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Abstract

We develop a characterization of quantum states by meanssbbfder vari-
ables and random variables, within a predicative logic wihbality, in the frame-
work of basic logic and its definitory equations.

We introduce the notion of random first order domain and fintaracteriza-
tion of pure states in predicative logic and mixed statesapgsitional logic, due
to a focusing condition. We discuss the role of first orderaldes and the related
contextuality, in terms of sequents.

1 Introduction

In recent years, research in quantum computation has iddogéians to stress the
role of quantum states in quantum logical models (cf. [DCGLUh particular, this
point of view should enlight the role of quantum superpositand entanglement in
guantum information. We have recently proposed an intéafiom of quantum par-
allelism by sequents [Ba], which describes quantum sup#ipo and entanglement
by means of first order quantifiers in the framework of basigd¢SBF], [MS]. Such
an interpretation aims to justify the quantum computatipnacesses in logical terms,
namely as a process of assertions, represented by logiqpaiss.

In the present paper, in order to better focus our interfiogtave perform an anal-
ysis of the role of first order variables in the representatibquantum states. To this
aim, we introduce the notion of random first order domain and & characterization
in terms of a focusing condition, which allows the distinctibbetween pure and mixed
states. We see that assertions of quantum mechanics aregtrerivhereas assertions
of statistical mechanics are propositional; in additior,show a correspondence with
the representation of states as vectors in Hilbert spactasudensity operators. Re-
lated to variables, we discuss the role of contextualith@representation of quantum
states. Our treatment of contextuality is basically thattreent of contexts in sequent



calculi. We make the hypothesis that there is a role of thalbe due to the random-
ness of quantum mechanics, that is not considered in uggiahljudgements, and can
be made explicit in presence of contextuality. In this sgttive introduce an interpre-
tation of the uncertainty and briefly discuss the intergreteof the entanglement link
introduced in [Ba].

Our work provides an alternative interpretation of logicahstants and imports the
notion of random variable in sequent calculus. We aim to kbgvhe logical system
so derivable, and to investigate furtherly on the focusiogdition (that, in the infini-
tary case, would lead to Godetsrule for arithmetic) and on the related meaning of
substitution, representing here the collapse of the wawetion.

We hope that our approach can contribute, from a logical tpofirview, to the
discussion of foundational problems of quantum mechadil fuch as the meaning
of its randomness. Our approach via first order variableseower, permits to face the
problem of “variables and objectivity of the state” in quamtmechanics, even if from
a perspective very far from the traditional hidden varialgeograms.

In the paper, logical derivations in an informal way, thatrespond to the direct
use of the definitory equations discussed in our model; apyma could immediately
transcribe them as formal logical derivations. Even thowghthink that most of our
ideas could be extended to the infinitary case, we confinettamtan to finite sets and
discrete observables.

2 Preliminary remarkson basiclogic

The idea that has leaded our research is to describe thenafimn given by a phys-
ical system, physical truth, in terms of logical assertiofAs assertion, under certain
assumptions, can be represented by a sequent. In partiztdanptative interpretation
of the sequent

I'rAy,..., Ay

is that it represents the items of informatidq . . . A, one can achieve from a physical
system, at the same time, under certain assumptions degdénithe list of premiseB

of the sequent itself. We readasyield: T yieldinfo Ay, ..., A,. Such an interpretation
is taken from basic logic, that is a platform to study sequaituli, including calculi
from quantum logics, introduced in recent years ([SBF],])BFn the view of basic
logic, one introduces logical constants by meandeffnitory equation®n sequents.
The definitory equations describe the translations of soetalmguistic links between
assertions into logical constants of the object language.

In our model, definitory equations are used to convert thieslimmong the infor-
mation supplied by a physical system into logical constamtse basic point for our
model, that we shall see in detais in the next section, isthagtalinguistic link which
can be described by the worébtall” can be read in the description of the state of a
guantum system.

