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Abstract

We introduce logical judgements for the internal logic of a quantum
computer with two qubits, in the two limit cases of non-entanglement (sep-
arable states) and maximal entanglement (Bell’s states). To this aim, we
consider an internal (reversible) measurement which preserves the proba-
bilities by mirroring the states. We then obtain logical rules, obeying the
reflection principle of basic logic, which illustrate the different computa-
tional behaviour of separable and Bell’s states.

1 Introduction

The main aim of our work is to look for the inner logic of quantum computation
[15], illustrating the point of view of a hypotetical “internal observer” who lives
inside the quantum black box. Such an observer, introduced in [22], can perform
internal reversible measurements in the quantum system. Recently, the geomet-
rical approach of [22] has been algebraically developed in [24]. Furthermore, in
a logical framework, the idea is that internal measurements give rise to logical
assertions ([1], [2]), which are then treated following the reflection principle as
in basic logic [19]. Indeed, by the reflection principle, logical connectives are
the result of importing some pre-existing metalinguistic links between assertions
into the formal language. Our final purpose is to obtain adequate connectives,
corresponding to the physical links in the quantum black box, and the associated
inference rules. The latter should witness the process of quantum computation.

In [2] whe have considered a toy-model quantum computer with one qubit
and have obtained an interpretation of the superposition of the two basis states in
terms of the additive conjunction “&” (and, dually, with the additive disjunction
“⊕”). The resulting logic is paraconsistent (see also [8], [7]), and symmetric,
like basic logic.

In the present paper, we introduce a model of two qubits. This makes it
possible to deal with two different physical links occurring between the two
qubits of the register: maximal entanglement (the two qubits are a Bell state)
and non entanglement (the two qubits state is separable).
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One of the main advantages of quantum computation versus its classical
counterpart is quantum computational speed up, due to massive quantum par-
allelism. Entanglement has been proved to be the sufficient and necessary con-
dition for quantum computational speed up, at least for pure states [13]. Up to
now, however, entanglement has been considered just as the physical support
to the quantum computational process rather than an intrinsical formal feature
of the process itself. The reason for this can be easily be attributed to history.
In fact, as it is well known, entanglement was first investigated in the thirties,
while quantum computation was introduced in the eighties by R. Feynman [10].
So, one is lead to adopt the traditional algebraic characterizations. However,
disregarding the historical background of quantum mechanics, and focusing on
quantum computation, one might identify entanglement with quantum compu-
tational speed up. Then, if one is interested in the internal logic of quantum
computation, she/he will be automatically lead to look for the internal logic of
entanglement. So one could describe computational speed up in logical terms
rather than the state in algebraic terms (C-NOT and control). To do this, it
is necessary to develop a logical calculus for entanglement which seems to re-
quire unshared contexts ([23]). This approach is under study, but it is also the
underlying idea in the present work.

In this framework see also [9] concerning the quantum computational flow.
Moreover see [16] and [6] (the latter in category theory) concerning the tele-
portation protocol. Up to now, people have been generally more interested
in finding quantum algorithms “ad hoc” exploiting entanglement rather than
giving an axiomatic formalization of quantum computational speed up itself.
However, we think that only an axiomatic approach could lead to a deep un-
derstanding of this process, and probably, provide a formal scheme to generate
many more quantum algorithms.

Finally, we think that the lack of formalization of entanglement is also due
to the fact that, up to now, the most common interpretations of a quantum
phenomenon are settled in a subjective perspective. The subjective interpreta-
tion, in our opinion, leads to disregard entanglement as a computational process,
since in that view it cannot be treated as a “fact”. Indeed, only very few authors
have been involved in an objective interpretation ([14], [12]). Our attitude, in
particular, is strongly objectivist, as we rely on the notion of internal measure-
ment [22], [24], and then we are able to “measure” an entangled state from
“inside”.

