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Abstract

We develop a characterization of quantum states by means of first order vari-
ables and random variables, within a predicative logic withequality, in the frame-
work of basic logic and its definitory equations.

We introduce the notion of random first order domain and find a characteriza-
tion of pure states in predicative logic and mixed states in propositional logic, due
to a focusing condition. We discuss the role of first order variables and the related
contextuality, in terms of sequents.

1 Introduction

In recent years, research in quantum computation has induced logicians to stress the
role of quantum states in quantum logical models (cf. [DCGL]). In particular, this
point of view should enlight the role of quantum superposition and entanglement in
quantum information. We have recently proposed an interpretation of quantum par-
allelism by sequents [Ba], which describes quantum superposition and entanglement
by means of first order quantifiers in the framework of basic logic [SBF], [MS]. Such
an interpretation aims to justify the quantum computational processes in logical terms,
namely as a process of assertions, represented by logical sequents.

In the present paper, in order to better focus our interpretation, we perform an anal-
ysis of the role of first order variables in the representation of quantum states. To this
aim, we introduce the notion of random first order domain and find a characterization
in terms of a focusing condition, which allows the distinction between pure and mixed
states. We see that assertions of quantum mechanics are predicative whereas assertions
of statistical mechanics are propositional; in addition, we show a correspondence with
the representation of states as vectors in Hilbert spaces and as density operators. Re-
lated to variables, we discuss the role of contextuality in the representation of quantum
states. Our treatment of contextuality is basically the treatment of contexts in sequent
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calculi. We make the hypothesis that there is a role of the variable due to the random-
ness of quantum mechanics, that is not considered in usual logical judgements, and can
be made explicit in presence of contextuality. In this setting, we introduce an interpre-
tation of the uncertainty and briefly discuss the interpretation of the entanglement link
introduced in [Ba].

Our work provides an alternative interpretation of logicalconstants and imports the
notion of random variable in sequent calculus. We aim to develop the logical system
so derivable, and to investigate furtherly on the focusing condition (that, in the infini-
tary case, would lead to Gödel’sω-rule for arithmetic) and on the related meaning of
substitution, representing here the collapse of the wave function.

We hope that our approach can contribute, from a logical point of view, to the
discussion of foundational problems of quantum mechanics [Ja], such as the meaning
of its randomness. Our approach via first order variables, moreover, permits to face the
problem of “variables and objectivity of the state” in quantum mechanics, even if from
a perspective very far from the traditional hidden variables programs.

In the paper, logical derivations in an informal way, that correspond to the direct
use of the definitory equations discussed in our model; anyway one could immediately
transcribe them as formal logical derivations. Even thoughwe think that most of our
ideas could be extended to the infinitary case, we confine our attention to finite sets and
discrete observables.

2 Preliminary remarks on basic logic

The idea that has leaded our research is to describe the information given by a phys-
ical system, physical truth, in terms of logical assertions. An assertion, under certain
assumptions, can be represented by a sequent. In particular, a temptative interpretation
of the sequent

Γ ⊢ A1, . . . ,An

is that it represents the items of informationA1, . . .An one can achieve from a physical
system, at the same time, under certain assumptions described in the list of premisesΓ
of the sequent itself. We read⊢ asyield: Γ yield info A1, . . . ,An. Such an interpretation
is taken from basic logic, that is a platform to study sequentcalculi, including calculi
from quantum logics, introduced in recent years ([SBF], [BF]). In the view of basic
logic, one introduces logical constants by means ofdefinitory equationson sequents.
The definitory equations describe the translations of some metalinguistic links between
assertions into logical constants of the object language.

In our model, definitory equations are used to convert the links among the infor-
mation supplied by a physical system into logical constants. The basic point for our
model, that we shall see in detais in the next section, is thata metalinguistic link which
can be described by the word “forall” can be read in the description of the state of a
quantum system.