We remind the definitory equation converting the metalisticiink forall into the
universal quantifier, introduced and first discussed in [MS}t us consider any first
order domairD and a first order variablefor its elements. One considers the family
of assertion$’ + A(2), where the premisdsdo not depend onfree. Itis



forallze D,T + A(2)

Then the predicate € D is considered, equivalently, a further premise besigesd
soforall z € D, T' + A(2) is written as the unique sequent

IzeD+ A2

This writing is consistent with the intuitionistic integtation of the first order quan-
tifier (see e.g. [ML] in intuitionistic type theory). Maiéttdiscusses the equivalence
between the two in terms of “possibility of substitution"tb& free variable by a closed
term denoting an element of the domain. As we shall see, immatel a substitution
represents a measurement, hence assuming such an eqeevaleans assuming the
measurability in the physical system. This seems a reag®aabumption in our case,
even if it has some restriction in quantum physics, that wal stonsider in the final
section.
So the definitory equation of we adopt is the following:

' (Yxe D)AX) iff T,zeDFr A2

wherezis not free inl". In this form, one can derive the intuitionistic rules far

The condition orl” could be read as “the additive charactesf the quantifier, that
seems intrinsic to its definition. We shall discuss in thetsextions a characterization
of ¥ with respect to the additive propositional conjunction &,terms of quantum
states. We remind here the definitory equation of &, that eaisvthe linkandbetween
two sequents with equal premise:

I' A&B iff I'rAandl'+ B

Moreover, we adopt the multiplicative disjunction, heraadied by the multiplica-
tive symbolx, to represent the contemporary presence of two items opentdent
information following fromI', consistently with our interpretation of the notion of se-
quent. This is another kind &fnd, represented by the comma in the sequent. The
definitory equation of we assume is the following:

I'rAxBA iff I'-ABA

The presence of a right contextat the right, in our model, is due to the non contextual
character of the treatment of independent information. péeify a non empty context
in the definition of the multiplicative constant

I'rAq,...,A, L iff I'rAq,..., A,

adopted to represent the uncertainty.
Context-sensitiveness is proper of &elient treatment of information with entan-
glement. We briefly discuss this point in the last sectionerghwe give a predicative

LPrivate communication
2We refer to the distinction between additive and multigilieaconnectives introduced in Girard's linear
logic and adopted in basic logic too.



definitory equation which can extend the action of the qgtientiin a paraconsistent
setting. In this case, the language for our assertions &efbto go beyond the lan-
guage of sequents.

So far we have defined connectives at the right side of theesgqin basic logic,
one defines thelual connectives symmetrically, at the left side of the sequsee (
[SBF]). A discussion on the role of symmetry and duality ie ttepresentation of
quantum states is developed in a forthcoming work. Here wéne the definitory
equations of the additive disjunctionand of the existential quantifiét, in the form
adopted in the paper:

I[LAvBrA iff T,ArA T,BrA

ILAxe D) AX)rA iff T,A(2,zeD+A

Finally, we shall adopt the following Leibnitz-style defimiy equation of the equality
predicate, introduced in the framework of basic logic by d&tai(see [Ma]):

I',T(t/s),s=t+ A(t/s),A" iff T'.TrAN

3 Logical assertionsdescribing physical states

Since we aim to represent the information contained in aiphlsystem, we need to
refer to the measurement of the values of the observablesariain state of the system
itself.

Let us consider any physical systefhand an observabl@. In order to know the
state of the system, we need to measure the value of the alberunder certain mea-
surement assumptions. Let us assume first that the measurasseimptions deter-
mine the measurement outcome. We now see that the repriéseiofahe information
by means of a sequent is very direct in this case, since detismmis represented very
well by the relatiorr (yield). The fact thatA is found in states corresponds to the
assertion:

“the measurement assumptions and the value of the outegiedd that A is in state

s=9(v)".

