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Abstract

In a predicative framework from basic logic, defined for a loaf quantum
parallelism by sequents, we characterize a class of firsr@oimains, termedr-
tual singletonswhich allows a generalization of the notion of dualitynbexdsym-
metry, Although consistent with the classical notion of dualgymmetry creates
an environment where negation has fixed points, for whicldirestion of logical
consequence is irrelevant. Symmetry can model Bell's st&e, despite its non-
sense in a traditional logical setting, symmetry can higepiaculiar advantage for
the treatment of information, that is proper of quantum ra@ats.

I ntroduction

The problem of modelling quantum mechanics by logic is antbegnain open topics
in the search for quantum structures. It has been acquiring @mnd more relevance
since the proposal of quantum computers, that is of exppjuantum processes for
computation and communication processes. Hence the pnojehers dierent as-
pects in the foundations of mathematics, of physics, andafaemputation.

Then, in the recent field of quantum computational logicsnyndifferent ap-
proaches are present. Here, we remind two lines of resedricihwe feel closer to our
motivations. Some developments are founded on the logiwdysis of the algebraic
model given by Hilbert spaces. We quote the first survey pHp€GLO3], moreover
we remind that such a choice, sided by othdiedlent approaches, consideringeient
spaces for quantum mechanics, such as Foch spacesfesent algebraic structures
such as MV-algebras, has permitted the logical formaliratif different aspects of the
theory to this community of research. Considering insteadraalgebraic approach to
the problem of quantum computation, allowing a direct corigoa with logical sys-
tems, in a computational framework, we quote in particl8]| for the embedding of
guantum entanglementin a logical system.

The idea that has motivated our research in quantum congratogics is that
a logical system for quantum computation need to includegecéd representation of



guantum entanglement. This is not a harmless requirentelogic, since it is becom-
ing more and more apparentthat the traditional input-aiftmetional way to conceive
an algorithm is not suited to model quantum computationat@sses, that are based
on quantum entanglement. For a detailed reading of quanigonitams in this sense
we quote [Ca], and his reference [DE] for an experiment édiging the physical mo-
tivation of non-sequentiality. Moreover, we quote [BV], iwh performs an analysis of
open quantum system dynamics and concludes that a quargonitian is not the se-
quence of its temporal parts, due to the entangling gatasbt#have as “black boxes”.
As is well known, the functional view of algorithms has, imio, a clear translation:
logical implication. We remind that the semantics of intuiistic implication is based
on the notion of function. Hence, we find it very intriguingdeercome the traditional
functional view of computation in logic itself, discussitige definition of connectives.
Discussing in which terms logical connectives are definduatvs lost and what is
gained when one abandons the usual setting of logic, whidsgoom to the defini-
tion of logical implication, should fber a good opportunity to face the problem of the
meaning of computation.

So, we search the fligrent approach to information that isfered by quantum
mechanics, directly in terms of assertions and logical 8gna defining connectives.
Thisis possible in basic logic [SBF], a sequent calculug@ien for several extensional
logics, including some quantum logics. In such a framewer&, have proposed a
characterization of quantum states in predicative loge][Ba2].

Here, we introduce and discuss the notion of “virtual sitaji&, namely a set which
can act as a singleton under particular assumptions, netémg such notion in our
model. We see that virtual singletons determine a symmigttier than dual setting
in logic, that means we can achieve a list of self-dual ligerdnat are fixed points for
negation and have rather a phase duality. In our model, wesearhat phase duality
is naturally induced by the duality already present in lo@anply, we are not aware
of it, since it occurs prior to measurement. Virtual singfet are insensitive to the
direction of logical consequence and allow &elient symmetric connective, obtained
as a generalized quantifier, whose computation is “pataltel excludes a context-free
computation. It permits an interpretation of Bell’s statesur model. This constitutes
an alternative to logical implication.

A very intriguing open problem is to understand how the irgion could then
arise, when the intrinsic randomness of QM is dropped indawd determinism. We
think that it should arise when the “functional view” is reeoed, due to the fact that
the usual meaning of first order variables can be establiskieen virtual singletons
disappear.

Virtual singletons are more similar to infinite sets thanmité, countable, sets, and
their logical setting ffers a holistic rather than compositional treatment of infation.
Such a feature is present in quantum mechanics, and also human thinking, since,
for example, it is a feature of the human language. This prokihas already been
considered in quantum computational semantics, for examdDCGL]. As for our
approach, we have realized that the logical setting defivedr model is surprisingly
close to “bi-logic”, introduced by the psychoanalyst |. kaBlanco in the '70s [MB].
For, in bi-logic, negation and implication are meaninglessl information is “infinite”.
These connections, not analyzed in the present paper,endlbfiect of future work, and,



we believe, they are a strong motivation for this kind of #gdbeyond the modelling
of computation.

1 Symmetry and duality in basic logic

Basic logic is a common platform to study sequent calculieiensional logics. Its
sequent calculus, and its extensions, have the followingsgtry theorem ([SBF]):

Theorem 1.1 The sequenf + A is proved by a proofl of the calculusB of basic
logic if and only if the symmetric sequent + I'S is proved by the symmetric prof

of B. The equivalence is preserved for any symmetric extengi@n &oreover, the
equivalence is preserved switching “right” and “left” extsions oB.