We remind the definitory equation converting the metalinguistic link forall into the
universal quantifier, introduced and first discussed in [MS]. Let us consider any first
order domainD and a first order variablez for its elements. One considers the family
of assertionsΓ ⊢ A(z), where the premisesΓ do not depend onz free. It is
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forall z ∈ D, Γ ⊢ A(z)

Then the predicatez ∈ D is considered, equivalently, a further premise besidesΓ, and
soforall z ∈ D, Γ ⊢ A(z) is written as the unique sequent

Γ, z ∈ D ⊢ A(z)

This writing is consistent with the intuitionistic interpretation of the first order quan-
tifier (see e.g. [ML] in intuitionistic type theory). Maietti1 discusses the equivalence
between the two in terms of “possibility of substitution” ofthe free variable by a closed
term denoting an element of the domain. As we shall see, in ourmodel a substitution
represents a measurement, hence assuming such an equivalence means assuming the
measurability in the physical system. This seems a reasonable assumption in our case,
even if it has some restriction in quantum physics, that we shall consider in the final
section.

So the definitory equation of∀ we adopt is the following:

Γ ⊢ (∀x ∈ D)A(x) iff Γ, z ∈ D ⊢ A(z)

wherez is not free inΓ. In this form, one can derive the intuitionistic rules for∀.
The condition onΓ could be read as “the additive character”2 of the quantifier, that

seems intrinsic to its definition. We shall discuss in the next sections a characterization
of ∀ with respect to the additive propositional conjunction &, in terms of quantum
states. We remind here the definitory equation of &, that converts the linkandbetween
two sequents with equal premise:

Γ ⊢ A& B iff Γ ⊢ A andΓ ⊢ B

Moreover, we adopt the multiplicative disjunction, here denoted by the multiplica-
tive symbol∗, to represent the contemporary presence of two items of independent
information following fromΓ, consistently with our interpretation of the notion of se-
quent. This is another kind ofand, represented by the comma in the sequent. The
definitory equation of∗ we assume is the following:

Γ ⊢ A ∗ B,∆ iff Γ ⊢ A, B,∆

The presence of a right context∆ at the right, in our model, is due to the non contextual
character of the treatment of independent information. We specify a non empty context
in the definition of the multiplicative constant⊥:

Γ ⊢ A1, . . . ,An,⊥ iff Γ ⊢ A1, . . . ,An

adopted to represent the uncertainty.
Context-sensitiveness is proper of a different treatment of information with entan-

glement. We briefly discuss this point in the last section, where we give a predicative

1Private communication
2We refer to the distinction between additive and multiplicative connectives introduced in Girard’s linear

logic and adopted in basic logic too.
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definitory equation which can extend the action of the quantifier, in a paraconsistent
setting. In this case, the language for our assertions is forced to go beyond the lan-
guage of sequents.

So far we have defined connectives at the right side of the sequent. In basic logic,
one defines thedual connectives symmetrically, at the left side of the sequent (see
[SBF]). A discussion on the role of symmetry and duality in the representation of
quantum states is developed in a forthcoming work. Here we remind the definitory
equations of the additive disjunction∨ and of the existential quantifier∃, in the form
adopted in the paper:

Γ,A∨ B ⊢ ∆ iff Γ,A ⊢ ∆ Γ, B ⊢ ∆

Γ, (∃x ∈ D)A(x) ⊢ ∆ iff Γ,A(z), z∈ D ⊢ ∆

Finally, we shall adopt the following Leibnitz-style definitory equation of the equality
predicate, introduced in the framework of basic logic by Maietti (see [Ma]):

Γ
′, Γ(t/s), s= t ⊢ ∆(t/s),∆′ iff Γ

′, Γ ⊢ ∆,∆′

3 Logical assertions describing physical states

Since we aim to represent the information contained in a physical system, we need to
refer to the measurement of the values of the observables in acertain state of the system
itself.

Let us consider any physical systemA and an observableO. In order to know the
state of the system, we need to measure the value of the observable, under certain mea-
surement assumptions. Let us assume first that the measurement assumptions deter-
mine the measurement outcome. We now see that the representation of the information
by means of a sequent is very direct in this case, since determinism is represented very
well by the relation⊢ (yield). The fact thatA is found in states corresponds to the
assertion:
“the measurement assumptions and the value of the outcomev yield thatA is in state
s= s(v)”.
We summarize the proposition “the outcome of a measurement of O onA has the
valuev” by O(v), and the proposition “A is in states(v)” by A(v), v being a term of the
language. We summarize all the measurement assumptions into the list of propositions
Γ. Then, the propositional formulaO attributes a value toO, the propositional formula
A attributes a value toA and our assertion on the state ofA is converted formally into
the sequentΓ,O(v) ⊢ A(v).

