
Basic logicand the cube of its extensionsGiulia BattilottiDipartimento di Matematica, Universit�a di SienaVia del Capitano, 15 - 53100 Siena, ItalyGiovanni SambinDipartimento di Matematica P. e A., Universit�a di PadovaVia Belzoni 7, 35131 Padova, Italye-mail: giulia,sambin@math.unipd.itAbstractA basic logicB is introduced, which is weaker than intuitionistic, quan-tum and linear logic. Moreover, three independent properties C, D and Sare determined: C consists of double negation axioms for basic negation,D consists of usual properties of implication, that is the deduction theoremand the link with usual negation, S consists of structural rules of weak-ening and contraction, plus the identi�cation of two constants expressingfalsum. The eight possible combinations of properties C, D and S producea cube of logics. In particular, adding C and D to B gives linear logic,addingD and S gives intuitionistic logic, addingC and S gives orthologicand �nally adding all of C, D and S gives classical logic. On the otherhand, adding C to B produces a new logic, which is the common part oflinear and orthologic and thus could be of interest for theoretical physics.1 IntroductionUp to the end of last century, the only logic was classical logic (and possiblyits extensions by modalities). Later some \weakenings" of classical logic wereintroduced, with the aim of expressing also at the level of logical propositionssome distinctions which hold in a speci�c scienti�c context but are ignored byclassical logic. The �rst example arises from intuitionism, which points out thedistinction, when dealing with in�nity, between constructive proofs and proofsbased on reductio-ad-absurdum; intuitionistic logic, by rejecting the law of dou-ble negation, allows to express such a distinction. In the thirties, it was real-ized that ortholattices (or orthomodular lattices), rather than boolean algebras,were the convenient algebraic structures to deal with quantum mechanics; thusin orthologic, as well as in ortholattices to which it corresponds, the classicalequation given by distributivity of conjunction with disjunction fails. Finally,1



various motivations lead to the third, more recent \weakening" of classical logic.The philosophical aim of overcoming paradoxes of classical implication producedrelevant logics and, later, proof-theoretical motivations and the search for a logicwell suited for theoretical computer science, produced linear logic; the commontechnical aspect is the rejection of one or more structural rules, which resultsfor instance in the distinction made by linear logic between multiplicative andadditive conjunction.Summing up, classical logic has been weakened in three di�erent, fully inde-pendent ways. Thus a picture could be:C����� @@@@@I QLwhere C is classical logic, I intuitionistic logic, O orthologic and CL Girard'slinear logic. Furtherly, a combination of two such weakenings, namely intuition-istic linear logic IL, has already been studied. It is then natural to wonderwhether also all other combinations, including that with all the three weaken-ings, produce a \logic", and possibly to determine it. The same question can beexpressed as: what should be put for the question marks in the following cube?C I����� �����CL ILO ?����� �����? ?We here describe a new logic, which we call basic logic B, since it lies at thebottom of the above cube. We adopt the tool of sequent calculus, which hasrevealed powerful enough to express all the weakness, or, better, the subtleties,of basic logic. Moreover, we specify three properties, namely C for classical, D2



for deductive (or distributive) and S for structural, such that the cube abovecoincides with the cube of logics obtained from B by adding all combinationsof C, D and S, and thus in particular characterize the two remaining questionmarks. Writing XY for the logic obtained by adding property X to the logicY, our results can be summarized by the following cube (where Y �= Z meansthat Y and Z characterize the same logic):BCDS �= LK BDS �= LJ����� �����BCD �= CLL0 BD �= ILL0BCS �=GO1 BS����� �����BC BTo understand better what the cube means, assume that we have proved theequivalences written in the above picture. Then it follows that all edges areproper; in fact, it is enough to realize that the top three edges of the cube areproper, that is, that BCDS 6�= BDS, BCDS 6�= BCD and BCDS 6�= BCS. Infact, from BCDS 6�= BDS, for instance, we can conclude also that BC 6�= B,BCS 6�= BS and BCD 6�= BD since otherwise by adding one or two propertieswe would obtain BCDS �= BDS, and obviously the same argument applies toall other cases. Now BCDS 6�= BDS is clear, since BCDS is equivalent toclassical logic LK and BDS to intuitionistic logic LJ, and certainly LK andLJ are not equivalent. Similarly, BCDS 6�= BCD because BCD is equivalentto classical linear logic CLL0, which certainly is not equivalent to LK. Finally,we will prove in the �nal section that BCDS 6�= BCS making use of the factthat the fragment BCS� is equivalent to orthologic GO1 and orthologic is notequivalent to classical logic. In fact, as it is well known, orthologic was conceivedas \the logic of ortholattices", whereas a semantics for classical logic is givenby boolean algebras. Moreover, since �ve out of eight logics of the cube enjoysan algebraic semantics (besides boolean algebras for C and ortholattices for Oone has boolean quantales for CL, quantales for IL and frames for I), a naturalquestion is then whether there is also a notion of basic structure, which shouldgive an algebraic semantics for B and produce the well known structures asparticular cases, but such idea is not developed here1.1Actually, the cube itself was �rst conceived in algebraic terms, our �rst idea was to3