The theorem can be proved putting any involutie®(on literals (including the iden-
tity), and putting A o B)® = B® o® AS, where the pairso( o%) for logical constants are
the following: the additive conjunction and disjunction, (&), the multiplicative dis-
junction and conjunction( ®)*, implication and exclusion-§, «-). Then one proves
the statement by induction on proofs:

e Itis AS+ ASfor everyA (axioms are symmetric)
¢ Inference rules are in symmetric pairs:

ok A AS+TS
_ tekhe | RL & —=2 2 _oL/R
IorAy ThFA AJ RT3 AGHTG
whereoSL/Ris the right (resp. left) rule for the connectiveéwhenoR/L is the
left (resp. right) rule fore.

The involution €)% is non trivial on the inductive step, namely logical conssaare
defined indual rather than symmetric pairs: (&)..., whereas it can be the identity
on axioms. Then the orientation of the turnstyle is irrefgvfar axioms, it is relevant
only for inference rules. So the orientation of logical ceqpsence and logical theorems
is due to the duality, applied at the inductive steps.

In logic, the symmetry theorem gets full meaning when onesictars couples of
dual literals: p, p* (Girard’s literals) an puts the involutior-J*: (p)* = p*, (p*)* =
p. Then the statement of the symmetry theorem is written sl

F'rA & A*+TH 1)

In this form, the duality is not yet a negation. For, in ordehave the usual character-
ization of negation (Girard’s negation in our case), we $thtnave a formulation with
contexts:

I'TrFrAN < T, ,AYrTHAN 2)

for everyway to separat€,I"” andA, A’.

IHere we denote the multiplicative disjunction by



Such a formulation is not derivable from the symmetry theor€or, even if rules
of basic logic can be extended to liberalize contexts at #fiedndor at the right,
getting calculi for several extensional logics, includingear and classical logic, the
symmetry theorem cannot work with contexts. For exampkesdguenp — g, p+ g
is provable in some extensions of basic logic, whereas theesgp — q,q + p is
nowhere provable! A proof of the sequegmt—> g,q* + p*, valid in some extensions
of basic logic, is not obtained as the symmetric proope$ g, p + g, but by suitable
structural rules on the duality ([FS]). In such a way extended duality (2) is proved
too.

Hence the symmetry theorem characterizes a “proto-negatith a context-
sensitive behaviour. One has usual negation only exteriding standard context-free
calculus. This could mean, possibly, to killfidirent potentialities of symmetry. Our
guestion is: is there a real “symmetric” interpretation fodé symmetry theorem? In
which terms is it in conflict with usual duality? More practily: what is a symmetric
literal? Are there symmetric connectives somewhere? Theeinee have developed
for quantum computation can contribute to give an answer.

The answer seems negative in usual propositional logic, &oproved in basic
logic, the usual propositional constants and their ruleshminterpreted as derivable
from suitable definitory equations, as in the schema:

T'rA"B=T+A-B Bo'ArA = B-ArA

In such a schema, the connectivésindo' are defined as the result of importing a met-
alinguistic link, represented byinto the formal language. So the same metalinguistic
link can define a couple of dual connective§ ¢'), at the left and at the right of the
turnstyle. Then the solution of definitory equations givammietric pairs of rules, for
the couple §', o), and hence the symmetry theorem sketched above (see [SBF])

1.1 Symmetry in the predicative case

Such a setting works loose in the predicative case, as wdwseating. The meaning
of the quantifiers is given by considering assertions linkgdhe metalinguistic link
forall [MS]. One has the assertiof ‘yields A2)”", wherez is a variableI" does not
depend orz free (in the following, we adopt the notatidif—z, z . ..) to say that the
variablesy, z . .. are not free iT"), and the free variable, on a ranBeis the gluefor
all the A(2). Then we write our assertion:

foralze D, T'(-2+ A(2
where the premise e D is at a metalinguistic level. We import it into the languade o
sequents and write:

I'(-2,ze D+ A(2

We consider it the primitive assertion generating the gtiant’. So we put the fol-
lowing definitory equation o¥:

I'(-2)+ (Yxe D)A(X) ifandonlyif T'(-2),ze D+ A2 3)

so that the meaning ok € D)A(X) is “Yx(x € D — A(X))".



In order to find thesymmetridogical translation of the link, we keep the metalin-
guistic “forall z € D” and consider a symmetric sequent whéy@) is on the left:
A(2) + A(-2). The assertion

forallze D, A2+ A(-2)
importingz € D into the sequent, has the form

A@D+ A(-2,z¢ D

since one has tha4(2) yieldsA(-2) unless z D. So a negation is required in order to
express the symmetric meaning of the metalinguisticforill. In the above sequent,
we substitute, formally the negated propositiop D by the dual propositionqe D),
whered is a hypothetical duality, so that we put the following syntrizedefinitory
equation for the quantifiet:

(Ax e D)A(X) F A(-2) ifandonlyif A2 r A(-2),(ze D)¢

where the meaning ofik € D)A(X) is attributed by exclusion:Ix(A(2) « (x € D)4)”
(exclusion< is the symmetric connective of implicatien in basic logic). Notice that
usually one has no need d@fin order to define an existential quantifier in logic. For, if
d satisfies the equivalence characterizing negafiom:e D - AIff ' + X ¢ D, A, the
sequeni\(2) - A(-2), (ze D)! is equivalent toA(z), z€ D - A(-2). Then the usual way
to define @x € D)A(X) follows: Ax(x € D& A(X)). In it no reference to the dualiyis
present.