Before measurement, the value of the observable is unknown.We represent it by
a free variablex, so our assertion concerning the state of the system has the form
Γ,O(x) ⊢ A(x). After measurement, the value of the observable is represented by a
closed termt, the closed predicatesO(t) andA(t) attribute a value toO and a state to
A. Our assertion on the state of the system is converted into

Γ,O(t) ⊢ A(t) (1)
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In logic, such a conversion is performed by substituting thevariable by the term in the
sequentΓ,O(x) ⊢ A(x). This is permitted by the substitution rule:

Γ,O(x) ⊢ A(x)
Γ,O(x/t) ⊢ A(x/t) subst

Hence a substitution describes a measurement. Whent is measured as an outcome,
the propositionO(t) is true. This is represented by the sequent⊢ O(t). Then we can
assert that the assumptionsΓ yield thatA is found in states(t), that is represented by
the sequentΓ ⊢ A(t). In sequent calculus, it is obtained by cutting the premiseO(t) in
Γ,O(t) ⊢ A(t).

We now extend the same schema to the general case, in which themeasurement
assumptions do not determine the measurement outcome. Thisenables us to deal with
quantum systems too. Not surprisingly, some significant variations are required. In
case of non determinism, the information on the state of the system prior to measure-
ment that can be achieved after a single measurement is not relevant. We need to
consider a measurement process under the same measurement assumptions. The out-
come of a measurement process is a random variableZ. So to say, the instantiation
of the variable describing the value of the observable givesanother kind of variable,
the random variable. If determinism is treated as a particular case, it is the “constant
random variable”.

To describe the information obtained from the measurement process, we avoid to
considerZ itself as a new term of the language, and prefer to keep ourselves in a first
order language, in which we characterize a particular kind of first order domains, that
we termrandom first order domains(abbreviatedr.f.o.d.). For each random variableZ,
we consider the set of its outcomes, namely the set of pairs

DZ ≡ {z= (s(z), p{Z = s(z)})}

wheres(z) is a state associated to an outcome (namely, a state associated to a single
measurement in the measurement process3); p{Z = s(z)} > 0 specifies the frequency of
s(z) in the measurement process. The random first order domainDZ characterize the
random variable of the measurement process.

So we describe the random variableZ by means of the random first order domain
DZ and of the first order variablez, which describes the generic outcome ofZ. The
open first order predicatez ∈ DZ (whereZ is determined by the measurement process)
attributes a value to the observable. To describe the state of the system, we consider the
proposition “A(z) “A is found in states(z) with probability p{Z = s(z)}”. We assume
that our formal premisesΓ do not depend on the first order variablez, whose values are
the outcomes of the random variableZ, since the measurement assumptions are fixed
and cannot depend on its eventual outcome. The assertion on the state ofA is:
“The measurement assumptionsΓ yield A(z), forall z ∈ DZ”.
One writes such an assertion more formally, as a family of sequents joined by the
metalinguistic linkforall (see [MS]):

3In quantum measurements, one can have more than one state associated to the value of the observable,
in the degenerated case.
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forall z ∈ DZ, Γ ⊢ A(z)

Now, one can import the premisez ∈ DZ into the sequent, as seen in the previous sec-
tion (we have the measurability hypothesis), and has the following assertion concerning
the state of the system:

Γ, z ∈ DZ ⊢ A(z) (2)

The assertion has an ambiguous status with respect to (1): onone side it is its analo-
gous, since the value of the observable, namely the random variable, is fixed. On the
other side, it consists of open predicates. We close them by applying the the definitory
equation of the universal quantifier:

Γ ⊢ (∀x ∈ DZ)A(x) ≡ Γ, z ∈ DZ ⊢ A(z)

The quantifier∀ acts as a glue which creates a new object, namely the proposition

(∀x ∈ DZ)A(x)

We claim that the predicative closed formula (∀x ∈ DZ)A(x) attributes a state toA.

3.1 Pure and mixed states

One could immediately make the objection that a quantum state cannot be characterized
by the statistical information given by a measurement. In order to see to which extent
our predicaticative formula represents the state of the given system, we now consider a
substitution of the first order variablez in valid sequents of the form (2).

