivision of Γh and the threshold ε3 > 0;

2: while J̃(ϑ̂
k
) < tol do

3: i = ns; O
(ns) = ∅

4: while i > 0 do

5: Let I(i) be the set of parameters of ϑ̂
k

that belongs to section i;

6: in [t
(i)
0 , t

(i)
f ] apply the regularized projected damped Gauss Newton method to optimize pa-

rameters whose indices belong to I(i) ∪ O(i);

7: update the positions I(i) ∪ O(i) of ϑ̂
k
;

8: define O(i−1) as the set of indices of parameters greater than ε3;

9: i = i− 1;

10: end while

11: end while

9.6.2.3 Algorithm 3: using an adaptive parametrization

A different improvement is to use an adaptive parametrization, i.e. to adaptively update

the subdivision of Γh used in the current iteration k of the Newton method. This

strategy is important since usually the immision occurs only in a local part of Γh:

using a uniform subdivision would bring to a sparse vector of parameters and would

hence require a more computational demanding regularization (e.g. l1-optimization).

Instead, this algorithm tries to localize Γin in Γh and refines the parametrization only

around that point. This limits the computational cost, reducing the number of columns

of the sensitivity matrix. A similar strategy has been presented in (138, 155), to solve

an inverse conduction problem of corrosion estimation (cfr. chapter 8).

The algorithm works as follows: starting from an initial coarse subdivision of Γh,

S(1), at the k-th iteration the algorithm first computes a Gauss-Newton iteration ϑ̂
(k) ∈

Rn
(k)
θ . For every element of ϑ̂

(k) ∈ Rn
(k)
θ greater than a fix threshold ε1 > 0, the segment

of S(k) corresponding to that parameter is bisected: thus a new subdivision S(k+1) is

defined adding to S(k) all the computed middle points. Finally only those parameters

which are greater than a fixed threshold ε2 > 0 are selected: we indicate with Λ(k) this

ensemble. The other parameters remain constant in the following iteration. The main

ideas of the adaptive algorithm are sketched in algorithm 9.

To solve the system (9.21) a diagonal scaling (162) is used. Here it means that at

iteration k, given the subdivision S(k) , for every i = 1, . . . , n
(k)
θ , Ψ

ϑ̂
(k)(:, i) is multiplied
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9.6 Unknown source location Γin

Algorithm 9 Sketch of the adaptive algorithm:

1: Given the finest subdivision of Γh of step length ∆x, the tolerance tol > 0 and thresholds ε1, ε2 > 0,

consider the coarse subdivision S(1) =

{
x1

1, . . . , x
1
n1
θ
2

+1

}
, of Γh;

2: ϑ̂
1

= 0n1
θ
∈ Rn

1
θ ;

3: k = 1, Λ(1) = [1, . . . , n1
θ], set of indexes of parameters to be optimized

4: while J̃(ϑ̂
k
) < tol do

5: apply the PDGN method, optimizing only parameters whose indexes belong to Λ(k), obtaining

ϑ̂
k ∈ Rn

k
θ

6: S(k+1) :=

{
xk+1

1 , . . . , xk+1

n
k+1
θ
2

+1

}
= S(k), nk+1

θ = nkθ , I = nk+1
θ ;

7: for all i ∈ [1, I] do

8: if θ̂k(i) > ε1% bisect the corresponding segment then

9: nk+1
θ = nk+1

θ + 1, I = I + 1;

10: let [xk+1(θ̂k(i)), xk+1(θ̂k(i))] be the segment corresponding to parameter θ̂k(i);

11: S(k+1) = S(k+1) ∪ xk+1(θ̂k(i))−xk+1(θ̂k(i))
2

,

12: end if

13: end for

14: Λ(k+1) = ∅;
15: for all i ∈ [1, I] do

16: if ϑ̂k(i) > ε2 then

17: Λ(k+1) = Λ(k+1) ∪ i;
18: end if

19: end for

20: k = k + 1;

21: end while

189
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by a weight di, equal to the length of the maximal segment of the current subdivision,

divided by the length of the segment corresponding to the i-th column. Thus diagonal

scaling corresponds to solve

Ψ
ϑ̂

(k)D(k)s̃(k) = e
ϑ̂

(k) , D(k) = diag(d
(k)
i ), d

(k)
i =

max
xk
j+1

,xk
j
∈S(k) x

k
j+1−xkj

xki+1−xki
,

s(k) = D(k)s̃(k),

(9.26)

instead of (9.21).

9.6.2.4 Algorithm 4: using an adaptive parametrization and time localiza-

tion

As in algorithm 2, the domain Ω is partitioned in ns > 1 sections U = {sj}, j =

1, . . . , ns, however in algorithm 4 we assume that {ξ1, . . . , ξns+1} = S(1), i.e. it coincides

with the coarse initial subdivision applied in the adaptive strategy. In section sj ,

considering the time interval [t
(j)
0 , t

(j)
f ], all parameters belonging to O(j) ∪ I(j) will be

estimated, and the adaptive procedure will be applied until a minimum is reached.

Observe that this coincides with an internal loop: this trategy is sketched in algorithm

10.

9.6.2.5 Time localization: how to choose time intervals [t
(i)
0 , t

(i)
f ]

A key point is the choice of the local time intervals [t
(i)
0 , t

(i)
f ], for every section si,

i = 1, . . . , ns, t
(i)
0 ≥ t0 and t

(i)
f ≤ tf . The i-th interval must be chosen such that it

Figure 9.11: Partition of Ω in 2 sections to draw the curves of figure 9.12: to obtain the

red (blue) curve of figure 9.12, it is considered the mean concentration on Γdown, obtained

imposing a control different from zero only in the most left segment of the finest subdivision

of the upper horizontal segment of section s2 (s1), indicated in red (blue).

contains the transitional dynamics of section si but not that of sections sj , j < i.

To describe more clearly this idea, consider the model problem introduced in section

9.5.3: moreover suppose for simplicity that ns = 2, {ξ1, ξ2, ξ3} = {0, 4, 8}, as depicted
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9.6 Unknown source location Γin

Algorithm 10 Sketch of the adaptive algorithm with space-time localization:

1: Given the partition of Ω {ξ1, . . . , ξns+1} = S(1), the thresholds ε1, ε2, ε3 > 0, ϑ̂
0

= 0, k = 1;

2: O(k,ns) = ∅;
3: while J̃(ϑ̂

k
) < tol do

4: i = ns; ϑ̂
k,i

= ϑ̂
k
, nk,iθ = nkθ , S(k,i) = S(k)

5: while i > 0 do

6: l = 1, ϑ̂
k,i,l

= ϑ̂
k,i

, nk,i,lθ = nk,iθ , S(k,i,l) = S(k,i), O(k,i,l) = O(k,i);

7: Λ(k,i,l) = [1, . . . , nk,i,lθ ], set of indices of parameters to be optimized

8: while a minimum is reached% apply the adaptive strategy do

9: Let I(k,i,l) be the set of parameters of ϑ̂
k,i,l

that belongs to section i;

10: in [t
(i)
0 , t

(i)
f ] apply the PDGN method to optimize parameters whose indices belong to

P (k,i,l) := (I(k,i,l) ∪ O(k,i,l)) ∩ Λ(k,i,l);

11: update the positions P (k,i,l) of ϑ̂
k,i,l

;

12: S(k,i,l+1) = S(k,i,l);

13: for all j ∈ [1, nk,i,lθ ] do

14: if θ̂k,i,l(j) > ε1 then

15: update S(k,i,l+1), bisecting the segment corresponding to θ̂k,i,l(j);

16: end if

17: end for

18: Λ(k,i,l+1) = ∅;
19: for all j ∈ [1, nk,i,l+1

θ ] do

20: if ϑ̂k,i,l(j) > ε2 then

21: Λ(k,i,l+1) = Λ(k,i,l+1) ∪ j;
22: end if

23: end for

24: ϑ̂
k,i,l+1

corresponds to ϑ̂
k,i,l

values on the finer subdivision S(k,i,l+1);

25: O(k,i,l+1) corresponds to O(k,i,l) values on the finer subdivision S(k,i,l+1);

26: l = l + 1;

27: end while

28: S(k,i) = S(k,i,l); ϑ̂
k,i

= ϑ̂
k,i,l

29: define O(k,i−1) as the set of indices of parameters greater than ε3;

30: i = i− 1;

31: end while

32: ϑ̂
k

= ϑ̂
k,i

33: k = k + 1;

34: end while
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in figure 9.11, and consider as the finest subdivision a uniform one of step length 0.5.