We summarize the proposition “the outcome of a measurenfe@t @an A has the

valuev’ by O(v), and the proposition# is in states(v)” by A(v), v being a term of the
language. We summarize all the measurement assumptiontselist of propositions
I'. Then, the propositional formula attributes a value t@, the propositional formula
A attributes a value tcAl and our assertion on the statesdfis converted formally into
the sequerit, O(V) - A(V).

Before measurement, the value of the observable is unkntVencepresent it by
a free variablex, so our assertion concerning the state of the system hasothe f
ILO(X) + A(X). After measurement, the value of the observable is reptedeby a
closed ternt, the closed predicated(t) and A(t) attribute a value t® and a state to
A. Our assertion on the state of the system is converted into

I, O(t) + A(t) 1)



In logic, such a conversion is performed by substitutinguéwgable by the term in the
sequent’, O(X) + A(X). This is permitted by the substitution rule:

I, O(X) + A(X)
T, O(x/t) + A(x/f) SUPst
Hence a substitution describes a measurement. Wiemeasured as an outcome,
the propositiorO(t) is true. This is represented by the seque®@(t). Then we can
assert that the assumptionyield thatA is found in states(t), that is represented by
the sequenl + A(t). In sequent calculus, it is obtained by cutting the premidg in
I, O(t) + A(t).

We now extend the same schema to the general case, in whichesurement
assumptions do not determine the measurement outcomeeffdlides us to deal with
quantum systems too. Not surprisingly, some significaniatians are required. In
case of non determinism, the information on the state of ysgem prior to measure-
ment that can be achieved after a single measurement is legané. We need to
consider a measurement process under the same measursswnptons. The out-
come of a measurement process is a random variablgo to say, the instantiation
of the variable describing the value of the observable garesther kind of variable,
the random variable. If determinism is treated as a pagictése, it is the “constant
random variable”.

To describe the information obtained from the measuremetgss, we avoid to
considerZ itself as a new term of the language, and prefer to keep aesél a first
order language, in which we characterize a particular kirfitst order domains, that
we termrandom first order domain@bbreviated.f.o.d). For each random variable
we consider the set of its outcomes, namely the set of pairs

Dz = {z=(5(2), p{Z = ()}

wheres(2) is a state associated to an outcome (namely, a state aesbtaa single
measurement in the measurement prodeg$Z = S(2)} > 0 specifies the frequency of
S(2) in the measurement process. The random first order doBaitharacterize the
random variable of the measurement process.

So we describe the random varialldy means of the random first order domain
Dz and of the first order variable which describes the generic outcomezof The
open first order predicatee Dz (whereZ is determined by the measurement process)
attributes a value to the observable. To describe the stéte aystem, we consider the
proposition ‘A(2) “A is found in states(Z) with probability p{Z = s(2)}". We assume
that our formal premisds do not depend on the first order variakjevhose values are
the outcomes of the random varialdesince the measurement assumptions are fixed
and cannot depend on its eventual outcome. The assertidrestdte ofA is:
“The measurement assumptidngield A(2), forall z € Dz".
One writes such an assertion more formally, as a family ofieets joined by the
metalinguistic linkforall (see [MS]):

3In quantum measurements, one can have more than one staté@ssto the value of the observable,
in the degenerated case.



forallze Dz, T + A(2)

Now, one can import the premiges Dz into the sequent, as seen in the previous sec-
tion (we have the measurability hypothesis), and has th@faig assertion concerning
the state of the system:

Ize Dz + A(2 (2)

The assertion has an ambiguous status with respect to (Ignewside it is its analo-
gous, since the value of the observable, namely the randoiabig, is fixed. On the
other side, it consists of open predicates. We close thenpplyiag the the definitory
equation of the universal quantifier:

I'(YxeDz)AX) = T, ze Dz + A2
The quantifiel acts as a glue which creates a new object, namely the praposit
(Yx € D2)A(X)

We claim that the predicative closed formuté(e Dz)A(X) attributes a state ta.