Given a systemA and a fixed observable, for which we find r.f.o.d.DZ = {t1 . . . tm},
m ≥ 1, ti = (s(ti), p{Z = s(ti)}), we describe the state ofA by the proposition (∀x ∈
DZ)A(x). We consider the axiom of sequent calculus (∀x ∈ DZ)A(x) ⊢ (∀x ∈ DZ)A(x).
(read in our terms, it means that we can trivially attribute astate to our system when
the measurement assumptions consist of that attribution ofthe state). By the definitory
equation of∀ (read backwards), the axiom is equivalent to the sequent:

(∀x ∈ DZ)A(x), z∈ DZ ⊢ A(z) (3)

termed reflection axiom in basic logic. Here it is the assertion on the state of the
system when the premise is the description of the state itself. The substitutionz/t
yields (∀x ∈ DZ)A(x), t ∈ DZ ⊢ A(t) from which

(∀x ∈ DZ)A(x) ⊢ A(t)

whent ∈ DZ is true. The last sequent describes the transition from the information con-
tained in (∀x ∈ DZ)A(x) to the statistical informationA(t) obtained after measurement:
one has outcomes(t) with probabilityp{Z = s(t)}.
The total information one can achieve from the system is described by them sequents

(∀x ∈ DZ)A(x) ⊢ A(t1) . . . (∀x ∈ DZ)A(x) ⊢ A(tm)

that are equivalent to the sequent

(∀x ∈ DZ)A(x) ⊢ A(t1)& . . .& A(tm)
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by the definitory equation of &. Then the proposition

A(t1)& . . .& A(tm)

represents a mixed state.
When does it represent the state ofA? In our terms, when is the proposition (∀x ∈

DZ)A(x), representing the state, derivable fromA(t1)& . . .& A(tm)?
We introduce the following definition: the domainDZ = {t1, . . . , tm} is focused

with respect to the equality= in the logic we are considering, when the disjunction
z= t1 ∨ . . . ∨ z= tm is derivable from the membership predicatez ∈ DZ, namely when
the sequent

z ∈ DZ ⊢ z= t1 ∨ . . . ∨ z= tm

is valid.
We prove the lemma:

Lemma 3.1 Let DZ = {t1, . . . , tm} be a focused domain. Then, for anyΓ, A, the sequent

Γ ⊢ (∀x ∈ DZ)A(x)

is derivable from
Γ ⊢ A(t1)& . . .& A(tm)

Proof: The sequentΓ ⊢ A(t1)& . . .& A(tm) is equivalent to them sequentsΓ ⊢ A(ti) by
definition of &. Then one hasΓ, z = ti ⊢ A(z), for i = 1 . . .m, by definition of= (the
variablez can be chosen new). By the definitory equation of∨, they are equivalent to
the sequent

Γ, z= t1 ∨ . . . ∨ z= tm ⊢ A(z)

By hypothesisz ∈ DZ ⊢ z = t1 ∨ . . . ∨ z = tm, and then cutting the formulaz =
t1 ∨ . . . ∨ z= tm, one derives the sequent

Γ, z ∈ DZ ⊢ A(z)

that is equivalent toΓ ⊢ (∀x ∈ DZ)A(x), by the definitory equation of∀.

Then a sufficient condition to answer to our question is found in the corollary:

Proposition 3.2 Let DZ = {t1, . . . , tm} be a focused domain. Then the sequent

A(t1)& . . .& A(tm) ⊢ (∀x ∈ DZ)A(x)

is provable for every formula A.

Proof: PutΓ = A(t1)& . . .& A(tm) in the above lemma.
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It is important to stress that the interpretation of the disjunction in the focusing
condition is the intuitionistic one, namely one hasz ∈ DZ ⊢ z = t1 ∨ . . . ∨ z = tm if
and only if one hasz ∈ DZ ⊢ z = ti for somei. This can be seen in the above proof,
where the construction of the disjunction is obtained in theadditive way, that gives the
intuitionistic interpretation of the condition, as one could see considering the sequent
calculus. This means that “focusing is focusing which one”.

One can prove that the condition of being focused is also necessary, exploiting the
duality of basic logic.

Proposition 3.3 Let us consider the domain D= {t1, . . . , tm}, a language with with
equality predicate=, and assume that A(t1)& . . .& A(tm) ⊢ (∀x ∈ D)A(x) holds for
every A. Then D is focused.

