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Abstract

In a predicative framework from basic logic, defined for a model of quantum
parallelism by sequents, we characterize a class of first order domains, termedvir-
tual singletons, which allows a generalization of the notion of duality, termedsym-
metry. Although consistent with the classical notion of duality,symmetry creates
an environment where negation has fixed points, for which thedirection of logical
consequence is irrelevant. Symmetry can model Bell’s states. So, despite its non-
sense in a traditional logical setting, symmetry can hide the peculiar advantage for
the treatment of information, that is proper of quantum mechanics.

Introduction

The problem of modelling quantum mechanics by logic is amongthe main open topics
in the search for quantum structures. It has been acquiring more and more relevance
since the proposal of quantum computers, that is of exploiting quantum processes for
computation and communication processes. Hence the problem gathers different as-
pects in the foundations of mathematics, of physics, and nowof computation.

Then, in the recent field of quantum computational logics, many different ap-
proaches are present. Here, we remind two lines of research which we feel closer to our
motivations. Some developments are founded on the logical analysis of the algebraic
model given by Hilbert spaces. We quote the first survey paper[DCGL03], moreover
we remind that such a choice, sided by other different approaches, considering different
spaces for quantum mechanics, such as Foch spaces, or different algebraic structures
such as MV-algebras, has permitted the logical formalization of different aspects of the
theory to this community of research. Considering instead anon-algebraic approach to
the problem of quantum computation, allowing a direct comparison with logical sys-
tems, in a computational framework, we quote in particular [BS], for the embedding of
quantum entanglement in a logical system.

The idea that has motivated our research in quantum computational logics is that
a logical system for quantum computation need to include a logical representation of
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quantum entanglement. This is not a harmless requirement, in logic, since it is becom-
ing more and more apparent that the traditional input-output functional way to conceive
an algorithm is not suited to model quantum computational processes, that are based
on quantum entanglement. For a detailed reading of quantum algorithms in this sense
we quote [Ca], and his reference [DE] for an experiment enlightening the physical mo-
tivation of non-sequentiality. Moreover, we quote [BV], which performs an analysis of
open quantum system dynamics and concludes that a quantum algorithm is not the se-
quence of its temporal parts, due to the entangling gates, that behave as “black boxes”.
As is well known, the functional view of algorithms has, in logic, a clear translation:
logical implication. We remind that the semantics of intuitionistic implication is based
on the notion of function. Hence, we find it very intriguing toovercome the traditional
functional view of computation in logic itself, discussingthe definition of connectives.
Discussing in which terms logical connectives are defined, what is lost and what is
gained when one abandons the usual setting of logic, which gives room to the defini-
tion of logical implication, should offer a good opportunity to face the problem of the
meaning of computation.

So, we search the different approach to information that is offered by quantum
mechanics, directly in terms of assertions and logical equations defining connectives.
This is possible in basic logic [SBF], a sequent calculus platform for several extensional
logics, including some quantum logics. In such a framework,we have proposed a
characterization of quantum states in predicative logic [Ba], [Ba2].

Here, we introduce and discuss the notion of “virtual singleton”, namely a set which
can act as a singleton under particular assumptions, interpreting such notion in our
model. We see that virtual singletons determine a symmetricrather than dual setting
in logic, that means we can achieve a list of self-dual literals, that are fixed points for
negation and have rather a phase duality. In our model, we cansee that phase duality
is naturally induced by the duality already present in logic. Simply, we are not aware
of it, since it occurs prior to measurement. Virtual singletons are insensitive to the
direction of logical consequence and allow a different symmetric connective, obtained
as a generalized quantifier, whose computation is “parallel” and excludes a context-free
computation. It permits an interpretation of Bell’s statesin our model. This constitutes
an alternative to logical implication.

A very intriguing open problem is to understand how the implication could then
arise, when the intrinsic randomness of QM is dropped in favour of determinism. We
think that it should arise when the “functional view” is recovered, due to the fact that
the usual meaning of first order variables can be established, when virtual singletons
disappear.

Virtual singletons are more similar to infinite sets than to finite, countable, sets, and
their logical setting offers a holistic rather than compositional treatment of information.
Such a feature is present in quantum mechanics, and also in our human thinking, since,
for example, it is a feature of the human language. This problem has already been
considered in quantum computational semantics, for example in [DCGL]. As for our
approach, we have realized that the logical setting derivedin our model is surprisingly
close to “bi-logic”, introduced by the psychoanalyst I. Matte Blanco in the ’70s [MB].
For, in bi-logic, negation and implication are meaningless, and information is “infinite”.
These connections, not analyzed in the present paper, will be object of future work, and,
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we believe, they are a strong motivation for this kind of studies, beyond the modelling
of computation.

1 Symmetry and duality in basic logic

Basic logic is a common platform to study sequent calculi forextensional logics. Its
sequent calculus, and its extensions, have the following symmetry theorem ([SBF]):

Theorem 1.1 The sequentΓ ` ∆ is proved by a proofΠ of the calculusB of basic
logic if and only if the symmetric sequent∆s ` Γs is proved by the symmetric proofΠs

of B. The equivalence is preserved for any symmetric extension of B. Moreover, the
equivalence is preserved switching “right” and “left” extensions ofB.

The theorem can be proved putting any involution (−)s on literals (including the iden-
tity), and putting (A ◦ B)s ≡ Bs ◦s As, where the pairs (◦, ◦s) for logical constants are
the following: the additive conjunction and disjunction (&,∨)), the multiplicative dis-
junction and conjunction (∗,⊗)1, implication and exclusion (→,←). Then one proves
the statement by induction on proofs:

• It is As ` As for everyA (axioms are symmetric)

• Inference rules are in symmetric pairs:

Γ2 ` ∆2

Γ0 ` ∆0 Γ1 ` ∆1
◦R/L ⇐⇒

∆s
2 ` Γs

2

∆s
1 ` Γs

1 ∆s
0 ` Γs

0

◦ L/R

where◦sL/R is the right (resp. left) rule for the connective◦s when◦R/L is the
left (resp. right) rule for◦.