2 Measurements and Mirrors

To obtain the judgements for the two qubits model, we extend the definition
of the internal measurement to the case of two qubits. We remind that, in a
Hilbert space C2, the internal measurement of one qubit is given by a unitary
2 × 2 complex matrix [22]. In such a model, the judgements are obtained by
means of a particular internal measurement, called “mirror measurement” [2],
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given by the matrices:

M = eiφ

(

α 0
0 α∗

)

(1)

where αα∗ = |α|2 = 1. We have:

M(a|0〉 + b|1〉) = eiφ(αa|0〉 + α∗b|1〉) (2)

So, our mirrors are “quasi-identities”; actually, they modify the longitude of the
qubit in the Bloch sphere, that is, the probability amplitudes:

a→ a′ = eiφαa

b→ b′ = eiφα∗b

and preserve the “internal truth” given by the probabilities, since |a′|2 = |a|2
and |b′|2 = |b|2. For this reason, we have chosen mirror-matrices to witness the
internal truth and the consequent logical judgements, as we shall see in the next
section.

We now extend the mirror-matrices to C4. If M1 = eiφ1

(

α 0
0 α∗

)

and

M2 = eiφ2

(

β 0
0 β∗

)

, the tensor product M = M1 ⊗M2 given by:

M = ei(φ1+φ2)









αβ 0 0 0
0 αβ∗ 0 0
0 0 α∗β 0
0 0 0 α∗β∗









= eiφ









γ 0 0 0
0 δ 0 0
0 0 δ∗ 0
0 0 0 γ∗









(3)

is also a mirror matrix. In fact, the most general state of C4 in the computational
basis is:

|ψ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉 (4)

and one has:

M |ψ〉 = eiφ(γa|00〉 + δb|01〉 + δ∗c|10〉 + γ∗d|11〉) (5)

and again we have: a→ a′ = eiφγa... and so on, then probabilities are preserved:
|a′|2 = |a|2... and so on.

Note that, if |ψ〉 is one of the Bell states |ψ±〉 = 1/
√

2eiφ|00〉± 1/
√

2eiφ|11〉,
its mirroring is: M |ψ±〉 = γ1/

√
2eiφ|00〉 ± γ∗1/

√
2eiφ|11〉. Similarly, for the

Bell’s state |φ±〉 = 1/
√

2eiφ|01〉±1/
√

2eiφ|10〉, we haveM |φ±〉 = δ1/
√

2eiφ|01〉±
δ∗1/

√
2eiφ|10〉. Then Bell states behave as a single particle in the mirroring,

since the result of applying a mirror to a Bell state has the same form as (2).
This fact will be shown in Sect.4 in logical terms.
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3 From Mirrors to Judgements in the Black Box

We recall the line of thought followed for the case of the one qubit model (see
[2]). Inside the Black Box, a hypothetical internal observer P is equipped with
mirror-matrices and then can perform reversible measurements. Outside the
Black Box, instead, an external observer G can perform standard quantum
measurements, represented by projectors.

It is well known that performing a standard quantum measurement in the
given basis, e.g. |0〉, |1〉, on a qubit |q〉 = a|0〉 + b|1〉, means to apply one of
the two projectors P0 or P1, breaking the superposition and obtaining one of
the two basis states. So the observer G can “read” the value of the qubit as
|0〉, asserting: “|0〉 is true” or |1〉, asserting: “|1〉 is true”. So, let us suppose
that a standard quantum measurement is applied and a result A ∈ {|0, |1〉〉} is
obtained. Then G asserts “A is true”, written as:

` A

Conversely, denoting by A⊥ the opposite result, G asserts “A⊥ is true”, written
as:

` A⊥

By the no cloning theorem [21], after the measurement, G can assert only one

of the two. The same does not happen to the internal observer P, who applies
a mirror to |q〉. In fact, any mirror is the sum of the two projectors:

M = eiφ

(

α 0
0 α∗

)

= eiφαP0 + eiφα∗P1 (6)

so that M |q〉 = eiφαP0|q〉+ eiφα∗P1|q〉. Hence P obtains a superposition of the
two results obtainable by G. We write then both the above judgements together:

` A ` A⊥

What is a couple of possibilities for G is instead a unique fact for P! By the
reflection principle, a connective corresponds to a link between judgements. As
in [19], we make the connective “&” correspond to the above couple, putting

` A&A⊥ ≡ ` A ` A⊥ (7)

Then
` A&A⊥ (8)

“A&A⊥ is true” is the judgement put by P inside the Black Box, concerning
the value of the qubit |q〉.