A two-sided sequent calculus for B is presented in the �rst section of thepaper. In the subsequent sections we �nd out what the properties C, D andS should consist of so that the claims contained in the above pictured cubecan be proved. The leading principle is that going upwards, i.e. adding one ofthe three properties, two distinct formulas or rules are turned into equivalentformulas or rules, and thus it may happen also that some distinct connectivesare identi�ed. For example, the face of the cube where C holds is formed by\classical" logics, which are characterized by the principle of double negation,and each of them is over a corresponding logic in the \intuitionistic" face, wherethe double negation of a formula A is distinct from A. Similarly, the upper facewhere D holds is formed by \deductive" logics, where a formula can be movedfrom the assumptions to the conclusions (as the antecedent of an implication)and conversely, and it is above the face of \quantum" logics, where there is nocommunication between assumptions and conclusions; this, as we will see, willgo together with the identi�cation of the primitive negation A?, de�ned in basiclogic, with negation de�ned, as usual, A!? . Finally, the face where S holdsis that of \structural" logics, where structural rules of weakening and contrac-tion hold, and hence only one connective for conjunction is present, is opposedto the face of \linear" logics, where one must distinguish two connectives forconjunction.The paper is meant as a contribution to the comprehension of propositionalextensional logics. By extensional logics we mean here those logics in which thereis only one way of asserting a proposition, as opposed to intensional logics, wherethe assertion \A is true" is accompanied by an assertion like \A is necessarilytrue" or \A will be true", etc., which at the level of propositions is expressedby means of modalities, 2A, FA, etc. A major philosophical concern should beto characterize the concept of proposition and of proof in a given extensionallogic so clearly that the inference rules speci�c of that logic can be obtainedas a consequence. At the moment, this has been achieved satisfactorily onlyfor classical logic, where a proposition is simply a way to denote one of thetwo truth values, and intuitionistic logic, where the meaning of a propositionis given by its proofs; it seems plausible that propositions of linear logic applyto a less abstract reality, where resources are taken into account (and in factthe interpretations which have been proposed range from chemistry to games,plugs, recipes, computers and restaurant menus), but a clearcut philosophical\de�nition" is still lacking.Though we make no step in this direction here, we have it in mind whenwe show that many di�erent logics can be explained, at least from a proof-theoretical point of view, by means of a few natural properties; then, it is on suchproperties that further philosophical investigations can concentrate. Moreover,�nd a common frame to the representation of quantales via pretopologies (cf. [1]) and therepresentation of ortholattices via polarities (cf. [2], [3]), since the representation of completeboolean algebras given in [12] seems to be a particular case of both. We don't know yetwhether the problem has a simple solution. A talk on this was given in Monselice (Italy),during the 3rd Linear Logic Italian Workshop, October 14-15, 1994, where the cube waspresented for the �rst time. 4



we propose two new logics, basic logic B and its classical counterpart BC,which are linear and quantic at the same time, to such a conceptual analysis,hoping that adding consideration of resources to usual quantum logic can beof use in the study of quantum mechanics. In any case, B and BC seem tomeet a desideratum variously expressed in the recent literature (cf. [M], wherequantales, later shown to be a complete semantics for linear logic, are proposedas an alternative structure to orthomodular lattices in the study of quantummechanics, cf. [4] and [6], where a common sublogic of quantum logic and linearlogic is described, cf. �nally [10], in which linear logic plays the role of a dynamicquantum logic).A �nal question is whether weaker logics can be strengthened by addingmodalities in such a way that stronger logics can be interpreted in them. It isknown, for instance, that linear logic, since its birth, has been equipped with amodality ! which allows to interpret classical and intuitionistic logic. We havebeen able to �nd how to interpret each logic of the cube into each weaker one,augmented with suitable modalities. However, the study of interpretations isyet to be completed (for instance we would wish to make all interpretationscommute with each other) and will appear in a sequel to the present paper.1.1 AcknowledgementsWe thank John L. Bell for pointing the representation of ortholattices and quan-tum logic to our attention, Silvio Valentini for useful conversations and sug-gestions. We are indebted to Marisa Dalla Chiara for encouragement and forinviting us to Florence were on December 19, 1994 we gave the �rst expositionof the contents of this paper.2 A sequent calculus B for basic logicAs mentioned in the introduction, basic logicB is, so to say, the commondenom-inator of intuitionistic, linear and orthologic. So a sequent calculus for B (seethe table of rules below) will sum up the peculiarities of a sequent formulationof such three non-classical logics.Like in intuitionistic logic, the context � on the right hand side of a sequent�; A ` B;� is strictly under control: it must be empty (actually, it is enoughthat � is empty only for some of the inference rules, but this is inessential atthe moment). For convenience, we choose a formulation in which in additionthere is always exactly one formula at the right, thus disregarding sequents like� ` and `.Like in linear logic, in place of the classical conjunction there will be two con-nectives, characterized by the way in which contexts on the left side are handled;adopting Girard's terminology and notation in [7], they are the multiplicativeconjunction 
 (\times"), characterized by an introductory rule with di�erentcontexts in the premises which are just put one aside the other in the conclusion,5