The involution (−)s is non trivial on the inductive step, namely logical constants are
defined indual rather than symmetric pairs: (&,∨) . . ., whereas it can be the identity
on axioms. Then the orientation of the turnstyle is irrelevant for axioms, it is relevant
only for inference rules. So the orientation of logical consequence and logical theorems
is due to the duality, applied at the inductive steps.

In logic, the symmetry theorem gets full meaning when one considers couples of
dual literals:p, p⊥ (Girard’s literals) an puts the involution (−)⊥: (p)⊥ ≡ p⊥, (p⊥)⊥ ≡
p. Then the statement of the symmetry theorem is written as follows:

Γ ` ∆ ⇐⇒ ∆⊥ ` Γ⊥ (1)

In this form, the duality is not yet a negation. For, in order to have the usual character-
ization of negation (Girard’s negation in our case), we should have a formulation with
contexts:

Γ′, Γ ` ∆,∆′ ⇐⇒ Γ′,∆⊥ ` Γ⊥,∆′ (2)

for everyway to separateΓ, Γ′ and∆,∆′.

1Here we denote the multiplicative disjunction by∗
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Such a formulation is not derivable from the symmetry theorem. For, even if rules
of basic logic can be extended to liberalize contexts at the left and/or at the right,
getting calculi for several extensional logics, includinglinear and classical logic, the
symmetry theorem cannot work with contexts. For example, the sequentp→ q, p ` q
is provable in some extensions of basic logic, whereas the sequentp → q, q ` p is
nowhere provable! A proof of the sequentp → q, q⊥ ` p⊥, valid in some extensions
of basic logic, is not obtained as the symmetric proof ofp→ q, p ` q, but by suitable
structural rules on the duality⊥ ([FS]). In such a way extended duality (2) is proved
too.

Hence the symmetry theorem characterizes a “proto-negation”, with a context-
sensitive behaviour. One has usual negation only extendingit to a standard context-free
calculus. This could mean, possibly, to kill different potentialities of symmetry. Our
question is: is there a real “symmetric” interpretation of the symmetry theorem? In
which terms is it in conflict with usual duality? More practically: what is a symmetric
literal? Are there symmetric connectives somewhere? The model we have developed
for quantum computation can contribute to give an answer.

The answer seems negative in usual propositional logic. For, as proved in basic
logic, the usual propositional constants and their rules can be interpreted as derivable
from suitable definitory equations, as in the schema:

Γ ` A ◦r B ≡ Γ ` A · B B◦l A ` ∆ ≡ B · A ` ∆

In such a schema, the connectives◦r and◦l are defined as the result of importing a met-
alinguistic link, represented by·, into the formal language. So the same metalinguistic
link can define a couple of dual connectives (◦r , ◦l), at the left and at the right of the
turnstyle. Then the solution of definitory equations gives symmetric pairs of rules, for
the couple (◦r , ◦l), and hence the symmetry theorem sketched above (see [SBF]).

1.1 Symmetry in the predicative case

Such a setting works loose in the predicative case, as we are illustrating. The meaning
of the quantifiers is given by considering assertions linkedby the metalinguistic link
forall [MS]. One has the assertion “Γ yields A(z)”, wherez is a variable,Γ does not
depend onz free (in the following, we adopt the notationΓ(−z1, z2 . . .) to say that the
variablesz1, z2 . . . are not free inΓ), and the free variable, on a rangeD, is the gluefor
all theA(z). Then we write our assertion:

forall z ∈ D, Γ(−z) ` A(z)
where the premisez ∈ D is at a metalinguistic level. We import it into the language of
sequents and write:

Γ(−z), z ∈ D ` A(z)
We consider it the primitive assertion generating the quantifier ∀. So we put the fol-
lowing definitory equation of∀:

Γ(−z) ` (∀x ∈ D)A(x) if and only if Γ(−z), z∈ D ` A(z) (3)

so that the meaning of (∀x ∈ D)A(x) is “∀x(x ∈ D→ A(x))”.
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In order to find thesymmetriclogical translation of the link, we keep the metalin-
guistic “forall z ∈ D” and consider a symmetric sequent whereA(z) is on the left:
A(z) ` ∆(−z). The assertion

forall z ∈ D, A(z) ` ∆(−z)
importingz ∈ D into the sequent, has the form

A(z) ` ∆(−z), z < D
since one has thatA(z) yields∆(−z) unless z< D. So a negation is required in order to
express the symmetric meaning of the metalinguistic linkforall. In the above sequent,
we substitute, formally the negated propositionx < D by the dual proposition (x ∈ D)d,
whered is a hypothetical duality, so that we put the following symmetric definitory
equation for the quantifier∃:

(∃x ∈ D)A(x) ` ∆(−z) if and only if A(z) ` ∆(−z), (z∈ D)d

where the meaning of (∃x ∈ D)A(x) is attributed by exclusion: “∃x(A(z)← (x ∈ D)d)”
(exclusion← is the symmetric connective of implication→ in basic logic). Notice that
usually one has no need ofd in order to define an existential quantifier in logic. For, if
d satisfies the equivalence characterizing negation:Γ, x ∈ D ` ∆ iff Γ ` x < D,∆, the
sequentA(z) ` ∆(−z), (z ∈ D)d is equivalent toA(z), z∈ D ` ∆(−z). Then the usual way
to define (∃x ∈ D)A(x) follows: ∃x(x ∈ D& A(x)). In it no reference to the dualityd is
present.