One can prove that the following symmetric pairs of ruleswieirom the solution
of our definitory equations:

I'(-2,ze D+ A(2 i I'rzeD A(QrA
I'(-2) + (Yx e D)A(X) I, (Yxe D)A(X) F A

A FA(-2),(ze D)dEIf I'-A@@ (zeD)rA

(Ax e D)A(X) + A(-2) I'+ (Ax e D)A(X), A
Sketch of proof:Vf is one direction of the definitory equation avdis the minimal
requirement to re-obtain the reflection axiome D, (Yx € D)A(X) + A(2), in turn
derived putting {x € D)A(X) for I'(—2) in the definitory equation. In the symmetric
equation, the reflection axiom &z) + (Ix € D)A(X), (ze D). For more information,
see [SBF] and [MS]. Th¥ rules are proper of an intuitionistic calculus, theules are
proper of a dual-intuitionistic calculus. In the followinge shall feel free to enrich
them with additional contexts, up to rules of classical ¢ogi

We assume to have a language with equality. Then we congidefotlowing

Leibnitz-style definitory equation for the equality preatie=, introduced in basic logic
by Maietti [Ma]. For every way to separalel” andA, A’ itis

[, T(t/s),s=t+ A(t/9),A” iff T",T+A A
We also write down the symmetric equivalence, that definegptldicate: at the right
I',T(t/9),F A(t/9), A, s#t iff T',TrAAN

It is useful to notice the following equivalence



Proposition 1.2 The sequente D and(3dx € D)z = x are equivalent.

Proof: derivation of ix € D)z= x+ ze D: + ze D,(z € D)% is equivalent t@ = y -
ze D,(ye D)Y, thatis @x € D)z= x+ ze D. Derivation ofze D + (Ix € D)z = x:
from the axioms- z= zandz € D, (ze D)? r by the ruledr given above.

One direction of the above equivalence is also propositiona

Proposition 1.3 The sequentz t; v...Vvz=t,+ ze D is provable for every domain
D = {tl,...,tn}.

Proof: The axiont; € D + t; € D is equivalent td; € D,z =t; + z € D by definition of
=. Then, cutting the true assumptigre D, one hagz =tj+ ze Dforalli =1...n,
namelyz=1t; v...Vv z=t,+ ze D by definition ofv.

We say that the domaid = {t,, ..., t,} isfocusedvhen the converse sequent holds,
namely when it is
zeDrz=t1v...vZ=t,
So we could say that the informatiom € D” has an infinitary content, that becomes
finite whenD is focused.
We introduce the following rule for the substitution of thhed variablez by a term
t denoting an element of the domdin

I'rA
['(z/t) + A(z/t)
that is labelled byD since, in our model, the validity of substitution depend€$Xon

We see thasubs({D) is derivable, for elements of focused sets, in the follayvin
terms:

subs{D)

Lemma 1.4 Let us assume the sii, ..., t,} is focused. The sequelitz € D + A(2)
is equivalent to the n sequerts+ A(tj), and then to the n sequerits+ A(tj), by
weakening of the assumptiqretD

IzeDr A@ meand,z=1t; V...V Z=t,+ A2, becaus® is focused. The last
isT,z =t + A(2) for everyi, by definition ofv. These are equivalent 1o+ A(t;) for
everyi by definition of equality.

Then one can prove the following characterization (see [Ba2

Proposition 1.5 Let us consider a non empty domainb{t;,...,t,}. The sequent
Alt)& ... &A(t)) + (Yx € D)A(X) is provable for every formula A if and only if D is
focused.

Proof: Let us assume thBtis focused. The sequeht A(t))& ... &A(t,) is equivalent
to then sequentd™ + A(tj)). By the above lemma, this meahsz € D + A(2). For
everyI” which does not containfree, this isI" + (Yx € D)A(X), then in particular for
I'=At)& ... &A(ty).

As for the “only if”: Let us consideA(x,y) = x # y. Then, by hypothesis, it is
Z# & ...&2# tn + (¥YX € D)z # x. Thisis equivalentt@ # t1& ...&z # ty,y €
D + z # y, that, by duality, givey e D,z=y+z=1t; V...V Z = ty, from which one
derives@x e D)z=Xx+z=1;V...VZ=ty Sinceze D + (Ix € D)z = X, one has
zeDrz=1t1 V...V Z=tycutting the existential formula.



The converse direction of the sequent is always provablsubsgtitution:

Proposition 1.6 The sequentyx € D)A(X) + A(t) is provable for every non empty
domain D= {t3,...,ty}. Hence(Vx € D)A(X) + A(t1)& ... A(ty) is provable. Symmetri-
callyitis A(ty)) v... Vv A(ty) + (Ix € D)A(X). Then, the seque¥x € D)A(X) + (Ix €
D)A(X) is provable for every non empty domain D.

Proof: FromA(2) + A(2) andz € D + z € D one derives the sequentz € D)A(2),z €

D + A(2). By substitutingz by t; in it, and then cutting the true assumptipre D,
one has\{x € D)A(X) + A(t;), for everyi = 1...n. Thenitis fx € D)A(X) +
A(t)& ... Aty) by definition of & Symmetrically ford. The last sequent is proved
from (Yx € D)A(X) + A(t;) and its symmetridA(t;) + (Ix € D)A(X), by cutting the
propositional formulaA(t;).

