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We aim to put assertions from quantum mechanics in terms of
sequents.

A sequent is an object of the form
A1,...An + B1 ...Bm
(summingup I' + A)

where  represents a consequence relation. A sequent represents
an assertion.

A sequent calculus derives assertions and is given by rules on
sequents.

We adopt the view of basic logic, developed as a common platform
for sequent calculi of extensional logics.

One derives the rules of logical connectives putting definitory
equations of the form

N-AoB = TT+A=B

where o is the connective defined in terms of the metalinguistic link

~
~.
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We consider a preparation of a quantum system. The preparation
and all the measurement hypothesis are described in a the set of
premises I'.

We represent by the sequent

FFA1,...,A,7

the information A1, ..., A, one can achieve from the preparation
by a quantum measurement.

Quantum measurements enables us to distinguish three logical
levels:

» quantum states prior to measurement: predicative level

» density operators: propositional level with probabilities

» classical states: propositional level
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The measurement process of a quantum state w.r.t. an observable
is a random variable.

Its outcomes are associated to elements of an orthonormal basis
of the Hilbert space associated to the system.

Let Z be the random variable produced by a measurement of a
certain particle in a certain state. This defines a set

Dz ={z = (&, p{Z = &)}) : ¢ state of the outcome}

where p{Z = £} > 0.

We shall term D> random first order domain.
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We consider a particle A and an observable producing a random
variable Z and hence ar.f.o.d. D.

We obtain the assertion:

“In the measurement hypothesis ', the state of the outcome is ¢
with probability p{Z = ¢} for all pairs z = (£, p{Z = &}) € D7".

More formally, we write this assertion
“forallz € Dz, T + A(z)”

and finally we summarize it in the sequent:
MzeDzrA(2)

(where I does not depend on z, since the measurement
hypothesis does not depend on the outcome.)
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We put the following equivalence:
Mt (VxeDz)A(x) = I,ze Dz + A(2)

which summarizes the assertion by means of the quantifier V.

The first order variable z (asociated to the random variable Z) is
used as a logical glue for the different outcomes.
In this sense we claim that the proposition

(Vx € Dz)A(x)

represents the superposed state of the particle.

Giulia Battilotti Dept. of Pure and Appl. Math. University of Pado QUANTUM SEQUENTS



For example, a particle represented in the Hilbert space C2, with
orthonormal basis {|0),|1)}. The state is represented by the vector:

al0) +BI1)
(@.8 € C,laf* = a,|87 = b)
The random first order domain is
Dz = {(10), a), (I1), b)}
and the state is represented by the following proposition
(Yx € {(10), @), (I1), b)A(x)

When a = 0 or b = 0 the r.f.o.d. is a singleton, for example
Dy = {(11), 1)}

When a = b = 1/2 (uniform distribution) the r.f.o.d. is

Dy =1{(10),1/2), (1), 1/2)}.
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Performing a quantum measurement determines a collapse.

In our terms we consider the collapse of the variable due to a
substitution by a closed term.

We consider the provable sequent

(Vx € Dz)A(x),ze Dz + A(2)
The substitution z/t yields

(Vx € Dz)A(x),t € Dz + A(t)

from which
(Vx e Dz)A(x) F A(t)

If ty,...,t, denote the n elements of Dz, one obtains (by & rule):
(Vx € DZ)A(X) F A(t1)& ... &A(th)
The proposition A(t1)&...&A(t,) represents a mixed state.

We have represented a non selective quantum measurement.
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To represent a selective measurement, yielding a pure state:

We consider a substitution which “forgets” the probability and gives
probability 1 to the result:

(Vx € Dz)A(x) + A¢(s)

where s is a term denoting the state |b) after the measurement.
s = (|b), 1).