Now, let us consider a two-qubit model, that is a Black Box equipped with
a register |ψ〉 of two qubits |q1〉, |q2〉. Fixed a basis of C4, e.g. the compu-
tational basis |00〉, |01〉, |10〉, |11〉, the external observer, who performs a stan-
dard quantum measurement in that basis, applies one of the four projectors
P00, P01, P10, P11. Let us suppose that she finds an answer A ∈ {|0〉, |1〉} for |q1〉
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and an answer B ∈ {|0〉, |1〉} for |q2〉. Then she has a register of two classical
bits, and her assertion is:

` A,B (9)

where the comma stands for the register link between the two classical bits. We
interpret the link by the multiplicative connective on the right of the sequent,
which is called “par” in linear logic, here written as “�”. “Par” has the same
physical meaning of the tensor product “times”, which, however, is used in linear
logic and basic logic to interpret the comma on the left of the sequent.

Then, as in [19] we put the equation:

` A�B ≡ ` A,B (10)

What are all the possible judgements? If the measurements of the two qubits
are independent, four combinations are possible:

` A,B ` A,B⊥ ` A⊥, B ` A⊥, B⊥

and so four judgements are obtainable:

` A�B ` A�B⊥ ` A⊥ �B ` A⊥ �B⊥ (11)

This is the case of a pair of unentangled qubits. On the contrary, let us consider
a Bell pair. In such a case the two measurements are related, thus not all
combinations are possible: if ` A,B is a result, then ` A⊥, B⊥ is the only
other. Note that G is in general unaware of the link existing between |q1〉 and
|q2〉 inside the Black Box, so that the same register link is used outside. Then,
in the case of entanglement, two judgements are possible outside:

` A�B ` A⊥ �B⊥ (12)

As in the case of one qubit, the external observer can put only one of the possible
judgements. Again, the judgement of the internal observer is given by a mirror
measurement, and mirrors of C4 are obtainable as a linear combination of the
four projectors:

M = eiφ(γP00 + δP01 + δ∗P10 + γ∗P11) (13)

So P, who applies M to the register |ψ〉, obtains:

M |ψ〉 = eiφ(γP00|ψ〉 + δP01|ψ〉 + δ∗P10|ψ〉 + γ∗P11|ψ〉) (14)

that is the superposition of the possible values obtainable outside. If |ψ〉 is not
a maximally entangled state, every projector gives a result and the judgement
of the internal observer is obtained as a superposition of the four judgements in
(11), that is:

` (A�B)&(A�B⊥)&(A⊥ �B)&(A⊥ �B⊥) (15)
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If |ψ〉 is a Bell state, for example |ψ±〉, one has M |ψ±〉 = eiφ(γP00|ψ±〉 +
γ∗P11|ψ±〉). The same holds for the other Bell states. The result of the measure-
ment of a maximally entangled state is the superposition of the two judgements
(12), that is:

` (A�B)&(A⊥ �B⊥) (16)

Now, let us consider the internal measurement without any reference to
the external one. We know that P achieves a superposition A&A⊥ measuring
|q1〉 and another B&B⊥ measuring |q2〉. The two results are linked by two
different register links present in the black box, that is non entanglement and
maximal entanglement. For non entanglement we write �, while, for maximal
entanglement ./. The mirror measurement gives one of the two judgements:

` (A&A⊥) � (B&B⊥) (17)

and
` (A&A⊥) ./ (B&B⊥) (18)

respectively.
We put the two reflection principles, writing �0 (no correlation) and �1