In particular, in lemma 1.4 we have seen that the substitatjgerformed in the
above proof are valid iD is focused. Summing up, we can say that:

Proposition 1.7 (VYx € D)A(X) is equivalent to the propositional formuldtd)& . . . & A(tn)
if and only if the domain D is focused.

We assume that singletons are focused, namely
ze{urz=u

for every singletoru}. Such an assumption is due to our extensional concept of set.
Then,z € {u} is a synonimous af = u, sincez= u+ z € {u} is an instance of 1.3.

By the assumption on extensionality of singletons, and bove propositions, it is
immediate to see that the metalinguistic lifgkall behaves in a symmetric way when
the domain is a singleton:

Proposition 1.8 A(u) = (Yx € {U})A(X) and (Ix € x € {U})A(X) = A(u) are provable
for every A, for every singletoju}. So is(Ax € {U})A(X) = (VX € {u})A(X) for every A,
for every singletorju}.

Proof: The first two statements are an immediate consequénmeposition 1.5; the
third is immediate by transitivity, that means cutting thegmsiional formula(u). It
is also very useful to see a direct proof of the sequéartd {u})A(X) + (VX € {u})A(X),
without cut. It is equivalent to the sequeily), z € {u} + A(2),y ¢ {u}, by definition of
¥ and3. The last means

z=UAlY) - A(2,y# U

that in turn is derivable from the axio&(u) + A(u) by definition of= and=.

1.2 Virtual singletons

We extend our notion of singleton, in order to characteringder class of symmetric
objects. Let us termirtual singletonany setV for which it is (Ax € V)A(X) = (VYx €
V)A(X) for everyA. In particular, we shall terraxtensional singletoa set of the form



{u}, namely a se¥ for which the language has a closed tarsuch thaz e V iff z= u.
We have just seen that extensional singletons are virtngletons,since it is true that

z=UuAWY)FA@),y# U (4)

In order to characterize virtual singletons in general, write such sequents, substi-
tutingz=u,y# ubyzeV, (y € V)9, whered is a duality. We have the schemata:

ze V,AlY) - A®2). (y € V)° (5)

for every A. Such sequents are, in general, underivable, and we shallttemd-
axioms One immediately derivesik € V)A(X) + (Yx € V)A(X) from them. As for
the converse directiorvk € V)A(X) + (Ix € V)A(X), it is derivable as soon asis not
empty, but its derivation would require substitution. Walsdiscuss the topic of non
emptyness for our model. Virtual singletons are then noptgreetsV for which the
logical system has a suitable dualityor which d-axioms can be put.

One proves the following important fact:

Proposition 1.9 Let us assume that a set V has d-axioms. If the system is dbysed
substitution by elements of V, then the system can prov&/tiea singleton.

Letu,u € V and let us conside&(2) = z = u. Applying the substitutiong/u” andy/u,
onehasr e V,u=ur U = u,(ue V). Since reflexivity- u = uis derivable by the
definition of equality, and the sequentsr € V and (1 € V)¢ + hold by hypothesis,
one derives U’ = u by cut.

By the above proposition and lemma 1.4, we have:

Proposition 1.10 A focused set has d-axioms if and only if it is an extensiongls-
ton.

Then a virtual singleton is either an extensional singletcem unfocused domaih
in a system equipped with a suitable duatignd without substitution rule for elements
of V.

As soon as a substitution rule of free variables by closadgatenoting elements
of Vis included in the system, in order to keep consistency, we hao choices:

1) we need to drop the duality

2) we need to consider a new closed tarrof the language such th&t = {u}. This
identifiesd with the duality given by= and#, thed-axioms with the sequents ((4), and
the formulae with the propositional formulé€u).

On the contrary, virtual singletons, in the generic casek &f a closed term to de-
scribe their content, so we are forced to a predicative g#gum, by a unique quantifier
(usually we shall adopt). We now see how this can give us an advantage in describing
pure symmetry.

1.3 Extending the action of virtual singletons

The analogy with the behaviour of singletons can be furthextended to virtual sin-
gletons. We first observe an immediate consequenakadioms. Let us consider



the sequent'(-z -y),z € V + A(2),B(2), whereV is a virtual singleton. Assum-
ing thed-axiomy € V,A(2) + A(y),(z € V)¢, one can cut the formulA(z) and ob-
tainT'(-z -y),z€ .y € V r AY),B(2,(z € V)U. This is classically equivalent to
I'(-z-y),ze V,y € V + A(y), B(2), that isT'(-z -y) + (¥x € V)A(X), (YX € V)B(X),

by definition of Y, and then equivalent t6(-z -y) + (¥x € V)A(X) = (VX € V)B(X),
interpreting the comma at the right as the multiplicativ&utiction, here denoted In
particular, one proves/k € V)A(X) = B(X) + (Yx € V)A(X) = (Yx € V)B(x), putting

I' = (Yx € V)A(X) = B(X). As is well known, the converse sequent is derivable for any
domain, then one has the equality

(Yx e V)A(X) = B(x) = (¥x € V)A(X) = (Yx € V)B(X)

for every virtual singletory, and every pair of formulag, B.

Such an equality is not sound in logic, in general. An excepis whenV = {u} is
an extensional singleton. In such a case, both sides of theiggare equivalent to the
propositional compound formuk(u) = B(u), where the propositional connectivethe
multiplicative disjunction, which is not symmetric, appgalhe compound objects so
described are not symmetric objects.