One can prove that the following symmetric pairs of rules derive from the solution
of our definitory equations:

Γ(−z), z∈ D ` A(z)
Γ(−z) ` (∀x ∈ D)A(x)

∀ f
Γ ` z ∈ D A(z) ` ∆
Γ, (∀x ∈ D)A(x) ` ∆ ∀r

A(z) ` ∆(−z), (z ∈ D)d

(∃x ∈ D)A(x) ` ∆(−z)
∃ f

Γ ` A(z) (z ∈ D)d ` ∆
Γ ` (∃x ∈ D)A(x),∆

∃r

Sketch of proof:∀ f is one direction of the definitory equation and∀r is the minimal
requirement to re-obtain the reflection axiom:z ∈ D, (∀x ∈ D)A(x) ` A(z), in turn
derived putting (∀x ∈ D)A(x) for Γ(−z) in the definitory equation. In the symmetric
equation, the reflection axiom isA(z) ` (∃x ∈ D)A(x), (z∈ D)d. For more information,
see [SBF] and [MS]. The∀ rules are proper of an intuitionistic calculus, the∃ rules are
proper of a dual-intuitionistic calculus. In the following, we shall feel free to enrich
them with additional contexts, up to rules of classical logic.

We assume to have a language with equality. Then we consider the following
Leibnitz-style definitory equation for the equality predicate=, introduced in basic logic
by Maietti [Ma]. For every way to separateΓ, Γ′ and∆,∆′ it is

Γ′, Γ(t/s), s= t ` ∆(t/s),∆′ iff Γ′, Γ ` ∆,∆′

We also write down the symmetric equivalence, that defines the predicate, at the right

Γ′, Γ(t/s), ` ∆(t/s),∆′, s, t iff Γ′, Γ ` ∆,∆′

It is useful to notice the following equivalence
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Proposition 1.2 The sequent z∈ D and(∃x ∈ D)z= x are equivalent.

Proof: derivation of (∃x ∈ D)z = x ` z ∈ D: ` z ∈ D, (z ∈ D)d is equivalent toz = y `
z ∈ D, (y ∈ D)d, that is (∃x ∈ D)z = x ` z ∈ D. Derivation ofz ∈ D ` (∃x ∈ D)z = x:
from the axioms̀ z= zandz ∈ D, (z ∈ D)d ` by the rule∃r given above.

One direction of the above equivalence is also propositional:

Proposition 1.3 The sequent z= t1∨ . . .∨ z= tn ` z ∈ D is provable for every domain
D = {t1, . . . , tn}.
Proof: The axiomti ∈ D ` ti ∈ D is equivalent toti ∈ D, z= ti ` z ∈ D by definition of
=. Then, cutting the true assumptionti ∈ D, one hasz = ti ` z ∈ D for all i = 1 . . .n,
namelyz= t1 ∨ . . . ∨ z= tn ` z ∈ D by definition of∨.

We say that the domainD = {t1, . . . , tn} is focusedwhen the converse sequent holds,
namely when it is

z ∈ D ` z= t1 ∨ . . . ∨ z= tn

So we could say that the information “z ∈ D” has an infinitary content, that becomes
finite whenD is focused.

We introduce the following rule for the substitution of the free variablezby a term
t denoting an element of the domainD:

Γ ` ∆
Γ(z/t) ` ∆(z/t)

subst(D)

that is labelled byD since, in our model, the validity of substitution depends onD.
We see thatsubst(D) is derivable, for elements of focused sets, in the following

terms:

Lemma 1.4 Let us assume the set{t1, . . . , tn} is focused. The sequentΓ, z ∈ D ` A(z)
is equivalent to the n sequentsΓ ` A(ti), and then to the n sequentsΓ ` A(ti), by
weakening of the assumption ti ∈ D

Γ, z ∈ D ` A(z) meansΓ, z = t1 ∨ . . . ∨ z = tn ` A(z), becauseD is focused. The last
is Γ, z = ti ` A(z) for everyi, by definition of∨. These are equivalent toΓ ` A(ti) for
everyi by definition of equality.

Then one can prove the following characterization (see [Ba2]):

Proposition 1.5 Let us consider a non empty domain D= {t1, . . . , tn}. The sequent
A(t1)& . . .& A(tn) ` (∀x ∈ D)A(x) is provable for every formula A if and only if D is
focused.

Proof: Let us assume thatD is focused. The sequentΓ ` A(t1)& . . .& A(tn) is equivalent
to then sequentsΓ ` A(ti). By the above lemma, this meansΓ, z ∈ D ` A(z). For
everyΓ which does not containz free, this isΓ ` (∀x ∈ D)A(x), then in particular for
Γ = A(t1)& . . .& A(tn).
As for the “only if”: Let us considerA(x, y) = x , y. Then, by hypothesis, it is
z , t1& . . .&z , tm ` (∀x ∈ D)z , x. This is equivalent toz , t1& . . .&z , tm, y ∈
D ` z , y, that, by duality, givesy ∈ D, z = y ` z = t1 ∨ . . . ∨ z = tm, from which one
derives (∃x ∈ D)z = x ` z = t1 ∨ . . . ∨ z = tm. Sincez ∈ D ` (∃x ∈ D)z = x, one has
z ∈ D ` z= t1 ∨ . . . ∨ z= tm cutting the existential formula.
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The converse direction of the sequent is always provable, bysubstitution:

Proposition 1.6 The sequent(∀x ∈ D)A(x) ` A(ti) is provable for every non empty
domain D= {t1, . . . , tn}. Hence(∀x ∈ D)A(x) ` A(t1)& . . .A(tn) is provable. Symmetri-
cally it is A(t1) ∨ . . . ∨ A(tn) ` (∃x ∈ D)A(x). Then, the sequent(∀x ∈ D)A(x) ` (∃x ∈
D)A(x) is provable for every non empty domain D.

