
Basic logic:re
ection, symmetry, visibility.Giovanni Sambin - Giulia Battilotti - Claudia Faggian�AbstractWe introduce a sequent calculus B for a new logic, named basic logic. The aimof basic logic is to �nd a structure in the space of logics. Classical, intuitionistic,quantum and non-modal linear logics, are all obtained as extensions in a uniform wayand in a single framework. We isolate three properties, which characterizeB positively:re
ection, symmetry and visibility.A logical constant obeys to the principle of re
ection if it is characterized semanti-cally by an equation binding it with a metalinguistic link between assertions, and if itssyntactic inference rules are obtained by solving that equation. All connectives of basiclogic satisfy re
ection.To the control of weakening and contraction of linear logic, basic logic adds a strictcontrol of contexts, by requiring that all active formulae in all rules are isolated, that isvisible. From visibility, cut-elimination follows. The full, geometric symmetry of basiclogic induces known symmetries of its extensions, and adds a symmetry among them,producing the structure of a cube.Contents1 Introduction 12 Basic logic and the principle of re
ection 43 Symmetry and the cube of extensions 154 Visibility and elimination of cuts 194.1 Cut elimination in basic logic B and structured basic logic BS . . . . . . . . 194.2 Cut-elimination in the extensions of basic logic . . . . . . . . . . . . . . . . . 235 Equations depending on the control of contexts 241 IntroductionUp to the beginning of the century, there was only one logic, Aristotle's classical logic,which was conceived as a metaphysical absolute. Starting with Brouwer's revolution, whichintroduced intuitionistic logic, a number of di�erent new logics have been developed. Eachof them aimed to capture some of the distinctions which can be observed in a speci�c �eldof interpretation, but which are ignored by classical logic. Excluding intensional logics (inwhich modalities are considered), all such logics can be grouped under three main headings:intuitionistic logic (absence of the principle of double negation), quantum logic (absence ofdistributivity between conjunction and disjunction), and relevance and linear1 logic (�nercontrol of structural rules).�The �rst author has been the inspirer for the philosophical foundations, in particular for the principleof re
ection. The discovery and development of basic logic as presented in this paper is the outcome of realcollaboration among all the three authors.1To simplify terminology in this paper by linear logic we mean the system sometimes called MALL, thatis Girard's linear logic [23] deprived of the modalities ! and ? he calls exponentials.1



Although all of these logics are derived from classical logic, they have been considered asmutually incompatible. Basic logic was developed in order to provide a common foundationand to show that they share a common structure. This was achieved in the �rst version ofbasic logic [6], which is a common denominator, but only in terms of provable formulae. Thepresent version of basic logic is completely new and can be characterized more positively asthe logic which obeys three general principles: re
ection, symmetry and visibility. Theseprinciples are introduced below and will be demonstrated in pratice in later sections.2The common explanation of the truth of a compound proposition like A&B is that A&B istrue if and only if A is true and B is true. In our terms, a connective � between propositions,like & above, re
ects at the level of object language a link between assertions in the meta-language, like and above. The semantical equivalenceA �B true if and only if A true link B truewhich we call de�nitional equation for �, gives all we need to know about it. A � B issemantically de�ned as that proposition which, when asserted true, behaves exactly as thecompound assertion A true link B true. The inference rules for � are easily obtained bysolving the de�nitional equation, and they provide an explicit de�nition. We then say that� is introduced according to the principle of re
ection.All logical constants of basic logic are introduced according to the principle of re
ection.We show that all inference rules are justi�ed by solving suitable de�nitional equations, inwhich A �B is allowed to appear also as an assumption. Moreover, we show that only twotypes of link among assertions are su�cient.In this way we bring the interplay between language and metalanguage into explicitconsideration. The construction of basic logic is thus seen as a product of the dynamicsbetween meta-language and its formalization at the level of objects3. No external notion oftruth is invoked, not even in the form of an a priori choice of connectives.A symmetry among logical constants of classical logic was pointed out by Gentzen [22]in his calculus of sequents LK. Later, J-Y. Girard has reached with classical linear logic adeeper symmetry, which allows the de�nition of negation for all formulae starting fromnegation on atoms. On the other hand, intuitionistic logic is commonly considered asintrinsically asymmetric. Basic logic is again fully symmetric in a strong sense, but stillit admits both intuitionistic and linear logic as natural extensions.To transform symmetry into a conceptual tool, one has to abandon the traditional schemewhich says that the rule introducing a connective is always the rule operating on the rightand that the rule on the left is always the elimination rule. On the contrary, all logicalconstants are divided into \left" and \right" constants. A \left" connective has a formationrule which operates on the left, on assumptions, and a second rule, called re
ection, whichoperates on the right, on conclusions. Any left connective is accompanied by its symmetricright connective, governed by the rules obtained by interchanging antecedent with succedent.The symmetry of basic logic is not internal, but rather a simple geometric symmetrywhich is evident at the meta-level: whatever action is taken on the right side can be sym-metrically performed on the left side of sequents. So basic logic is simultaneously a logic ofderivations as well as a logic of refutations, and one is not de�nable from the other. Anyproof has a symmetric proof with identical structure, apart from the swap left-right. Thisfact is essential to prove cut-elimination also when negation is added, in the style of Girard,on top of structural rules to obtain quantum-like logics (see [20] and [17]).One of the main principles of proof theory, put forward by Gentzen and clari�ed mainlyby D. Prawitz, is that the meaning of a connective is determined by rules dealing exclu-sively with it. This discovery is manifested technically in the theorems on normalization ofderivations. One of the principles of contemporary proof theory, promoted by Girard, is that2We plan to write a more conceptual discussion [31], in particular of the principle of re
ection.3A forceful though brief and general description of the dynamics between formal language and metalan-guage in the development of mathematics is given by N. G. de Bruijn [13].2



a careful control of structural rules of weakening and contraction permits a �ner analysisof the structure of derivations. Basic logic pushes both such principles to their ultimateconsequences.One of the main discoveries of basic logic is that the meaning of a connective is deter-mined also by contexts in its rules, which can bring in latent information on the behaviourof the connective, possibly in combination with other connectives.We thus say that a rule satis�es visibility if it operates on a formula (or two formulae)only if it is (they are) the only formula(e), either in the antecedent or in the succedent of asequent. Formally, visibility is the property that all active formulae (secondary or principalformulae, in Gentzen's terminology) are isolated, or visible, all passive contexts (not on thesame side of any active formula) are free.The main technical novelty of basic logic is that all its rules satisfy visibility. In otherterms, basic logic keeps under control not only the rules of weakening and contraction, butalso the presence of contexts on the same side of active formulae. This is done in a verydrastic way, namely by suppressing them systematically.When the principle of re
ection is met, visibility is characterized more intrinsically bythe presence of only one parameter for contexts in de�nitional equations, rather than twoas it happens for other usual logics.As with control of weakening and contraction a new class of connectives { multiplicativesin Girard's terminology { comes to the surface, so with strict control of contexts the onlyreasonable way to allow movement from one side of a sequent to the other is to treat impli-cation (and its symmetric) as primitive. This is what gives to basic logic its intuitionistic
avour, even in the presence of symmetry.Summing up in super�cial terms, the sequent calculus for basic logic looks like a (two-sided) calculus for linear logic, except for the absence of all contexts at the side of activeformulae and for the presence of two symmetric connectives of movement.Once basic logic is introduced, it is straightforward to realize that linear logic is regainedby relaxing visibility on both sides, that is by adding contexts at the side of all activeformulae. Relaxing visibility only on the left gives an intuitionistic linear logic with \par"(treated in detail in [3]); adding also weakening and contraction gives the usual intuitionisticlogic, but with an extra primitive connective called exclusion, and symmetric of implication.Symmetrically, liberalizing contexts only on the right gives symmetric copies of intuitionisticlinear logic and of intuitionistic logic with exclusion (similar to the \dual-intuitionistic" logicof [26]). The simultaneous control of contexts on both sides, namely visibility, allows us toblock the derivation of all distributive laws and to obtain logics in which the deductiontheorem fails. This allows us to bring the �eld of quantum and, more generally, non-distributive logics under the realm of proof theory (cf. [19], [17], [2], and, for a survey,[5]).The structure of extensions of basic logic becomes quite easy to grasp if it is pictured asa cube in which each vertex corresponds to the sequent calculus obtained by performing acombination of the three actions called L, for liberalize contexts on the Left, R, for liberalizecontexts on the Right, and S, for add the Structural rules of weakening and contraction (seethe �gure in section 3).It is an ambition of basic logic to o�er a new perspective and new tools to the searchfor unity in logic. Di�erently from [25], our plan is to look for the basic principles andstructures common to many di�erent logics.So one aim is to obtain each speci�c logic by the addition of rules concerning exclusivelythe structure (i.e. structural rules dealing only with assertions), while keeping the logic ofpropositions (i.e. operational rules dealing with logical constants) absolutely �xed. Notethat the extensions described above are not pure in this sense; but this aim has been obtainedfor some \symmetric" logics, including linear and classical logic (cf. [18],[20]), while it seemswithin reach for \asymmetric" logics, including intuitionistic logic (cf. [4] and [8]). A secondaim is to embed each logic in basic logic, once it is provided with some additional kindsof assertion, or modalities; some cases have been obtained (cf. [1]) and other cases areexpected. 3