and the additive conjunction & (\with"), where contexts in the premises andthe conclusion are equal. By using only 
-rules and cut, one can easily checkthat �; A;B ` C is derivable i� �; A
B ` C is derivable, which means that, likein linear logic, the meaning of the comma \," at the left is 
, and not & as oneis accustomed from classical logic. Like in the so called intuitionistic linear logic(see for instance [11] or [13] for an exposition), it is not possible to introducemultiplicative disjunction, which is de�ned in classical linear logic either as thedual of 
 or by allowing two formulas at the right; in fact B does not have freecontexts on the right and does not satisfy the double negation principle.The constant atomic formulas are exactly the same as in linear logic, andthey are 0;?; 1 and >. The rules for 0 and > say that they are the minimumandthe maximum respectively in the derivability order given by `; in particular,0 `? and 1 ` > hold, while, as we will see, some other relations involvingconstants which are derivable in linear logic fail in B.Note anyway that B is substantially di�erent from (intuitionistic) linearlogic, since, contrary to linear logic but like orthologic, it lacks the usual rulesfor implication and for negation, which allow to move formulas from one sideof a sequent to the other. This, however, does not prevent B from having aconnective ! for implication and a connective ? for negation that, contraryto usual logics, are not related at all in basic logic. B includes a rule for !(denoted ! U;) and one for ? (denoted ?PI;) which impose the behaviourusually expected from any implication and any negation for what concerns theorder between formulas given by `. The rules !U; and ?PI; are enough toderive antimonotonicity in the antecedent and monotonicity in the consequentfor !, and \pre-involution" properties for ?. Hence they make ! and ? realconnectives, in the sense that a replacement theorem holds or equivalently thatthe Lindenbaum algebra construction is possible. The common characteristic of!U; and ?PI; is their limitation to the cases of empty context to the left (inour notation, such limitation is transcribed by the apices \;").The requirement of empty context on the left is present also in other rulesof B (namely _L; and 0L;) and it is peculiar of any sequent calculus for logicsrelated to quantum mechanics (cf. e.g. [9], [5]). As we shall see, dropping therestriction on left context for!U; or ?PI; (in our notation, dropping the apex;, getting !U or ?PI), is enough, if one adds some basic axioms, to get theusual intuitionistic or classical linear implication, respectively. Note �nally that? enjoys also a rule of ?-introduction to the left, like in orthologic (cf. [9], [5]).Summing up, the language of (propositional) basic logic B contains fourconstants for atomic formulas 0;?;>; 1, one sign for unary connective ?, foursigns for binary connectives 
;&;_;!. A sequent formulation for B is givenby the following axioms and rules of inference:AxiomsA ` ARules of inference6



�; A;B;� ` C�; B;A;� ` C exchange � ` A �; A ` B�;� ` B cut� ` A � ` B�;� ` A
 B 
R �; A;B ` C�; A
 B ` C 
L` 1 1R � ` C�; 1 ` C 1L� ` A � ` B� ` A&B &R �; A ` C�; A&B ` C �; B ` C�; A&B ` C &L� ` > >R 0 ` C 0L;� ` A� ` A _B � ` B� ` A _B _R A ` C B ` CA _B ` C _L;A ` B C ` DB!C ` A!D !U;A ` B?B ` A? ?PI;�� �� � ` A�; A? `? ?LIt is possible to add also2 the rules introducing ! to the left and to the right,as long as the context is kept empty:A ` B` A!B !R; ` A B ` CA!B ` C !L;Moreover, in the same spirit it is possible to add also3:A `?` A? ?R;We call B0 the calculus obtained from B by adding !R;;!L; and ?R;.To grasp better the meaning of some of the rules, we propose below somepossible alternative formulations of some rules of B. The content of the rule!U is to impose to the connective ! the typical behaviour of the implicationwith respect to the order given by the derivation `, as it is clari�ed by :2Which is the course followed in the actual exposition in Florence at LMPS'95.3Which is the course followed in a lecture given in G�oteborg, November 1995.7



Proposition 2.1 The single rule !U; is equivalent to the following pair ofrules, called monotonicity and antimonotonicity for !:C ` DA!C ` A!D !M; A ` BB!C ` A!C !AM;Proof. Assume !U; holds; thenA ` A C ` DA!C ` A!D !U; and A ` B C ` CB!C ` A!C !U;are the derivations of antimonotonicity and monotonicity, respectively (notethat, in the �rst derivation, the occurrence of A on the left in the premisebecomes the occurrence of A on the right in the conclusion).Conversely, assume !M; and !AM; hold. Then we have the followingderivation of !U;: A ` BB!C ` A!C !AM; C ` DA!C ` A!D !M;B!C ` A!D cut 2We will later need also a version of the above proposition in which rulesappear with full context; as the reader can easily check, the above proof isimmediately extended to a proof of the fact that the rule�; A ` B �; C ` D�;�; B!C ` A!D !Uis equivalent to the pair of rules�; C ` D�; A!C ` A!D !M �; A ` B�; B!C ` A!C !AMUsing only the relation between! and the order ` which is expressed by therule !U;, it is possible to show that the rules !R; and !L; can be expressedas axioms (we will see the analogue of this for ? in proposition 2.4):Proposition 2.2 Assuming B, one can prove that:a. The rule !R; is equivalent to the axiom !RAx: ` A!Ab. The rule !L; is equivalent to the axiom !LAx: 1!C ` CProof. a. Applying !R; to the basic axiom A ` A one obtains !RAx;conversely, by the following derivation:` A!A A ` BA!A ` A!B !M;` A!B cut8



b. Applying !L; to the basic axioms ` 1 and C ` C, one obtains 1!C ` C;conversely, by the following derivation:` A1 ` A B ` CA!B ` 1!C !U; 1!C ` CA!B ` C 2Hence both axioms on ! hold in B0. We shall see in proposition 4.6 howthe above equivalences are extended to the case of full contexts.The unary connective ? may be interpreted as a weak primitive negation.The behaviour of such negation is illustrated by the following facts. The �rstconcerns the behaviour of ? with respect to the order given by ` (it is the ana-logue of prop. 2.1). The crucial rule is ?PI;, where PI stands for pre-involution4;to clarify its meaning, let us consider the condition of antimonotonicity for ?,given by the rule: A ` BB? ` A? ?AM;Then we have:Proposition 2.3 The rule ?PI; is equivalent to the rule ?AM; together withthe axioms A ` A??.Proof. If ?PI; holds, we get the sequents A ` A?? by the deduction:A? ` A?A ` A?? ?PI;and hence we have the following derivation of ?AM;:A ` B B ` B??A ` B?? cutB? ` A? ?PI;Conversely, we have the derivation:B ` B?? A ` B?B?? ` A? ?AM;B ` A? cut 2Like 2.1, also proposition 2.3 holds in the case of full-context rules.As for!, we can show that the rules for ? with empty context are equivalentto axioms:4A unary operation ? on a lattice is usually said to be an involution if it satis�esa � b) b? � a? and a?? = a. The rule ?PI; corresponds to the requirementa � b? ) b � a?,which is a weaker condition, that we name indeed \pre-involution".9