3.1 Pureand mixed states

One could immediately make the objection that a quantura statnot be characterized
by the statistical information given by a measurement. tleoto see to which extent
our predicaticative formula represents the state of thergsystem, we now consider a
substitution of the first order variabdn valid sequents of the form (2).

Given a systen# and a fixed observable, for which we find r.f.ol3k: = {t;...tn},
m> 1,t = (s(t), p{Z = S(t;)}), we describe the state A by the proposition{x €
D2)A(X). We consider the axiom of sequent calculdg € Dz)A(X) + (YX € Dz)A(X).
(read in our terms, it means that we can trivially attributgate to our system when
the measurement assumptions consist of that attributitmecdtate). By the definitory
equation ofY (read backwards), the axiom is equivalent to the sequent:

(Yxe Dz2)A(X),ze Dz + A(2 3)

termed reflection axiom in basic logic. Here it is the assarthn the state of the
system when the premise is the description of the statd.it§de substitutiorz/t
yields (/x € Dz)A(X),t € Dz + A(t) from which

(Yx e D2)A(X) + A(t)

whent € Dy is true. The last sequent describes the transition fronmtfioernation con-
tained in fx € Dz)A(X) to the statistical informatioA(t) obtained after measurement:
one has outcoms(t) with probability p{Z = s(t)}.

The total information one can achieve from the system isritestt by them sequents

(Yxe D2)AX) + A(ty) ... (Yxe Dz2)AX) F A(tm)
that are equivalent to the sequent

(Vx € D2)AX) F Alt)& . . . & Altm)



by the definitory equation of &. Then the proposition
Alt)& ... &A(tm)

represents a mixed state.

When does it represent the state/@? In our terms, when is the propositiofi e
D2)A(X), representing the state, derivable fréit;)& ... & A(ty)?

We introduce the following definition: the domaiy; = {ti,...,tn} is focused
with respect to the equality in the logic we are considering, when the disjunction
z=11 V...V z=tyis derivable from the membership predicate Dz, namely when
the sequent

zeDzrz=t1v...VZ=1tn

is valid.
We prove the lemma:

Lemma 3.1 LetD; = {ty,...,tn} be afocused domain. Then, for dnyA, the sequent
'+ (YXxe Dz)A(X)

is derivable from
' Alt)& ... &A(ty)

Proof: The sequert + A(t1)& ... &A(ty) is equivalent to then sequents” + A(t;) by
definition of &. Then one haF,z =t + A(2), fori = 1...m, by definition of= (the
variablez can be chosen new). By the definitory equatiorvpthey are equivalent to
the sequent

Iz=t;v...vz=tnh+ A®@

By hypothesisz € Dz + z =t V...V Z = ty and then cutting the formula =
t1 V...V z=ty, one derives the sequent

Ize Dz + A(2
that is equivalent td" + (VX € Dz)A(X), by the definitory equation of.
Then a sfficient condition to answer to our question is found in the targ:
Proposition 3.2 Let D; = {t1, ..., tn} be a focused domain. Then the sequent
Alt)& ... &A(tm) + (Yx € DZ)A(X)
is provable for every formula A.

Proof: Putl’ = A(t))& ... &A(ty) in the above lemma.



It is important to stress that the interpretation of theudisgion in the focusing
condition is the intuitionistic one, namelyone s Dz + z=1t; V...V Z = ty if
and only if one hag € Dz + z = t; for somei. This can be seen in the above proof,
where the construction of the disjunction is obtained inatiditive way, that gives the
intuitionistic interpretation of the condition, as one aee considering the sequent
calculus. This means that “focusing is focusing which one”.

One can prove that the condition of being focused is alsossacg, exploiting the
duality of basic logic.

Proposition 3.3 Let us consider the domain B {t3,...,ty}, a language with with
equality predicate=, and assume that(8)& ...&A(tm) + (Yx € D)A(X) holds for
every A. Then D is focused.