More generally, it is our belief that only some of the potentialities of basic logic and itsprinciples are discussed in the present paper, and certainly not in an exhaustive way. Wedo not even touch here themes like possible applications, inside and outside logic itself, orthe new perspective and new problems o�ered to philosophical investigations. We postponealso a more detailed discussion of the connections with the literature, mainly with linearlogic of Jean-Yves Girard [23], display logic of Nuel Belnap [11] and with the work of KostaDo�sen (see for instance his recent [14]).The picture is not complete, yet we hope that what we present here makes it possible tosee that the name we have chosen, basic logic, is justi�ed.Several people have played an important role in the authors' discovery and developmentof basic logic (in chronological order): John L. Bell, for raising our interest in the non-distributive side4, Silvio Valentini, for helpful conversations and suggestions at the earlystage, Jean-Yves Girard, for the creation of linear logic and all the ideas coming with it,Marisa Dalla Chiara, for inviting us to Florence three times to speak about basic logic,Per Martin-L�of, for his semantical justi�cation of the logical laws and for suggesting tode�ne negation by means of implication, Grigori Mints, for calling to our attention that twodi�erent forms of cut could be helpful, Rajeev Gor�e, for conversations on display logic. Weare grateful to all of them. We are also very grateful to Morgan E. Kernow for her e�ort tocorrect and enrich our use of English and to Silvia Gebellato for her help with the drawing.2 Basic logic and the principle of re
ectionThe best way to justify the very choice of logical constants and the determination of theirrules of inference in basic logic is to see them as the result of a very general principle, whichwe have called the principle of re
ection. Suppose we want to create a new connective �by laying down the truth equation it must satisfy. This equation is called the de�nitionalequation for �. For example, assume we wish the equationA �B ` � if and only if A;B ` �to hold for any �. A direction of this equation is the ruleA;B ` �A �B ` �It says which conditions are su�cient to assert A�B. The other direction, however, describesonly what we should be allowed to deduce from A � B ` �, when we have already A � B.So it contains information on �, but only in implicit form, or backwards. To de�ne � withno vicious circle, we must �nd an equivalent rule in which A �B appears in the conclusion,rather than in the premiss. To do that, we �rst trivialize the assumption A � B ` � byconsidering � to be A �B itself. Then we obtain the axiom A;B ` A �B, with the bene�tthat A � B is now on the right side. So, assuming that � ` A and �0 ` B hold, from theaxiom we obtain �;�0 ` A �B by cut. Hence the rule� ` A �0 ` B�;�0 ` A �Bis derivable from the direction of the equation: A �B ` � only if A;B ` �. To see that itis actually equivalent to it, we trivialize the premises by considering � and �0 to be A andB respectively. Then the axiom A;B ` A � B is derived, which in turn gives the claim bycut. The two inference rules say under which premises, involving A and B but not A �B,the compound proposition A � B can be asserted. Taken together, they are equivalent tothe de�nitional equation. We then say that � is introduced according to the principle ofre
ection.4By observing in [10] and in later conversations that the representation of complete Boolean algebras of[30], which we obtained as a special case of representation of quantales through pretopologies [9], [7], is aspecial case also of that of ortholattices through Birkho�'s polarities; trying to �nd a general representationtheory including both was the catalyst for basic logic.4



In basic logic all logical constants are introduced via the principle of re
ection. Moreover,the solution of de�nitional equations is always found by following a single simple pattern.To solve equations in a non-circular way, the means to be used must be �xed beforehand. Sothe �rst task is to declare explicitly which meta-level properties are assumed to be known.Thus here it is the meta-level which comes �rst, and based only on it the formal system isbuilt up. To make the pattern of solution clear, and thus save many details, we also needto introduce some new terminology.Assume from now on that A;B;C : : : denote propositions. A proposition A must bedistinct from the assertion on it. At this basic level, rather than A is true (as in [27]and [28]), we prefer to adopt for assertions a more neutral notation like A is (to recall thecommon form of A is true, A is available, A is measured, etc.), which shares with A is trueonly the fact it is an assertion, rather than a proposition. This is to recall that no speci�cmeaning is at the moment attached to the assertion of A.We need to consider also more complex metalinguistic statements, which are built upfrom atomic assertions of the form A is by means of some metalinguistic links and whichwe call compound assertions. The �rst discovery here is that the compound assertions usedin any sequent calculus (lists �, sequents � ` �, rules, derivations, etc.) can be seen asobtained from atomic assertions by means of only two metalinguistic links, namely and andyields5.A conjunction of atomic assertions C1 is and : : : andCn is is abbreviated by C1; : : : ; Cn,where comma takes the place both of and and of is. Like Gentzen, we write � for any con-junction of atomic assertions, either empty or C1; : : : ; Cn. Similarly, for � and D1; : : : ; Dmand for other capital Greek letters.The meaning of a sequent � ` � is that � is a consequence of �, that is � yields�or (C1 is and : : : andCn is ) yields (D1 is and : : : andDm is ). Thus the usual sign ` is ashorthand for yields in such a compound assertion. The meaning of a rule of inference� ` ��0 ` �0is also clear: it says that we can move from the assertion � ` � to the assertion �0 ` �0, thatis, that (� yields�) yields (�0 yields�0). So Gentzen's horizontal bar is also a shorthand ofyields, but in a di�erent form of assertion.Inference rules sometimes have more than one premiss, which are all put above thehorizontal bar and separated by a blank space. Thus the blank space is a notation for andin this case, and so for instance � ` � �0 ` �0�00 ` �00is just a shorthand for ((� yields�) and (�0 yields�0)) yields (�00 yields�00). Finally, alsothe usual notation for derivations is clearly just a convenient shorthand for even morecomplex combination of and and yields.The metalinguistic links and and yields are therefore su�cient to produce all compoundassertions used in a sequent calculus for a propositional logic. The absence of a formalde�nition of compound assertion is too important to explain it simply by silence. In fact, aformal de�nition would turn assertions into objects, and thus ipso facto the aim of makingthe meta-language explicit would vanish6.The way the links and and yields are meant to behave is made explicit by laying downa few rules. When and is the outermost link, its behaviour is what one would expect, thatis, for instance, the assertion � ` � and �0 ` �0 is just the same thing as the assertion� ` � together with the assertion �0 ` �0. In formal terms, in this case and behaves at themeta-level like the usual conjunction of propositions at object level.This immediately loses any meaning when and is inside the scope of yields, that is,commaunder turnstile; for instance, by no way is (A is andB is ) ` � equivalent to A is ` �5After reading a �rst draft of the present paper, Kosta Do�sen has suggested that actually and and yieldscould be more deeply characterized as absence of a link or presence of a link, respectively.6This attitude, developed in [29] and divergent from the common one, in the very end originates withBrouwer (see [12]). 5



and B is ` �. In basic logic nothing is assumed about and in this case, except that itbehaves well with respect to composition of derivations, as explained below. The sameapplies for and inside the scope of turnstile, at the right, and this is why no link interpretedas disjunction is needed.When yields is the principal link, its behaviour is also nothing more than what oneexpects. So for instance to know that � ` � yields �0 ` �0 is the same thing as to knowthat from � ` � we can get to know that �0 ` �0. By the same reason, A ` � meansthat from A is we can get to know that �. Written in symbols, this looks like a cut, orcomposition: ` A A ` �` �We actually assume that it holds in a generalized form, both in the sense that A is can bea consequence of some � in the �rst premiss and that in the second premiss it can appearin conjunction with other assertions, say in �0 ` �. Note that this is the only assumptionabout and when occurring inside yields.Symmetrically, we also assume that when A is appears as a conjunct at the right ofturnstile it can be replaced by any of its consequences. And �nally we assume of coursethat A is is a consequence of A is itself, that is A ` A.So, summing up, the rules involving turnstile are simply:identity A ` Acompositionon the left � ` A �0 ` ��0(�=A) ` � on the right � ` �0 A ` �� ` �0(�=A)We here write �0(�=A) for the replacement of (one occurrence of) A by � in �0.This setting is not yet su�cient for our purpose. Actually, it is not su�cient also forany sequent calculus, because a third form of assertion besides and and yields is necessaryin order to understand the meaning of an inference rule, say � ` A=� ` A _ B. Even if itdoes not appear explicitly, one must realize that �, A, B are parameters, that is, that thesymbols � and A, B can be replaced with any speci�c conjunction of atomic assertions andwith any atomic assertions, respectively. So to understand the above rule means to knowthat forall � forall A forall B((� yieldsA is ) yields (� yieldsA _ B is )) where of courseone must be careful to keep the meta-level particle forall well distinct from an object-leveluniversal quanti�cation. Any de�nitional equation must include some parameters; thoseconsidered here, moreover, have forall only as the outermost links7.We are �nally ready to put all the previous remarks at work and show that each of thesix connectives of basic logic is obtained via the re
ection principle from one of the only twolinks and and yields, but in di�erent environments. The arguments to solve the de�nitionalequations are all extremely elementary, and actually many of them have already variouslyappeared in the literature (an early reference is [27], a recent one is [21]). Here they areexplained as elements of one conceptual structure, connecting language with metalanguage.It allows to conjecture that no other de�nitional equations are solvable.We adopt the general principle of denoting a connective always by the same sign, in allextensions of basic logic. The motivation of such choice overlaps with the motivation ofbasic logic itself, which is the search for a conceptual unity of di�erent logics. Moreover,we choose signs in such a way that the resulting connective in the case of the extensioncorresponding to linear logic will be exactly the sign adopted by Girard [23]. The onlyexception is implication, for which we prefer the standard sign! rather than ���, which iskept for implication as de�ned in terms of other connectives.The �rst connective we consider is the same given as unknown in the example at thebeginning of this section, that is multiplicative conjunction 
, read \times". We analyse7It can be shown that also the usual quanti�ers 8 and 9 can be de�ned according to the principle ofre
ection, but then 8 must appear also inside the de�nitional equation, at the right of ` for 8 and at theleft for 9, see [31]. 6