Proposition 2.4 Assuming B, one can prove that:a. The rule ?R; is equivalent to the axiom 1 `??, or equivalently ?` 1?(?RAx);b. The rule ?L; is equivalent to the axiom 1? `? (?LAx).Proof. a. Applying ?R; to the axiom ?`? one obtains `??, hence 1 `??,from which ?` 1? by ?PI;. Conversely, by the following derivation:` 1 1 `?? A `???` A? ?AM;1 ` A?` A?b. Applying ?L; to the axiom ` 1 one obtains 1? `?. Conversely, by thefollowing derivation: ` A1 ` AA? ` 1? ?AM; 1? `?A? `? 2Hence the axiom 1? `? holds in B and both axioms hold in B0.Since in B we have the full context rule ?L, we see immediately some of itsequivalents:Proposition 2.5 In B, ?L can be replaced by one of the following equivalents:NC � ` A?�; A `? NCAx A;A? `?In particular, any of the above rules holds in B.Proof. ?L is equivalent to NCAx because:A ` AA;A? `? ? L and � ` A A;A? `?�; A? `? cutSimilarly, NC is equivalent to NCAx, by the derivations:A? ` A?A?; A `?NC and � ` A? A;A? `?�; A `? cutFor the sake of completeness, it is possible to prove the equivalence betweenNC and ?L in a direct way, via ?PI;. We leave it to the reader. 2The absence of a full context ?R in the basic calculus will be explained inproposition 4.10, and its underivability will be proved in proposition 4.7.10



3 The classical faceThe distinction between a sequent calculus for classical logic, like Gentzen'sLK, and for intuitionistic logic, like LJ , is that in the former all rules areformulated with an arbitrary context at the right hand side of any sequent.However, adding a right context to the rules of B would be irrelevant to the aimof getting a classical version of B. In fact, to have an interpretation of commaon the right hand side of a sequent, one cannot rely on the usual interpretationof the left context allowed by the 
L rule, as exempli�ed in the derivation� ` A;B;��; A?; B? ` � ?L�; A? 
 B? ` �� ` (A? 
B?)?;� ?R 
LIn fact, B lacks any form of ?-introduction to the right and we will see in thethird section that adding it would strenghten the system up to reach classicallinear logic.Neither one can rely on the usual interpretation allowed by the _R-rule andby contraction on the right: � ` A;B;�� ` A _B;B;� _R� ` A _B;A _B;�� ` A _B;� contr _Rsince B lacks structural rules. So, allowing context on the right, one shouldintroduce a new primitive connective \par", which would not be linked to 
in the usual way of linear logic, because such link is derivable only in presenceof both ?L and ?R. In any case, adding a full context on the right wouldnot solve, because of the absence of ?R, the problem of deriving the doublenegation principle, i.e. sequents A?? ` A 5. Indeed, we shall see soon howadding a ?R rule or structural rules makes the system collapse into other wellknown systems.6 So, the axiomsA?? ` A are necessary to get a classical system.Hence here we adopt, as the simplest, the solution of having a double negationprinciple in a calculus with restriction on the right hand side, and we give thefollowing de�nition:De�nition 3.1 We say that a sequent calculus satis�es property C when thedouble negation principle holds, i.e. A?? ` A is derivable for any A. If L is anycalculus, we write CL for the calculus obtained by adding A?? ` A as axiom forany A. In particular, BC and CB0 are the classical basic sequent calculi de�ned5Cf. [9], [5], where the double negation principle is assumed, even if no problem of inter-pretation of the context on the right arises, because those systems enjoy structural rules.6To be pedantic, in absence of ?R it is even possible to conceive sequent calculus systemsthat are structural on the left and linear on the right side or viceversa, but we are not interestedat the moment in such solutions. 11



by all axioms and rules of B and B0, respectively, and in addition the axiomsA?? ` A.A proof of the fact that the double negation axioms are not derivable in Bwill be provided after proposition 4.4 (while we leave it to be done for B0).By analogy with proposition 2.3, an alternative to double-negation axiomsis given by the following rule ?I;, where I stands for involution:A? ` BB? ` A ?I;The next lemma explains why we can not assume ?I; to hold in B. In fact:Lemma 3.2 The rule ?I; is equivalent to the rule ?AM; together with double-negation axioms A?? ` A.Proof. Applying ?I; to the axiom A? ` A? one obtains A?? ` A; conversely,by the derivation A?? ` A A ` BA?? ` BB? ` A? 2Proposition 3.3 All the following assumptions on the connective ? give equiv-alent formulations of BC:1. ?PI; together with A?? ` A, i.e. BC;2. ?AM; together with A = A??;3. ?I; together with A ` A??;4. ?AM; together with the rulesA ` BA?? ` B and A ` B??A ` BProof. (1) is equivalent to (2) by proposition 2.3, and (2) is equivalent to(3) by the above lemma. Finally, equivalence of (4) with (2) is obtained easilyby cut. 2As usual, the same statements can be proved substituting rules ?PI; and?I; with their full-context versions ?PI and ?I.12