Proof: Let us considerA(x, y) ≡ x , y. Then, by hypothesis, it isz , t1& . . .&z ,
tm ⊢ (∀x ∈ D)z , x. This is equivalent toz , t1& . . .&z , tm, y ∈ D ⊢ z , y,
that, by duality, givesy ∈ D, z = y ⊢ z = t1 ∨ . . . ∨ z = tm, from which one derives
(∃x ∈ D)z= x ⊢ z= t1 ∨ . . . ∨ z= tm. Since one derivesz ∈ D ⊢ (∃x ∈ D)z= x (from
the axiom⊢ x = x by ∃-right rule), one hasz ∈ D ⊢ z = t1 ∨ . . . ∨ z = tm cutting the
existential formula.

In our interpretation, the proposition (∀x ∈ DZ)A(x) represents the state of a phys-
ical systemA, the propositionA(t1)& . . .& A(tm) represents the mixed state obtained
after a non selective measurement onA. Quantum mechanics says that, when we have
a pure quantum state, the second follows from the first but they do not coincide. By
the above propositions, the two representations proposed are equivalent if and only if
the random first order domain associated to the measurement is focused. As in the
well known double-slit experiment, as soon as one tries to focus what slit the electron
crosses, the interference disappears. So our representation of the state of a physical
system tells us about “its probability distribution plus its interference”.

As a corollary of the last proposition, one derives also the converse of the lemma.
SoDZ is focused if and only if there is the equivalence betweenΓ ⊢ A(t1)& . . .& A(tm)
andΓ ⊢ (∀x ∈ DZ)A(x). This fact can be interpreted more clearly if one defines the
propositional functionz ∈ DZ ≡ z = t1 ∨ . . . ∨ z = tm and then reconsiders the proof
of the lemma. Its steps are then all equivalences, for they are given by the definitory
equations or they are due to the definition ofDZ, as one can see. One direction of the
equivalence says in particular that, given the setD = {t1, . . . , tm} and them judgements
Γ ⊢ A(ti), one derivesΓ ⊢ (∀x ∈ DZ)A(x). We could term such a way of getting
predicative judgements from propositional judgementsgeneralization, since it is a way
of generalizing from the data given by the experience. We have seen that judgements
obtained by generalization cannot include quantum interference. In the other direction
one derives the sequentsΓ ⊢ A(ti) from the assumptionΓ, z ∈ DZ ⊢ A(z). Such a
procedure simulates a substitution. It shows that it represents something reversible
and not a real collapse, in the case of focused domains. In theunfocused case, on the
contrary, one needs to define a primitive substitution rule,that is not reversible when
the variable is substituted by a closed term. Summing up, we can formally state the
following:
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Proposition 3.4 The substitution rule applied to a variable with domain D is reversible
if and only if D is focused.

In our terms, this is read as the non reversibility of measurements on quantum states.
We remind that a judgement of the formΓ, z ∈ D ⊢ A(z) can be grasped in a way

that is independent of the experience. For example, an intuitionistic interpretation of
the quantifier explains a proof of (∀x ∈ DZ)A(x) in terms of a function on a first order
variable, that maps the genericz ∈ D into a proof ofA(z) (see [ML]). This could
be the result of an abstraction from the notionz ∈ D, which allows to forget the fact
that D is focused and interpret it by the notion of first order variable. On the other
side, the interpretation of the assertionΓ, z ∈ D ⊢ A(z) considered for our model,
could suggest that there is a primitive ability in dealing with random variables rather
than first order variables. This could represent a different source for intuitionistic or
classical judgements too, once randomness disappears. In the next section we shall
discuss some points concerning assertions of the form (2), but extended considering
different observables or particles, and hence different variables.

3.2 Sharp states

We consider the particular case of a state for which the random variableZ is a constant,
namely the outcome isu = (s(u), 1), andDZ = {u} is a singleton. Our mind is naturally
led to assume the validity of the sequent

z ∈ {u} ⊢ z= u

For, we have an extensional concept of set, thus a singleton cannot be unfocused. In
our setting, the above sequent is equivalent to

A(u) ⊢ (∀x ∈ {u})A(x)

This is also a quite natural assertion: we would like that a measurement with a certain
result can characterize a state.

Since no logical rule of sequent calculi can derive such sequents, we need to assume
them as axioms, if we want to agree with common sense. In particular, they can make
the “wave nature” of every particle, even classical particles, evident! Anyway, it would
be possible, at least in principle, to conceive an interpretation by sequents without
assuming the axioms.