Proof: Let us consideA(x,y) = x # y. Then, by hypothesis, it i8 # t1& ...&z #
tn F (YX € D)z # x. Thisis equivalentt@ # $1&...&z2 # tn,y € D+ Z # v,
that, by duality, givey € D,z=y+ z=t; V...V z = ty, from which one derives
(AxeD)z=xrz=1t1 V...V Z=ty Since one deriveze D + (Ix € D)z = x (from
the axiomr x = x by 3-right rule), onehage D+ z=1t; v ...V z = t, cutting the
existential formula.

In our interpretation, the propositioX € Dz)A(X) represents the state of a phys-
ical system#, the propositiorA(t1)& . .. & A(ty) represents the mixed state obtained
after a non selective measurement@nQuantum mechanics says that, when we have
a pure quantum state, the second follows from the first byt dwenot coincide. By
the above propositions, the two representations propaseeicaivalent if and only if
the random first order domain associated to the measuremémtused. As in the
well known double-slit experiment, as soon as one tries tcagavhat slit the electron
crosses, the interference disappears. So our representdtthe state of a physical
system tells us about “its probability distribution plus ititerference”.

As a corollary of the last proposition, one derives also treverse of the lemma.
SoDy is focused if and only if there is the equivalence betwBenA(t;)& ... & A(ty)
andl’ + (Vx € Dz)A(X). This fact can be interpreted more clearly if one defines the
propositional functiore e Dz = z=t; V...V z = ty, and then reconsiders the proof
of the lemma. Its steps are then all equivalences, for theygaen by the definitory
equations or they are due to the definitionf, as one can see. One direction of the
equivalence says in particular that, given the3et {ti, ..., ty} and them judgements
I' v A(t), one derived” + (Yx € Dz)A(X). We could term such a way of getting
predicative judgements from propositional judgemeetseralizationsince it is a way
of generalizing from the data given by the experience. Wels@en that judgements
obtained by generalization cannot include quantum intenfee. In the other direction
one derives the sequerts+ A(t) from the assumptiol,z € Dz + A(2). Such a
procedure simulates a substitution. It shows that it reprisssomething reversible
and not a real collapse, in the case of focused domains. lartfeeused case, on the
contrary, one needs to define a primitive substitution rillat is not reversible when
the variable is substituted by a closed term. Summing up, amefarmally state the
following:



Proposition 3.4 The substitution rule applied to a variable with domain Dasersible
if and only if D is focused.

In our terms, this is read as the non reversibility of measem@s on quantum states.

We remind that a judgement of the fodmz € D + A(2) can be grasped in a way
that is independent of the experience. For example, artinistic interpretation of
the quantifier explains a proof ofx € Dz)A(X) in terms of a function on a first order
variable, that maps the genetice D into a proof of A(Z) (see [ML]). This could
be the result of an abstraction from the notioa D, which allows to forget the fact
that D is focused and interpret it by the notion of first order valgabOn the other
side, the interpretation of the assertibjz € D + A(Z) considered for our model,
could suggest that there is a primitive ability in dealinghniandom variables rather
than first order variables. This could representféedént source for intuitionistic or
classical judgements too, once randomness disappearbe Imekt section we shall
discuss some points concerning assertions of the form (@)extended considering
different observables or particles, and hené@dint variables.

3.2 Sharp states

We consider the particular case of a state for which the nandwoiableZ is a constant,
namely the outcome is = (s(u), 1), andDz = {u} is a singleton. Our mind is naturally
led to assume the validity of the sequent

zef{ulrz=u

For, we have an extensional concept of set, thus a singletonat be unfocused. In
our setting, the above sequent is equivalent to

A(u) + (Yx € {UDA(X)

This is also a quite natural assertion: we would like that asneement with a certain
result can characterize a state.

Since no logical rule of sequent calculi can derive sucheetgwe need to assume
them as axioms, if we want to agree with common sense. Incpdati they can make
the “wave nature” of every particle, even classical patckvident! Anyway, it would
be possible, at least in principle, to conceive an integti@h by sequents without
assuming the axioms.