(maximum correlation) for the two corresponding binary connectives:

` (A&A⊥) �0 (B&B⊥) ≡ ` (A&A⊥) � (B&B⊥) (19)

and
` (A&A⊥) �1 (B&B⊥) ≡ ` (A&A⊥) ./ (B&B⊥) (20)

So we have two kinds of internal judgements concerning our register of two
qubits:

` (A&A⊥) �0 (B&B⊥) (21)

and
` (A&A⊥) �1 (B&B⊥) (22)

As for the states that are neither separable nor maximally entangled, we argue
that connectives �x, x ∈ (0, 1) (where x is a suitable degree of correlation),
should be introduced, perhaps leading to a kind of fuzzy logic.

4 Towards a calculus of judgements

Of course, the internal judgements (21) and (22) must be equivalent to the
superposition of the external ones (15) and (16), that is we have to prove the
following equivalence:

` (A&A⊥)�0 (B&B⊥) ⇐⇒ ` (A�B)&(A�B⊥)&(A⊥�B)&(A⊥�B⊥) (23)

in the non entangled case, and the equivalence:

` (A&A⊥) �1 (B&B⊥) ⇐⇒ ` (A�B)&(A⊥ �B⊥) (24)
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in the maximally entangled case.
In order to prove the equivalences, we first remind that, in basic logic, which

is a quantum linear logic, the additive connective & is obtained putting the
following definitional equation:

Γ ` A&B ≡ Γ ` A Γ ` B (25)

which does not admit any context besides the active formulae A and B (visibility
of basic logic). On the contrary, the same equation in any non-quantum logic
can be written with a context C:

Γ ` A&B,C ≡ Γ ` A,C Γ ` B,C (26)

As it is well known, in this case, one case derive distributivity of the multi-
plicative disjunction (here �) with respect to the additive conjunction &, that
is (A � C)&(B � C) = (A&B) � C. Here, we see a derivation of distributivity
which exploits only definitional equations. As we have seen in basic logic, the
definitional equations give rise to “formation” and “implicit reflection” rules,
each one corresponding to a direction of the equivalence. Such rules can be
found in the following derivation, which can be read top-down and bottom-up.

Γ ` (A� C)&(B � C)

Γ ` A� C
Γ ` A,C � Γ ` B � C

Γ ` B,C �
&

Γ ` (A&B), C

Γ ` (A&B) � C
�

&cont

(27)

Then, putting Γ = (A�C)&(B�C) and reading the above top-down, one derives
the sequent (A � C)&(B � C) ` (A&B) � C, while putting Γ = (A&B) � C
and reading the above bottom-up, one derives the sequent (A&B) � C ` (A �
C)&(B � C). So one proves distributivity.

Inside the black box, we have (at least!) two kinds of distinct links for
registers and hence we can deal with two different versions of the equation for
&:

Γ ` (A&A⊥) ./ (B&B⊥) ≡ Γ ` A,B Γ ` A⊥, B⊥ (28)

for maximal entanglement, and:

Γ ` (A&A⊥) � (B&B⊥) ≡ Γ ` A,B Γ ` A⊥, B Γ ` A,B⊥ Γ ` A⊥, B⊥

(29)
for non entanglement. Note that this last equation could be derived from the
classical one, considering the separation link � instead of the comma, putting
B = A⊥, C = B&B⊥ and expanding twice (one needs also to assume commu-
tativity or to put the definitional equations for contexts on the left too). That
is, the unentangled case corresponds to a classical use of the context. On the
contrary, in the equation (28), we have an odd use of the context, corresponding
to entanglement. Notice moreover that, due to visibility, the basic logic equa-
tion (25) represents a lower bound for both the equations valid in the black box,
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that is (28) and (29). This means again that the external observer, unaware
of the actual kind of correlations present in the black box, but aware of her
unawareness, must, as Scepticism suggests, suspend judgement. Hence, for her
judgements, no context at all.