Assuming the above axioms allows to represent selective quantum measurements
too. For, ifDZ = {t1, . . . , tm}, one can consider them termssi = (s(ti), 1) (sharp terms),
namely terms which “forget” the probability ofs(ti) in the non selective measurement
of the state and attribute probability 1 to it. Then one can consider the setD f

Z =

{s1, . . . , sm} and the propositionsAf (si) obtained allowing a “forgetful” substitution
of the variablez by si in A(z). A forgetful substitution ofz by si in the proposition
z ∈ DZ gives: (z ∈ DZ)(z/si) = si ∈ D f

Z. The forgetful substitution so defined describes
a selective quantum measurement:

Γ, z ∈ DZ ⊢ A(z)

Γ, si ∈ D f
Z ⊢ Af (si)

f − subst
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from the conclusion of which one hasΓ ⊢ Af (si), sincesi ∈ D f
Z is true.

In particular, assuming the reflection axiom (∀x ∈ DZ)A(x), z ∈ DZ ⊢ A(z) in f -
substone derives the sequent

(∀x ∈ DZ)A(x) ⊢ Af (si)

which describes the collapse into the states(ti). From the axiomsAf (si) ⊢ (∀x ∈
{si})Af (x) one derives (∀x ∈ DZ)A(x) ⊢ (∀x ∈ {si})Af (x), cutting the formulaAf (si).
Then one can measure again and re-obtainAf (si). This agrees with the axiomatization
of quantum mechanics.

3.3 Our representation in terms of Hilbert spaces

An orthonormal basisB of the Hilbert space of the system is associated to any mea-
surement. Then, a random first order domain isDZ = {t1, . . . , tm} is described by terms
ti wheres(ti) = |bi〉 ∈ B. Mathematically, vectors|bi〉 are determined only up to phase
factors. For, the inner product defined in the Hilbert space does not allow to distinguish
between any two orthonormal basis which differ only by phase factors.

If we identify our resulting states(z) with a vector|bi〉 of an orthonormal basis,
writing id(s(z), |bi〉) for the identification, the predicateid can be defined in a uniform
way only if we disregard phases, namely we putid(s(z), |bi〉) ≡ |s(z)〉 � |bi〉, where�
is the equivalence relation between vectors defined by|x〉 � |y〉 iff eiφ|x〉 = |y〉 for some
phaseφ.

On the contrary, if we consider the phase factors, the identification id(s(z), |bi〉)
depends oni and even onz, then it cannot be considered as an instance of an equality
predicate which allows to obtain the focusing condition on the whole random first order
domainDZ. In such a case, the predicative representation (∀x ∈ DZ)A(x) shows that
the state is superposed, even if it does not mention its phases explicitely.

If we disregard phases, namelyDZ is focused, the predicative representation (∀x ∈
DZ)A(x) is equivalent to the propositional representationA(t1)& . . .& A(tm), that de-
scribes the density operator, considered as a convex combination of projectors. Each
formulaA(ti) attributes the states(ti) with weight p{Z = s(ti)} to the system.

Note that a pure state is represented by (∀x ∈ {u})A(x) in a suitable measurement
basis. The axioms of the formA(u) ⊢ (∀x ∈ {u})A(x) allow the identification of the state
with the corresponding projector. Anyway, as we have seen above, this is not necessary
from a syntactical point of view.

4 Contextuality of quantum assertions

In the present section we analyze some more complex assertions on physical systems,
when more than one observable or more of one particle are considered, as a kind of
context-sensitive treatment of the information.
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4.1 Uncertainty

Proposition 4.1 Let us consider a systemA and two observablesO andO′. Let us
assume that it is possible to perform independent measurements of the two observables.
Then the assertion on the state of the system is represented by the sequent

Γ, z ∈ DZ, y ∈ DZ′ ⊢ A(z),A′(y) (4)

(z is not free inΓ and A′, y is not free inΓ and A).

Proof: Assume that the result of the measurement isDZ = {t1, . . . tm} for O andDZ′ =

{w1 . . .wn} forO′. The total outcome is described by themnassertionsΓ ⊢ A(ti),A′(w j),
Γ the measurement assumptions. We apply the generalization procedure described in
the previous section to them. ThemnassertionsΓ ⊢ A(ti),A′(w j) are equivalent to the
Γ, z = ti , y = w j ⊢ A(z),A′(y) i = 1 . . .m and j = 1 . . .n, by the definitory equation of
the equality predicate (one can choosez andy not free inΓ). By definition of∨, they
are equivalent toΓ,∨i(z= ti), y = w j ⊢ A(z),A′(y), j = 1 . . .n, and then to the assertion
Γ,∨i(z = ti),∨ j(y = w j) ⊢ A(z),A′(y), that is (4) defining the propositional functions
D(z) ≡ ∨i(z= ti) andD′(y) ≡ ∨ j(y = w j) as above.