it in detail, both to introduce terminology and to check that we use only the properties ofmetalanguage as speci�ed above. The de�nitional equation is properly written asforall �; A
 B ` � if and only if A;B ` �where the symbols are now read as shorthands as explained above (and of course the linkif and only if is a shorthand for yields in both directions). Its two directions are called
-formation and implicit 
-re
ection, respectively:
-formation A;B ` �A 
B ` �implicit 
-re
ection A
 B ` �A;B ` �The choice of names should be clear. Formation says when the compound proposition A
Bcan be formed and asserted; here it speci�es that the compound assertion pushed down fromthe meta-level to object-level has a link and at the left position. Re
ection says that theassertion of A
B can be re
ected back to the meta-level situation from which it was born.While 
-formation as it stands is a perfectly good formal rule, implicit 
-re
ection is stillthe statement of a desideratum, which contributes to specifying the meaning of 
 only in animplicit way. To characterize the meaning of 
 without vicious circles, we must �nd rules,called rules of explicit 
-re
ection, which are equivalent to implicit 
-re
ection, but whichdo not assume A 
 B to be already known, that is in the premises. By so doing, we solvethe de�nitional equation.First, by making its premiss trivial, i.e. taking � to be A 
B is , implicit 
-re
ectionis transformed into an equivalent axiom:axiom of 
-re
ection A;B ` A
 BTo recover implicit 
-re
ection, one application of composition is su�cient:A;B ` A
 B A
 B ` �A;B ` �In this way the proposition A
B now appears on the opposite side of that in which it wasborn. The solution is then reached by transforming the 
-axiom again into an equivalentrule, but now one which acts on A and B separately; this is obtained by replacing A and Bwith arbitrary lists. Indeed, assuming that A and B are produced from � and �0 respectively,i.e. � ` A and �0 ` B, we apply composition on A and B separately, that is�0 ` B � ` A A;B ` A
 B�; B ` A
B�;�0 ` A
 Band so from the 
-axiom we obtainexplicit 
 -re
ection � ` A �0 ` B�;�0 ` A
 BThe converse is immediate, since 
-axiom is just the trivial instance of implicit
-re
ectionwith �;�0 equal to A;B respectively.The de�nitional equation for 
 is thus completely solved, and the connective 
 is char-acterized by the rules of 
-formation and explicit 
-re
ection. We say that 
 re
ects andat the left of turnstile.Incidentally, it might be interesting to note also that the rulecombined 
-re
ection � ` A �0 ` B A
 B ` ��;�0 ` �7



combines both the previous two rules and the axiom of 
-re
ection. In fact, it is im-mediately derivable by applying explicit 
-re
ection to the �rst two premisses, and thencomposition with the third premiss. Conversely, implicit
-re
ection is obtained as a specialcase by trivializing two premisses with � � A and �0 � B, explicit 
-re
ection by similarlytrivializing the premiss A 
B ` �, and �nally 
-axiom by trivializing all premisses.The rules for 
 in linear logic are�; A;B ` ��; A
B ` � � ` A;� �0 ` B;�0�;�0 ` A
 B;�;�0that are equal to the above rule for 
 except for the presence of contexts. By modifying thearguments above and by using unrestricted composition, or full cut (as formulated on page14), it is easy to check that Girard's 
 is the connective obeying the de�nitional equationforall � forall �; �; A
B ` � if and only if �; A;B ` �This shows why the corresponding connective in basic logic is conceptually simpler: it isde�ned by a simpler equation, with only one free parameter �. In more detail, the di�erencebetween the rules for 
 in basic logic and in linear logic is that in the former the activeformulae A;B and A
B always appear on one side of ` with no extra context; we say thatthey are visible.Now the symmetry of the framework (that is the fact that we have not assumed anythingon the left side of ` which makes it di�erent from the right side) allows us to say that theequation symmetric to that de�ning 
 will also de�ne a connective. Such a connective isthe so-called multiplicative disjunction &, read \par". The de�nitional equation is:forall �; � ` A &B if and only if � ` A;BIts solution is exactly as that for 
, but \on the other side", and it leads to the rules&-formation � ` B;A� ` B &A &Rexplicit &-re
ection B ` �0 A ` �B &A ` �0;� &LSumming up, 
 re
ects and at the left of turnstile and &re
ects and at the right8;in both cases, the principal sign is `, and and is under its scope. What happens if and isoutside `? That is, can we push down and into a connective when it occurs in a situationlike � ` A and � ` B? It is easy to see that any de�nitional equation with such a situationat the right side would make little sense, that is, it would not be solvable. It is indeedsolvable when � = �, and what we obtain is the additive conjunction &. The de�nitionalequation is: forall �; � ` B&A if and only if � ` B and� ` AIts solution follows the same pattern as that for 
 and &, except that we now take intoconsideration also the obvious properties of and since it is the outermost link. As before,one direction is (� ` B and � ` A) yields � ` B&A which, when written as usual with andreplaced by empty space and with yields replaced by the horizontal bar, gives:&-formation � ` B � ` A� ` B&A &RThe other direction is � ` B&A yields � ` B and � ` A which, written as usual as theconjunction of two rules, gives:implicit &-re
ection � ` B&A� ` B � ` B&A� ` A8This shows that the meaning of &is that of a multiplicativedisjunctiononly if full contexts are available,as in linear logic. In basic logic, nothing but compositions is assumed on and inside `, and that is why itsre
ection produces multiplicative connectives. 8



We can trivialize it by taking � = B&A and obtainaxiom of &-re
ection B&A ` B B&A ` Afrom which implicit &-re
ection follows immediately by composition. Now, from the &-axiom by using only pure composition we immediately haveexplicit &-re
ection B ` �B&A ` � A ` �B&A ` � &Lwhich in turn gives the axiom back when the premiss is trivialized. We have thereby reachedthe usual rules for conjunction, additive conjunction \with" in Girard's terminology. Heretoo, as for all other connectives, a combined form of &-re
ection is immediately found byjoining the premisses of implicit and of explicit &-re
ection.The same idea leading from 
 to &now leads from & to additive disjunction �. Itsde�nitional equation is:forall �; A� B ` � if and only if A ` � andB ` �The solution is exactly the same, symmetry apart, as that for &, and it leads to the rules�-formation A ` � B ` �A �B ` � � Lexplicit � -re
ection � ` A� ` A �B � ` B� ` A� B �RSo here too no disjunctive link on assertions is necessary to characterize the connective � ofadditive disjunction, and � is just the symmetric of &, obtained from & by interchangingthe roles of assumptions and conclusions. Such symmetry was noticed by Gentzen, butonly at the formal level of inference rules; what we add here is the symmetry at the levelof semantics, that is symmetry of de�nitional equations. This is why it is just naturalto conceive of � as formed (or introduced) at the left, on assumptions, and re
ected (oreliminated) at the right9.So, summing up, the four connectives so far introduced all re
ect a link and ; two ofthem, i.e. 
 and �, re
ect and at the left, and two of them, i.e. &and &, at the right.Moreover, the distinction between multiplicatives 
, &and additives �, & acquires a newmotivation in terms of the re
ection principle: additives re
ect a link and which is principal,i.e. not under the scope of yields, or \outside" a sequent, while multiplicatives re
ect a linkand which is under the scope of yields , or \inside" a sequent.The principle of re
ection leads to the same four propositional constants as in linearlogic. The �rst two constants, namely 1 and ?, re
ect the empty assertion at the left andright of `, respectively. So the de�nitional equation for 1 isforall �; 1 ` � if and only if ` �The formation rule is thus1-formation ` �1 ` � 1Lwhile the re
ection rule is1-re
ection 1 ` �` �from which we derive, for � = 1, the axiom1-axiom ` 1 1R9This explains also why we have preferred to adopt the new terminology formation-re
ection, since forcingthe old one introduction-elimination to the new conceptual understanding would have been quite confusing.9



which immediately gives 1-re
ection, by composition. Since 1 has no components, therecan be no composition producing 1, and thus explicit 1-re
ection is the same as 1-axiom.Symmetrically, the constant ? re
ects the empty assertion at the rightforall �; � `? if and only if � `and its rules will be? -formation � `� ` ? ? R? -axiom ?` ? LThe constants 1 and ? are similar but not identical to those of linear logic; for instance,they are not neuter elements for 
 and &respectively, because A 
 1 ` A and A ` A &?have no cut-free derivation. To obtain this property, one must conceive 1 as the solutionof a de�nitional equation with two parameters, that is: forall �; forall �; �; 1 ` � ifand only if � ` �. It produces as a solution the rules for 1 of linear logic (that is, the rulesas above, except that 1L has a context � at the left).In basic logic, rather than neuter elements for 
, one can describe 1 as the least derivableproposition: 1 is derivable, i.e. ` 1 by 1-axiom, and if A is derivable, i.e. ` A, then 1 ` A by1-formation. Similarly, we say that A is refutable if A ` and then ? is the greatest refutableproposition.The rules for the constants 0 and > arise from the de�nitional equationsforall �; A ` � and 0 ` � if and only if A ` �forall �; � ` B and � ` > if and only if � ` Bwhich say that 0 ` � and � ` > are the trivial assertions with respect to a link and inoutermost position. From such equations we have the following formation rules:0-formation 0 ` � 0L>-formation � ` > >RFrom them, it is easy to prove that also in basic logic 0 and > are neuter elements for �and & respectively, that is A� 0 = A and A&> = A for any A. The re
ection rules, in thecase of 0 and >, do not exist, since they correspond to the \only if" directions of the aboveequivalences, which are trivial.We now show how the re
ection principle leads also to the de�nition of a primitiveimplication ! (and its symmetric  ). The peculiarity of implication is that it re
ectsa link yields, that is the turnstile sign ` itself, and this is what makes it di�erent fromother connectives10. So to see that implication follows the same conceptual pattern as allother connectives, a richer metalanguage is needed, in which the link yields to be re
ectedappears inside the scope of another link yields. In terms of the shorthand notation, alsonested occurrences of ` must be considered. Then the de�nitional equation for ! issimply forall �; � ` A!B if and only if � ` (A ` B)10Such peculiarity is witnessed by traditional terminology, in which two di�erent words are used for yieldsand !, for instance \deduction" and \implication", while there is no speci�c word for and (and here itis called just \conjunction", as &). This is one of the reasons why some resistance has to be forced uponourselves to accept the idea that � re
ects and . In fact, following common terminology it would be read as\disjunction re
ects conjunction"which of course is rightly felt as nonsense. Our and and yields correspondto what in display logic is denoted with punctuation signs like , ; * etc. and called \structural connectives".However now it should also be clear that adopting such terminology, rather than \metalinguistic links" aswe did, would jeopardize all the e�ort to clarify the role of metalanguage.10