Consider figure 9.12: the j-th curve ζj , j = 1, 2, represents the mean concentration

(left) and its derivative (right) at the outflow when the boundary control is different

from zero only in the most left position of sj with respect to the finest subdivision.

The interval corresponding to s2 can be [t
(2)
0 , t

(2)
f ] = [180, 260], when the red dotted

Figure 9.12: Time evolution of the mean concentrations at Γdown, ζ1 and ζ2, (left) and

their derivative (right) for different boundary controls: the boundary control is different

from zero only in the most left position of the finest subdivision of s1 (blue) and s2 (red).

curve corresponding to s2, ζ2 , is increasing (transitional regime) and the blue curve

corresponding to s1, ζ1, is flat, i.e. when only the pollutant released into Ω in s2 could

reach Γdown. While in s1 the choice can be [t
(1)
0 , t

(1)
f ] = [240, 400], since in this interval

the transitional regime of s1 occurs, as showed by ζ1. This intervals are used in section

9.6.4, to test algorithm 4.

The previous idea can be extended more rigorously to a general number of sections:

let ζi, i = 1, . . . , ns, be the mean concentration at the outflow Γdown when the boundary

control is different from zero only in the most left position of si, with respect to the

finest subdivision. Consider a small threshold ε4 > 0, and two positive parameters

d,D > 0. Given

t
(ns)
0 = mint∈[t0,tf ]

{
ζ
′
ns(t) > ε4 and ζ

′
ns−1(t) < ε4

}
,

t
(ns)
f = maxt∈[t0,tf ]

{
ζ
′
ns(t) > ε4 and ζ

′
ns−1(t) < ε4

}
,
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9.6 Unknown source location Γin

then for i = 1, . . . , ns − 1

t
(i)
0 = t

(i+1)
f − d,

t
(i)
f =

 maxt∈[t0,tf ]

{
ζ
′
i(t) > ε4 and ζ

′
i−1(t) < ε4

}
, i > 1

min
{
t
(i+1)
f +D,maxt∈[t0,tf ]

{
ζ
′
i(t) > ε4 and ζ

′
i−1(t) < ε4

}}
, i = 1.

The parameter d allows a small overlapping between local time intervals, while D

could limit the length of the inteval [t
(1)
0 , t

(1)
f ]: in the example presented above ns = 2,

d = 0.2 and D = 1.6.

Observe that the definition of the intervals [t
(i)
0 , t

(i)
f ] depends on the shape of the

domain, on the velocity field and on the coefficients of the PDE (9.1): each time one

of them is changed, also the intervals should be estimated, observing the transitional

dynamics of each section, as explained above.

9.6.3 Comparing computational costs

In this section we compare the computational costs of the four algorithms. Note

that each algorithm require a certain number of direct problem solutions, whose cost

amounts to NNβ
h each, where β depends on the numerical method used: tipically β = 2

for direct methods and down to β = 1.5 for preconditioned iterative methods. At each

iteration, computing the new prediction error (9.23) costs NNβ
h .

The first algorithm consists in using the finest subdivision, with the projected

damped Gauss Newton strategy. The computational cost of each iteration is pretty

high: computing the sensitivity matrix Ψϑ ∈ RnyN×n
(f)
θ has cost n

(f)
θ NNβ

h , where nfθ
is the number of parameter of the finest subdivision, which is maximal. Moreover com-

puting the SVD to obtain the new iteration has cost 4n2
yN

2nfθ + 8Nny(n
f
θ )2 + 9(nfθ )3.

To decrease the cost, the idea is to consider a sensitivity matrix of lower dimensions.

The second algorithm consists in combining the finest subdivision with localization in

time. The number of sections in this case coincides with one half of the number of

parameters of the finest subdivision nfθ . At each iteration k, for every section i =

1, . . . , ns, ns =
n

(f)
θ
2 , computing Ψ

(i)

ϑ
∈ Rny

t
(i)
f
−t(i)0
Dt

×n(k,i)
θ costs n

(k,i)
θ (

t
(i)
f −t

(i)
0

Dt )Nβ
h , where

n
(k,i)
θ denotes the cardinality of I(i) ∪O(i). Moreover computing the SVD to obtain the

new iteration has cost 4n2
y

(
t
(i)
f −t

(i)
0

Dt

)2

n
(k,i)
θ + 8

t
(i)
f −t

(i)
0

Dt ny(n
(k,i)
θ )2 + (n

(k,i)
θ )3. Although

a higher number of systems must be solved, the algorithm is less costly since the

sensitivity matrix has much lower dimensions.

Another possibility to decrease the cost of algorithm one, is to use the third algo-

rithm, which consists in adopting an adaptive parametrization. At the k−th iteration
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computing the sensitivity matrix Ψϑ ∈ RnyN×n
(k)
θ has cost n

(k)
θ NNβ

h , where the number

of parameters n
(k)
θ varies during the iterations and n

(k)
θ < nfθ . The gain with respect to

the first strategy is evident if n
(k)
θ << n

(f)
θ .

The fourth algorithm combines both time localization and the adaptive parametriza-

tion. The number of sections in this case coincides with one half the number of param-

eters of the initial coarse subdivision S(1). The difference with respect to the second

algorithm is that the number of sections ns is lower, because it is no more related to

the finest subdivision: in fact the adaptive parametrization guides the choice of pa-

rameters to be estimated at each iteration. However the introduction of the adaptive

parametrization introduces an inner loop. In detail, at each iteration k, for every sec-

tion i = 1, . . . , ns, applying the adaptive procedure until a minimum is reached (index

l), computing Ψ
(k,i,l)

ϑ
∈ Rny

t
(i)
f
−t(i)0
Dt

×n(k,i,l)
θ costs n

(k,i,l)
θ (

t
(i)
f −t

(i)
0

Dt )Nβ
h .

Computational costs of the four algorithms are summarized in table 9.2, averaging

results of tests presented in section 9.6.4.

Computation of Ψ SVD of Ψ Total

at k-th iteration at k-th iteration computational cost

Finest subdivision n
f
θ
NN

β
h

4n2
yN

2n
f
θ

+ 8Nny(n
f
θ

)2 + 9(n
f
θ

)3 1.3 · 1012

Finest subdivision n
(k,i)
θ

(
t
(i)
f
−t(i)0
Dt

)N
β
h

4n2
y

 t
(i)
f
−t(i)0
Dt

2

n
(k,i)
θ

+ 8
t
(i)
f
−t(i)0
Dt

ny(n
(k,i)
θ

)2 + (n
(k,i)
θ

)3 9 · 1010

+ space-time localization i = 1, . . . , ns i = 1, . . . , ns

Adaptive subdivision n
(k)
θ
NN

β
h

(not required) 9 · 109

Adaptive subdivision n
(k,i,l)
θ

(
t
(i)
f
−t(i)0
Dt

)N
β
h

(not required) 8 · 108

+ space-time localization i = 1, . . . , ns

Table 9.2: Estimated computational cost of the four algorithms previously described.