Now let us prove the equivalences. This can be achieved again disassembling
the judgements and then assembling them the other way around, as we have
already done above for distributivity. We have the following pair of derivations:

` (A�B)&(A⊥ �B⊥)

` A�B
` A,B � ` A⊥ �B⊥

` A⊥, B⊥
�

&

` (A&A⊥) ./ (B&B⊥)

` (A&A⊥) �1 (B&B⊥)
�1

&congr

(30)

for the maximally entangled case, and

` (A�B)&(A�B⊥)&(A⊥ �B)&(A⊥ �B⊥)

` A�B
` A,B � ` A�B⊥

` A,B⊥
� ` A⊥ �B

` A⊥, B
� ` A⊥ �B⊥

` A⊥, B⊥
�

&

` (A&A⊥) � (B&B⊥)

` (A&A⊥) �0 (B&B⊥)
�0

&cont

(31)

for the non entangled case.
The above couple of derivations can be read top-down and bottom-up, pro-

viding the required equivalences between the judgements. In particular, in (30)
we have the new rule “&congr”, which follows from the definitional equation
(28), where “congr” is for “congruence”, as equation (28) resembles a congru-
ence rule in algebraic terms. It shows in logical terms that entanglement is
a particular form of superposition. In (31) the rule “&cont” (for “context”),
coming from the definitional equation (29), that is equivalent to the classical
equation (26), is a form of a classical &-rule of sequent calculus.

The premise Γ, used in the definitional equations, is not present in our
judgements yet, because its full justification inside the Black Box is still under
study. Anyway, once a premise can be adopted, putting convenient premises in
30 and in 31, as seen in the classical case, one can prove the following pairs of
sequents, respectively:

(A&A⊥) �1 (B&B⊥) ` (A�B)&(A⊥ �B⊥)

(A�B)&(A⊥ �B⊥) ` (A&A⊥) �1 (B&B⊥)

and

(A&A⊥) �0 (B&B⊥) ` (A�B)&(A�B⊥)&(A⊥ �B)&(A⊥ �B⊥)

(A�B)&(A�B⊥)&(A⊥ �B)&(A⊥ �B⊥) ` (A&A⊥) �0 (B&B⊥).
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The first pair is “distributivity” of �0 w.r.t. &, that is the equality (A&A⊥)�0

(B&B⊥) = (A � B)&(A � B⊥)&(A⊥ � B)&(A⊥ � B⊥), the second is “odd
distributivity” of �1 w.r.t. &, that is the equality A&A⊥) �1 (B&B⊥) = A �
B)&(A⊥ �B⊥) (we remind that the subscripts 1 and 0 disappear outside).

Furtherly, trivializing the premises in the equivalences 28 and 29, as in basic
logic, one obtains the so called “reflection axioms”, namely the pair

(A&A⊥) �1 (B&B⊥) ` A,B (A&A⊥) �1 (B&B⊥) ` A⊥, B⊥

and the quartet

(A&A⊥) �0 (B&B⊥) ` A,B A&A⊥) �0 (B&B⊥) ` A⊥, B

A&A⊥) �0 (B&B⊥) ` A,B⊥ A&A⊥) �0 (B&B⊥) ` A⊥, B⊥

respectively. Pair and quartet are to be considered as a whole inside, while, when
they are splitted, they give rise to the collapse of the wave function, represented
in logical terms as follows (we write down only one of the possible cases):

` (A&A⊥) �1 (B&B⊥) (A&A⊥) �1 (B&B⊥) ` A,B
` A,B cut

where the conclusion ` A,B is the representation of the external measurement
of our pair of qubits, as we have seen in the previous section. So the cut rule
represents the projective measurement, that is the irreversible moment of the
computation. For the one qubit case, see [2].