It can be solved following the same pattern as other connectives, but it needs two newforms of composition, that is composition of formulae inside two occurrences of `. Thenone reaches the rules � ` (A ` B)� ` A!B � ` A B ` �A!B ` (� ` �)which however cannot be expressed in the traditional shape of sequent calculus, where nestedoccurrences of ` are not considered. For more on this, we refer to [8].Here we prefer to follow a more traditional course, and look for the rules on ! whichcan be expressed in a usual calculus of sequents. The !-formation rule we adopt in basiclogic is thus obtained from the above by taking � to be empty:!-formation A ` B` A!B !Rand similarly for re
ectionexplicit!-re
ection ` A B ` �A!B ` � !LAlthough a rigorous derivation of such rules from the de�nitional equation remains accessibleonly with nested `, we can give at least the 
avour of it by applying the re
ection principlefor ! in case of contexts liberalized on the left (that is, in the logic BL as de�ned in thenext section). The de�nitional equation therefore becomesforall �; � ` A!B if and only if �; A ` BThe rule of re
ection in this case isimplicit!-re
ection � ` A!B�; A ` BFor � = A!B, it givesaxiom of !-re
ection A!B;A ` Band conversely by composition. By composing the !-axiom with � ` A and B ` �, weobtainexplicit !-re
ection �0 ` A B ` �A!B;�0 ` �and conversely by trivializing both premisses.The combined rulecombined!-re
ection � ` A!B �0 ` A B ` ��;�0 ` �is immediately derivable from explicit !-re
ection by composition, and conversely it givesback the above rules and axiom as special cases, by trivializing some of the premisses aswas true for other connectives. Note that all such equivalences (given also in [6]) are provedassuming only composition on the left, that is over basic logic, even if none of the above ruleshold in it, by an argument based on cut-elimination. In other terms, the usual deductiontheorem �; A ` B if and only if � ` A! B does not hold in B.In the case of implication, combined re
ection has a further source of interest, since byspecializing it to the case in which � = B, gives� ` A!B �0 ` A�;�0 ` Bwhich is the traditional Modus Ponens, or !-elimination in natural deduction. When�0 = A, Modus Ponens gives !-re
ection as a special case, and hence it is also equivalentto all other rules. 11



When a system with nested ` is available, all the above conditions remain equivalentwhen comma at the left is replaced by ` (see [8]). Thus the two rules we have chosen for!in basic logic are justi�ed; they are not enough, however, since for instance the derivationA ` B C ` DB!C ` (A ` D)B!C ` A!Dproduces a sequent B!C ` A!D (with just one `) which is valid if the sequents A ` Band C ` D are valid. Thus we must also add the rule!-uni�ed A ` B C ` DB!C ` A!D !Uwhich has also the side-e�ect of allowing replacement of equivalent formulae.The correctness of the choice of rules for ! is also witnessed by the cut-eliminationtheorem, to be proved in section 4; from it, we can immediately see thatfor any A and B, ` A!B if and only if A ` Bholds, which is all that can be expressed of the original de�nitional equation for! when nonested ` are available.To keep the symmetry of the resulting calculus, we add a second connective movingformulae from one side to the other of `, and denote it by  (to be read \exclusion"). Itsde�nitional equation is just the symmetric of that for !, that is:forall �; A B ` � if and only if (A ` B) ` �and, as for all previous pairs of symmetric connectives, it leads to rules which are symmetricto those for !, that is -formation B ` AB A `  Lexplicit  -re
ection � ` B A `� ` B A  R -uni�ed D ` C B ` AD A ` C B  UThe meaning of exclusion  is the dual of that of implication!, just like the rules for  are symmetric to those for !. The intuitive interpretation of !R is that to make A!Btrue, i.e. to prove ` A!B, we need to know how to pass from the truth of A to the truthof B, i.e. A ` B. Now suppose that not only do we read A ` B as A true yieldsB true,but also as B false yieldsA false (cf. [4]). Then !L says that to make A!B false, i.e.A!B `, we need to know that A is true and B is false, i.e. ` A and B `. Symmetrically,the intuitive interpretation of  L is that to make B A false, i.e. to prove B A `, weneed to know how to pass from the falsity of A to the falsity of B, i.e. B ` A. And  Rsays that to make B A true, i.e. ` B A, we need to know that B is true and A is false,i.e. ` B and A `. Apart from a justi�cation of its meaning, the introduction of  is fullyjusti�ed simply because it allows arguments \by symmetry", and this is an essential featureof basic logic.We have now justi�ed all the rules of basic logic except one, that is the single structuralrule we are going to assume, namely exchange. Note that all arguments up to this pointhave not used it and hence non-commutative basic logic is quite possible11. Still, we addexchange somewhat arti�cially, to concentrate our mind on the novelties of basic logic, whichshould thus become a bit more transparent.We can �nally formally say that basic logic is the propositional logic with connectives 
,&, &, �, !, and constants 1, ?, 0, >, and characterized by the sequent calculus B with12



Table 1: Basic sequent calculus BAxioms A ` AStructural rules �;�;�;�0 ` ��;�;�;�0 ` � exchL exchR � ` �;�;�;�0� ` �;�;�;�0Operational rulesMultiplicativesformation B;A ` �B 
A ` � 
 L &R � ` A;B� ` A &Bre
ection B ` �1 A ` �2B &A ` �1;�2 &L 
R �2 ` A �1 ` B�2;�1 ` A
 Bformation ` �1 ` � 1L ? R � `� `?re
ection ?` ? L 1R ` 1Additivesformation B ` � A ` �B �A ` � � L &R � ` A � ` B� ` A&Bre
ection B ` �B&A ` � A ` �B&A ` � &L �R � ` A� ` A� B � ` B� ` A �Bformation 0 ` � 0L >R � ` >Implicationsformation B ` AB A `  L !R A ` B` A!Bre
ection ` B A ` �B!A ` � !L  R � ` A B `� ` A Border D ` C B ` AD A ` C B  U !U A ` B C ` DB!C ` A!D13



inference rules given in the table on page 13, where as usual A;B;C;D; : : : are formulae and�;�0; : : : ;�;�0; : : : are �nite lists of formulae.To complete the justi�cation of basic logic, we have to show the validity of the rules wehave used, namely identity and composition. Identity is imported into the formal systemas it stands. Composition is just what is usually called cut. To show that it is valid in thecalculus B, we have to show that its conclusion is derivable in B when so are its premises.Exactly this is expressed by the theorem of elimination of cuts, which we prove in section 4.Why not importing into the formal system also cut as uch? If we had added cut asa formal rule, we would not have accomplished our task, which was to characterize eachconnective by its de�nitional equation, that is exclusively by the rules directly concerning it.In fact, as we alrady noticed, composition contains implicit information on all connectives,since it says that all derivations can be composed. Using composition up to now, has beena sort of desideratum. Almost all the arguments used to solve de�nitional equations involvecomposition, and they would have little value if composition were not valid. In this sense,cut elimination is not an option.It is a remarkable fact that a common formulation of cut, i.e the rule which we call fullcut � ` � �0 ` �0�0(�=A) ` �0(�=A) full cutis not valid in B, and in fact we have not used it. The proof rests on the following property,exploiting visibility:Proposition 2.1 If � ` � is provable in B without cuts, then either � or � contains atmost one formula.Proof. Immediate induction on cut-free derivations: axioms enjoy the property, and byvisibility all rules preserve it. �Assuming full cut, a derivation like the following would be possible:B ` B E ` EB &E ` B;E &L B ` B D ` DB;D ` B 
D 
RB &E;D ` E;B 
D full cutThe sequent B &E;D ` E;B 
 D however has no cut-free derivation in B, by the aboveproposition, since it has two formulae on both sides. Since B does admit elimination of cutLand cutR, this tells that full cut would really bring out of provable sequents, and thus it isby no means valid.It is quite easy to check that all the connectives behave as expected with respect to theusual ordering on formulae given by `. In fact, assume that A ` B and C ` D are provable;by applying the (explicit) re
ection rule followed by the formation rule, we obtainA ` B C ` DA �B ` C �Din case � is any of the connectives 
, &, �, &, which shows that all of them are monotonicin both arguments, both at the left and at the right.The same pattern would hold also for the two connectives  and ! in the systemwith nested `; the same task, i.e. re
ection followed by formation, is played in B by therules  U and !U , which say that both implications are monotonic in one argument andantimonotonic in the other. Actually, it is easy to see that the rule !U is equivalent to thetwo separate rules A ` BC!A ` C!B A ` BB!C ` A!Cand similarly for  .Denoting by A = B the equivalence with respect to provability, i.e. A ` B and B ` A,as an immediate consequence we have:11The main di�erence, as for non-commutative linear logic, would be the presence, at least in extensionsof basic logic, of two implications!1 and!2 in place of!, and then by symmetry also two exclusions 1and 2 in place of  . 14