9.6.4 Numerical results

In this section we present some numerical tests to verify the effectiveness of the al-

gorithms. As in section 9.5.3, experimental data are simulated numerically, on Ω =

[0, 8] × [0, 1], Γh = [0, 8] × {1} ∪ [0, 8] × {0}. Moreover the velocity field u is modeled
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as a Poiseuille flow i.e.

u(x1, x2) =

(
−4νx2

2 + 4νx2

0

)
.

We assume that µ = 0.1, σ = 0.1 and cup = 0.1. Moreover we consider the finest

subdivision with step length ∆x = 0.5. In algorithm 2 we consider {ξ1, . . . , ξns+1}
coincident with the finest subdivision, while in algorithm 4 ns = 2 and {ξ1, . . . , ξns+1} =

{0, 4, 8}. Define optimal subdivision the one which describes the real profile with the

minimum number of parameters using the bisection criterium. With distance from the

optimal subdivision we indicate the number of points added (sign +) or subtracted (sign

-) to the optimal sundivision. We consider the 9 test cases described in Table 9.3: each

one is characterized by two vectors θup ∈ R16 and θdown ∈ R16 which represent the

concentration of pollutant released in each subsegment of the finest subdivision of Γh;

only the elements different from zero are indicated. θup represents the upper horizontal

segment, whereas θdown the bottom one.

Test θup θdown

1 θup(2) = 100

2 θdown(2) = 100

3 θup(12) = 100

4 θup(2) = 100, θup(3) = 80

5 θup(2) = 100, θup(4) = 80

6 θup(2) = 100, θup(12) = 80

7 θup(2) = 100 θdown(2) = 80

8 θup(2) = 100 θdown(12) = 80

9 θup(2) = 100, θup(3) = 80, θup(12) = 60

Table 9.3: Test cases: only the elements different from zero are indicated.

In table 9.4, the four algorithms are compared: using the finest subdivision and the

projected damped Gauss Newton method, using the finest subdivision and the localiza-

tion in time, using the adaptive parametrization and using the adaptive parametrization

and time localization.
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Test Finest subdivision Finest subdivision Adaptive subdivision Adaptive subdivision

+ time localization + time localization

up down up down up down up down

1 L1-err 10−12 10−12 0.442 0.442 7.69 0.12 1.15 0.168

opt. sub. +11 +14 +11 +14 +1 0 +1 0

num. it. 2 18 4 7

J̃(ϑ) 10−20 10−6 10−5 10−4

2 L1-err 10−12 10−12 0.02 0.02 0.12 7.69 0.168 1.15

opt. sub. +14 +11 +14 +11 0 +1 0 +1

num. it. 2 20 4 7

J̃(ϑ) 10−20 10−6 10−5 10−4

3 L1-err 2.72 0.3974 0 0 1.33 0.02 0.18 10−3

opt. sub. +11 +14 +11 +14 0 +1 +2 0

num. it. 6 17 9 9

J̃(ϑ) 0.028 10−20 0.0012 10−5

4 L1-err 8.911 0.1102 1.021 10−3 11.25 0.16 2.247 0.07

opt. sub. +10 +14 +10 +14 0 0 0 +1

num. it. 5 13 4 8

J̃(ϑ) 10−3 10−3 10−3 10−5

5 L1-err 5.576 0.047 1.611 10−4 12 0.14 2.224 0.03

opt. sub. +10 +14 +10 +14 -1 0 +1 +1

num. it. 5 11 3 7

J̃(ϑ) 10−3 10−4 10−4 10−5

6 L1-err 2.653 0.2871 8.591 10−13 2.33 0.01 2.48 0.01

opt. sub. +8 +14 +8 +14 +1 0 +3 0

num. it. 5 17 10 15

J̃(ϑ) 10−2 0.068 10−4 10−4

7 L1-err 10−13 10−13 0.36 0.36 7.63 6.12 1.267 1.019

opt. sub. +9 +9 +9 +9 0 0 +1 +1

num. it. 2 17 4 9

J̃(ϑ) 10−20 10−6 10−5 10−6

8 L1-err 1.969 1.002 6.25 9.17 14.9 8.9 0.95 0.95

opt. sub. +9 +9 +9 +9 +2 0 +1 +2

num. it. 5 17 5 13

J̃(ϑ) 10−2 0.13 0.19 10−5

9 L1-err 14.22 0.1818 14.34 10−12 2.65 0.9 2.01 0.004

opt. sub. +7 +14 +7 +14 +3 0 +2 0

num. it. 11 19 16 21

J̃(ϑ) 10−2 0.2 0.001 10−4

Table 9.4: Comparison between four algorithms: L1-error in the upper and lower hori-

zontal segments, number of points added to the optimal subdivision in the upper and lower

horizontal segments, number of iterations and final cost function.

First of all observe that the number of iterations of algorithms 2 and 4 is higher

since also sub-iterations to reach the minimum inside each section are counted (inner
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loop). In tests 1, 2 and 7, also working on the finest subdivision performs well, but it is

much more costly. When the condition number of the sensitivity matrix Ψϑ increases,

the accuracy is low. In particular in tests 3, 4, 5 it is evident how time localization

improves convergence results both in algorithms 2 and 4, selecting only some rows

of Ψϑ. However adopting only space-time localization is not sufficient in tests 6,7,9.

In algorithm 3, instead, the number of points added to the optimal subdivision is

very low, but in general the estimates are not accurate enough and thus the error

is high. The best strategy consists in combining both adaptive parametrization and

time localization (algorithm 4): this is a good compromise between good estimates

and reasonable computational cost. Its effectiveness is evident e.g. in tests 8 and 9.

Moreover it only adds few points to the optimal subdivision.

In figures 9.13 and 9.14 different iterations of algorithm 4 are shown for test 8: it

is evident how the algorithm firstly optimize parameters of section s2 = [4, 8] × [0, 1]

(figure 9.14), and then that of s1 = [0, 4] × [0, 1] (in figure 9.13 the first 7 iteration

are identical to the first one, thus only iterations 1 and 8 are plotted). The estimated

subdivision is sketched in figure 9.15: it is evident how algorithm 4 slightly over-refine

the optimal subdivision.

Figure 9.13: Test 8. Adaptive parametrization and time localization. Evolution of the

approximation (blu dotted line), real control (red line). Upper horizontal segment.
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Figure 9.14: Test 8. Adaptive parametrization and time localization. Evolution of the

approximation (blu dotted line), real control (red line). Bottom horizontal segment.

Figure 9.15: Test 8. First row: optimal subdivision that could be obtained using a bisection

strategy. Second row: estimated subdivision.