4 The deductive faceIn the basic sequent calculus B, and also in its classical version BC, the con-nective ! does not satisfy the usual characterization of implication, namely thestatement of the deduction theorem:�; A ` B i� � ` A!B DTA proof of the fact that the basic system B does not enjoy DT will be providedlater in this section, see proposition 4.6. We see now which conditions can beadded to B or BC to obtain the usual rules for implication and thus usualdeductive logics. In a sequent calculus, the two rules introducing! to the rightand to the left are usually of the form�; A ` B� ` A!B !Rand � ` A �; B ` C�;�; A!B ` C !Lboth in intuitionistic (linear or not) and classical (linear or not) logic. It is noweasy to see that !R and !L together are equivalent to the condition DT overbasic logic. We �rst have to �nd some equivalents of !L:Proposition 4.1 All the following assumptions are equivalent over B:!L: � ` A B;� ` C�; A!B;� ` CMPAx: A;A!B ` B (Modus Ponens as an axiom)MP : � ` A � ` A!B�;� ` B (Modus Ponens)ML: � ` A!B�; A ` B (\Move Left")Proof. We �rst prove that !L is equivalent to MPAx; in fact, a derivationof MPAx from!L is A ` A B ` BA;A!B ` B !Land conversely � ` A A;A!B ` B�; A!B ` B cut �; B ` C�; A!B;� ` C cutNow we see that MP is derivable from MPAx:13



� ` A � ` A!B A;A!B ` B�; A ` B cut�;� ` B cutand that ML is derivable fromMP :A ` A � ` A!B�; A ` B MPTo complete the proof, it is enough to note that:A!B ` A!BA!B;A ` Bis a derivation of MPAx fromML. 2Now one can easily see that:Proposition 4.2 The following assumptions are equivalent over B:The rules !R and !L holdThe characterization DT holds.Proof. One direction of DT is exactly !R, the other is exactly ML, whichis equivalent to !L by the preceding proposition. 2A consequence of the above proposition 4.2 is that, if one added both anyequivalent to!R and any equivalent to!L toB, one would obtain a calculus atleast as strong as the linear commutative intuitionistic sequent calculus withoutexponentials ILL0, as formulated e.g. in [13]. On one hand, the only rulesof ILL0 not appearing inside B, namely !R, !L, _L and 0L, hold in anyextension of B satisfying condition DT ; in fact, !R and !L are derivable byproposition 4.2, and the full context rules _L and 0L are derivable from theirweak form _L; and 0L;, respectively, because by using !R,!L, 
R and cut,the context can be moved from the left to the right and conversely, i.e. �; A ` Ci� A ` 
�!C holds. On the other hand, all rules of B and B0, except those for! and ?, trivially hold in ILL0; since !R and !L are assumed in ILL0,!R;and!L; trivially hold, while!U; is easily derivable, moreover, by interpretingthe negation A? as the linear negation A!?, usually shorthanded as A?, it isimmediate to check that ILL0 enjoys ? rules of B.Hence, we adopt the following characterization of property D; here and inthe sequel we write A = B when A is equivalent to B, in the sense that A ` Band B ` A hold.De�nition 4.3 We say that a sequent calculus is deductive, or distributive,7 ifit satis�es propertyD, that is! satis�es DT and for any formula A, A? = A!?.Moreover, we adopt for property D the same convention as for property C; inparticular, BD and DB0 are the deductive basic calculi.7In fact, in a complete lattice the de�nability of a binary connective for implication isequivalent to distributivity. 14



Note anyway that adding D vanishes the distinction between B and B0, i.e.BD = DB0, in fact, not only ! rules are available, but also ?R, becauseproperty D includes the fact that ? is de�nable in terms of !. What we haveshown above de�nition 4.3 is:Proposition 4.4 The system BD is equivalent to the system of intuitionisticlinear logic (without exponentials) ILL0.As a corollary, one can see that B is strictly weaker than BC; in fact, if one hada derivation of A?? ` A in B, one would derive also A?? ` A in ILL0. Anothercorollary is the following:Proposition 4.5 The system BCD is equivalent to the system of classical lin-ear logic (without exponentials) CLL0.Proof. One can immediately see that BCD is equivalent to ILL0 augmentedwith the double negation axioms A?? ` A. In fact, BD is equivalent to ILL0by the previous proposition, while property C, in presence of D, is exactlyA?? ` A. To conclude, it is enough to notice that ILL0 added with the axiomsA?? ` A is equivalent to CLL0; this is an exercise out of the scope of thepresent paper. 2Now one can see how the presence of a context in the rule !U is linked todeductivity:Proposition 4.6 The following are equivalent over B:The rule !U with the axioms !RAx and !LAx.The rules !R and !L.Proof. Assuming (1), one has the following derivation of!R from!M and!RAx: ` B!B �; B ` C�; B!B ` B!C !M� ` B!C cutand one has the following derivation of !L via !U and !LAx:� ` A�; 1 ` A 1L �; B ` C�;�; A!B ` 1!C !U 1!C ` C�;�; A!B ` C cutConversely, assuming (2), one can derive the axioms by proposition 2.2 and therule !U as follows: �; A ` B �; C ` D�;�; A;B!C ` D !L�;�; B!C ` A!D !R 215