Proposition 2.2 a. For any formulae A;A0; B;B0 and any connective �, if A = B andA0 = B0, then A �B = A0 �B0, and hence the property of replacement of equivalents holds;b: for any formula A, the sequent A ` A is provable assuming only axioms of the form p ` pfor some propositional variable p.We conclude the section with some remarks on negation. A unary connective of negationis de�nable in basic logic by putting, as usual in intuitionistic logic,:A � A!?Actually, the approach via the re
ection principle allows us to see why this is a convenientway to treat negation. The intuitive idea is that the assertion of the negation of A mustbe equivalent to the assertion of A on the other side of `; that is, we would like : to beintroduced by the de�nitional equation` :A if and only if A `Such an equation, however, can not be solved as it stands, as happened with !; actually,we can see it as a special case (for � empty) of the equationforall �; � ` :A if and only if � ` (A `)which in turn can be seen as a special case of the de�nitional equation for!, since A ` if andonly if A ` ?. But then one can see that the adoption of the usual de�nition :A � A!?is a more convenient and equivalent choice. In fact, since A ` is equivalent to A ` ? byre
ection for ?, and A ` ? is equivalent to ` A!? by re
ection of !, the usual de�nitiongives a solution of the �rst equation, as desired.We can then show that the rules:-formation A `̀:A :-re
ection ` A:A `are derivable by applying ? and !-formation, and ? and !-re
ection, respectively. Thisshows how the usual intuitionistic de�nition of negation falls under a deep general scheme.The symmetry of basic logic tells that also a symmetric negation � is de�nable, as thesolution of �A ` if and only if ` Aor equivalently as the symmetric of A!?; we thus put �A � 1 A and obtain the rules�-formation ` A�A ` �-re
ection A `̀� Ain a symmetric way to those for :. Finally note that antimonotonicity of both negationsA ` B�B ` �A A ` B:B ` :Ais immediately derivable by !U and  U respectively.3 Symmetry and the cube of extensionsThe main peculiarity of the rules of the calculus B, apart from the symmetry of the wholetable, is that each active formula in any rule is visible, that is, the context at its side isempty. An easy way to obtain extensions of B is to relax such condition, that is to also allowcontexts at the side of active formulae. So for any rule of B we introduce also its full form,that is the version with liberalized contexts on both sides. To include also intuitionistic-likelogics, we consider also the form of a rule which has full context on the left only; and then,for the sake of symmetry, we consider also the form which is full on the right. We use fl,fr and f as exponent on the name of a rule to denote its full at the left, full at the rightand full form, respectively. 15



Sometimes one of the two liberalizations has no e�ect. For instance we have:� ` B;A� ` B &A &R. &&Rfl = &R � ` B;A;�� ` B &A;� &Rfr& .&Rf = &RfrIn general, the full-on-the-left form of a rule on the right for additives or multiplicatives isjust the same as the rule itself, since the context on the left is already free. So the full formis just one, and is denoted by the exponent f . By symmetry, this is also the case for therules at the left. For convenience, we spell out the full form of rules for multiplicative andadditive connectives:�; A;B ` ��; A
B ` � 
Lf � ` B;A;�� ` B &A;� &Rf�; A ` � �0; B ` �0�;�0; A &B ` �;�0 &Lf �0 ` B;�0 � ` A;��;�0 ` B 
A;�;�0 
Rf� ` ��; 1 ` � 1Lf � ` �� `?;� ? Rf�; A ` � �; B ` ��; A�B ` � �Lf � ` B;� � ` A;�� ` B&A;� &Rf�; A ` ��; A&B ` � �; B ` ��; A&B ` � &Lf � ` B;�� ` A�B;� � ` A;�� ` A� B;� �Rf�; 0 ` � 0Lf � ` >;� >RfSince the rules of movement, for ! and  , are bound to have empty context on bothsides, they will have di�erent full forms on the left and on the right. For instance, for !Lwe have: ` A B ` �A!B ` � !L. &� ` A �0; B ` ��;�0; A!B ` � !Lfl ` A;�0 B ` �A!B ` �0;� !Lfr& .� ` A;�0 �0; B ` ��;�0; A!B ` �0;� !LfQuite similarly it happens for !R and !U , and symmetrically for  . Just to make surethat no misunderstanding is possible, we spell out also the other six rules obtained byliberalising contexts on !R and !U (and leave at least the remaining nine, for  , tosymmetry): �; B ` A� ` B!A !Rfl B ` A;�` B!A;� !Rfr �; B ` A;�� ` B!A;� !Rf�; A ` B �0; C ` D�;�0; B!C ` A!D !Ufl A ` B;� C ` D;�0B!C ` A!D;�;�0 !Ufr �; A ` B;� �0; C ` D;�0�;�0; B!C ` A!D;�;�0 !UfIt is now easy to de�ne extensions for B. For any sequent calculus X, we call XL theversion of X liberalized at the left, i.e. the sequent calculus obtained by taking the full atthe left form of the operational rules of X. More explicitely, for instance, BL has the sameaxioms and structural rules of B, and the rules:16



Lf &Lf 1Lf �Lf &Lf 0Lf&R 
R ? R &R �R >R!Lfl  Lfl !U fl  U fl R !RNote that the liberalized rules are 13, compared with 11 which remain equal to those ofB, since the rules !U and  U are self-symmetric; also note that 1R and ? L remainuntouched, since they are re
ection axioms, and thus have no context.For any calculus X, we de�ne XR symmetrically, liberalising on the right. Since liber-alising on the left rules which are already full on the right just gives full rules, the calculusBLR (which is the same as BRL) is obtained, so to say, by exponentiating to f all oper-ational rules. Note that by liberalising cutR on the left one obtains cut in its full form, orfull cut, while liberalising cutL on the left gives no e�ect. Symmetrically for cutL.The logics B, BL, BR, BLR are all linear-like, in the sense that they all lack thetraditional structural rules of weakening and contraction:weakening �;�0 ` ��;�;�0 ` � wL � ` �0;�� ` �0;�;� wRcontraction �;�;�;�0 ` ��;�;�0 ` � cL � ` �0;�;�;�� ` �0;�;� cRWe write XW for the calculus obtained from the calculus X by adding both the weakeningrules, and similarly XC for contraction. To keep the number of combinations under easiercontrol, we also write XS for the calculus XWC (which is just the same as XCW). So,since the order in which the extensions by L, R and S are considered is irrelevant (and sincerepeating them has trivially no e�ect), we obtain a cube of sequent calculi extending B.
BLS

BLRS
classical

BS
quantum~

BRS

BR

BLR
linear

intuitionistic

basic
B

intuitionistic linear
BLWe anticipate that many of them are equivalent formulations of well known logics, as wehave shown in the picture. We will return to it in the last section, when we can look at italso with the tools of symmetry and cut-elimination.The symmetry of basic logic rests on the symmetry between the left side (assumptions,or inputs) and the right side (conclusions, or outputs) of a sequent. Whatever action istaken on the right can also be performed on the left, and vice versa. Accordingly, whenapplying the principle of re
ection to justify the rules of basic logic, if a de�nitional equationwas solved for a metalinguistic link appearing on the right, then its symmetric form wasalso solved with the same link appearing on the left. This is why all connectives and rules ofbasic logic come in symmetric pairs. This evident symmetry can now be turned into someformal statements, showing how aesthetics is turned into a useful tool to prove new results.In basic logic, the symmetry between the left and the right side in a sequent does notmean that inputs and outputs are identi�ed, as in linear logic. By keeping symmetry as a17



meta-property, inputs and outputs here remain clearly distinct and not interde�nable. Inthis way it is possible to extend symmetry in a natural way from formulae to derivationsand logics themselves (for example, see the two symmetric ways of strengthening basic logicwhich in the previous section we have denoted by L and R).For any formula A, its symmetric formula As is de�ned by the clauses:i) ps � p for any propositional variable pii) 1s �?, ?s� 1; 0s � >, >s � 0iii) (A �B)s � Bs �s As, where the symmetric �s of any connective � is de�ned as in thetable: 
s � & &s � 
�s � & &s � � s � ! !s �  We can extend the above de�nition to include negation by putting :s � � and �s � :,which of course is justi�ed by (A!?)s � 1 As and (1 A)s � As!?.By the de�nition (including negations, if wished), it is immediately evident that:Proposition 3.1 For any formula A, Ass coincides with A.Note that the equality of Ass with A is just identity of formulae, qua strings of symbols.The symmetric of a list of formulae is de�ned by putting �s � Csn; : : : ; Cs1 if � = C1; : : : ; Cn,and similarly for �. Then we say that the sequent �s ` �s is symmetric to the sequent� ` � and proposition 3.1 is immediately extended to sequents.Now also the symmetric of a rule J can be formally de�ned as the rule Js which leadsexactly from the symmetric of the premises of J to the symmetric of the conclusion of J .For example, the symmetric of !L is  R, since by de�nition it is (A!B)s � Bs As.Informally speaking, Js does the same job as J , but on the other side of the sequent.Obviously, Jss is exactly the same as J .This de�nition can be applied to any rule in the language of basic logic. So we can extendsymmetry to logics and say that a sequent calculus L has a symmetric calculus Ls, whichby de�nition is formed by all sequents �s ` �s which are the symmetric of some axiom� ` � of L (note that in particular the symmetric of A ` A is As ` As, which is again aninstance of identity), and by all the rules Js which are the symmetric of some rule J of L.As expected, Lss is exactly the same as L. According to such de�nition, the calculus BR isobviously the symmetric of BL, and BRS the symmetric of BLS. On the other hand, B,BS, BLR and BLRS coincide with their symmetric, and thus are called (self-)symmetric.This shows how symmetry is present also in the cube of extensions of B.Now the notion of symmetric for a sequent calculus also allows us to �gure the notion ofsymmetric derivation, and put such a notion into formal terms. Every proof � in a sequentcalculus L has a symmetric proof �s in the symmetric sequent calculus Ls, obtained from� by replacing every assumption of an axiom with an assumption of its symmetric axiomand every application of a rule J with an application of its symmetric rule Js. The formalde�nition of �s is obtained by induction on the generation of �. If � is obtained in L from�1 (and �2) by applying rule J , then �s is de�ned to be obtained in Ls from (�2s and)�1s by applying rule Js. Such an inductive de�nition is precisely su�cient to prove thefollowing theorem:Theorem 3.2 For any two lists of formulae �, �, any sequent calculus L in the languageof basic logic and any derivation � in it,� is a proof of � ` � in L if and only if �s is a proof of �s ` �s in Ls.This theorem is the raison d'etre of symmetry. A visual image can help to make theintuitions concrete: we can think of �s as obtained from � by rotating it by 180� througha vertical axis placed on the sign ` of the conclusion, as a hand from palm to back, and bysimultaneously swapping any application of J with one of Js, and by turning any sequent18