The process of generalization just described, with two different variablesz andy,
is not context-sensitive, since one keeps the informationy = w j as a fixed context for
every j, when the propositional functionD(z) ≡ ∨i(z = ti) is formed. A judgement of
the form (4) preserves its non contextual origin even when treated in an abstract way
in logic, which tipically performs a non contextual reasoning, witnessed by the non
contextuality of sequent calculi (namely, contexts are present in the rules, so that the
derivations are non contextual).

This is not the case of quantum mechanics: when the two observables are incom-
patible they cannot be measured both. The uncertainty can bedescribed as follows in
terms of logical assertions. Let us consider a physical systemA and two incompati-
ble observablesO andO′. To fix ideas, we consider a particle and the spin w.r.t. two
orthogonal directions, say thez and they axis. Let us consider a measurement of the
spin along thez axis. Then we have an r.f.o.d.DZ and we write the following sequent
which asserts the state of the system:

Γ, z ∈ DZ ⊢ A(z)

It cannot be extended to (4) since we cannot measure alongz andy at the same time.
Anyway, some information can be added to it. Let us assume we perform a selective
quantum measurement onA (see subsection 3.2). In our terms, it means to apply a
forgetful substitutionf − substof z with ↓z or ↑z to the sequentΓ, z ∈ DZ ⊢ A(z). The
final result isΓ ⊢ Af (s) wheres denotes↓z or ↑z. Ipso facto, this leads to the total
uncertainty of the information about the value of the spin alongy. Let is consider the
r.f.o.d.DUY = {(↑y, 1/2), (↓y, 1/2)}, describing the uniform distribution of the outcomes
for they axis. Let us consider the formula⊥Y≡ (∀x ∈ DUY )A′(x). It can be added to
the previous information about thezaxis in the sequent:Γ ⊢ A,⊥Y.

We have indicated the above formula⊥Y as a “falsum”. For, ideally, consider-
ing a fixed observable determines the splitting of the information one can obtain by a
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measurement with assumptionsΓ into two parts: the propositional formulaeA1, . . . ,An

given by a set of compatible observables (up to a maximal one), and the “falsum” rep-
resenting the quantified formulae determined by the incompatible ones. Measuring a
fixed observable and the compatible ones is like measuring them and adding the infor-
mation⊥which represents the uncertainty of the incompatible ones.This is the content
of the definitory equation of the constant falsum:

Γ ⊢ A1, . . . ,An,⊥ iff Γ ⊢ A1, . . . ,An

Then such an equation, as we have seen for others definitory equations, can be read
in terms of the information achieved from a physical system,once it is considered
relativized to a fixed observable.

4.2 Entanglement

The following characterization is quite immediate:

Proposition 4.2 Let us consider a compound system of two particlesA,A′, and fix an
observable. Then the particles are separated if and only if the assertion on the state of
the system has the same form of (4):

Γ, z ∈ DZ, y ∈ DZ′ ⊢ A(z),A′(y) (5)

where DZ and DZ′ are the domains relative to the measurements ofA andA′ respec-
tively (z is not free inΓ and A′, y is not free inΓ and A).

Proof: Let us assume that the two particles are separated. Then one can perform in-
dependent measurements on them, and have two independent random variables for the
two particles. Then one can write an assertion of the above form.

Conversely, let us assume the assertion. It is equivalent to

Γ ⊢ (∀x ∈ DZ)A(x), (∀x ∈ DZ′ )A
′(x)

derived applying the definitory equation of∀, extended to the case with contexts at the
right, that is the case of classical logic, independently toA andA′. Then the state is
attributed toA andA′ in an independent way, consistently with the fact that the comma
“,”, in a sequent, describes a simple justaposition of two items of information. This
means that the two random variablesZ andZ′ are independent (even if they may have
the same outcomes, namelyDZ = DZ′ as sets). Then the two particles are separated.