Results for the adaptive strategy with localization in time for all tests are shown in

figure 9.16.
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9.6 Unknown source location Γin

Figure 9.16: Nine test cases: results of the adaptive strategy with time localization: com-

puted estimate (blu dotted line), real control (red line). For each figure: cost function

(first row, left), L1 error (first row, right), approximation of the upper horizontal segment

(second row, left), approximation of the bottom horizontal segment (second row, right).
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9.6.5 Conditioning of the problem

The ill-conditioning of the system matrix Ψ
ϑ̂

could increase when smaller segments

are considered in Γh: in fact in this case consecutive columns tend to be close to linear

dependence, due to the small distance (∆x) of the corresponding nodes in Γh. This can

be demonstrated numerically: consider in fact the example presented in section 9.5.3

and generalize it considering the following parametric problem

Γin = [5− h, 5]× {1} ∪ [2− h, 2]× {0} , ϑ = (100, 80), 0 < h ≤ 2.

Even supposing to know source location Γin, solving the problem for different values of

h = {0.0625, 0.125, 0.25, 0.5, 1, 2} and computing the condition number of the sensitivity

matrix, it can be seen that as h decreases, the condition number increases (cfr. figure

9.17). Since the condition number of the sensitivity matrix could become higher when

Figure 9.17: Example 2, with Γin = [5− h, 5]× {1} ∪ [2− h, 2]× {0}. Condition number

of Ψ
ϑ̂

for different values of h = {0.0625, 0.125, 0.25, 0.5, 1, 2}.

smaller segments are considered, working on the finest subdivision could not be effective

to reduce the ill-conditioning of the problem and an adaptive parametrization should

be preferred. Observe moreover that in adaptive algorithms the Gauss Newton method

is applied only to those parameters belonging to Λ(k): avoiding parameters less than

the threshold ε2 is useful to reduce columns linear dependence.

Moreover, as analyzed in section 9.6.1, at the stationary regime, the problem be-

comes ill-conditioned: thus, considering only the transitional regime, space-time local-

ization could limit the ill-conditioning of the problem. In the 9 tests, on the finest

subdivision, the mean condition number is O(105) or O(103) respectively using or not
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space-time localization. Using an adaptive parametrization, it reduces from O(103) to

O(102).

9.6.6 Sensitivity of the fourth algorithm to thresholds variations

It is interesting to analyze what happens when thresholds used in the fourth algorithm

are changed. ε1 decides when a the segment corresponding to a parameter should be

refined: it is important to keep it not too low, to avoid over-refinements. ε2 is such

that parameters less than it are not considered to build the sensitivity matrix: avoiding

small parameters reduces computational cost and the ill-conditioning of the problem,

since we expect that they are not effective in output variations.

Previous observations are summarized in table 9.5, where test 1 is considered to

understand how convergence results varies when thresholds are slightly changed: when

ε1 is decreased the over-refinement increases, while when ε2 is lower both the compu-

tational cost (number of iterations) and the condition number increase. When both ε1

and ε2 decrease both the distance from the optimal subdivision and the computational

cost and the condition number increase. Thus in general to reduce the cost is it better

to increase ε1, while to obtain more accurate results it could be useful to adopt smaller

ε1 and ε2.

ε1 ε2 L1 error: opt. sub.: J̃(ϑ) num. it. mean condition number of Ψ

up down up down

0.4 0.4 1.15 0.168 +1 0 10−4 7 79.9513

0.3 0.4 1.15 0.168 +1 +1 10−4 7 79.9513

0.01 0.4 1.15 0.168 +1 +7 10−5 7 79.9513

0.4 0.3 1.192 0.02 +1 0 10−5 8 173.2498

0.4 0.01 1.207 0.05 +1 0 10−6 9 252.7891

0.01 0.01 1.259 0.01 +1 +3 10−6 9 210.4405

Table 9.5: Test 1: results for different values of ε1 and ε2.

9.7 The importance of stabilizing the problem

Dealing with convection dominated problems (‖u‖ >> µ) could be problematic, due to

spurious oscillations caused by the standard FE method. The simplest way to stabilize

the problem is to refine the mesh, i.e. to consider a higher number of degrees of
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freedom; otherwise on a coarse mesh a stabilization method such as SUPG, DW or

GLS, to mention only some of them, should be used (cfr. chapter 3). To simplify

the problem in the following we apply the simplest strategy, i.e. we refine the mesh.

However a stabilization method could be included in the model, modifying the weak FE

formulation. Stabilization techniques are used e.g. in (130, 136); also a time dependent

extension of the BAWR method, introduced in section 3.6, could be used to stabilize

the problem.

In this section we want to point out that the problem must be stabilized to obtain

a correct estimate. In fact consider Ω = [0, 8] × [0, 1], Γh = [0, 8] × {1} ∪ [0, 8] × {0},
the velocity field u is modeled as a Poiseuille flow i.e.

u(x1, x2) =

(
−4νx2

2 + 4νx2

0

)
,

assume moreover that µ = 0.1, σ = 0.1, cup = 0.1 and Γin = [0.5, 1] × {1}, ϑ = 100.

Apply to it the adaptive strategy with time localization, on different meshes. Results

are depicted in figure 9.18. As it can be seen, when the mesh is too coarse, the presence

of spurious oscillations compromise the convergence of the algorithm to the real profile,

whereas adopting a fine mesh eliminates them and gives a good estimate of the boundary

control.
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9.7 The importance of stabilizing the problem

Figure 9.18: Importance of using stabilization: concentration field (left), estimated profile

(right). First row: using 41 nodes along x-axis and 9 along y-axis. Second row: using 81

nodes along x-axis and 13 along y-axis. Third row: using 81 nodes along x-axis and 21

along y-axis.
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Conclusions

The first part of the thesis describes the parabolic models considered in the following

parts. In particular in chapter 3 convection-dominated problems are analyzed and the

Best Approximation Weighted Residuals (BAWR) method is presented, which is an

analytical, parameter-free, Petrov-Galerkin method that gives stable solutions of con-

vection dominated boundary-value problems. The method has an analytic foundation

(Theorem 3.6.1) and it is computationally efficient thanks to an approximation, made

to the optimal weighting functions. The estimated order of convergence is asyntotically

one and two for H1 and L2 norms respectively: it has been studied in section 3.6.2

both from an analytical and a numerical point of view. Numerical tests and bench-

marks for convection-dominated problems have been presented in section 3.6.4 (cfr.

e.g. (14, 27, 35). They show the effectiveness of the BAWR method, compared with

the Galerkin method. The BAWR solution can be improved by a post-processing tech-

nique (60), thanks to its least-squares character, that makes more meaningful a direct

comparison with other stabilization methods. Possible future perspectives are going in

this direction (see (60) for preliminary results).

The third part is about parabolic inverse problems. The corrosion estimation prob-

lem is described in chapter 8. The underlying dynamic is described by the heat equation

and the adopted numerical approach is based upon an adaptive FE discretization over

a variable domain. The inverse problem consists in estimating the vector of parame-

ters that best describes the depth of the real corroded profile. Two algorithms have

been presented: Inner-Outer Loop algorithm and Predictor-Corrector. While the first

one is more simple, usually it over-refine S, it is computationally more expensive and

corresponds to a worse conditioned problem. Instead the predictor-corrector strategy

uses a linear strategy to substitute the outer loop and it is able to limit the local refine-
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ment procedure to proper parts of S, using the norm and the mean of the prediction

error. This strategy allows the presence of small overestimates, penalizing huge ones.

Due to its linear predictor step and the application of the corrector step only to some

selected parameters, it is both less computational expensive and better conditioned.

Conducted numerical experiments reveals its ability to refine only where it is necessary

and its tendency to obtain small overestimates of the corroded profile.

The problem of pollution rate estimation is introduced in chapter 9: it extends some

ideas presented in (138, 156). Both liquid (e.g. water) and gas (e.g. air) pollution prob-

lems could be considered: when source location is known, we have demonstrated that

the problem can be solved e.g. using the Projected Damped Gauss Newton method.