� ` � into �s ` �s (that is, everything is rotated, or dualized, except the sign `). Basedon such an image, the rotation applied twice is obviously the same as identity, and hencethe interchange of � and �s is called a swap of derivations. In the case of derivations whichbelong to symmetric systems, by de�nition, the swap produces derivations which still belongto the same system. The technique of substituting a derivation with its symmetric has beenapplied in [19], [17], [20] in order to obtain cut-elimination proofs.As is evident in the image of the cube, the self-symmetry of logics B and BS is deeperthan that of linear classical logic BLR and of classical logic BLRS respectively: it isobtained by looking also underneath (linear) intuitionistic logic, by considering the commonstructure of BL and BR, (or of BLS and BLRS, respectively) rather than their union,and thus recovering the symmetry which was lost in the step from classical to intuitionisticlogic. This also allows us to treat in a symmetric way implication, i.e. the only connectivewhich keeps communication between inputs and outputs (and which is essentially lost inlinear logic without exponentials).4 Visibility and elimination of cutsVisibility is strictly linked with cut-elimination. As we recalled in the introduction, one ofthe �rst motivations leading to the development of basic logic was the wish to �nd a commondenominator of the various re�nements of classical logic, among which is orthologic, one ofthe main quantum logics. This logic is non-distributive, and such a property is obtained ina sequent calculus by imposing restrictions on the context of those rules which are neededto prove it, that is � on the left (and hence also & on the right by symmetry), negationand implication. Such restrictions, which had to be inherited by basic logic, make theproof of cut-elimination for orthologic extremely di�cult12. In fact, consider the followingderivation, where the left premiss of cut is obtained by a restricted introduction of � andin the right premiss the last rule applied is the usual & introduction at the left:A ` C&D B ` C&DA �B ` C&D �L �; C ` ��; C&D ` ��; A�B ` � cutLSince the cut-formula is principal in the right premiss, Gentzen's procedure should lift thecut along the left branch, to reduce the left rank:A ` C&D �; C&D ` ��; A ` � B ` C&D �; C&D ` ��; B ` �� ?Now, unless � is empty (the �L rule must have empty context on the left), it is not allowedto apply �L to obtain the conclusion.The strategy leading to the cut-free calculus has been a change in perspective. Ratherthan thinking of a system of rules where some of the rules make life di�cult, because of theirrestrictions, we reverse the point of view. We have a system in which some rules are moreattractive: active formulae stand up as pure, well visible. And we make this into a generalproperty of the calculus, namely visibility. The result is a uniform procedure to give therules of basic logic, in which the rules �L and for ! are no longer exceptions, but ratherpart of a global picture. What was previously the constraint of some rules, now becomes thestrength of the system (cf.[16]). We show below how visibility is immediately transformedinto elimination of cuts.4.1 Cut elimination in basic logic B and structured basic logic BSVisibility deeply determines the form and structure of derivations (as expressed by the twolemmas of substitution and history, see below) and the procedure of cut-elimination itself.12As witnessed by the intricacies of the literature, as brie
y exposed in [17].19



Connected with visibility is also the presence of two forms of cut (which as we have alreadyseen is not an ad hoc choice), a fact which will have a remarkable relevance.So suppose that we are given an application of cutL (cutR is treated in a symmetricway) and that we want to lift it up until it operates on axioms or on principal formulae. Aswe shall shortly see, what happens is that we are forced to persistently lift the left premissof the cut in the right branch until the cut-formula becomes principal in the right premiss,and only then lift the cut in the left premiss. Indeed, the last rule applied to obtain � ` Cin the left premiss must be a �L rule, except when the cut formula is principal in the leftpremiss � ` C, because otherwise a �R rule would introduce a formula occurrence on theright-hand side of the sequent, which would be the cut formula itself.Now, if we wanted to lift the cut in the left branch keeping �; C ` � as the right premiss,the context � would remain on the left after the cut, which would block the application ofthe rule �L needed in order to obtain the conclusion �;� ` �.On the other hand, the rules applied above the right premiss of the cut, but underthe rule introducing the cut-formula, must all be �R rules, which have free context on theleft-hand side of the sequents. When we arrive at an application of a �L rule, by visibilitysuch rule must be the rule introducing the cut formula and we can be sure that no contextappears at its side. Now the di�culty mentioned above has disappeared and lifting the cutin the left branch presents no problem.After pointing out the delicate aspects of cut-elimination, the content and purpose ofthe lemmas we are going to show should be clear.We assume knowledge of standard terminology, as in [32] or [24]. To deal properly withsubstitutions, however, the notion of linked occurrences is useful. Two occurrences of thesame formula in two consecutive sequents are said to be linked when they are in the sameplace in lists of formulae which in the description of the rules are denoted by the sameletter in premisses and conclusion (e.g. �1 in the conclusion and �1 in the premisses). Weexplicitly note that as a consequence: i. a formula occurrence which is introduced by a ruleor by an axiom, is not linked to any formula occurrence above it; ii. in additive rules withtwo premisses the formula occurrences in � in the conclusion are linked to those in the sameplace in � of both premisses; iii. contraction identi�es two occurrences of A into one, whichis linked to both occurrences from which it comes.All rules are insensitive to the content of the passive context: by this we mean thatany application of a rule remains an application of the same rule and with the same activeformulae if two linked occurrences of a formula C are replaced by any list of formulae �.Insensitivity of rules to substitutions of course extends immediately to proof-tree trunks.We write �[�=C] for the result of replacing C with � in �, �[�=C] for the result of replacing� for all linked occurrences of C in the proof-tree trunk �. Also, from now on, we say `atthe left' as an abbreviation of `at the left-side of all the sequents in the proof-tree trunkunder consideration'. Then we have:Lemma 4.1 (Substitution of a formula occurrence) Let � be a proof-tree trunk inwhich the only rules applied are either rules with passive context on the left side, or struc-tural rules13 or cuts. Let C be any formula occurrence at the left. Then, for any list offormulae �, the result of the substitution �=C in � is again a proof-tree trunk. If � hasconclusion � ` � (hence it must be C 2 �), then �[�=C] has conclusion �[�=C] ` �.A dual statement holds when C is at the right.The history of a formula occurrence C in a derivation � is the least proof-tree trunk�C which contains all the linked occurrences of C. Intuitively, considering the history �Camounts to climbing up � until C is introduced. Then the following lemma prepares theground for the substitution of C.Lemma 4.2 (History of a formula occurrence) If � is a derivation in B or BS andif C is a formula occurrence at the left in the conclusion then:13Note that one of the reasons for choosing a form of weakening and contraction in which lists (rather thanformulae as usual) are considered, is to be able to keep the statement of this lemma as simple as possible.20



(I) the history �C of C in � consists only of operational rules with no restrictions on theleft context, cuts and structural rules (only exchange in B, also weakening and contractionin BS);(II) any occurrence of C in the leaves of �C is:(a) visible: C ` �0 for some �0, or(b) part of the passive context of >R: �0 ` > for some �0 containing C, or(c) (only in BS) introduced by wL: �0;� ` �0 with C in �.A dual statement holds at the right.Proof. (I) Since C is present at the left, by visibility it is not possible to apply any rulewith active formulae on the left (unless on C itself, but then that application has C as theprincipal formula and is not in the history of C).(II) When C is introduced by a rule, it has no context since it is an active formula. If C isintroduced by an axiom, >R is the only axiom with context at the left. �It is now convenient to extend the de�nition of principal formula to include both formulaoccurrences in an axiom A ` A, the formulae 1 and ? introduced by 1R and ?L and theformulae > and 0 introduced by >R and 0L (while the formulae introduced in a passivecontext in � ` > or 0 ` � are not principal). From now on, we include in case (a) of theabove lemma only those sequents not falling under cases (b) or (c); so (a) consists of thosecases in which C occurs as the principal formula.The theorem of cut-elimination for B is obtained in the usual way from the following,which is proved by induction on the degree only:Proposition 4.3 A derivation � in B with an application of cut as the last inference, andno other applications of cut, can be transformed into a derivation with the same conclusionand with no cuts.Such a derivation � in B is of the form:.... �1� ` C .... �2�; C ` ��;� ` � cutL or .... �1� ` C;� .... �2C ` �� ` �;� cutRThe cut-elimination procedure in B consists of the application of the following two steps.First the derivation is transformed, as described in (i) below, into one (with the sameconclusion) in which cuts are always on principal formulae, and thus of the form:�0 ` C C ` �0�0 ` �0 cutThen, cuts are reduced to cuts of lower degree, according to (ii). Now the proposition isproved by the inductive hypothesis.(i) We describe the case of cutL; by symmetry, this describes also the way to treat cutR.The idea is to lift (in one step) the cut up to where C is principal. This is obtained easily,by exploiting the history of the cut formula and the lemma of substitution.A derivation with conclusion �;� ` � and in which the cut rule is applied only onprincipal formulae is obtained by operating on �2 as follows. Consider the history �2C of Cin �2, and suppose that C ` �1; : : :C ` �m are all the leaves in which C is principal. Let �jbe the sub-derivation of �2 with conclusion C ` �j. Similarly, suppose �1 ` C; : : :�n ` Care all the leaves of �1C where C is principal, and let 	i; i � m be their derivations.Replacing � for C in �2C gives �;� ` � as conclusion, as required, and � ` �1; : : : ;� ` �nas new leaves (by lemma 4.2, the other leaves in which C occurred were of the form �0 ` >and they remain axioms after the substitution; about the leaves where C does not occur atall, we need not worry). Each � ` �j, j � n is obtained as the conclusion of �1C [�=C] ,which becomes a derivation when its leaves �i ` �j are obtained as the conclusion of a cut.... 	i�i ` C .... �jC ` �j�i ` �j cut21