Applying to (4) the definitory equation of∗ first and then of∀, one derivesΓ ⊢ (∀x ∈
DZ)(∀x′ ∈ DZ′ )(A(x) ∗ A′(x′)). Applying the definitory equation of∗ to the sequent
Γ ⊢ (∀x ∈ DZ)A(x), (∀x ∈ DZ′ )A′(x), derived from (4) as seen in the above proof, one
derivesΓ ⊢ (∀x ∈ DZ)A(x) ∗ (∀x ∈ DZ′ )A′(x). This means that the propositions (∀x ∈
DZ)(∀x′ ∈ DZ′ )(A(x) ∗ A′(x′)) and (∀x ∈ DZ)A(x) ∗ (∀x′ ∈ DZ′ )A′(x′) both attribute
a state to the system. Then they are equivalent. Their equivalence is distributivity
of the disjunction∗ w.r.t. the infinite conjunction∀ (that holds in classical logic).
One can see that distributivity is provable by the non-contextuality of sequent calculus
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(as it has been discussed in the framework of basic logic). Because of distributivity,
the superposed state of the system, described by the proposition (∀x ∈ DZ)(∀x′ ∈
DZ′ )(A(x) ∗ A′(x′)), is splitted into the two propositions (∀x ∈ DZ)A(x) and (∀x′ ∈
DZ′ )A′(x′), that are joined by a propositional connective. In our view, this represents a
weakening of the power of quantum superposition.

Quantum mechanics prefers a context-sensitive reasoning.In our model, we need
to introduce a new link between assertions which describes the correlation between the
measurement outcomes of two particles in terms of a random variable. Indeed, we can
see what happens applying the generalization process of proposition 4.2 in a particular
case of entangled particles. We consider two entangled particles, represented in the
Hilbert spaceC2 ⊗ C2, where we fix two orthogonal basis{|v1〉, |v2〉} and{|w1〉, |w2〉}

of C2, so that the state of the system is represented by a vector of the forma1|v1w1〉 +

a2|v2w2〉, ai both positive reals (as is well known, this is always possible by the Schmidt
decomposition). This yields that the measurement outcome is |vi〉 for the first particle if
and only if it is |wi〉 for the second, with equal probabilitya2

i . So, in such measurement
hypothesis, we characterize a unique random variableS that can be described by the
random first order domainDS = {i = (s(i), p{S = s(i)}), i = 1, 2}. The states(i)
is then associated to the vector|vi〉 for the first particle and to the vectos|wi〉 for the
second. In this setting, the outcomes of a measurement can berepresented by the
assertions:Γ, ⊢ A(ti),A′(ti), i = 1, 2, where the formulaA(ti) attributes state|vi〉 to the
first particle and the formulaA′(ti) attributes state|wi〉 to the second. Then , differently
from proposition 4.2, the indexi is unique. As in the proof of proposition 4.2, one has
equivalentlyΓ, z = ti ⊢ A(z),A′(z), i = 1, 2, that isΓ, z = t1 ∨ z = t2 ⊢ A(z),A′(z),
namelyΓ, z ∈ DZ ⊢ A(z),A′(z), definingz ∈ DZ as the propositional functionD(z) ≡
z= t1 ∨ z= t2. In the assertionΓ, z ∈ DZ ⊢ A(z),A′(z) a correlation link is not present
explicitely, we need to specify it. We label such link by “,S” (see [Ba]):

Γ, z ∈ DS ⊢ A(z),S A′(z)

In such form of assertion, the outcomes for the states of the two particles are equal,
or one a deterministic function of the other; the labelled comma “,S” indicates their
correlation, instead of the simple comma “,”, which describes the simple justaposition
of two pieces of information, without correlation.

We think that studying a primitive correlation link, one could better grasp the pe-
culiarity of quantum judgements as a form of primitive judgements based on random
variables, as we have suggested above. It could represent a completion of the idea of
quantum superposition. Indeed, quantum mechanics on one side can gather different
states for the same particle, that is superposition, on the other can gather different par-
ticles for the same state, since it has identical particles,that in turn, as for the states,
cannot be focused.

As proposed in [Ba], considering the correlation link, one can introduce a new
predicative binary connective⊲⊳, putting the definitory equation

Γ ⊢⊲⊳x∈DS (A(x); A′(x)) ≡ Γ, z ∈ DS ⊢ A(z),Z A′(z)

Further work is in progress on its logical properties, the logical system so derived and
on the logical characterization of Bell’s states which it allows.
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