Proof: FromA(z) ` A(z) andz ∈ D ` z ∈ D one derives the sequent (∀z ∈ D)A(z), z ∈
D ` A(z). By substitutingz by ti in it, and then cutting the true assumptionti ∈ D,
one has (∀x ∈ D)A(x) ` A(ti), for every i = 1 . . .n. Then it is (∀x ∈ D)A(x) `
A(t1)& . . .A(tn) by definition of &. Symmetrically for∃. The last sequent is proved
from (∀x ∈ D)A(x) ` A(ti) and its symmetricA(ti) ` (∃x ∈ D)A(x), by cutting the
propositional formulaA(ti).

In particular, in lemma 1.4 we have seen that the substitutions performed in the
above proof are valid ifD is focused. Summing up, we can say that:

Proposition 1.7 (∀x ∈ D)A(x) is equivalent to the propositional formula A(t1)& . . .& A(tn)
if and only if the domain D is focused.

We assume that singletons are focused, namely

z ∈ {u} ` z= u

for every singleton{u}. Such an assumption is due to our extensional concept of set.
Then,z ∈ {u} is a synonimous ofz= u, sincez= u ` z ∈ {u} is an instance of 1.3.

By the assumption on extensionality of singletons, and the above propositions, it is
immediate to see that the metalinguistic linkforall behaves in a symmetric way when
the domain is a singleton:

Proposition 1.8 A(u) = (∀x ∈ {u})A(x) and (∃x ∈ x ∈ {u})A(x) = A(u) are provable
for every A, for every singleton{u}. So is(∃x ∈ {u})A(x) = (∀x ∈ {u})A(x) for every A,
for every singleton{u}.

Proof: The first two statements are an immediate consequenceof proposition 1.5; the
third is immediate by transitivity, that means cutting the proposiional formulaA(u). It
is also very useful to see a direct proof of the sequent (∃x ∈ {u})A(x) ` (∀x ∈ {u})A(x),
without cut. It is equivalent to the sequentA(y), z ∈ {u} ` A(z), y < {u}, by definition of
∀ and∃. The last means

z= u,A(y) ` A(z), y , u

that in turn is derivable from the axiomA(u) ` A(u) by definition of= and,.

1.2 Virtual singletons

We extend our notion of singleton, in order to characterize awider class of symmetric
objects. Let us termvirtual singletonany setV for which it is (∃x ∈ V)A(x) = (∀x ∈
V)A(x) for everyA. In particular, we shall termextensional singletona set of the form
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{u}, namely a setV for which the language has a closed termu such thatz ∈ V iff z= u.
We have just seen that extensional singletons are virtual singletons,since it is true that

z= u,A(y) ` A(z), y , u (4)

In order to characterize virtual singletons in general, we rewrite such sequents, substi-
tutingz= u, y , u by z ∈ V, (y ∈ V)d, whered is a duality. We have the schemata:

z ∈ V,A(y) ` A(z), (y ∈ V)d (5)

for everyA. Such sequents are, in general, underivable, and we shall term themd-
axioms. One immediately derives (∃x ∈ V)A(x) ` (∀x ∈ V)A(x) from them. As for
the converse direction (∀x ∈ V)A(x) ` (∃x ∈ V)A(x), it is derivable as soon asV is not
empty, but its derivation would require substitution. We shall discuss the topic of non
emptyness for our model. Virtual singletons are then non-empty setsV for which the
logical system has a suitable dualityd for whichd-axioms can be put.

One proves the following important fact:

Proposition 1.9 Let us assume that a set V has d-axioms. If the system is closedby
substitution by elements of V, then the system can prove thatV is a singleton.

Let u, u′ ∈ V and let us considerA(z) ≡ z= u. Applying the substitutionsz/u′ andy/u,
one hasu′ ∈ V, u = u ` u′ = u, (u ∈ V)d. Since reflexivitỳ u = u is derivable by the
definition of equality, and the sequents` u′ ∈ V and (u ∈ V)d ` hold by hypothesis,
one derives̀ u′ = u by cut.

By the above proposition and lemma 1.4, we have:

Proposition 1.10 A focused set has d-axioms if and only if it is an extensional single-
ton.

Then a virtual singleton is either an extensional singletonor an unfocused domainV
in a system equipped with a suitable dualityd and without substitution rule for elements
of V.

As soon as a substitution rule of free variables by closed terms denoting elements
of V is included in the system, in order to keep consistency, we have two choices:
1) we need to drop the dualityd
2) we need to consider a new closed termu of the language such thatV = {u}. This
identifiesd with the duality given by= and,, thed-axioms with the sequents ((4), and
the formulae with the propositional formulaeA(u).

On the contrary, virtual singletons, in the generic case, lack of a closed term to de-
scribe their content, so we are forced to a predicative description, by a unique quantifier
(usually we shall adopt∀). We now see how this can give us an advantage in describing
pure symmetry.