For virtual singletons, one should introduce &elient perspective which avoids
inconsistency in the usual logical calculus, extendingrsatny in a purely predicative
framework.

We consider again the pattern of extensional singletonstHem,d-axioms have
theformz = u, A(y) + A(2), y # u. They are sound because of transitivity of the equality
relation: one has that= u andy = uyield z = y. By analogy, let us assume that the
premisexz € V andy € V, together, have as a consequence a correlation betaveen
andy, induced by the virtual singletovi. The correlation is an equality when bath
andy are equal to a constant So, if V is a virtual singleton, a sequent of the form
I'ze V,y € V + A(2,B(y) hides an additional information, that is the correlation
between the variablesandy. The comma,”, in a sequent, does not consider the
correlation: for, usually, logical rules can be appliedAtdresp. B), keepingB (resp.

A) as a context, hence the pieces of information containedlamd B are processed
independently. How could logic take care of the correlabetweenA andB induced
induced by that betweenandy?

In order to better focus the logical meaning of the correlatand the problem
of contexts, we try to link the correlation of first order \ayles to the correlation of
formulae. To this aim, we adopt the notation of indexed fdamuindexes are used as
“second order variables” to distinguish formula;, A, ... A, Aj, .... Moreover, for
our pourposes, we need to consider only the gasef(2), wheref is an invertible
function. Then we need to consider only one free variabo we study assertions of
the following form:

I'(-2),ze V+ Ai(2.: Aj(2

whereV is a virtual sigleton and wherg indicates the correlation between the formu-
lae A andA; induced by the premisee V by means of the functiof.
We reconsider the problematic equality, now written wittieres:

(Yx € D)AL(X) = Az(X) = (VX € D)A1(X) * (VX € D)A2(X)



The equality is true for every domalid, whenA; = A, = A, if and only if the disjunc-
tion = is idempotent, namelf « A = Afor everyA. In our perspective, the idea is that
the set of indexeél, 2} is like a virtual singleton, if we cannot distinguish 1 and/&
would like to develop this point. First, one can see that t@ripotency of can be
derived from the equivalence:

I'-AA iff 'rA
and conversely. The equivalence permits to derive theviatig, more general:
'+ A(Y), A2 iff Iz=y+ A2

since both sides are equivalentlipz = y + A(2), A(2), by definition of= and by
idempotency, respectively. In particular, one has exad@ynpotency, considering
twice a variable which does not appear i, sincez = zis true.

We now lift the last equivalence to the second order, naneindexes, j. We
write

T'rALA iff Li=jrA

Again this is idempotency whdarandj coincide, given thait = i is true.

In our perspective, we generalize the equivalence to \lisingletons, as follows:

' AL A iff Li~¢ jrA

whereA = Ai(2), Aj = Aj(29, T =T",z € V. We term such an equivalensecond
order conversion The correlation; given by the virtual singletov and by f, is
translated into a relations between the indexdésandj. We are saying that we cannot
distinguish two indexes (in particular, they could be siynhle same!) This extends
virtual singletons to sets of indexési ~¢ jisi € | andj € I, wherel is a virtual
singleton of indexes. For evekyandf, we put the definitory equation of a connective
bt interpreting the correlation between formulae. It imitates the definitory equation
of *:

I'zeVr Axi Aj = T',zeVrE A A

But thenitis

I',zeVr At Ay iff T,zeV,i~¢ jFA
by second order conversion. &ois also like a quantifier, whose domain is an unfo-
cused set of indexds wherei, j € I.

We now see thak commutes w.r.t the quantifief, generalizing the case of ex-
tensional singletons in this way. We make the assumptionitlexing a formula is
independent of its logical construction. This means thanif connective is applied to
an indexed formula;, the result is still indexed biyand conversely. Then one could
prove that the construction of formulae by logical rulesurscin parallel” rather than
in a context-free construction. In particular, we are ies¢ed in parallelizing the for-
mation rule ofv (see [Ba]):

Proposition 1.11 The parallel rule ofY with respect to the indexed comma

IzeVrA2,: A2
'k (Yxe V)A(X).r (VX € V)Aj(X)
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is derivable for every virtual singleton V.

Proof:T',ze V + Ai(2),s Aj(2) is equivalenttd”,i ~ j + A by second order conversion.
This is equivalenttd’,i ~ j + (VX € V)Ai(X) by definition of¥. By our assumption on
indexing, x € V)A(X) is [(Yx € V)A(X)];. Again by conversion, we have equivalently
I'F[(Yxe V)AX)]it [(Yx € V)A(X)]j, thatisT - (Vx € V)A(X),t (VX € V)A{(X).

An analogous reasoning could be applied to other connectiuges for,; are
parallel.
The above proposition allows to derive the sequent

(Vx e V)(A > A)(X) F (VX e V)AI(X) > (VX € V)A;(X)

applying the¥ parallel rule and the other definitory equations whiea (Vx € V)(A;
Aj)(X) One could see that the converse sequent is also derivalalptiag fors rules
analogous to those of But, perhaps, the best way to see this is that quantifiers on
virtual singletons are symmetric, then the converse sddsiderived in the symmetric
way. Then one derives the equality, generalizing the casg&tehsional singletons.