When Γin is unknown, we have compared four solution strategies: working on the finest

subdivision or adopting an adaptive parametrization, and considering for both of them

also time localization. It has been proved that adaptive parametrization with time

localization (algorithm 4 introduced in chapter 9) is an effective strategy to estimate a

vector of parameters representig the pollutant released in the fluid. It is interesting to

note that it could be introduced also an unrefinement strategy, trying to get closer to

the optimal subdivision. For example consider figure 10.1: the optimal strategy would

estimate only one parameter in [1, 2]× {1}, and it would not bisect the segment [1, 2].

Instead algorithm 4 bisects [1, 2]: the problem here is that the direction of the convec-

tive field u produces an overestimate of the right hand side parameter of [1, 2] and an

underestimate of the left hand side one. Another interesting aspect could be the gen-

Figure 10.1: Need of an under-refinement strategy.

eralization of the problem to time varying boundary conditions on Γin and to analyze

more deeply the problem when space-time varying velocity fields are considered.

206



Appendix A

Some classical results

A.1 Introduction

The aim of this appendix is to summarize some classical results concerning classi-

cal methods used for discretizing boundary value problems, focusing on the Galerkin

method and some generalizations of it. We will follow the very well written presentation

of (65): we only mention the most important Theorems about a priori error analysis:

the interested reader could find more about these arguments e.g. in (4, 15, 64, 65, 71).

A.2 Definition of the continuous problem

Let Ω be an open, limited and lipschitz continuous boundary subset Ω ⊂ Rn, sufficiently

regular. We denote with ∂Ω its boundary and with ∂Ω∗ a subset of ∂Ω. Consider the

boundary value problem  LΘ = f in Ω

BΘ = 0 on ∂Ω
(A.1)

where f is a given function, L is a linear differential operator, often unbounded in

L2(Ω), B is an affine boundary operator and Θ ∈ X ⊂ L2(Ω) is the unknown. The

space X is defined such that L and B have meaning for functions belonging to it.

Problem (A.1) can be reformulated in a weak (variational) form, which allows to

search weak solutions in an Hilbert space V ⊇ X of admissible solutions, which don’t

necessarily satisfy (A.1) in a pointwise manner. This is possible choosing an Hilbert

weighting functions space W , multiplying LΘ = f by an arbitrary test function, inte-

grating on Ω and applying boundary conditions BΘ = 0 after using the Green’s Lemma.

The choice of V and W depends on L and B.

207



A. SOME CLASSICAL RESULTS

The corresponding variational problem can be stated in the following way:

find Θ ∈ V s.t. a(Θ, w) = F (w), ∀w ∈W, (A.2)

where a(·, ·) is a bilinear form a : V ×W → R corresponding to L and F (·) is a linear

operator F : W → R, which accounts for the right hand side f and for the possible

non-homogeneous Neumann boundary terms. It is important to underline that both

the choice of the spaces V and W and the forms a and F striclty depend upon the

differential operators L and F (·). Moreover in general Dirichlet boundary conditions

are essential, i.e. they are imposed explicitly (strongly) in the choice of functional

spaces V and W , while Neumann boundary conditions are natural, because they are

imposed by the weak formulation itself, choosing a proper F (24, 65).

Following (24), we give the following

Definition A.2.1 (Well-posedness) Problem (A.2) is said to be well-posed it admits

one and only one solution and if the following a priori estimate holds:

∃c > 0 s.t. ∀F ∈W ′
, ‖Θ‖V ≤ c ‖Θ‖W ′ ,

where Θ is the solution of the corresponding (A.2).

Thus it is important to understand which properties must be satisfied by a and F

such that the variational problem (A.2) is well-posed.

If W = V the following Theorem gives sufficient conditions for well-posedness:

Theorem A.2.1 (Lax-Milgram lemma). Let V be a (real) Hilbert space, endowed

with the norm ‖·‖, a : V × V → R a bilinear form and F : V → R a linear continuous

operator. Assume moreover that a is continuous, i.e.

∃γ > 0 : |a(Θ, w)| ≤ γ ‖Θ‖ ‖w‖ , ∀ Θ, w ∈ V,

and (strongly) coercive (or V -elliptic), i.e.,

∃C > 0 : |a(Θ,Θ)| ≥ C ‖Θ‖2 , ∀ Θ ∈ V.

Then there exists a unique Θ ∈ V solution of (A.2) and ‖Θ‖ ≤ 1
C ‖F‖V ′ , where V

′

denotes the dual space of V .

The proof is based on the Riesz representation theorem and we remaind e.g. to (65)

for it.
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Under the hypotesis of the previous Theorem if a is simmetric, i.e.

a(Θ, w) = a(w,Θ), ∀Θ, w ∈ V,

then it defines a scalar product on V and (A.2) is equivalent to the following minimiza-

tion problem:

find Θ ∈ V s.t. J(Θ) ≤ J(w), ∀w ∈ V,

where J(Θ) := 1
2a(Θ,Θ)− F (Θ).

In the more general case in which W 6= V the following Theorem gives necessary

and sufficient conditions for well-posedness (Nečas, 1962 ):

Theorem A.2.2 Let V and W be two (real) Hilbert spaces, endowed with norms ‖·‖V
and ‖·‖W respectively. Assume that there exist two positive constants γ > 0 and C > 0

s.t. the bilinear form a : V × V → R satisfies

|a(Θ, w)| ≤ γ ‖Θ‖V ‖w‖W , ∀ Θ ∈ V, w ∈W, (a is continuous),

supw∈W,w 6=0
a(Θ,w)
‖w‖W

≥ C ‖Θ‖V , ∀ Θ ∈ V,
supΘ∈V a(Θ, w) > 0, ∀w ∈W, w 6= 0.

}
(a is weakly coercive).

Then, for any F ∈W ′
, there exists a unique Θ ∈ V solution of (A.2) and ‖Θ‖V ≤

1
C ‖F‖V ′ .

The proof is similar to that of Lax-Milgram lemma and uses the Riesz representation

theorem. We remaind e.g. to (65) for it.

A.3 Discretization methods

Let h > 0 identify the mesh size of Ωh, discetizazion of Ω, and consider the families of

subspaces of V {Vh}h>0 and of W {Wh}h>0. Assume that ∀v ∈ V, infvh∈Vh ‖v − vh‖ →
0, as h → 0. This is possible e.g. if Vh = Xr

h, i.e. using a finite elements space,

where Xr
h :=

{
vh ∈ C0(Ω̄) : vh |Kj ∈ Pr, j = 1, . . . , Nel

}
and Pr denotes the set of

polynomials of degree r ≥ 1 (see e.g. (64)).

A.3.1 Galerkin Method

The (standard) Galerkin approximation to (A.2) is:

given F ∈ V ′ , find Θh ∈ Vh s.t. a(Θh, wh) = F (wh), ∀wh ∈ Vh. (A.3)
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If {φj}j=1,...,Nh
, Nh = dim(Vh), is a basis of Vh, then, writing Θh(x) =

∑Nh
i=1 Θiφi(x),

(A.3) is equivalent to the following Nh-dimensional linear system:

AΘ = F,

with Θ = (Θj)j , F = (F (φj))j and the stifness matrix Aij = a(φj , φi), i, j = 1, . . . , Nh.