Assuming the above axioms allows to represent selectivatqomameasurements
too. For, ifDz = {t1, ..., tm}, One can consider thatermss = (s(t;), 1) (sharp terms),
namely terms which “forget” the probability a{t;) in the non selective measurement
of the state and attribute probability 1 to it. Then one cansater the seD£ =
{s1,...,sm} and the propositionéf(s) obtained allowing a “forgetful” substitution
of the variablez by s in A(Z). A forgetful substitution ofz by s in the proposition
ze Dz gives: g€ Dz)(z/s) =s € D; The forgetful substitution so defined describes
a selective quantum measurement:

Ize Dz + A2

; f — subst
I,s €D, +Al(s)




from the conclusion of which one h&is- A’(s), sinces; € D£ is true.
In particular, assuming the reflection axiofx(e Dz)A(X),z€ Dz + A(2) in f -
substone derives the sequent

(Vx € D2)A(X) + Af(s)

which describes the collapse into the staf). From the axiomsAf(s) + (¥x €
{sDA'(x) one derives\{(x € Dz)A(X) + (Vx € {s})Af(x), cutting the formulaA’(s).
Then one can measure again and re-ob# (). This agrees with the axiomatization
of quantum mechanics.

3.3 Our representation in terms of Hilbert spaces

An orthonormal basi® of the Hilbert space of the system is associated to any mea-
surement. Then, a random first order domaibis= {ti, ..., ty} is described by terms
ti wheres(ti) = |b;j) € B. Mathematically, vectorth;) are determined only up to phase
factors. For, the inner product defined in the Hilbert spamzesahot allow to distinguish
between any two orthonormal basis whicltel only by phase factors.

If we identify our resulting state(z) with a vector|b;) of an orthonormal basis,
writing id(s(2), |b)) for the identification, the predicatd can be defined in a uniform
way only if we disregard phases, namely we juls(2), |bi)) = |5(2)) = |b), where=
is the equivalence relation between vectors defineltby ly) iff €¢|x) = |y) for some
phasep.

On the contrary, if we consider the phase factors, the ifieation id(s(2), |b;))
depends omand even orz, then it cannot be considered as an instance of an equality
predicate which allows to obtain the focusing conditiontwewhole random first order
domainDyz. In such a case, the predicative representationd Dz)A(x) shows that
the state is superposed, even if it does not mention its gleagsicitely.

If we disregard phases, namddy is focused, the predicative representatidr €
D2)A(X) is equivalent to the propositional representati(ty)& . .. & A(ty), that de-
scribes the density operator, considered as a convex catignrof projectors. Each
formulaA(t;) attributes the statg(t;) with weightp{Z = s(t;)} to the system.

Note that a pure state is represented Wy € {U})A(X) in a suitable measurement
basis. The axioms of the for&(u) + (Vx € {u})A(X) allow the identification of the state
with the corresponding projector. Anyway, as we have seeralthis is not necessary
from a syntactical point of view.

4 Contextuality of quantum assertions

In the present section we analyze some more complex assediophysical systems,
when more than one observable or more of one particle areéd=yed, as a kind of
context-sensitive treatment of the information.
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4.1 Uncertainty

Proposition 4.1 Let us consider a systerfl and two observable® andO’. Let us
assume thatit is possible to perform independent measutsrogthe two observables.
Then the assertion on the state of the system is representbe Bequent

Ize Dz,y € Dz + A(2), A'(y) 4)
(zis notfree im and A, y is not free i and A).

Proof: Assume that the result of the measuremebkis= {ti,...ty} for O andDz =
{wi...wy} for @’. The total outcome is described by t@assertions’ - A(t;), A'(w;),

I' the measurement assumptions. We apply the generalizati@egure described in
the previous section to them. Thanassertion$™ - A(t)), A’'(w;) are equivalent to the
Iz=t,y=wj+A@,A()i=1...mandj = 1...n, by the definitory equation of
the equality predicate (one can choa@sendy not free inI'). By definition of v, they
are equivalent td, vi(z=t;),y = w; - A(2, A'(y), j = 1...n, and then to the assertion
I, vi(z = ), vily = wj) - A(2), A'(y), that is (4) defining the propositional functions
D(2 = Vi(z=t) andD’(y) = Vv(y = w;) as above.