Summing up, we have a predicative symmetric object, defiyaudans ofy and
>, as {x € V)A(X) » (VX € V)Aj(X) or equivalently as\(x € V)(A » Aj)(X), which
has one virtual singleton as a domain for first order varigbled another for indexes.
This enriches the set of symmetric objects. In particulaemih= {1} is an extensional
singleton, the quantifier i¥ (or equivalentlyd). WhenD = {u} is an extensional
singleton, we have the propositional case:is = (no correlation), and we have no
symmetry, as already observed.

2 Duality and symmetry representing qubits

2.1 Representation of quantum states

We briefly remind the predicative representation of quargtates introduced in [Ba],
[Ba2]. Let us consider a random varialdewith outcomess, . .., Sy and frequencies
p{Z = s1},..., p{Z = sn}. It yields a set

Dz = {z= (2. p{Z = s(9})}

wheres(2) is the generic outcome amqdZ = s(2)} > 0 is its frequency. We terrD;
random first order domaifBaz2]. Dz is focused if and only if the set of the outcomes of
Zisfocused, foritig=t;Vv...vz=tyifandonlyifitis S(2) = s(t;)V...VS(2) = S(tm).
WhenDy is unfocused, the open predicate Dz, in the free variable, is a primitive
entity, related to the random variable, which cannot berilest by closed terms.

As is well known, a quantum measurement of a patrticle is acameariable and
hence one has a random first order domain associated to itusLix a particleA
and consider a discrete observable whose measurementpsoatinite domaib; =
{te, ..., tm}, Wheret; = ((t;), p{Z = s(ti)}). One can writéA(t;) for the proposition “The
particleA is found in states(t;) with probabilityp{Z = (t;)}". Let us summarize all the
hypothesis concerning the preparation of the quantum atatdts measurement into
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a set of premiseE. One has thal yield At;), fori = 1...m. Suchm assertions are
writtenT + A(t;)) as sequents [SBF]. Then one has equivaldntlyA(t))& . .. & A(tn),
where & is the additive conjunction. The propositiéft;)& . .. & A(tm) represents our
knowledge of the state after measurement, namely the piltipalistribution of the
outcomes.

In order to describe the quantum state prior to measurerapatshould drop the
identification of the states, possible only after measurgnia our terms, this means
to drop the equality that rendey focused. The we need to describe our knowledge
by a free variable. We consider the proposit&(@): “The particle is in state(z) with
probability p{Z = $(2)}” for all z € Dz. If the measurement hypothesis are denoted
by I', (wherel' = T'(-2) does not depend on the varialdesince the measurement
hypothesis cannot depend on its eventual outcome)l'{ig) yield A(2) forall z € Dz,
namely ‘forall z € Dz, T'(-2) + A(2)". So, considering the definitory equation of the
universal quantifier (3), we attribute a state to the partigl the proposition

(Vx e Dz)A(X)

As seen in prop. 1.6, one derives the sequertd Dz)A(X) + A(t1)& ... & A(tm)
by substitution. In our terms, the sequent says that thegfibty distribution follows
from the state. In quantum mechanics, the probability ithistion is derived by mea-
surement. Hence a measurement is represented by a sudistifithe free variable
by the closed termfg in our model.

The converse sequeA(t;)& ... &A(ty) + (VX € Dz)A(X) holds if and only ifDz is
focused (see 1.5). This enables us to characterize quartdtms predicatively. But, in
particular, when the measurement has a unique certainmet¢sharp state), namely
the random first order domain of the state of the particle isgleton, its representation
is also propositional.

2.2 Qubitsand duality

We now consider the items of information contained in a quiarparticle with respect
to a two-valued observable. We consider the measurememheadin of a particle
w.r.t. afixed axis, say theaxis. The outcome of a measurement of a partjae“spin
down” with probabilitya? and “spin up” with probabilitys?, o? + 5% = 1.

We consider the usual representation of qubits as vectdtgiklilbert space€?,
up to a global phase factor. We fix the orthonormal b8$js|T)}. Then the state of a
qubitqis written _

) = all) +Be’IT)

Different qubits yielding the same probability distributiom dee characterized by a
phasep. The quantum measurement ignogédsind characterizes the real probabilities,
given byae? andp?.

The random first order domain of the state representediyg the setDz = {(|
,a?),(1,8%)}). Then the state of the qubit is represented by the prede&dirmula
(Yx € {(L,a?), (1, BAHNA(X). The unfocused domaidz = {({,a?), (1,82}, corresponds

2in order to considey as a real item of information, one should apply a phase etimprocedure.
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to a family of vectorsy|]) + €BIM, ¢ € [0, 2_7r). Let us consider two qubits in the same
family, |q) = all)+€¢81) and|q) = all)+€%BIT). We would like to characterize them
in our setting of fixed measurement w.r.t. the bagis|T). It is well known that any
two qubits can be distinguished by measurement if and ortihelf are orthogonal (see
[NC]). The inner product ofg) and|q’) in C?is @® + €¥ 92, Itisa? + ¢ -982 = 0

if and only if a®> = 2 = 1/2 and¢’ — ¢ = n. We consider the phasgs= 0 and

¢ = nr, which give real factors, and characterize the couple dfogonal vectorg+) =
1/¥2/1) + 1/ V2|1y and|-) = 1/ V2|1) — 1/ V2I1).