1.3 Extending the action of virtual singletons

The analogy with the behaviour of singletons can be furtherly extended to virtual sin-
gletons. We first observe an immediate consequence ofd-axioms. Let us consider
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the sequentΓ(−z,−y), z ∈ V ` A(z), B(z), whereV is a virtual singleton. Assum-
ing thed-axiom y ∈ V,A(z) ` A(y), (z ∈ V)d, one can cut the formulaA(z) and ob-
tain Γ(−z,−y), z ∈ V, y ∈ V ` A(y), B(z), (z ∈ V)d. This is classically equivalent to
Γ(−z,−y), z ∈ V, y ∈ V ` A(y), B(z), that isΓ(−z,−y) ` (∀x ∈ V)A(x), (∀x ∈ V)B(x),
by definition of∀, and then equivalent toΓ(−z,−y) ` (∀x ∈ V)A(x) ∗ (∀x ∈ V)B(x),
interpreting the comma at the right as the multiplicative disjunction, here denoted∗. In
particular, one proves (∀x ∈ V)A(x) ∗ B(x) ` (∀x ∈ V)A(x) ∗ (∀x ∈ V)B(x), putting
Γ = (∀x ∈ V)A(x) ∗ B(x). As is well known, the converse sequent is derivable for any
domain, then one has the equality

(∀x ∈ V)A(x) ∗ B(x) = (∀x ∈ V)A(x) ∗ (∀x ∈ V)B(x)

for every virtual singletonV, and every pair of formulaeA, B.
Such an equality is not sound in logic, in general. An exception is whenV = {u} is

an extensional singleton. In such a case, both sides of the equality are equivalent to the
propositional compound formulaA(u)∗B(u), where the propositional connective∗, the
multiplicative disjunction, which is not symmetric, appears. The compound objects so
described are not symmetric objects.

For virtual singletons, one should introduce a different perspective which avoids
inconsistency in the usual logical calculus, extending symmetry in a purely predicative
framework.

We consider again the pattern of extensional singletons. For them,d-axioms have
the formz= u,A(y) ` A(z), y , u. They are sound because of transitivity of the equality
relation: one has thatz = u andy = u yield z = y. By analogy, let us assume that the
premisesz ∈ V andy ∈ V, together, have as a consequence a correlation betweenz
andy, induced by the virtual singletonV. The correlation is an equality when bothz
andy are equal to a constantu. So, if V is a virtual singleton, a sequent of the form
Γ, z ∈ V, y ∈ V ` A(z), B(y) hides an additional information, that is the correlation
between the variablesz andy. The comma “,”, in a sequent, does not consider the
correlation: for, usually, logical rules can be applied toA (resp. B), keepingB (resp.
A) as a context, hence the pieces of information contained inA andB are processed
independently. How could logic take care of the correlationbetweenA andB induced
induced by that betweenzandy?

In order to better focus the logical meaning of the correlation and the problem
of contexts, we try to link the correlation of first order variables to the correlation of
formulae. To this aim, we adopt the notation of indexed formulae: indexes are used as
“second order variables” to distinguish formulae:A1,A2, . . .Ai ,A j , . . .. Moreover, for
our pourposes, we need to consider only the casey = f (z), where f is an invertible
function. Then we need to consider only one free variablez. So we study assertions of
the following form:

Γ(−z), z∈ V ` Ai(z), f A j(z)

whereV is a virtual sigleton and where, f indicates the correlation between the formu-
laeAi andA j induced by the premisez ∈ V by means of the functionf .

We reconsider the problematic equality, now written with indexes:

(∀x ∈ D)A1(x) ∗ A2(x) = (∀x ∈ D)A1(x) ∗ (∀x ∈ D)A2(x)
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The equality is true for every domainD, whenA1 = A2 = A, if and only if the disjunc-
tion ∗ is idempotent, namelyA ∗ A = A for everyA. In our perspective, the idea is that
the set of indexes{1, 2} is like a virtual singleton, if we cannot distinguish 1 and 2.We
would like to develop this point. First, one can see that the idempotency of∗ can be
derived from the equivalence:

Γ ` A,A iff Γ ` A

and conversely. The equivalence permits to derive the following, more general:

Γ ` A(y),A(z) iff Γ, z= y ` A(z)

since both sides are equivalent toΓ, z = y ` A(z),A(z), by definition of= and by
idempotency, respectively. In particular, one has exactlyidempotency, considering
twice a variablezwhich does not appear inA, sincez= z is true.

We now lift the last equivalence to the second order, namely to indexesi, j. We
write

Γ ` Ai ,A j iff Γ, i = j ` Ai

Again this is idempotency wheni and j coincide, given thati = i is true.
In our perspective, we generalize the equivalence to virtual singletons, as follows:

Γ ` Ai , f A j iff Γ, i ∼ f j ` Ai

whereAi = Ai(z), A j = A j(z), Γ = Γ′, z ∈ V. We term such an equivalencesecond
order conversion. The correlation, f given by the virtual singletonV and by f , is
translated into a relation∼ f between the indexesi and j. We are saying that we cannot
distinguish two indexes (in particular, they could be simply the same!) This extends
virtual singletons to sets of indexesI : i ∼ f j is i ∈ I and j ∈ I , whereI is a virtual
singleton of indexes. For everyV and f , we put the definitory equation of a connective
Z f interpreting the correlation, f between formulae. It imitates the definitory equation
of ∗:

Γ′, z ∈ V ` Ai Z f A j ≡ Γ′, z∈ V ` Ai , f A j

But then it is
Γ′, z ∈ V ` Ai Z f A j iff Γ′, z∈ V, i ∼ f j ` Ai

by second order conversion. SoZ is also like a quantifier, whose domain is an unfo-
cused set of indexesI , wherei, j ∈ I .

We now see thatZ commutes w.r.t the quantifier∀, generalizing the case of ex-
tensional singletons in this way. We make the assumption that indexing a formula is
independent of its logical construction. This means that ifany connective is applied to
an indexed formulaAi , the result is still indexed byi and conversely. Then one could
prove that the construction of formulae by logical rules occurs “in parallel” rather than
in a context-free construction. In particular, we are interested in parallelizing the for-
mation rule of∀ (see [Ba]):

Proposition 1.11 The parallel rule of∀ with respect to the indexed comma, f :

Γ, z ∈ V ` Ai(z), f A j(z)

Γ ` (∀x ∈ V)Ai(x), f (∀x ∈ V)A j(x)
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is derivable for every virtual singleton V.