The process of generalization just described, with twffedént variableg andy,
is not context-sensitive, since one keeps the informatienw; as a fixed context for
every j, when the propositional functioR(z) = vi(z = t;) is formed. A judgement of
the form (4) preserves its non contextual origin even wheatéd in an abstract way
in logic, which tipically performs a non contextual reasapiwitnessed by the non
contextuality of sequent calculi (hamely, contexts aresené in the rules, so that the
derivations are non contextual).

This is not the case of quantum mechanics: when the two odisiesrare incom-
patible they cannot be measured both. The uncertainty calesmibed as follows in
terms of logical assertions. Let us consider a physicaksysi and two incompati-
ble observable® and(O’. To fix ideas, we consider a particle and the spin w.r.t. two
orthogonal directions, say theand they axis. Let us consider a measurement of the
spin along thez axis. Then we have an r.f.0.@z and we write the following sequent
which asserts the state of the system:

Ize Dz + A(2

It cannot be extended to (4) since we cannot measure alangy at the same time.
Anyway, some information can be added to it. Let us assumeesfonmn a selective
guantum measurement of (see subsection 3.2). In our terms, it means to apply a
forgetful substitutionf — substof zwith |, or T, to the sequerit,z € Dz + A(2). The
final result isT” + A¢(s) wheres denotes|; or 7,. Ipso facto, this leads to the total
uncertainty of the information about the value of the spongly. Let is consider the
r.f.o.d. Dy, = {(1y, 1/2), (1, 1/2)}, describing the uniform distribution of the outcomes
for they axis. Let us consider the formulay= (¥x € Dy, )A’(X). It can be added to
the previous information about tlzeaxis in the sequent: + A, Lv.

We have indicated the above formulg as a “falsum”. For, ideally, consider-
ing a fixed observable determines the splitting of the infation one can obtain by a
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measurement with assumptidngito two parts: the propositional formulde, . .., A,
given by a set of compatible observables (up to a maximal, @me) the “falsum” rep-
resenting the quantified formulae determined by the incdileaones. Measuring a
fixed observable and the compatible ones is like measuramg imd adding the infor-
mation_L which represents the uncertainty of the incompatible ohbi is the content
of the definitory equation of the constant falsum:

TrAL....,AnL iff TFAL....Ay

Then such an equation, as we have seen for others definitogtiegs, can be read
in terms of the information achieved from a physical systemce it is considered
relativized to a fixed observable.

4.2 Entanglement
The following characterization is quite immediate:

Proposition 4.2 Let us consider a compound system of two partidlest’, and fix an
observable. Then the particles are separated if and onhgifssertion on the state of
the system has the same form of (4):

I''ze Dz,ye Dz + A(2), A'(y) 5)

where I and Dy are the domains relative to the measurementgl@nd A’ respec-
tively (z is not free i and A, y is not free il and A).

Proof: Let us assume that the two particles are separateeh dhe can perform in-
dependent measurements on them, and have two independéonraariables for the
two particles. Then one can write an assertion of the abawe.fo

Conversely, let us assume the assertion. It is equivalent to

[+ (Yxe Dz)A(X), (Yxe Dz)A'(X)

derived applying the definitory equation'6f extended to the case with contexts at the
right, that is the case of classical logic, independenthAtand A’. Then the state is
attributed taA and A’ in an independent way, consistently with the fact that tharoa

“”, in a sequent, describes a simple justaposition of tveoni of information. This
means that the two random variabandZ’ are independent (even if they may have

the same outcomes, namédy = Dz as sets). Then the two particles are separated.