Now we see semantically why B0 is a proper enrichment of B. The facts thatB0 is strictly weaker than BD and CB0 is strictly weaker than DCB0 will beshown at the end of next section.To obtain independence of !Rax and !Lax over B, we consider an alge-braic model ofB in which they fail. Let eZ = Z[f�1;+1g be the commutativeboolean quantale obtained completing the set of integer numbers Z with respectto its order and then putting +1+�1 = 0, +1+n = +1 and �1+n = �1,for every n 2 Z. Let us consider the interpretation V of formulas of B into eZde�ned by the clauses (warning: of course, such interpretation is di�erent fromthe interpretation of linear logic in a quantale):V (0) � +1, V (>) � �1, V (1) � 0, V (1?) � z, where z is an integer, andV (?) � n, where n is a �xed integer � z;V (B 
 C) � V (B) + V (C);V (B ^ C) � maxfV (B); V (C)g;V (B _ C) � minfV (B); V (C)g;V (B?) � �V (B) + z;V (B!C) � 1 + V (C)� V (B).Similarly, let W be the interpretation de�ned by the clauses:W (0) � �1, W (>) � +1, W (1) � 0, W (1?) � z, where z is an integer, andW (?) � n, where n is a �xed integer � z;W (B 
 C) � W (B) +W (C);W (B ^ C) � minfW (B);W (C)g;W (B _ C) � maxfW (B);W (C)g;W (B?) � �W (B) + z;W (B!C) � 1 +W (C)�W (B).Hence W di�ers from V in the valuation of the additive fragment, and possiblyof ?. Of course, if � � fCigi2I , V (�) and W (�) are to be interpreted as�i2IV (Ci) and �i2IW (Ci). So, when I is empty, V (�) = W (�) = 0. Byproperties of ordered groups, it is easy to verify that, for every axiom � ` Bof B one has V (�) � V (B) and W (�) � W (B), and that � inequalities arepreserved by rules of B when formulae are interpreted by valuation V , as wellas � inequalities are preserved by rules of B when formulae are interpreted byvaluation W . Hence we have:� ` C ) V (�) � V (C) � ` C ) W (�) � W (C)for every theorem � ` C of B. Finally, note that, by de�nition of V and W , thedouble negation axiomsA?? ` A are validated, and hence eZ with interpretationsV and W are models of BC too.It is now easy to prove that: 16



Proposition 4.7 None of the following is derivable in BC, and a fortiori inB:1. the sequents !RAx and !Lax;2. the equivalence of A? with A! ?;3. the axiom ?` 1?.Proof. (1) If !RAx or !LAx were theorems of B, it would be V (1) �0 � V (C!C) = 1 or W (1!C) = 1 + W (C) � W (C), respectively. (2) Theequivalence of A? with A!? would give �V (A)+z = �V (A)+1+V (?), whichis equivalent to 1 +V (?) = z; hence it is enough to choose V (?) 6= �1 + z. (3)It is possible to choose V so that V (?) < V (1?) � z. 2Hence B is weaker than B0 and BC than CB0, so a fortiori we have:Proposition 4.8 None of the conditions forming property D holds in BC orB. So B and BC are not deductive.A natural question is then whether, in the case of BC and other classicallogics, a connective of implication is de�nable by means of other connectives,and whether it satis�es propertyD. Since no connective interpreting the commaat the right is available in BC, we are lead to de�ne classical implication bymeans of negation and the conjunction interpreting comma at the left, namely
. We thus put A � B � (A 
B?)?which is exactly one of the usual characterizations of implication in classicallinear logic. It is easy to show that � is antimonotonic in the �rst argumentand monotonic in the second argument, that is, by proposition 2.1, that itsatis�es � U; in B; a derivation is:A ` B C ` DD? ` C? ?AM;A
D? ` B 
 C?(B 
 C?)? ` (A 
D?)? ?AM;We thus may consider � as the basic classical implication.Contrary to what happens in classical linear logic, however, the system BCis not strong enough to prove that � satis�es property D, namely the condition(DT ) for �: �; A ` B i� � ` A � Band the condition A? = A �?. As for this last condition, we have the followinglemma:Proposition 4.9 In BC one can prove:a. ?R; is equivalent to A �?` A?b. ?L; is equivalent to A? ` A �? 17



Proof. Assuming ?R; and ?L;, respectively, one has the following deriva-tions: A ` A ?`?`?? ?R;A ` A
 ?? 
R(A
 ??)? ` A? ?AM; A ` A ` 11? `???` 1 ?I;A
 ??` A 
RA? ` (A
 ??)? ?AM;The two converse directions of a. and b. are obtained by putting A = 1 in thesequents (A
 ??)? ` A? and A? ` (A
 ??)? respectively, thus getting ?` 1?and 1? `?, respectively, that are equivalent to ?R; and ?L; by proposition 2.4.2 >From this we have the following characterization of condition D for �:Proposition 4.10 In CB, the following are equivalent:1. � R and ?R;;2. ?R;3. classical implication � satis�es D.Proof. Assuming (1), from �; A `? one has � ` A �? by � R, hence also� ` A? since A �?` A? by the above proposition, so ?R holds.Assuming ?R, one has the following derivations for (DT ):�; A ` B�; A;B? `? ?L�; A
B? `? 
L� ` A � B ?R A ` A B? ` B?A;B? ` A
B? � ` A � B�; A
B? `? ?NC�; A;B? `? cut�; A ` B?? ?R B?? ` B�; A ` B cutwhere ?NC is an equivalent of ?L, as seen in 2.5. Moreover, A? = A �? isan equivalent of ?R; and ?L; by the previous proposition, hence it holds inBC with ?R. Finally, assuming (3), (1) is obvious by de�nition of DT andproposition 4.9. 2As a consequence of propositions 4.7 and 4.10, we have:Proposition 4.11 Property D fails for � in BC.In the last section we will see that property D for � fails also in CB0.In BC there are two di�erent connectives for implication,! and �, whichhave little to do with each other. In fact, it is easy to see that A!B 6` A � Band A � B 6` A!B by means of the interpretations W and V , respectively.This is possible since DT does not hold; in fact, it is easy to check that, ingeneral, two connectives for implication coincide if they both satisfy DT .The following fact was implicit in proposition 4.5; here we give a direct proof:Proposition 4.12 In BCD, � satis�es D, and hence it coincides with !.18