The elements of the dual ba$is, |-) so obtained, are characterized as the eigen-
vectors of the Pauli matriX = (1) é which corresponds to the observable “spin
along thex axis” in our hypothesis. It i¥|+) = |+) andX|-) = |-) (up to a global
phase factor). The elements of the computational basisigeavectors of the Pauli
matrix Z = ( (1) _01 that is the observable “spin along thexis: itisZ|]) = ||)
andZ|1T) = |T) (up to a global phase factor). Moreov&rswitches the elements of the
given computational basis for our measuremeptndT:

Xy =1 Xy =l

HenceX is theNOT gate for our computation. On the contrafyswitches the elements
of the dual basis, namely the phases:

Z+)y=1-)  Z==1+

So a complex duality is definable on quantum states, howevgrame half of it
can emerge by measurement: for, the observables “spin Zlamgl “spin alongx” are
incompatible. The action a is non trivial only on the dual basis. Then we can see
only the duality given byNOT after measurement.

2.3 Qubitsasvirtual singletons

We describe the duality given by tiNOT and by theZ gate in logic. The measurement
of qubits in the computational basig, |T) yields the couple of extensional singletons

Dy ={(1. 1)} Dy ={(IMN. 1)}

The measurement of particles in the dual basjs|-) yields the domaiD = {(|
,1/2),(1,1/2)}, given by the uniform distribution of the outcomes. In ouramerement
context, particles whose state is such cannot be given atig property. Their
characterization depends on the phas® —. So we have two unfocused copiesiuf

D, D_

We assume that both are non empty, even if they are not ablessi substitution,
since they correspond to a quantum state, that would beideddsy a singleton as-
suming a diterent measurement context. We think that they are inhabitgtle uni-

form random variable. In our measurement cont&xt,and D_ are conceivable as
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virtual singletons. They are equal as sets, from an extaabpint of view. The labels
+ and- are like two modalities which can characterize the attidnubf one of the two
orthogonal statels-) and|-) to a certain qubit.

We transfer the correspondences between quantum staggstyiX OT andZ into
logic, putting the following dualities. and T, respectively, on the above domains:

DfEDT DTLEDl DIEDL D}FEDT
D;=D. D!=D, Dr=D, D:=D.

ltisze Dy iff z=], and also % ¢ Dj = z € Dy iff z #], since any two quantum
states can be distinguished if and only if they are orthofjohaenz € D+ is a dual
proposition w.r.z € D;. This pattern can be extended to the duatitythe dual of
ze D, isze D_ and conversely. So we put the followingaxioms:

ze VAY) FA@Q,ye V'

forV=D,andV =D_.

The extensional singletori3; and D; form the propositions¥x € D;)A(x) and
(¥x € D)A(X). They are equivalent to the propositional formubdg ), 1) andA(|T), 1),
abbreviated\; andA;, respectively.

The virtual singleton®* andD~ form the propositions¥x € D,)A(x) and {(x
D_)A(x), abbreviated\, andA_ respectively.

In our model, such propositions attribute a state to a gartior diferent particles
A, B, ..., we have diferent propositions. Let us consider two lists of couplegefdls
of this kind:

Al’ AT; Bl’ BT’ e

(sharp literalg; and
A+’A—| B+9 B—9 s

(phase literaly. Sharp literals are recognizable as couples of oppogigtsing the
duality (-)* on them as follows:

Aj‘ =A A%‘ =A
We can prove that

Proposition 2.1 The definition ofL is compatible with a negation in the predicative
logical language.

We have: [fx € D))AX)]* = Aj = Ay = (Yx € Dy)A(X), so our position implies
[(Vxe D)AX)]* = (Yxe Dj)A(x). On the other side, let us consider the usual classi-
cal definition of negation for quantified formulae@ € D)A(X)]* = (Q*x € D)A(X)*

for any quantifie@Q and any domai. Moreover, let us put:@x € D))A(X)* = (Qx €
Dp)A(X). Namely, we assume tha&t(x)* is A(x), wherex can be in one of the two
opposite domain®; andD;. One has that [(x € D)A(X)]* is (Vx € D*)A(x) by our
definition. On the other side, it isfk € D)A(X)]* = (Ix € D)A(X)* = (Ax € D+)A(X)

by the above assumption. Then, since itdx € D+)A(x) = (Yx € D*+)A(X), one can
conclude.
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We put the analogous definition for phase literals and thétgua:
(A" =A (A) =A

Extending the whole duality given by tiZeand theNOT quantum gates, described
above, to literals, we put also

Al=A Al=A (A=A (A)=A

Phase literals are our symmetric literals: they are fixedtsdor the duality..

The observations at the end of section 1.2 can now be appliedrtmodel. Mea-
suring a particleA in state|+) or |-) in our original measurement context, determines
its collapse into the mixed state described by the promsitiformulaA(], 1/2)&A(T
,1/2),in both cases. This determines the loss of the dualit9n the contrary, switch-
ing the measurement context and considering the obserigtite w.r.t. thex axis”
gives an objective property to the statessf This can be described by the identifica-
tion of the domain®, andD_ with two extensional singletons, let us label thén)
and{-}, where+ and- are new closed terms to denote the state to be attributeé to th
particle. Then the duality is identified with that given by the equalities= +/z= —,
and the dualityL disappears.

2.4 Extending phase literalsand symmetry

We now consider a couple of particlés, A, in one of the four Bell's states:

1/ V210 +1/V2111) 1/ V2111 + 1/ V211))

For each state, one finds the state of the second particlelatad to the outcome of
the measurement of the first: it can be identical or opposhe.correlation is due to a
correlation between the two particles.