Applying to (4) the definitory equation effirst and then o¥, one derive§ + (¥x €
D2)(VX € Dz)(A(X) = A'(X)). Applying the definitory equation of to the sequent
'+ (VX e D2)A(X), (Yx € Dz)A(X), derived from (4) as seen in the above proof, one
derivesl” + (YXx € Dz)A(X) = (Yx € Dz)A'(X). This means that the propositiongx(e
D2)(VX € Dz)(A(X) = A'(X)) and (x € Dz)A(X) = (VX € Dz)A'(X) both attribute
a state to the system. Then they are equivalent. Their dguisa is distributivity
of the disjunction= w.r.t. the infinite conjunctior¥ (that holds in classical logic).
One can see that distributivity is provable by the non-caniity of sequent calculus
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(as it has been discussed in the framework of basic logickaBse of distributivity,
the superposed state of the system, described by the ptiopo&ix € Dz)(¥X €
Dz)(A(X) = A’'(X)), is splitted into the two proposition¥X € Dz)A(X) and X €
Dz )A(X), that are joined by a propositional connective. In our vithis represents a
weakening of the power of quantum superposition.

Quantum mechanics prefers a context-sensitive reasohirgur model, we need
to introduce a new link between assertions which descrheesdrrelation between the
measurement outcomes of two particles in terms of a randoiable. Indeed, we can
see what happens applying the generalization process pbgitmn 4.2 in a particular
case of entangled particles. We consider two entangledt|est represented in the
Hilbert spaceC? ® C?, where we fix two orthogonal basiin), [vo)} and {jwy), [w.)}
of C?, so that the state of the system is represented by a vectoe dbtmay|viw; ) +
a|VoWo), & both positive reals (as is well known, this is always posgsityl the Schmidt
decomposition). This yields that the measurement outcemgg for the first particle if
and only if it is|w;) for the second, with equal probabiliaﬁ. So, in such measurement
hypothesis, we characterize a unique random vari8liteat can be described by the
random first order domaids = {i = (s(i), p{S = 9(i)}),i = 1,2}. The states(i)
is then associated to the vectap for the first particle and to the vectds;) for the
second. In this setting, the outcomes of a measurement caepbesented by the
assertionsI, + A(ti), A'(t;), i = 1,2, where the formuld\(t;) attributes statgs;) to the
first particle and the formula’(t;) attributes stat@v; ) to the second. Then , fierently
from proposition 4.2, the indeXis unique. As in the proof of proposition 4.2, one has
equivalentyl',z = t; + A(2,A(2),i = 1,2, thatisT,z=t1 vz =t + A(2,A (2,
namelyl’,z € Dz + A(2), A’(2), definingz € Dz as the propositional functioB(2) =
z=1t vV z=1t,. Inthe assertionl’,ze Dz + A(2), A'(2) a correlation link is not present
explicitely, we need to specify it. We label such link hy™(see [Ba]):

Ize Ds + A(2),s A (2

In such form of assertion, the outcomes for the states ofepiarticles are equal,
or one a deterministic function of the other; the labellechoma “s” indicates their
correlation, instead of the simple commg tWwhich describes the simple justaposition
of two pieces of information, without correlation.

We think that studying a primitive correlation link, one ¢dbetter grasp the pe-
culiarity of quantum judgements as a form of primitive judgmts based on random
variables, as we have suggested above. It could represemialetion of the idea of
gquantum superposition. Indeed, quantum mechanics on deecan gather tlierent
states for the same particle, that is superposition, onttier gan gather fierent par-
ticles for the same state, since it has identical partithes, in turn, as for the states,
cannot be focused.

As proposed in [Ba], considering the correlation link, ora éntroduce a new
predicative binary connective, putting the definitory equation

I koayeps (AX); A'(X)) = T,ze Ds+ A(@,zA(2
Further work is in progress on its logical properties, thgidal system so derived and

on the logical characterization of Bell’s states which ibafs.
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