For every formula A(x), we put the axiom
A(s) r (Yx € {(Ib), 1)DA(x)

Since it is also (Yx € {(|b), 1)})A(x) r A(S), one has the equality
(Vx € {(Ib), 1)})A(x) = A(s)

(in particular, it allows to interpret the outcome A¢(s) of the
measurement of any state as a sharp state).
Sharp states can be identified with propositional formulae.
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But, for n > 1
(VX € Dz)A(X) * A(t1)&...&A(tn)

For, the sequent A(t1)& ... &A(ty) + (Yx € Dz)A(x) is not
derivable.

It is equivalent to A(t1)&...&A(tn),z € Dz + A(z), that,
since it is

zeDy © z=HvVv---Vz=1

is equivalent to

A(t1)& ... &A(ty),z = ti+ A(z) for all i.

This implies that an equality
zZ=1

should be definable in a uniform way on the set Dz. This implies to
choose a unique phase factor.
True if and only if the domain is a singleton!!!
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We now consider a set of compatible observables, giving random
variables Z;, i =1...m.

We obtain sequents of the form
I,z1 € Dz,...zm € Dz, v A1(z1),...,Am(Zm)
After measurement, we have the sequent

rI—AZ

where Az = A{(s1),...,Am(sm) are the values obtained.

Incompatible observables cannot be determined. Then “nothing
incompatible” can be added to make the list Az longer.

In basic logic we say this exploiting the definition of the costant L
(multiplicative falsum of linear logic):

rI—Az,J_Z = rI-AZ
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The maximum of the uncertainty corresponds to the uniform
distribution for the values of the measurement.

In our terms the uniform distribution (on a finite set {1... n}), with
respect to an observable O, is represented by a proposition of the
form

Lo=A(u1)&...A(un)

where u; denotes (|b;), 1/n).

Hence the measurement of a group of compatible observables
gives
M+ Az,J_o1,J_o2

where the O; are incompatible.

Giulia Battilotti Dept. of Pure and Appl. Math. University of Pado QUANTUM SEQUENTS



If we consider more than one particle, and consider an observable,
we may obtain again an assertion of the form ' + Ay,...,Ap, n > 1.

For example we have a couple of particles, A and A’.

If the two particles are separated, that is, if the measurement result
on the first is independent from the measurement on the second,
we obtain two different independent random variables, Z and Z’.

So we define two distinct domains Dz and D’ and describe the
measurement of the compound system by the sequent:

l,zeDz,z € Dz v A(2),A’(Z')
that is converted into
I+ (VYx e Dz)A(x) = (¥Yx € Dz )A’(x)

(where = is the multiplicative disjunction of linear logic).
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Example: the separated state
(1/¥210) + 1/ V2[1)) @ (1/ V210) + 1/ V2(1))

The state of the sistem is represented by the compound
proposition

(Vx € Dy)A(x)=(Vx € Dy)A’(x) = (Yx € Dy)(Vy € Dy)A(x)*A"(y)

(two different occurrences of the same first order domain,
independent variables).
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The case of entangled particles is different. In such case one does
not have independent measurements and variables.

, one can define a generalized n-ary quantifier, denoted <" (in
particular, >a' is V).
It is defined in order to represent entangled states.
The proposition

N?(EDZ (A1; A2)
represents the entangled state of 2 particles “sharing” the same
random variable Z, and hence the same r.f.o.d. Dz.

It comes from the following definition:
Medep, (AiA2) = T,zeDzrAi(2).2A(2)

where A; and A, depend on the same variable z and the indexed
comma ,z indicates the correlation between the two particles.
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Example: the Bell’s states in C2 ® C?:
1/v2[00) + 1/V2[11)  1/V2]01) + 1/ V2]10)

A measurement of one of the two particles determines the
symultaeous identical (or opposite) result on the other, and we
describe this by the assertion:

M,zeDzv Ai(2),zA2(2)
Their representation as proposition has the form
><epy (A1(X); A2(x))

where Dy = {(|0), 1/2), (]1),1/2)}.

Note that the domain Dy is “simpler” than the state, since it is the
same domain of a particle of C2. Two particles share the same
domain.
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Let Dz = {(¢&, p{Z = £})} a domain where & € {|0), [1)}.