where C is principal on both sides.(ii) In (1) we show that if any one of the premisses of cut is an axiom, then we eliminatethat application of cut; in (2) we show that if both premisses of the cut are the result ofan introduction rule, then the derivation is transformed into one of lower degree (with thesame conclusion).(1) The axiom is the left premiss. Since the rank is 2, the cut formula C has rank 1 also inthe right premiss of cut, and hence it is either a principal formula or an axiom. (Notice thatthe case in which the cut formula belongs to the passive context of >R or 0L has alreadybeen treated.)(a) C ` C: C ` C ....C;� ` �C;� ` � cutL ; ....C;� ` �(b) ` 1: 1 can be introduced in the right premiss only by 1 ` 1 (and then it is symmetricto (a)), or 1L: ` 1 ....` �1 ` � 1L` � cutL ; ....` �:(c) � ` > : > can be introduced in the right premiss only by > ` > (symmetric to (a)).If the axiom is the right premiss of cut, the argument is absolutely symmetric.(2) The derivation has the form ...� ` C �R ...C ` � �L� ` � cutwhere C is principal in both premisses of cut; we lower the degree by the following reductions.connective 
:� ` A �0 ` B�;�0 ` A 
B 
R A;B ` �A
B ` � 
L�;�0 ` � cut ; �0 ` B � ` A A;B ` ��; B ` � cutL�;�0 ` � cutLconnective &: symmetric of 
connective &:� ` A � ` B� ` A&B &R A ` �A&B ` � &L� ` � cut ; � ` A A ` �� ` � cutconnective �: symmetric of &connective !: four cases are possible:(!Uni-!Uni)A ` B C ` DB!C ` A!D !U E ` A D ` FA!D ` E!F !UB!C ` E!F cut ; E ` A A ` BE ` B cut C ` D D ` FC ` F cutB!C ` E!F !U22



(!Uni-!L)A ` B C ` DB!C ` A!D !U ` A D ` �A!D ` � !LB!C ` � cut ; ` A A ` B` B cut C ` D D ` �C ` � cutB!C ` � !L(!R-!Uni)B ` C` B!C !R A ` B C ` DB!C ` A!D !U` A!D cut ; A ` B B ` CA ` C cut C ` DA ` D cut` A!D !R(!R-!L)A ` B` A!B !R ` A B ` �A!B ` � !L` � cut ; ` A A ` B` B cut B ` �` � cutconnective  : symmetric of !The above procedure can be easily modi�ed to prove cut-elimination for structured basiclogic BS. Indeed, by lemma 4.2, only case (c) for the leaves of the history of C remainsto be considered. Of course, we must substitute an application of weakening introducing Cwith one introducing �. Now, also the case of weakening and contraction is (automatically)considered. In fact, let us note that the substitution �=C in �, now means that a weakeningintroducing C becomes a weakening introducing � and the same applies for contraction.4.2 Cut-elimination in the extensions of basic logicWe now show how the above procedure of cut-elimination can be adjusted to obtain cut-elimination also for the extensions of B. We do not consider BLR and BLRS since theyare exactly the usual two-sided formulation of linear and classical logic, respectively, andthus also with the usual procedure of cut-elimination. Of the remaining four extensions, it isenough by symmetry to treat only the extensions of B obtained by liberalizing the contextson the left, that is BL and BLS.Before proceeding, we need the de�nition of rank, which will be the second parameter inthe proof of cut-elimination. The rank of a formula occurrence C in a sequent of a derivationis the height of the history of C. The right rank R-� (resp. left rank L-� ) of a cut is, asusual, the rank of the cut-formula in the right (resp. left) premise of the cut. The rank � ofa cut is the sum of its right and left rank.We are now ready for cut-elimination inBL andBLS. At the right, visibility is preservedin both logics. So at the right the structure of axioms and rules, and hence derivations,remains the same as that in B and BS; in particular, the lemma of history of a formulaoccurrence at the right continues to hold, exactly as for B and BS. Also the lemma ofsubstitution holds; even better, it can be strengthened by extending substitution to includea context at the left, as follows. By writing �-�=C we mean the substitution which replacesthe formula occurrence C with � and adds � at the left of the sequent: � ` �[C] becomes�;� ` �[�].Lemma 4.4 (Substitution of a formula occurrence in BL and BLS) Let � be a proof-tree trunk in which the only rules applied are either rules for connectives which do not operateon the right or structural rules or cuts. Let C be any formula occurrence at the right. Then,for any list of formulae � and �, the result of the substitution �-�=C in � is again a proof-tree trunk. If � has conclusion � ` �, then �[�-�=C]) has conclusion �;� ` �[�=C]).Now we can see that BL and BLS admit elimination of full cut. Just as in B and BSthe task of eliminating cuts was reduced to the elimination of cuts without contexts, nowin the extensions at the left BL and BLS the key step is to reduce the problem to theelimination of cuts with context at the left, i.e. cutL. Indeed, by history and substitutionof a formula occurrence at the right, we have:23



Lemma 4.5 (Reduction of left rank of cut to 1 in BL and BLS) A derivation � inBL and BLS with cut as last rule, and with no other cuts, can be immediately transformedinto a derivation with the same conclusion, but in which the application of cut has the form�0 ` C �; C ` ��0;� ` � cutLwhere C of the left premiss is principal.The next proposition now follows easily:Proposition 4.6 A derivation in BL and BLS with cut as last rule, and with no othercuts, can be transformed into a derivation with the same conclusion and without cuts.Proof (Sketch). The proof is by induction on the degree and (right) rank. If � is therank, we distinguish the two cases:(� = 2) If one of the premisses of cut is an axiom, the cut is eliminated; if both premissesof cut are the result of a rule for connectives, by reducing the degree, cut is eliminated byinduction.(� > 2) First, if the left rank is L-� > 1, the derivation is transformed into one with thesame conclusion and L-� = 1, by the reduction just seen in the preceding lemma. Nowcuts to be eliminated are only cutL, with L-� = 1. Assuming that cut-elimination holdsfor derivations with the same degree but lower rank, the derivation is transformed into onewith the same conclusion but with lower right rank. We proceed in the usual way (Gentzenstyle), by lifting �0 ` C, the left premiss of cut, along the right branch: cut is lifted, and therule is applied afterwards. This is always possible, since lifting cutL up to the premisses ofthe rule leaves the right side unaltered, and the e�ect is a substitution �0=C acting only atthe left, where the rules have liberalized context. �5 Equations depending on the control of contextsWe now analyse the question of which of the most common properties fail in basic logicbecause of the control of contexts and in which way such properties are recovered in theextensions. Basic logic has a richer structure and is therefore able of �ner distinctions thanits extensions. By going upwards towards classical logic more equations hold and someconnectives are identi�ed or become de�nable.In the following result, we �nd an equation equivalent to the presence of the contextbeside the active formula for each formation rule, except those of implications. We needto consider rules where the context beside the active formula consists of only one formula.Moreover, we need to associate a formula 
� to any list of formulae �, and, symmetrically,a formula &� to any list of formulae �. 
� and &� are obtained by replacing commas atthe right or at the left with 
 or &, respectively; the speci�c order in which 
 and &areapplied to de�ne 
� and &� is irrelevant, as long as it is �xed. Whatever the choice is, thesequents � ` 
� and &� ` � will be derivable in B by applying 
R and &L, respectively,in the suitable order.Proposition 5.1 a) In any extension of B, the inequalities1 is neuter for 
: C 
 1 ` C
 distributes over �: C 
 (A� B) ` (C 
 A)� (C 
B)0 nulli�es 
: C 
 0 ` 0are equivalent to the following rules, respectivelyC ` �C; 1 ` � C;A ` � C;B ` �C;A�B ` � C; 0 ` �Symmetrically for the inequalities? is neuter for &: D ` D &?distributivity of &over &: (D &A)&(D &B) ` (A&B) &D> maximizes &: (D &A)&(D &B) ` (A&B) &D24



b) The following are equivalent over B:i) Associativity of 
 : C 
 (A
 B) ` (C 
 A)
 Bii) Strong re
ection for 
:for any �, �0, �, �0;
� ` � if and only if �0;� ` �iii) The full rule 
Lf .iv) The following form of 
L: C;A;B ` �C;A
B ` �Symmetrically for &.When associativity of 
 holds, any rule full at the left is equivalent to its form in whichthe context consists of only one formula; symmetrically for &and right.Proof. a) Easy to see via cut.b) - i)) ii) Let us see that, for every �, one has
� ` � if and only if � ` �In fact, if 
� ` � then, since � ` 
�, also � ` � by cut. Conversely, when � ` � isderivable, also 
� ` � is derivable by suitably applying 
L, as can be seen by induction onthe derivation. The only non trivial case is that of a derivation which ends with 
R, whichis transformed as follows:.... �1�1 ` A .... �2�2 ` B�1;�2 ` A 
B 
R becomes .... �
1
�1 ` A .... �
2
�2 ` B
�1;
�2 ` A
 B 
R
�1 
 
�2 ` A 
B 
Lwhere �
1 and �
2 are the proofs given by the inductive hypothesis and where 
�1 
 
�2is equal to 
(�1;�2) by associativity. We can now complete our argument: let us assume�0;
� ` �; then �0;� ` � follows by cut since � ` 
�. Conversely, from �0;� ` � itfollows (by the above equivalence) that 
(�0;�) ` �, hence by associativity 
�0