Theorem A.3.1 Under the assumption of Theorem A.2.1 there exists a unique Θh ∈
Vh solution of (A.3) and ‖Θh‖V ≤

1
C ‖F‖V ′ (stability).

Moreover, if Θ is the solution of the countinuos variational problem (A.2), then

‖Θ−Θh‖V ≤
γ

C
inf

vh∈Vh
‖Θ− vh‖V (Cea Lemma).

This implies the convergence of Θh to Θ as h→ 0.

The proof is simple and uses Lax-Milgram lemma. We refer e.g. to (65) for it. Observe

that it states that consistency and stability implies convergence. It is important to

note that the convergence depends upon the approximation properties of the family

{Vh}h, and infvh∈Vh ‖Θ− vh‖V is usually estimated with the polinomial interpolation

error. This leads to the following estimate (a priori error analysis)

‖Θ−Θh‖V ≤ C̃h
l+1 |Θ|Hl+1(Ω) ,

‖Θ−Θh‖V ≤ C̃h
l ‖Θ‖Hl+1(Ω) ,

l = min(r, s − 1), where r denotes the degree of the interpolating polynomials of the

finite element space Vh and s depends on the regularity of Θ (Θ ∈ Hs(Ω)), i.e. on the

choice of the space V (64). These convergence results are optimal in the H1−norm,

i.e. they provide the highest possible rate of convergence in the H1−norm allowed by

the polynomial degree r. The term C̃ plays a central role, because it is a measure

of Galerkin method’s precision: if it is large, the corresponding solution Θh could be

inaccurate: in diffusion-convection-reaction problem, when convection or reaction are

dominant with respect to diffusion, the Galerkin solution presents spurious oscillations,

also when the analytical solution is monothonic.

A.3.2 Petrov-Galerkin (or non-Standard Galerkin) Method

The Petrov-Galerkin approximation to (A.2) is:

find Θh ∈ Vh s.t. ah(Θh, wh) = Fh(wh), ∀wh ∈Wh, (A.4)
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where {Vh}h and {Wh}h are two families of finite dimensional spaces s.t. Wh 6= Vh

and dim(Wh) = dim(Vh) = Nh, ∀h > 0, with norms ‖·‖Vh and ‖·‖Wh
respectively (if

Vh ⊂ V and Wh ⊂ W then ‖·‖Vh = ‖·‖V and ‖·‖Wh
= ‖·‖W ). Define V (h) = V + Vh

and assume that (24) that there exists a norm |·|V (h) s.t. |Θh|V (h) = |Θh|Vh for Θh ∈ Vh
and |Θ|V (h) ≤ c |Θh|V for all Θ ∈ V .

If ah : Vh ×Wh → R and Fh : Wh → R are apprximations to a and F respectively

(possibly coinciding with them), then (A.4) can be seen as an approximation of (A.2).

Observe that W and V need not be necessarily different.

The analysis of stability and convergence is a consequence of the following Theorem,

due to Babuška (4).

Theorem A.3.2 Under the assumption of Theorem A.2.2, suppose further that Fh :

Wh → R is a linear map and that ah : Vh ×Wh → R is a bilinear form s.t. there exists

a constant Ch > 0 s.t.

sup
wh∈Wh,wh 6=0

ah(Θh, wh)

‖wh‖Wh

≥ Ch ‖Θh‖Vh , ∀ Θh ∈ Vh,

sup
Θh∈Vh

ah(Θh, wh) > 0, ∀wh ∈Wh, wh 6= 0.

Then there exists a unique Θh ∈ Vh solution of (A.4) and ‖Θh‖Vh ≤
1
Ch

supwh∈Wh,wh 6=0
Fh(wh)
‖wh‖Wh

(stability).

Moreover, if Θ is the solution of the countinuos variational problem (A.2), and

Vh ⊂ V and Wh ⊂W then

|Θ−Θh|V ≤ infvh∈Vh

[(
1 + γ

Ch

)
|Θ− vh|V + 1

Ch
supwh∈Wh,wh 6=0

|a(vh,wh)−ah(vh,wh)|
‖wh‖W

]
+ 1
Ch

supwh∈Wh,wh 6=0
|F (wh)−Fh(wh)|

‖wh‖W
,

(A.5)

For the proof see e.g. (65), (24).

Now we give an important definition.

Definition A.3.1 (Consistency) Let Θ be the solution of (A.2); define the truncation

error of a Petrov Galerkin method as

τh(Θ) = sup
wh∈Wh,wh 6=0

|ah(Θ, wh)− Fh(wh)|
‖wh‖

.

Then a method is consistent if limh→0 τh(Θ) = 0. Moreover it is strongly consistent

if τh(Θ) ≡ 0, ∀h > 0.
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It is possible to state an algebraic problem equivalent to (A.4): let {φi}i=1,...,Nh
and

{ψj}j=1,...,Nh
be basis of Vh and Wh respectively, then, writing Θh(x) =

∑Nh
i=1 Θiφi(x),

we obtain

AΘ = F,

with Θ = (Θi)i, F = (Fh(ψj))j and the stifness matrix Aji = ah(φi, ψj), i, j =

1, . . . , Nh.

Conditions of Theorem A.3.2 on ah can be interpreted as conditions on A, i.e.,

ker(A) = {0} and rank(A) = dimWh.

A.3.3 Generalized (or Standard) Galerkin Method

The Generalized Galerkin approximation to (A.2) is particular case of the Petrov

Galerkin one (A.4):

find Θh ∈ Vh s.t. ah(Θh, wh) = Fh(wh), ∀wh ∈ Vh, (A.6)

where {Vh}h is a family of finite dimensional subspaces of V , ∀h > 0. If the bilinear

form ah : Vh × Vh → R and the linear operator Fh : Vh → R are apprximations to a

and F respectively, then the following results hold (for their proofs cfr. e.g. (65)).

Theorem A.3.3 ((First) Strang Lemma) Under the assumption of Theorem A.2.1,

suppose further that Fh is a linear map and that ah is uniformly coercive over Vh×Vh,

i.e. there exists a constant C∗ > 0 s.t. ∀h > 0

ah(wh, wh) ≥ C∗ ‖wh‖2V , ∀ wh ∈ Vh.

Then there exists a unique Θh ∈ Vh solution of (A.6) and ‖Θh‖V ≤
1
C∗ supwh∈Vh,wh 6=0

Fh(wh)
‖wh‖

(stability).

Moreover, if Θ is the solution of the countinuos variational problem (A.2), then

|Θ−Θh|V ≤ infvh∈Vh

[(
1 + γ

C∗

)
|Θ− vh|V + 1

C∗ supwh∈Vh,wh 6=0
|a(vh,wh)−ah(vh,wh)|

‖wh‖

]
+ 1
C∗ supwh∈Wh,wh 6=0

|F (wh)−Fh(wh)|
‖wh‖ .

(A.7)

Proposition A.3.1 Under the assumptions of Theorem A.3.3, suppose further that

ah is defined at (Θ, vh), where Θ is the solution of (A.2) and vh ∈ Vh and the exists a

constant γ∗ > 0 s.t. ah satisfies

|ah(Θ− wh, vh)| ≤ γ∗ ‖Θ− wh‖V ‖vh‖W , ∀ wh, vh ∈ Vh,

uniformly with respect to h > 0. Then the following convergence estimate holds:

|Θ−Θh|V ≤
(

1 +
γ∗

C∗

)
inf

wh∈Vh
|Θ− wh|V +

1

C∗
sup

vh∈Vh,vh 6=0

|ah(Θ, vh)− Fh(vh)|
‖vh‖

. (A.8)
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A.4 Mixed (or constained) variational problems

A.4.1 Infinite dimensional variational problem

For particular kind of problems (e.g. Stokes problem), it could be convenient to consider

a mixed formulation, which is an alternative to Theorems A.2.2 and A.3.2. In this

section we present only main results concerning constained problems. For more details

cfr. e.g. (24, 65). Let X and M be two real Hilbert spaces with norms ‖·‖X and ‖·‖M
respectively and dual spaces X

′
and M

′
. Consider two bilinear forms

a : X ×X → R, b : X ×M → R,

such that
|a(w, v)| ≤ γ ‖w‖X ‖v‖X ,
|b(w, µ)| ≤ δ ‖w‖X ‖µ‖M .