Proof:Γ, z ∈ V ` Ai(z), f A j(z) is equivalent toΓ′, i ∼ j ` Ai by second order conversion.
This is equivalent toΓ, i ∼ j ` (∀x ∈ V)Ai(x) by definition of∀. By our assumption on
indexing, (∀x ∈ V)Ai(x) is [(∀x ∈ V)A(x)] i. Again by conversion, we have equivalently
Γ ` [(∀x ∈ V)A(x)] i, f [(∀x ∈ V)A(x)] j, that isΓ ` (∀x ∈ V)Ai(x), f (∀x ∈ V)A j(x).

An analogous reasoning could be applied to other connectives: rules for, f are
parallel.

The above proposition allows to derive the sequent

(∀x ∈ V)(Ai Z A j)(x) ` (∀x ∈ V)Ai(x) Z (∀x ∈ V)A j(x)

applying the∀ parallel rule and the other definitory equations whenΓ = (∀x ∈ V)(Ai Z

A j)(x) One could see that the converse sequent is also derivable, adopting forZ rules
analogous to those of∗. But, perhaps, the best way to see this is that quantifiers on
virtual singletons are symmetric, then the converse sequent is derived in the symmetric
way. Then one derives the equality, generalizing the case ofextensional singletons.

Summing up, we have a predicative symmetric object, defined by means of∀ and
Z, as (∀x ∈ V)Ai(x) Z (∀x ∈ V)A j(x) or equivalently as (∀x ∈ V)(Ai Z A j)(x), which
has one virtual singleton as a domain for first order variables and another for indexes.
This enriches the set of symmetric objects. In particular when I = {1} is an extensional
singleton, the quantifier is∀ (or equivalently∃). When D = {u} is an extensional
singleton, we have the propositional case:Z is ∗ (no correlation), and we have no
symmetry, as already observed.

2 Duality and symmetry representing qubits

2.1 Representation of quantum states

We briefly remind the predicative representation of quantumstates introduced in [Ba],
[Ba2]. Let us consider a random variableZ, with outcomess1, . . . , sm and frequencies
p{Z = s1}, . . . , p{Z = sm}. It yields a set

DZ ≡ {z= (s(z), p{Z = s(z)})}

wheres(z) is the generic outcome andp{Z = s(z)} > 0 is its frequency. We termDZ

random first order domain[Ba2]. DZ is focused if and only if the set of the outcomes of
Z is focused, for it isz= t1∨. . .∨z= tm if and only if it is s(z) = s(t1)∨. . .∨s(z) = s(tm).
WhenDZ is unfocused, the open predicatez ∈ DZ, in the free variablez, is a primitive
entity, related to the random variable, which cannot be described by closed terms.

As is well known, a quantum measurement of a particle is a random variable and
hence one has a random first order domain associated to it. Letus fix a particleA
and consider a discrete observable whose measurement produces a finite domainDZ =

{t1, . . . , tm}, whereti = (s(ti), p{Z = s(ti)}). One can writeA(ti) for the proposition “The
particleA is found in states(ti) with probabilityp{Z = s(ti)}”. Let us summarize all the
hypothesis concerning the preparation of the quantum stateand its measurement into
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a set of premisesΓ. One has thatΓ yield A(ti), for i = 1 . . .m. Suchm assertions are
writtenΓ ` A(ti) as sequents [SBF]. Then one has equivalentlyΓ ` A(t1)& . . .& A(tm),
where & is the additive conjunction. The propositionA(t1)& . . .& A(tm) represents our
knowledge of the state after measurement, namely the probability distribution of the
outcomes.

In order to describe the quantum state prior to measurement,one should drop the
identification of the states, possible only after measurement. In our terms, this means
to drop the equality that rendersDZ focused. The we need to describe our knowledge
by a free variable. We consider the propositionA(z): “The particle is in states(z) with
probability p{Z = s(z)}” for all z ∈ DZ. If the measurement hypothesis are denoted
by Γ, (whereΓ = Γ(−z) does not depend on the variablez, since the measurement
hypothesis cannot depend on its eventual outcome), it isΓ(−z) yield A(z) forall z ∈ DZ,
namely “forall z ∈ DZ, Γ(−z) ` A(z)”. So, considering the definitory equation of the
universal quantifier (3), we attribute a state to the particle by the proposition

(∀x ∈ DZ)A(x)

As seen in prop. 1.6, one derives the sequent (∀x ∈ DZ)A(x) ` A(t1)& . . .& A(tm)
by substitution. In our terms, the sequent says that the probability distribution follows
from the state. In quantum mechanics, the probability distribution is derived by mea-
surement. Hence a measurement is represented by a substitution of the free variablez
by the closed termsti in our model.

The converse sequentA(t1)& . . .& A(tm) ` (∀x ∈ DZ)A(x) holds if and only ifDZ is
focused (see 1.5). This enables us to characterize quantum states predicatively. But, in
particular, when the measurement has a unique certain outcome (sharp state), namely
the random first order domain of the state of the particle is a singleton, its representation
is also propositional.

2.2 Qubits and duality

We now consider the items of information contained in a quantum particle with respect
to a two-valued observable. We consider the measurement of the spin of a particle
w.r.t. a fixed axis, say thezaxis. The outcome of a measurement of a particleq is “spin
down” with probabilityα2 and “spin up” with probabilityβ2, α2 + β2 = 1.