Proof. The assumption �; A `? gives � ` A! ? by !R, but A! ?= A?by D, hence � ` A?; so ?R holds. Then, by proposition 4.10, � too satis�esD. The last statement follows by the above remark. 2The following is analogous to 4.6 for the case of classical implication; itshows how a full context in ?AM and possibly two axioms on ? give a deductiveclassical logic.Proposition 4.13 In BC the following are equivalent:1. ?AM with ?` 1? and 1? `?;2. ?R together with ?L.Proof. Assuming (1), and recalling that ?` 1? if and only if 1 `?? by ?PI;and if and only if `?? by cut, one has (2) by the following derivations:`?? �; A `?�;??` A? ?AM� ` A? � ` A�; 1 ` A�; A? ` 1? ?AM 1? `?�; A? `? cutConversely, one gets the axioms by proposition 2.4 and the rule ?AM by thederivation: �; A ` B�; A;B? `? ?L�; B? ` A? ?R 25 The structural faceIt is well known that adding structural rules to intuitionistic and classical linearlogic, i.e. the systems BD �= ILL0 and BCD �= CLL0, produces intuition-istic and classical logic, respectively. Now we see which systems arise addingstructural rules to B and BC.The usual formulation of structural rules in an intuitionistic sequent calculusis the followingW : � ` C�; A ` C (weakening)C : �; A;A ` C�; A ` C (contraction)In propositions 4.1 and 4.2, we showed that structural rules are not needed toprove the equivalence of di�erent formulations of properties of implication; wenow show the reciprocal fact, namely that the various formulations of structuralrules are already equivalent in B, and thus in absence of usual implication.19



Proposition 5.1 The structural rule of weakening W is equivalent over B toany of the following axioms: A
 B ` A&B; A;B ` B; A ` 1; > ` 1.Similarly, the rule C is equivalent over B to any of the axioms: A&B ` A
B;A ` A
 A.Hence, the rules W and C together are equivalent over B to A
B = A&B.Proof. Assuming W , a derivation of A 
B ` A&B isA ` AA;B ` A W B ` BA;B ` B WA;B ` A&BA 
B ` A&BFrom A 
 B ` A&B and A&B ` B, one obtains A 
 B ` B and hence theaxiom A;B ` B. Then, by taking B to be 1 in A;B ` B, one obtains A; 1 ` 1and hence, from ` 1 by cut, also A ` 1; > ` 1 is then a special case. Finally, aproof of W from > ` 1 isA ` > > ` 1A ` 1 � ` C�; 1 ` C�; A ` C cutAssuming C, we have A&B ` A A&B ` BA&B;A&B ` A
 B 
RA&B ` A
 B Cand from A&B ` A 
 B we have as a special case A&A ` A 
 A from whichA ` A
 A. Finally, assuming the axioms A ` A 
A,A ` A
 A �; A;A ` C�; A
 A ` C 
L�; A ` C cutis a derivation of contraction. 2The structural rules of weakening and contraction do not exhaust the condi-tions we must require for the property S which characterizes structural logics.In fact, among structural logics there is intuitionistic logic which we expect toobtain by adding properties S and D to B. In intuitionistic logic, the negationof A, which is de�ned as usual by :A � A!?, must satisfy ex falso quodlibet,that is the axiom A;:A ` C or, equivalently, ?` C; since the constant 0 isalready present in the language of B, and with the rule 0 ` C, to obtain exfalso quodlibet, it is enough to require ?` 0, or equivalently ?= 0. We thus add?= 0 to the structural rules W and C to form property S.Note that it is not possible to put ?= 0 among the conditions de�ningproperty D. In fact, the rule of weakening is derivable over BCD from ?` 0as follows: from ?` 0 and 0 ` >? one has ?` >?, hence 1? ` >? since 1? `?holds in B, and so �nally > ` 1, which is equivalent to weakening by 5.1. So, if20



?= 0 were derivable from D, we would obtain that BCD satis�es weakening,contrary to the expectation that it is equivalent to classical linear logic.To the same conclusion we would be lead by requiring that adding propertiesC and S to B we should obtain orthologic. In fact, in orthologic the axiomA;A? ` 0 must hold (since it corresponds to a ^ a? = 0 which holds in anortholattice) and it is obtained from A;A? `? by requiring ?= 0. On the otherhand, by the same reason as above, we could not put ?= 0 among the conditionsforming property C.In conclusion, we put:De�nition 5.2 We say that a sequent calculus satis�es the property S whenit satis�es weakening, contraction and ?= 0. We call structural any systemsatisfying S, in particular BS and SB0 are the basic structural systems.In BS, since ?= 0 holds, the non-contradiction principle expressed by NCAxA;A? `? becomes A;A? ` C, like in intuitionistic logic. Moreover, like in intu-itionistic and classical logic, the conjunctions 
 and & coincide by proposition5.1. In addition, the structure of constants becomes exactly that of intuitionisticlogic, as shown by:Proposition 5.3 In BS, up to equivalence, there are only two constants, ?and >, and they satisfy ??= > and >? =?.Moreover, the condition A? = A �? of property D is derivable.Proof. By de�nition of S, ?= 0. By proposition 5.1, weakening is equivalentto > ` 1, while 1 ` > holds by >R, and hence 1 = >. The equivalence > = 0?hold also in B; in fact, 0? ` > by >R, and >? ` 0 by ?PI; from 0 ` >?.Hence also ??= >. To show >? =?, it is enough to recall that 1? `? holds inB, hence >? `? holds in BS, while ?` >? by 0L and 0 =?.Finally, A �?= A � 1? because 1? = >? =?, and A � 1? � (A 
1??)? = (A
 1)? = A? because 1?? = >?? =??= > = 1. 2As a consequence, one can see that BS can be characterized by the axiomsA ` A, ?` 0 and the inference rules exchange, W , C, cut, &R, &L, 0L, _R,_L;, !U;, ?PI;, ?L.If one adds also property D to BS, one has, by DT :A&B ` C if and only if A ` B!C;so that ! is the intuitionistic implication, and hence A? = A! ? tells thatA? is the same as the intuitionistic negation. Then, after proposition 4.4, it isimmediate that every rule of BDS is derivable in LJ (after putting > � A!A,0 �? and A? � A! ?), and conversely. So we have the statement:Proposition 5.4 The system BDS is equivalent to Gentzen's intuitionistic cal-culus LJ.Then it is also clear that: 21