(A.9)

Consider the following problem:
find (u, η) ∈ X ×M s.t.

a(u, v) + b(v, η) = 〈l, v〉 , ∀v ∈ X,
b(u, µ) = 〈σ, µ〉 , ∀µ ∈M,

(A.10)

where l ∈ X ′ , σ ∈ M ′
and 〈·, ·〉 denotes the duality pairing between X

′
and X or M

′

and M .

Consider two linear continuous operators A : X → X
′

and B : X → M
′

s.t.

〈Aw, v〉 = a(w, v), ∀w, v ∈ X and 〈Bv, µ〉 = b(v, µ), ∀v ∈ X,µ ∈M ; with this notation

the adjoint of B is B∗ : M → X
′

(i.e. s.t. 〈B∗µ, v〉 = 〈Bv, µ〉, ∀v ∈ X,µ ∈ M). Then

(A.10) is equivalent to 
find (u, η) ∈ X ×M s.t.

Au+ B∗η = l, in X
′
,

Bu = σ, in M
′
.

(A.11)

Let us now introduce the linear operator φ : X × M → X
′ × M

′
, φ(v, µ) :=

(Av + B∗µ,Bv). The problem (A.11) is well-posed if φ is an isomorphism. The aim is

to find necessary and sufficient conditions (32).

Define the affine manifold

Xσ = {v ∈ X s.t. b(v, µ) = 〈σ, µ〉 , ∀µ ∈M} .

Then X0 = ker(B), which is a closed subset of X.

Associate now to problem (A.10) the following one

find u ∈ Xσ s.t. a(u, v) = 〈l, v〉 , ∀v ∈ X0; (A.12)
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if (u, η) is a solution of (A.10), then it is a solution of (A.12). The aim is to introduce

suitable conditions which garantees that the converse is also true, and that the solution

to (A.12) does exist and is unique.

Theorem A.4.1 Assume that the bilinear form a satisfies (A.9) and is coercive on

X0, i.e. there exists a constant C > 0 s.t.

a(v, v) ≥ C ‖v‖2X , ∀v ∈ X
0.

Moreover suppose that the bilinear form b satisfies (A.9) and the compatibility condition

there exists β∗ > 0 s.t. ∀µ ∈M∃v ∈ X, v 6= 0: b(v, µ) ≥ β∗ ‖v‖X ‖µ‖M . (A.13)

Then for each l ∈ X ′ , σ ∈M ′
there exists a unique solution u of (A.12) and a unique

η ∈M s.t. (u, η) is the unique solution of (A.10). Moreover the map (l, σ)→ (u, η) is

an isomorphism from X
′ ×M ′

into X ×M , and

‖u‖X ≤
1

C

(
‖l‖X′ +

C + γ

β∗
‖σ‖M ′

)
,

‖η‖M ≤
1

β∗

((
1 +

γ

C

)
‖l‖X′ +

γ(C + γ)

Cβ∗
‖σ‖M ′

)
.

For a proof see e.g. (65).

A.4.2 Finite dimensional variational problem

Consider now an approximation of (A.10): let Xh and Mh be finite dimensional sub-

spaces of X and M respectively. Consider the following discete problem:
find (uh, ηh) ∈ Xh ×Mh s.t.

a(uh, vh) + b(vh, ηh) = 〈l, vh〉 , ∀vh ∈ Xh,

b(uh, µh) = 〈σ, µh〉 , ∀µh ∈Mh;

(A.14)

define moreover the space

Xσ
h = {vh ∈ Xh s.t. b(vh, µh) = 〈σ, µh〉 , ∀µh ∈Mh} .

Observe that Mh ⊂M does not imply that Xσ
h is a subspace of Xσ.

The discretization of problem (A.12) is the following one

find uh ∈ Xσ
h s.t. a(uh, vh) = 〈l, vh〉 , ∀vh ∈ X0

h; (A.15)

if (uh, ηh) is a solution of (A.14), then it is a solution of (A.15). As in the continuous

case, the aim is to introduce suitable conditions which garantees that the converse is

true and an analysis of convergence and stability.
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Theorem A.4.2 (Stability) Assume that the bilinear form a satisfies (A.9) and is

coercive on X0, i.e. there exists a constant Ch > 0 s.t.

a(vh, vh) ≥ Ch ‖vh‖2X , ∀vh ∈ X
0
h.

Moreover suppose that the bilinear form b satisfies (A.9) and the compatibility condition

there exists βh > 0 s.t. ∀µh ∈Mh∃vh ∈ Xh, vh 6= 0: b(vh, µh) ≥ βh ‖vh‖X ‖µh‖M .

(A.16)

Then for each l ∈ X ′ , σ ∈M ′
there exists a unique solution (uh, ηh) of (A.14) s.t.

‖uh‖X ≤
1

Ch

(
‖l‖X′ +

Ch + γ

βh
‖σ‖M ′

)
,

‖ηh‖M ≤
1

βh

((
1 +

γ

Ch

)
‖l‖X′ +

γ(Ch + γ)

Chβh
‖σ‖M ′

)
,

which are stability results in those cases in which both Ch and βh are indipendent of h.

Observe that the discrete compatibility condition (A.16) is also called inf-sup of Ladyzhenskaya-

Babuška-Brezzi (LBB) condition and can be written equivalently (32)

there exists βh > 0 s.t. ∀µh ∈Mh∃vh ∈ Xh, vh 6= 0: b(vh, µh) = ‖µh‖2M , ‖vh‖X ≤
1

βh
‖µh‖M .

(A.17)

This condition it is necessary to achieve uniqueness of ηh. Observe that it can be

written as:

if µh ∈Mh and b(vh, µh) = 0, ∀vh ∈ Xh, then µh = 0.

Thus, if the compatibility condition is not satisfied, there exists a spurious (or parasitic)

mode µ∗h ∈Mh, µ
∗
h 6= 0 s.t.

b(vh, µ
∗
h) = 0, ∀vh ∈ Xh.

This means that if (uh, ηh) solves (A.14), also (uh, ηh + λµ∗h) is a solution for every

λ ∈ R: uniqueness is lost and instabilities may be generated for the numerical method,

as we will see for the Stokes problem.

Theorem A.4.3 (Convergence) Let the assumptions of Theorems A.4.1 and A.4.2 be

satisfied. Then the solutions (u, η) and (uh, ηh) to (A.10) and (A.14) respectively satisfy

the following error estimates

‖u− uh‖X ≤
(

1 + γ
Ch

)
infvh∈Xσ

h
‖u− vh‖X + δ

Ch
infµh∈Mh

‖η − µh‖M
‖η − ηh‖M ≤

γ
βh

(
1 + γ

Ch

)
infvh∈Xσ

h
‖u− vh‖X +

(
1 + δ

βh
+ γδ

Chβh

)
infµh∈Mh

‖η − µh‖M .