We consider the usual representation of qubits as vectors inthe Hilbert spaceC2,
up to a global phase factor. We fix the orthonormal basis{|↓〉, |↑〉}. Then the state of a
qubitq is written

|q〉 = α|↓〉 + βeiφ |↑〉

Different qubits yielding the same probability distribution can be characterized by a
phaseφ. The quantum measurement ignoresφ2 and characterizes the real probabilities,
given byα2 andβ2.

The random first order domain of the state represented by|q〉 is the setDZ = {(↓
, α2), (↑, β2)}. Then the state of the qubit is represented by the predicative formula
(∀x ∈ {(↓, α2), (↑, β2)})A(x). The unfocused domainDZ = {(↓, α2), (↑, β2)}, corresponds

2in order to considerφ as a real item of information, one should apply a phase estimation procedure.
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to a family of vectorsα|↓〉+ eiφβ|↑〉, φ ∈ [0, 2π). Let us consider two qubits in the same
family, |q〉 = α|↓〉+eiφβ|↑〉 and|q′〉 = α|↓〉+eiφ′β|↑〉. We would like to characterize them
in our setting of fixed measurement w.r.t. the basis|↓〉, |↑〉. It is well known that any
two qubits can be distinguished by measurement if and only ifthey are orthogonal (see
[NC]). The inner product of|q〉 and|q′〉 in C2 is α2 + ei(φ′−φ)β2. It is α2 + ei(φ′−φ)β2 = 0
if and only if α2 = β2 = 1/2 andφ′ − φ = π. We consider the phasesφ = 0 and
φ = π, which give real factors, and characterize the couple of orthogonal vectors|+〉 =
1/
√

2|↓〉 + 1/
√

2|↑〉 and|−〉 = 1/
√

2|↓〉 − 1/
√

2|↑〉.
The elements of the dual basis|+〉, |−〉 so obtained, are characterized as the eigen-

vectors of the Pauli matrixX =

(

0 1
1 0

)

which corresponds to the observable “spin

along thex axis” in our hypothesis. It isX|+〉 = |+〉 andX|−〉 = |−〉 (up to a global
phase factor). The elements of the computational basis are eigenvectors of the Pauli

matrix Z =

(

1 0
0 −1

)

that is the observable “spin along thez axis: it is Z|↓〉 = |↓〉
andZ|↑〉 = |↑〉 (up to a global phase factor). Moreover,X switches the elements of the
given computational basis for our measurements:↓ and↑:

X|↓〉 =↑ X|↑〉 =↓

HenceX is theNOT gate for our computation. On the contrary,Z switches the elements
of the dual basis, namely the phases:

Z|+〉 = |−〉 Z|−〉 = |+〉

So a complex duality is definable on quantum states, however only one half of it
can emerge by measurement: for, the observables “spin alongz” and “spin alongx” are
incompatible. The action ofZ is non trivial only on the dual basis. Then we can see
only the duality given byNOT after measurement.

2.3 Qubits as virtual singletons

We describe the duality given by theNOT and by theZ gate in logic. The measurement
of qubits in the computational basis|↓〉, |↑〉 yields the couple of extensional singletons

D↓ = {(|↓〉, 1)} D↑ = {(|↑〉, 1)}

The measurement of particles in the dual basis|+〉, |−〉 yields the domainD = {(↓
, 1/2), (↑, 1/2)}, given by the uniform distribution of the outcomes. In our measurement
context, particles whose state is such cannot be given an objective property. Their
characterization depends on the phase+ or−. So we have two unfocused copies ofD:

D+ D−

We assume that both are non empty, even if they are not accessible by substitution,
since they correspond to a quantum state, that would be described by a singleton as-
suming a different measurement context. We think that they are inhabitedby the uni-
form random variable. In our measurement context,D+ and D− are conceivable as
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virtual singletons. They are equal as sets, from an extensional point of view. The labels
+ and− are like two modalities which can characterize the attribution of one of the two
orthogonal states|+〉 and|−〉 to a certain qubit.

We transfer the correspondences between quantum states given byNOT andZ into
logic, putting the following dualities⊥ and>, respectively, on the above domains:

D⊥↓ ≡ D↑ D⊥↑ ≡ D↓ D>↓ ≡ D↓ D>↑ ≡ D↑

D>+ ≡ D− D>− ≡ D+ D⊥+ ≡ D+ D⊥− ≡ D−

It is z ∈ D↓ iff z =↓, and also (z ∈ D⊥↓ ≡ z ∈ D↑ iff z ,↓, since any two quantum
states can be distinguished if and only if they are orthogonal. Thenz ∈ D⊥↓ is a dual
proposition w.r.tz ∈ D↓. This pattern can be extended to the duality>: the dual of
z ∈ D+ is z ∈ D− and conversely. So we put the following>-axioms:

z ∈ V,A(y) ` A(z), y ∈ V>

for V = D+ andV = D−.
The extensional singletonsD↓ andD↑ form the propositions (∀x ∈ D↓)A(x) and

(∀x ∈ D↑)A(x). They are equivalent to the propositional formulaeA(|↓〉, 1) andA(|↑〉, 1),
abbreviatedA↓ andA↑, respectively.

The virtual singletonsD+ andD− form the propositions (∀x ∈ D+)A(x) and (∀x ∈
D−)A(x), abbreviatedA+ andA− respectively.

In our model, such propositions attribute a state to a particle. For different particles
A,B, . . ., we have different propositions. Let us consider two lists of couples of literals
of this kind:

A↓,A↑; B↓, B↑, . . .

(sharp literals); and
A+,A−; B+, B−, . . .

(phase literals). Sharp literals are recognizable as couples of opposites,putting the
duality (−)⊥ on them as follows:

A⊥↓ ≡ A↑ A⊥↑ ≡ A↓

We can prove that

Proposition 2.1 The definition of⊥ is compatible with a negation in the predicative
logical language.