As seen in Ghirardi ([Ghi], p. 306), it is not limiting to asee that the entangled
state described is induced by two identical particles,esguech an assumption leads,
formally, to the Bell's states in a natural way. So it is natdor us to require that, if
j € 1 = {1, 2}is the index of one of the two, one cannot say which one it isn&adopt
the formalism we have studied in subsection 1.3 to repreberfour Bell’s states. We
write down the following four cases for the state of the twatiokes:

Ize Di F A1(2),i A2(2) Ize D_+ Au(2),i A2(2)

[zeDi+A(2D,0A2029 T,zeD-+AD.0A22

where we have two modalities for the phaseand—, and where the indexed commas
,i/o describe the identical or opposite correlation betweeotiteomes of measurement
for the couple of states. As seen in subsection 1.3, thelatimesi ando between the
outcomes correspond to the correlations, that we could &gzén byi ado, on the set
of indexed = {1, 2}. Then we have two modalities for the det {1, 2} indexes too.
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Then one represents the four Bell's states adopting thergkred quantifier obtained
from ¥V and, with domainsV = D., D_ for the first order variables and correlations
> andm, for the indexes.

(VX € Do)(Au(x) i Aa(X))  (YX € D )(Aa(X) b0 Az(X))

(Vx€ D_)(Au(x) i Ax(x))  (Yx € D_)(As(X) >0 Ax(X))

The propositions so obtained are a generalization of plisals, since they consist
of a generalized symmetric quantifier applied to virtuagstons.

We briefly discuss how to extend the dualitiesand T to the new propositions.
Let us consider.. One should keep that the right way to extendo them is the
identity, since they are like phase literals. Moreover,dhnality L is the identity on
the domains and on the connectiveand<, since they are symmetric. Then, even
applying compositionally the duality to our propositiosie finds the identity, that
extends the identity induced hyon phase literals.

On the other side, let us consider What is the right way to extend it to our
propositions? Applying compositionally the dualityto them, one would not find the
identity, sinceT switches+ and—. But one has to consider the domain of indexes too.
If again T induces a switch, one should exchange the two modaiitiedo. This does
not correspond to the real facts. For example, the single 4t V2|1 1) — 1/ V2|1l]) is
a fixed point for the spin with respect to any axis. Then wektllirat the compositional
application is not a good attitude in order to find the righyw@extendT. Actually,
our propositions are like literals and have no proper subéda. We could simply keep
that, since the observateinduces a switch on modalities, the globfibet on the two
domains, of variables and of indexes, together, is to havsewitth. ThenT would
be the identity on these formulae. This means that no chahgeasurement context
is able to let a negation emerge in this case. Bell's stateseally “hidden” logical
objects, and their hidden presence is really against teetitin of logical consequence,
whatever measurement context one assumes.

References

[Ba] Battilotti, G., Interpreting quantum parallelism bygients, International Journal
of Theoretical Physics 49 (2010) 3022-3029.

[Ba2] Battilotti, G., Characterization of quantum stategredicative logic, Interna-
tional Journal of Theoretical Physics 50 (2011) 3669-3681.

[BS] Baltag, A. Smets, S. Correlated Knowledge: an epistdoyic view of quantum
entanglement, International Journal of Theoretical Risy<dnline July 2010.

[BV] Bonzio, S., Verrucchi, P., Open Quantum Systems dymrarand quantum algo-
rithms, submitted.

[Ca] Castagnoli, G. Probing the mechanism of quantum sppdaytime-symmetric
guantum mechanics, arXiv quant/fth07.0934v7.

16



[DCGLO3] Dalla Chiara M.L., Giuntini R., Leporini R., Quanh computational log-
ics. A survey, in V. F. Hendricks, J. Malinowski eds., Treima$ ogic: 50 years
of studia logica, Kluwer Academic Publishers, DordrecitQ) 213-255.

[DCGL] Dalla Chiara M.L., Giuntini R., Leporini R., Compd®inal and Holistic
Quantum Computational Semantics, Natural Computing 6 {2003-132.

[DE] Dolev, S., Elitzur A.C., Non sequential behavior of theve function. arXiv
quant-pki0102109.

[FS] Faggian, C., Sambin, G., From basic logic to quantunclagth cut-elimination,
Proc. IQSA96, International Journal of theoretical PhyS§it (1998) 31-37.

[Ghi] Ghirardi, G.C.,Un’occhiata alle carte di Digll Saggiatore, Milano (2009).

[Ma] Maietti, M.E., Lecture notes in logic, course of LogiorfComputer Science,
University of Padua.

[MS] Maietti, M.E., Sambin, G. Toward a minimalist foundati for constructive
mathematics, in “From Sets and Types to Topology and Arsilyisiwards Practi-
cable Foundations for Constructive Mathematics” (L. AtasP. Schuster, eds.),
Oxford UP, 2005.

[MB] Matte Blanco, I.,The unconscious as infinite sgiuckworth, London, 1975.

[NC] Nielsen, N. A., Chuang, I. LQuantum Computation and Quantum Information
Cambridge University Press (2000).

[SBF] Sambin G., Battilotti G., Faggian C., Basic logic: egtion, symmetry, visibil-
ity, The Journal of Symbolic Logic 65 (2000) 979-1013.

17