(A.18)
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Moreover the following estimate holds:

inf
vh∈Xσ

h

‖u− vh‖X ≤
(

1 +
δ

βh

)
inf

vh∈Xh
‖u− vh‖X (A.19)

For proofs see e.g (65).

Observe that to derive optimal error bounds, inequality constants must be indepen-

dent of h. For the infsup condition the following lemma holds:

Lemma A.4.1 (Fortin) The infsup condition (A.16) holds with a constant βh = β > 0

independent of h iff there exists a linear continuous operator Πh : X → Xh s.t.

b(v −Πhv, µh) = 0, ∀µh ∈Mh, ∀v ∈ X

and

‖Πhv‖X ≤ C ‖v‖X , ∀v ∈ X,

with C > 0 independent of h.

For a proof cfr. (32).
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Appendix B

POD: comparison between finite

and infinite dimensional

formulations

In the literature are presented substantially two different formulations of POD:

1. the first one, in a Model Order Reduction (MOR) context, first discretizes (6.22)

in space, for example using the FE method. Thus a dynamical system of type

(5.4) is obtained and the POD reduction is applied to it starting from X, through a

Galerkin projection, obtaining (6.8). In this context the POD basis is {u1, . . . ,uk},
the first k left singular vectors of the matrix of snapshots X, and Uk = [u1, . . . ,uk],

ui ∈ Rn. Equivalently, the basis could be computed applying the method of snap-

shots (cfr. equation (6.3) and (6.4)).

2. The second method reduces directly (6.22), applying the POD-Galerkin method

(equation (6.25)). The POD basis {ψ1, . . . , ψk}, ψi ∈ V could be computed

applying the method of snapshots:

ψi =
1√
λi

YNvi =
1√
λi

N∑
j=0

αjvi(j)y(tj), i = 1, . . . , d,

where vi is such that KNvi = λivi (Remark 6.4.1). Thus ψi is a linear combina-

tion of snapshots y(tj).

In this section it is shown that the associated algebraic systems are equivalent.
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B. POD: COMPARISON BETWEEN FINITE AND INFINITE
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B.1 Computation of the POD modes

First of all, given the parabolic problem (6.22), consider the snapshots ensamble

V = {y(t1), . . . , y(tN )} .

From a numerical point of view these trajectories are only known in n discretization

points: thus we can associate to V the discretization matrix

X = {x(t1), . . . ,x(tN )} ∈ Rn×N ,

s.t. vector x(ti) can be thought as a space discretization of the corresponding continuous

in time snapshot y(ti).

From a numerical point of view trajectories are known only on space discretization

points: thus, also the POD basis ψi is known only on these points. In practice

ψi ≈ Ψi =
1√
λi

N∑
j=0

αjvi(j)x(tj), i = 1, . . . , d.

Thus we obtain
XTWXTDvi = λivi,

Ψi = 1√
λi
XWvi

(B.1)

which is the discrete method of snapshots (6.4), where W is the diagonal matrix of

space quadrature weights.

Thus from a numerical point of view, the computation of the discrete POD basis

{u1, . . . ,uk} is equivalent to the approximation of {ψ1, . . . , ψk} over spacial nodes (ui =

Ψi for all i = 1, . . . , k).

B.2 Reduced models

MOR approach

First of all we discretize (6.22) using the FE method. Thus let Vh ⊂ V be a FE space

with basis
{
φih
}

, i = 1, . . . , n, n ≥ k. The FE discretization of (6.22) is the following:

given f ∈ C([0, T ];V ), y0h ∈ Vh we consider the nonlinear evolution problem: find

yh(t) ∈ Vh s.t. ∀φh ∈ Vh, a.e. t ∈ (0, T ]

d
dt(yh(t), φh)V + a(yh(t), φh) + 〈b(yh(t), yh(t)) +Ryh(t), φh〉V ′ ,V = (f(t), φh)V ,

yh(0) = y0h in Vh.

(B.2)
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Discretizing in time (B.2), using the backward Euler method, we should find a sequence

{Zl}ml=0 ∈ V n s.t.

(
Zl−Zl−1

δτl
, φh)V + a(Zl, φh) + 〈b(Zl, Zl) +RZl, φh〉V ′ ,V = (f(τl), φh)V , ∀φh ∈ V n

(B.3)

Writing Zl =
∑n

i=1 zl(i)φ
i
h, for all l = 0, . . . ,m, zl ∈ Rn, the finite dimensional system

(B.3) is equivalent to the following algebric problem

M
zl−zl−1

δτl
+Kzl +B(zl)zl +Rzl = F (τl)

z0 = y0,
(B.4)

where Mij := (φih, φ
j
h)V , Kij := a(φjh, φ

i
h)V , (B(zl))ij =

〈∑n
k=1 z

k
l b(φ

i
h, φ

k
h), φjh

〉
V ′ ,V

,

Rij =
〈
Rφih, φ

j
h

〉
V ′ ,V

and F (τl) = (f(τl), φ
j
h)V , i, j = 1, . . . , n.

Let Uk = [u1, . . . ,uk] ∈ Rn×k be the k-th POD basis (cfr. Corollary 6.2.2), for a

fixed k ≤ n. Applying POD, as descrived in section 6.2, corresponds to consider the

following reduced system

Mk
al−al−1

δτl
+Kkal +Bk(ẑl)al +Rkal = Fk(τl)

a0 = Uky0,

ẑl = Ukal,

(B.5)

where ẑl ≈ zl and

Mk = U∗kMUk,

Kk = U∗kKUk,

Bk(ẑl) = U∗kB(ẑl)Uk,

Rk = U∗kRUk,

Fk(τl) = U∗kF (τl).

(B.6)

ROM approach

Observe that in (6.25), ŷ(t) ∈ V k, thus it is a linear combination of {ψ1, . . . , ψk}.
Then (6.25) is equivalent to a system of k ODEs, and not n, like the one we would

obtain discretizing (6.22) with the finite element method (equation (B.2)). Thus we

are solving directly a reduced problem. This is a difference with respect to the MOR

approach presented in section 6.2, which first compute the unreduced ODE system.

The time discretization of (6.25) is given by (6.28). Considering Yl =
∑k

i=1 yl(k)ψk,

yl ∈ Rk, the corresponding algebraic problem is the following

M̃k
yl−yl−1

δτl
+ K̃kyl + B̃k(yl)yl + R̃kyl = F̃k(τl) (B.7)
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where M̃kij := (ψi, ψj)V , K̃kij := a(ψj , ψi)V , (B̃k(yl))ij =
〈∑k

s=1 y
s
l b(ψ

i, ψs), ψj
〉
V ′ ,V

,

R̃kij =
〈
Rψi, ψj

〉
V ′ ,V

and F̃kj (τl) = (f(τl), ψ
j)V , i, j = 1, . . . , k.

As noticed before, in general {ψi} is only known on discretization points: consid-

ering e.g. the FE space Vh we suppose that ψi =
∑n

l=1 Ψl
iφ
l
h, using the nodal values

Ψi ∈ Rn previously introduced. Then, defining defining Ψ = [Ψ1, . . . ,Ψk] ∈ Rn×k, the

matrices of system (B.7) can be computed in the following way:

M̃k = Ψ∗MΨ;

K̃k = Ψ∗KΨ;

B̃k(yl) = Ψ∗B(Ψyl)Ψ;

R̃kij = Ψ∗RΨ;

F̃kj (τl) = Ψ∗F (τl).

(B.8)

In conclusion, applying both techniques from a numerical point of view we hand up

with equivalent reduced albegraic system.
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