We have: [(∀x ∈ D↓)A(x)]⊥ = A⊥↓ = A↑ = (∀x ∈ D↑)A(x), so our position implies
[(∀x ∈ D↓)A(x)]⊥ = (∀x ∈ D⊥↓ )A(x). On the other side, let us consider the usual classi-
cal definition of negation for quantified formulae: [(Qx ∈ D)A(x)]⊥ = (Q⊥x ∈ D)A(x)⊥

for any quantifierQ and any domainD. Moreover, let us put: (Qx ∈ D↓)A(x)⊥ ≡ (Qx ∈
D↑)A(x). Namely, we assume thatA(x)⊥ is A(x), wherex can be in one of the two
opposite domainsD↓ andD↑. One has that [(∀x ∈ D)A(x)]⊥ is (∀x ∈ D⊥)A(x) by our
definition. On the other side, it is [(∀x ∈ D)A(x)]⊥ = (∃x ∈ D)A(x)⊥ = (∃x ∈ D⊥)A(x)
by the above assumption. Then, since it is (∃x ∈ D⊥)A(x) = (∀x ∈ D⊥)A(x), one can
conclude.
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We put the analogous definition for phase literals and the duality >:

(A+)
> ≡ A− (A−)

> ≡ A+

Extending the whole duality given by theZ and theNOT quantum gates, described
above, to literals, we put also

A>↓ ≡ A↓ A>↑ ≡ A↑ ((A+)
⊥ ≡ A+ (A−)

⊥ ≡ A−

Phase literals are our symmetric literals: they are fixed points for the duality⊥.
The observations at the end of section 1.2 can now be applied to our model. Mea-

suring a particleA in state|+〉 or |−〉 in our original measurement context, determines
its collapse into the mixed state described by the propositional formulaA(↓, 1/2)&A(↑
, 1/2), in both cases. This determines the loss of the duality>. On the contrary, switch-
ing the measurement context and considering the observable“spin w.r.t. thex axis”
gives an objective property to the state ofA. This can be described by the identifica-
tion of the domainsD+ andD− with two extensional singletons, let us label them{+}
and{−}, where+ and− are new closed terms to denote the state to be attributed to the
particle. Then the duality> is identified with that given by the equalitiesz= +/z= −,
and the duality⊥ disappears.

2.4 Extending phase literals and symmetry

We now consider a couple of particlesA1,A2 in one of the four Bell’s states:

1/
√

2|↓↓〉 ± 1/
√

2|↑↑〉 1/
√

2|↓↑〉 ± 1/
√

2|↑↓〉

For each state, one finds the state of the second particle correlated to the outcome of
the measurement of the first: it can be identical or opposite.The correlation is due to a
correlation between the two particles.

As seen in Ghirardi ([Ghi], p. 306), it is not limiting to assume that the entangled
state described is induced by two identical particles, since such an assumption leads,
formally, to the Bell’s states in a natural way. So it is natural for us to require that, if
j ∈ I = {1, 2} is the index of one of the two, one cannot say which one it is. Sowe adopt
the formalism we have studied in subsection 1.3 to representthe four Bell’s states. We
write down the following four cases for the state of the two particles:

Γ, z ∈ D+ ` A1(z),i A2(z) Γ, z ∈ D− ` A1(z),i A2(z)

Γ, z ∈ D+ ` A1(z),o A2(z) Γ, z ∈ D− ` A1(z),o A2(z)

where we have two modalities for the phase:+ and−, and where the indexed commas
,i/o describe the identical or opposite correlation between theoutcomes of measurement
for the couple of states. As seen in subsection 1.3, the correlationsi ando between the
outcomes correspond to the correlations, that we could label again byi ado, on the set
of indexesI = {1, 2}. Then we have two modalities for the setI = {1, 2} indexes too.
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Then one represents the four Bell’s states adopting the generalized quantifier obtained
from ∀ andZ, with domainsV = D+,D− for the first order variables and correlations
Zi andZo for the indexes.

(∀x ∈ D+)(A1(x) Zi A2(x)) (∀x ∈ D+)(A1(x) Zo A2(x))

(∀x ∈ D−)(A1(x) Zi A2(x)) (∀x ∈ D−)(A1(x) Zo A2(x))

The propositions so obtained are a generalization of phase literals, since they consist
of a generalized symmetric quantifier applied to virtual singletons.

We briefly discuss how to extend the dualities⊥ and> to the new propositions.
Let us consider⊥. One should keep that the right way to extend⊥ to them is the
identity, since they are like phase literals. Moreover, theduality⊥ is the identity on
the domains and on the connectives∀ andZ, since they are symmetric. Then, even
applying compositionally the duality to our propositions,one finds the identity, that
extends the identity induced by⊥ on phase literals.

On the other side, let us consider>. What is the right way to extend it to our
propositions? Applying compositionally the duality> to them, one would not find the
identity, since> switches+ and−. But one has to consider the domain of indexes too.
If again> induces a switch, one should exchange the two modalitiesi ando. This does
not correspond to the real facts. For example, the singlet state 1/

√
2|↓↑〉 − 1/

√
2|↑↓〉 is

a fixed point for the spin with respect to any axis. Then we think that the compositional
application is not a good attitude in order to find the right way to extend>. Actually,
our propositions are like literals and have no proper subformula. We could simply keep
that, since the observableZ induces a switch on modalities, the global effect on the two
domains, of variables and of indexes, together, is to have noswitch. Then> would
be the identity on these formulae. This means that no change of measurement context
is able to let a negation emerge in this case. Bell’s states are really “hidden” logical
objects, and their hidden presence is really against the direction of logical consequence,
whatever measurement context one assumes.
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