Proposition 5.5 The system BCDS is equivalent to Gentzen's classical cal-culus LK.To complete the proof of the claim pictured in the cube, we must verify thatthe structural classical basic systems BCS and CB0, de�ned, of course, by theaxioms and rules ofBS and SB0, plus the double negation axiomsA?? ` A, givea calculus for orthologic. Actually, BCS contains an extra connective, namelythe connective !, which is not reducible to the connectives corresponding tooperations in an ortholattice. So let us call SCB� and SCB0� the systems ob-tained fromBCS and BCS0, respectively, by suppressing the connective ! andits rules. First, note that ?R; holds in BCS and hence BCS0, by propositions5.3 and 2.4. Hence SCB� and SCB0� are the same and we will deal only withSCB�.We prove that SCB� is equivalent to system GO1, i.e. Nishimura systemGO (cf. [9]), restricted to the normal form sequents, that is, sequents with atmost one formula at the right. This is enough because, as proved in [9], thelogic of ortholattices (as formulated for instance in [8]), is given by the normalsequents of calculus GO, and every normal sequent has a normal proof, i.e. onecontaining only normal sequents.We write below the set of rules for system GO1; the sequents are of theform �) �, where � is a �nite set of formulas and � is a singleton fAg or theemptyset. By a little abuse of notation, we write �) A instead of �) fAg.AxiomsA) ARules of inference�) ��;�) � L extension �)�) A R extension�) A A;�) ��;�) � cutA;�) �A ^B;�) � B;�) �A ^B;�) � ^ ) �) A �) B�) A ^B ) ^�) A�;:A) :)A) �:�) :A ) :A;�) �::A;�) � :: ) �) A�) ::A ) ::Proposition 5.6 The systems GO1 and SCB� are equivalent.Proof. Apart from di�erences in notation, the di�erences between GO1 andSCB� are essentially two. One one side, GO1 allows sequents with emptysuccedent � ) and we interpret them as sequents � `? in SCB�. On the22



other side, GO1 lacks disjunction _ any any constants, and we de�ne them byputting A _B = (A? ^B?)?, ?� A ^ :A and > � :(A ^ :A).Then it is not di�cult to show that, under such interpretation and with suchde�nitions, all rules of GO1 are derivable in SCB�, and conversely. 2A subtle argument now is needed to show that the full systemBCS is strictlyweaker than classical logic, i.e. BCDS. In fact, what is well known is thatGO1,and hence SCB�, is strictly weaker than classical logic. To be able to use thisfact, we need:Proposition 5.7 BCS is conservative over SCB�, in the strong sense that if� ` C is derivable from the assumptions �1 ` C1; : : : ;�n ` Cn in BCS and allof � ` C, �i ` Ci do not contain occurrences of !, then � ` C is derivablefrom �1 ` C1; : : : ;�n ` Cn also in SCB�.Similarly, BCS0 is conservative over SCB0� = SCB�.Proof. Given a derivation � of � ` C from �1 ` C1; : : : ;�n ` Cn, it isenough to substitute each occurrence of ! in � with classical implication �.Thus, since the rule � U; is derivable in B and ! does not appear in � ` C,�i ` Ci, one obtains a derivation �0 in SCB� with equal assumptions andconclusion.Similarly, classical implication � satis�es the rules � L; and � R;. In fact,by proposition 2.2, � L; is equivalent to 1 � C ` C, which is derivable fromC?? ` C because 1&C? = C?; again by 2.2 � R; is equivalent to ` C � C,which is derivable in SCB� since C&C? ` 1?, which holds by 2.5 and 5.3, gives1 ` (C&C?)?, by ?PI;. So BCS0 is conservative over SCB� 2We now can conclude the argument as follows. Assume thatBCS �= BCDS,that is, assume that property D were derivable for! inBCS. Then, as alreadyseen in the proof of proposition 4.12, also ?R would be derivable inBCS, hence,by the preceding proposition, ?R would be derivable also in SCB�, and so, byproposition 4.10, SCB� would be equivalent to classical logic. But then, byproposition 5.6, also GO1 would be equivalent to classical logic, which is notthe case. A fortiori, BCS 6�= BCDS.Finally, note that SCB� with � is an example of a system in which � R;and � L; hold but � R and � L do fail. This proves as promised that B0 isweaker than BD and CB0 is weaker than BCD.References[1] G. Battilotti and G. Sambin, Pretopologies and a uniform presentationof sup-lattices, quantales and frames, 1997. to appear.[2] J. L. Bell, Orthologic, Forcing, and the manifestation of attributes, North-Holland, 1983, pp. 13{36.[3] G. Birkhoff, Lattice Theory, American Mathematical Society, 1967. 3rdedition. 23
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