In our opinion, the derivations (30) and (31), despite their simplicity, are al-
ready quite informative for a logical calculus which aims to grasp the efficiency
of quantum computation. In fact, they show how the “quantum parallelism”, in
the entangled case, can be obtained by only one half of the derivation branches
with respect to the non entangled case! This is achieved thanks to the rule
“&congr”. As for the non entangled case, the rule “&cont” realizes a classical
parallelism (superposition without entanglement). One could object that, even
in (27), that is the case of classical distributivity, we have half of the branches,
but in such case half of the information is hidden and so parallelism is not
achieved. Then the so called “massive quantum parallelism” requires entangle-
ment.

Note that derivation (30) has the same form of the following one, that shows
how the judgements ` A and ` A⊥ can be assembled and disassembled in the
one qubit case (cf. [2]):

` A&A⊥

` A ` A⊥

` A&A⊥ (32)

In this sense we think that a Bell’s state seen from inside the quantum
computer can be assimilated to a single particle. Notice that here “inside”
means that the quantum computer is embedded in a non-commutative geometry
background [22]. In other words a 2-qubits register is a fuzzy sphere with four
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elementary cells each one encoding a two-qubits string |00〉, |01〉, |10〉, |11〉 (see
fig. (1)). In the maximally entangled case, the fuzzy sphere has two cells, each
one with doubled surface area, and encoding the two-bits string |00〉 and |11〉
(see fig. (2)). The latter situation resembles the case of one qubit, where the
fuzzy sphere has two elementary cells, each one encoding the one bit string |0〉
and |1〉 (see fig. (3)).

The fact that a Bell’s state (as seen from inside a quantum computer) “pre-
tends” to be a single particle, while we think it is not, is at the origin of all
paradoxes related to entanglement. For example, “non-locality” is just a prob-
lem of the external observer, who lives in a local space-time. Instead, the Bell’s
state, as seen from inside a quantum computer, lives in a non-local space, which
is the fuzzy sphere. Moreover, as far as causality is concerned, let us consider
the cut rule:

A ` B B ` C
A ` C cut

which is a causal relation. But the cut rule as such is not admissible inside the
Black Box (as we have seen above and in [2]), since it corresponds to a projective
measurement performed in the external world. Thus we argue that the usual
meaning of causality is absent in the case of a quantum computer on a fuzzy
sphere (internal logic). This is the reason why an external observer, who lives
in a causal world, sees as a paradox the non-causal behaviour of a Bell’s state.

Conclusions
Notice that the model of a quantum computer in a non-commutative geom-

etry can be identified with a model of Computational Loop Quantum Gravity
(CLQG) [23]. For a review on Loop Quantum Gravity (LQG) see for example
[18]. This is equivalent to consider a quantum computer at the Planck scale.
Causality at the Planck scale is a very controversial issue, and some authors, like
Sorkin and collaborators [4] are inclined to believe in a sort of micro-causality
that they discuss in terms of causal sets. However, the fact is that the light cone
at the Plank scale might be “smeared” by the very strong quantum fluctuations
of the metric field (the “quantum foam” [20]) and this would indicate that (mi-
cro) causality is lost at that scale at least in its usual setting. At the light of our
logical result, i.e., that the cut rule as such is not admissible inside the Black
Box, we are now lead to argue that causality is absent at the fundamental scale.

One can realize that it is just the intrinsic non-locality of non-commutative
geometry which leads to a modification of micro-causality (see for example [5]
in support of this idea). Then, it is non-commutative geometry itself which
“trivializes” at once both the “paradoxes” of non-locality and non-causality
of entanglement. Recall that non-commutative geometry was exploited in [22]
to describe the inner quantum world, and here some logical consequences are
analyzed, producing an internal logic. We think that our internal approach can
lead to a logical explanation of the different computational behaviour (speed
up) of quantum computers with respect to classical ones.

Finally, we are confident that the present results are susceptible of significant
developments. We foresee, for example, that it will be possible to complete the
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rules of the sequent calculus for our inner quantum logic. This will require the
complete solution of the definitional equations, like in basic logic.
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Fig. 1

Two unentangled qubits.
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Fig. 2

A Bell’s state

14



Fig. 3

One qubit
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