� ` �,from which 
�0;
� ` � by re
ection and �nally, by cut with �0 ` 
�0, also �0;
� ` �.ii)) iii) Let us assume strong re
ection for 
; then we have in particular�; A
 B ` � if and only if �; A;B ` �one direction of which is the full rule 
Lf . Obviously, the full rule implies its form in whichthe context is given by one formula only.iv)) i) Associativity is derivable as follows:C ` C A ` AC;A ` C 
A B ` BC;A;B ` (C 
A) 
BC;A
 B ` (C 
 A)
 BC 
 (A 
B) ` (C 
 A)
 BFinally, note that strong re
ection for 
 makes it equivalent to consider a single formularather than a list of formulae as left context of any rule. �The formation rules full at the left considered above are equivalent to the equalitiesC 
 1 = C, C 
 (A�B) = (C 
A)� (C 
B), C 
 0 = 0 and C 
 (A
B) = (C 
A)
B,respectively. In fact, as it is easy to control, the sequents C ` C
1, (C
A)�(C
B) ` C
(A�B), and 0 ` C 
 0, are derivable in B, while the schema (C 
A)
B ` C 
 (A
B) isequivalent to its converse, since 
 is commutative. Symmetrically for rules full at the rightand equalities with &.As a consequence of the above result we obtain that: the formation rules 
Lf , 1Lf ,�Lf , 0Lf are not derivable in B and in BR, as well as their symmetric &Rf , ? Rf , &Rf25



and >Rf are not derivable in B and in BL. That is, contexts on the side of active formulaecannot be added and the basic form of such four rules is strictly weaker than their full form.The above remark applies also to the two remaining formation rules with active formulaeon the left, namely Lfl and!Rfl, as well as to their symmetric, namely!Rfr and Lfr .In this case the remark extends to logics with S too. In fact, the inequalitiesC
(A C
A) `andC ` A!(C
A) are derivable inBL, while they are not derivable inBRS, as one can seeby cut-elimination. Symmetrically the inequalities ` (A &D!A) &D and (A &D) A ` Dare derivable in BL and not derivable in BLS.Summing up, we have proved that:Proposition 5.2 For all the formation rules of B, the form full either at the left or at theright is not derivable in B. Similarly, the form full at the right of all the formation rulesof BL is not derivable in BL (and symmetrically for BR). Moreover, the formation rules Lfl and !Rfl are not derivable in BRS, and symmetrically, !Rfr and  Lfr are notderivable in BLS. Thus the full form, either on the left or on the right, of the formationrules for implications, are underivable in BS.This proposition makes explicit what has always been evident thus far, namely that thecontrol of contexts makes basic logic intrinsically di�erent from other usual logics. Thisapplies not only to the structure of proofs but, by the previous propositions, also to the setof provable formulae.The behaviour of re
ection rules is quite di�erent from that of formation rules. In fact,they often admit the presence of contexts, as speci�ed in the following statement.Proposition 5.3 In B and all its extensions, �R is equivalent to �Rf and symmetrically&L is equivalent to &Lf ; moreover,!L is equivalent to a rule with premises ` A and � ` Band conclusion �; A!B ` �, and analogously for  R.In any of the extensions of B where full cut holds (that is, all extensions except BS),
R is equivalent to 
Rf , and symmetrically &L is equivalent to &Lf ; moreover, !Lfl isequivalent to !Lf .It is remarkable that, on the contrary no context can be added freely in the left premiseof !L in B and BR, that is the rule � ` A B ` ��; A!B ` �is not derivable in B and BR. In fact, as seen in section 2, this rule is equivalent to the \if"direction in the deduction theorem �; A ` B if and only if � ` A!B, which fails. Moreover,by proposition 5.2, the \only if" direction" also fails in BR and in B, and symmetricallyfor  in B and BL. So in B no movement between the left and the right side of a sequentis possible in presence of a context. Observe that such strict control of movement cannotbe separated from visibility in general: loosening the former would also destroy the latter.For instance, it is well-known that allowing the deduction theorem for !, distributivity of
 over � is derivable, and the full form of �L with it.The diversity of primitive connectives present in basic logic is lost as long as the controlof contexts loosens. However, the identi�cation of some connectives is present already in Bitself, but only at the meta-level and in absence of contexts.In the sequel, we use the signs ��� and ��� for the \classical" de�nitions of implications,namely we put A���B � �A &B and B���A � B 
:AProposition 5.4 a) The following equivalences hold:i) In B, ` A&B is provable if and only if ` A
B is provable; symmetrically B�A `is provable if and only if B &A ` is provable.ii) In B, ` :A is provable if and only if `� A is provable; symmetrically �A ` isprovable if and only if :A ` is provable.26



iii) In BR ` A!B is provable if and only if ` A���B is provable; symmetrically, inBL B A ` is provable if and only if B���A ` is provable.b) In B, the sequents A
B ` A&B and A�B ` A &B are derivable via weakening andthe sequents A&B ` A 
 B and A &B ` A � B are derivable via contraction. So inBS additive and multiplicative connectives are identi�ed.In BL, the sequents A���B ` A!B and B���A ` B A are derivable; symmetrically,in BR one has A!B ` A���B and B A ` B���A. So in BLR it is A!B = A���Band B A = B���A.Finally, in BL and in BR, both �A ` :A and :A ` �A are derivable, that is:A = �A.Proof. a) The proofs of the three items follow essentially a uniform schema, that con-sists of �nding an assertion which is equivalent to the sequent at the left by the re
ectionprinciple, and is equivalent to the sequent at the right by a re
ection rule and because ofcut-elimination. Here are the details in the case iii).By the re
ection principle, ` A!B is derivable if and only if A ` B is derivable. Then,from ` 1 and A ` B one derives ` �A;B by the re
ection rule Rfr , from which ` A���B;conversely, assuming that ` A���B is derivable, then also ` �A;B is derivable, but then,by cut-elimination, A ` B is derivable.b) The sequent �A &B ` A!B is derivable in BL from non-contradiction A;�A ` (whichalso holds inBL!) and from the axiomB ` B by &Lfl and then by!Rfl; while the sequentB 
 :A ` B A is derivable from the axiom B ` B and from the other non-contradiction:A;A `, by  Rfl and then by 
L.Finally, observe that :A ` �A follows in BL from B 
 :A ` B A when B = 1, butsymmetrically also in BR from A!B ` �A &B when B =?. In BL, from A ` A onederives A; 1 ` A, hence A;�A ` by  Lfl and then �A ` :A by ? R and !Rfl. InBR, the symmetric derivation proves the same sequent �A ` :A, since such sequent isself-symmetric. �So, when adding weakening and contraction, that is when the distinction between themultiplicative and additive form of the rules (that is called control of contexts) is lost, thetwo conjunctions and the two disjunctions are identi�ed. Similarly, when adding contextsbeside the active formulae, that is when visibility is lost, the two implications and the twoexclusions are identi�ed. These two facts are parallel and independent. In this sense, basiclogic is the logic which operates a strict and uniform control of contexts. Its extensions areobtained when such control is relaxed.Loosening the control of contexts is necessary in order to derive the above equalities.In fact, assuming A 
 B = A&B, one can derive weakening and contraction. We leave theproof, even if it requires some more care with respect to the case of linear logic. In case ofthe equalities involving implications, the converse to the above proposition holds in the weaksense that the equality B A = B���A is unprovable in any of the extensions of B wherecontexts at the right are controlled, and symmetrically for the equality A���B = A!Bwhere contexts are controlled at the left. This amounts to prove that:Proposition 5.5 The sequent B A ` B���A is underivable in BLS; symmetrically, thesequent A���B ` A!B is underivable in BRS.Proof. Observe that ��� satis�es in BL (and hence a fortiori in BLS) the rule�; B ` A;��; B���A ` �In fact, since in BL the rule !Lf is derivable, by proposition 5.3, from the premiss�; B ` A;� and from the axiom ?` one can derive �; B;:A ` �, from which the con-clusion �; B���A ` � by 
Lf . Therefore the sequent B A ` B���A is not derivable,otherwise it would be derivable by cut also the rule  Lf , contrary to lemma 5.2. �This means that in BLS (and BL)  and ��� are di�erent, even if ��� obeys theinference rules for  . In fact, we have already seen above that ���Lfl is a derivable rule27



(actually, also ���Lf ); in addition ���Rfl is easily seen to be derivable. So it happens thata connective is not uniquely characterized by its rules.We conclude with some brief remarks on the asymmetric extensions of B.Let us consider BL, which probably has a more familiar aspect than its symmetric BR.We have seen that ! in BL satis�es the deduction theorem, while  does not; moreover,inequalities with 
 hold while their symmetric with &fail. Thus BL is a cut-free calculusfor linear intuitionistic logic, which includes a non-associative and non-distributive \par"connective &, and an additional implication connective  (see [3]).The calculus BLS is a formulation of intuitionistic logic that, besides contexts at theright as in [15], includes an extra connective  . In fact, since multiplicatives and additivesare identi�ed because of S, both conjunction and disjunction satisfy associativity and dis-tributivity, since the rules &Rf and &Rf are equivalent to the rules �Rf and 
Rf , whichare derivable in BL by proposition 5.3. The results above show that  is not de�nablein intuitionistic logic. So, emerging back to the surface of intuitionistic logic after the ex-ploration of the dark depths of basic logic has left us with the reward of a new connective,which we suggest to be the intuitionistic way to deal with negative notions in a primitiveway.References[1] G. Battilotti, Basic logic through the re
ection principle, Diss. Summ.Math., (1997).to appear (Summary of the Ph. D. Thesis in italian, University of Siena, 1997, advisor:G. Sambin).[2] , Embedding classical logic into basic orthologic with a primitive modality, LogicJournal of the IGPL, (1997). to appear.[3] G. Battilotti, From basic logic to full intuitionistic linear logic, 1997. in preparation.[4] G. Battilotti, Logica di base attraverso il principio di ri
essione, PhD thesis, Uni-versit�a di Siena, February 1997. advisor: G. Sambin.[5] G. Battilotti and C. Faggian, Quantum logic and the cube of logics, in Handbookof Philosophical Logic (new edition), vol. VII, D. Gabbay and F. G. (eds.), eds., Kluwer,1997.[6] G. Battilotti and G. Sambin, Basic logic and the cube of its extensions, in Logic inFlorence '95, Proceedings of LMPS, Florence 1995, A. Cantini, E. Casari, and P. Minari,eds., Kluwer. to appear.[7] G. Battilotti and G. Sambin, Pretopologies and a uniform presentation of sup-lattices, quantales and frames. in preparation.[8] , The principle of re
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