We put
Dz = {(£4,plZ = &)))

where the state &+ is the NOT of &.
D3 is the dual domain of Dz.
The proposition with the dual domain
(Yx € D7)A(x)
denotes the NOT of the state denoted by (Vx € Dz)A(x).

1. In which terms can the definition of dual domain extend the

usual duality?
2. In which terms is the proposition (Vx € D3)A(x) to be

considered a logical negation?
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Definitory equations can be put in symmetric pairs, as follows:
[+AoB = l'-A=~B

and

Ao°BrA AxBrA

so that logical connectives come out in symmetric pairs (o, o),
each pair corresponding to the same metalinguistic link ~: (&, V),
(*,®), ... (¥,3).

Then, formally, we have a symmetric representation of the state, by
the existential quantifier:

(Ix € Dz)A(x)
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Symmetric equations are solved in a symmetric way, finding
couples of rules “mirroring each other”. So, one finds symmetric
sequent calculi (or couples of symmetric sequent calculi) and a
symmetry theorem:

Mproves '+ A iff M° proves A°+T°

where p = p*S on literals and % has the right/left rule for o° where
[T has the left/right rule for o.

In logic, the symmetry theorem becomes real when it is applied
considering a duality (—)*:

FreA iff AteTt

where p* is the negation of p (Girard’s duality) and everything else
is as for symmetry. Symmetry acts as a real duality on connectives!
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If we put:
A(z)* = A(z) (where z has its values in D+ in A(z)*!)
A(z/t)* = A(z/t+) (where t+ denotes the element obtained
as the NOT of the element denoted by 1)

(ze D)t =ze D+
the dual representation of (Vx € Dz)A(x) is (Ix € Dz)A(x).

We have to see that:
(Vx € Dz)A(x) is the negation of (Vx € Dz)A(x) (itis
consistent with the usual negation)
our position extends the usual propositional duality.
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The idea is that the quantum gate NOT, applied to sharp states,
behaves as the gate NOT of a classical computer.

The dual domain of the singleton {(|b), 1)}, denoted by s, is the
singleton {(NOT|b), 1)}. If s* denotes its element, the dual of the
state A(s) is A(st).

The propositions A(s) and A(s™) are like a couple of propositional
literals: p, and pp, that can be interpreted as a couple of opposites.

We obtain a primitive negation.

If we put p}% = pp and conversely, we obtain a consistent extension
of the duality theorem.
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On the other side, a random first order domain coincides with its
opposite when the domain corresponds to an eigenstate of the
NOT gate.

In C2, the domain Dy = {(|0),1/2), (|1),1/2)} is equal to its dual.

In C? ® C? the Bell’s states are representable by means of an
entanglement quantifier which has the same domain Dy.

So, in our setting, we have formulae which coincide with their own
negation. We can consider them another kind of primitive literals
and label them by capital letters U. We term them “uniform
literals™. Itis Uy = Uy.

Uniform literals aren’t propositional formulae and do not coincide
with their symmetric, with the existential quantifier. We must
distinguish universal literals Uy and existential literals Us, where
the symmetric of Uy is U3 and conversely.

On uniform literals duality coincides with symmetry: the dual of Uy
is Ug.
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The role of symmetry and duality is exchanged for uniform literals!

Since Uy = Uy, any U can be considered as asserted and as
rejected at the same time.

(This does not mean that the sequent U + U’ coincides with the
opposite sequent U’ + U, since from U + U’ one has U’ + US.
They can be distinguished w.r.t. the turnstyle - by symmetry).

Literals U are maximal with respect to this, since any other
component of a proof is obtained as a composition of elements
which admit a dual different from themselves.

Then it is important to gather as much information as possible in
literals U.

In this terms we represent massive quantum parallelism when the
computation is a computation of assertions, namely a logical proof.
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Thank you for your attention!

For those who like quantum theories of mind:
Psychoanalist Matte Blanco (The Unconscious as infinite sets):
There is the “bivalent mode” for the conscious thinking

There is the “indivisible/symmetric mode” for the unconscious
thinking, where “...the opposites merge to sameness”.
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