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Abstract

A basic logic B s introduced, which is weaker than intuitionistic, quan-
tum and linear logic. Moreover, three independent properties C, D and S
are determined: C consists of double negation axioms for basic negation,
D consists of usual properties of implication, that is the deduction theorem
and the link with usual negation, S consists of structural rules of weak-
ening and contraction, plus the identification of two constants expressing
falsum. The eight possible combinations of properties C, D and S produce
a cube of logics. In particular, adding C and D to B gives linear logic,
adding D and S gives intuitionistic logic, adding C and S gives orthologic
and finally adding all of C, D and S gives classical logic. On the other
hand, adding C to B produces a new logic, which is the common part of
linear and orthologic and thus could be of interest for theoretical physics.

1 Introduction

Up to the end of last century, the only logic was classical logic (and possibly
its extensions by modalities). Later some “weakenings” of classical logic were
introduced, with the aim of expressing also at the level of logical propositions
some distinctions which hold in a specific scientific context but are ignored by
classical logic. The first example arises from intuitionism, which points out the
distinction, when dealing with infinity, between constructive proofs and proofs
based on reductio-ad-absurdum; intuitionistic logic, by rejecting the law of dou-
ble negation, allows to express such a distinction. In the thirties, it was real-
ized that ortholattices (or orthomodular lattices), rather than boolean algebras,
were the convenient algebraic structures to deal with quantum mechanics; thus
in orthologic, as well as in ortholattices to which it corresponds, the classical
equation given by distributivity of conjunction with disjunction fails. Finally,



various motivations lead to the third, more recent “weakening” of classical logic.
The philosophical aim of overcoming paradoxes of classical implication produced
relevant logics and, later, proof-theoretical motivations and the search for a logic
well suited for theoretical computer science, produced linear logic; the common
technical aspect is the rejection of one or more structural rules, which results
for instance in the distinction made by linear logic between multiplicative and
additive conjunction.

Summing up, classical logic has been weakened in three different, fully inde-
pendent ways. Thus a picture could be:

C

L

where C is classical logic, I intuitionistic logic, O orthologic and CL Girard’s
linear logic. Furtherly, a combination of two such weakenings, namely intuition-
istic linear logic IL, has already been studied. It is then natural to wonder
whether also all other combinations, including that with all the three weaken-
ings, produce a “logic”, and possibly to determine it. The same question can be
expressed as: what should be put for the question marks in the following cube?

C I

CL IL

? ?

We here describe a new logic, which we call basic logic B, since it lies at the
bottom of the above cube. We adopt the tool of sequent calculus, which has
revealed powerful enough to express all the weakness, or, better; the subtleties,
of basic logic. Moreover, we specify three properties, namely C for classical, D



for deductive (or distributive) and S for structural, such that the cube above
coincides with the cube of logics obtained from B by adding all combinations
of C, D and S, and thus in particular characterize the two remaining question
marks. Writing XY for the logic obtained by adding property X to the logic
Y, our results can be summarized by the following cube (where Y = Z means
that Y and Z characterize the same logic):

BCDS =LK BDS=LJ

BCD = CLLg BD = ILLg

BCS = GO, BS

BC B

To understand better what the cube means, assume that we have proved the
equivalences written in the above picture. Then it follows that all edges are
proper; in fact, it 1s enough to realize that the top three edges of the cube are
proper, that is, that BCDS 2 BDS, BCDS % BCD and BCDS 2 BCS. In
fact, from BCDS 2 BDS, for instance, we can conclude also that BC 2 B,
BCS % BS and BCD 2 BD since otherwise by adding one or two properties
we would obtain BCDS = BDS, and obviously the same argument applies to
all other cases. Now BCDS 2% BDS is clear, since BCDS is equivalent to
classical logic LK and BDS to intuitionistic logic LJ, and certainly LK and
LJ are not equivalent. Similarly, BCDS % BCD because BCD is equivalent
to classical linear logic CLLg, which certainly is not equivalent to LK. Finally,
we will prove in the final section that BCDS 2% BCS making use of the fact
that the fragment BCS™ is equivalent to orthologic GO and orthologic is not
equivalent to classical logic. In fact, as 1t is well known, orthologic was conceived
as “the logic of ortholattices”, whereas a semantics for classical logic is given
by boolean algebras. Moreover, since five out of eight logics of the cube enjoys
an algebraic semantics (besides boolean algebras for C and ortholattices for O
one has boolean quantales for CL, quantales for IL and frames for I), a natural
question is then whether there is also a notion of basic structure, which should
give an algebraic semantics for B and produce the well known structures as
particular cases, but such idea is not developed here'.

1 Actually, the cube itself was first conceived in algebraic terms, our first idea was to



A two-sided sequent calculus for B is presented in the first section of the
paper. In the subsequent sections we find out what the properties C, D and
S should consist of so that the claims contained in the above pictured cube
can be proved. The leading principle is that going upwards, 1.e. adding one of
the three properties, two distinct formulas or rules are turned into equivalent
formulas or rules, and thus 1t may happen also that some distinct connectives
are identified. For example, the face of the cube where C holds is formed by
“classical” logics, which are characterized by the principle of double negation,
and each of them is over a corresponding logic in the “intuitionistic” face, where
the double negation of a formula A is distinct from A. Similarly, the upper face
where D holds is formed by “deductive” logics, where a formula can be moved
from the assumptions to the conclusions (as the antecedent of an implication)
and conversely, and it is above the face of “quantum” logics, where there is no
communication between assumptions and conclusions; this, as we will see, will
go together with the identification of the primitive negation A*, defined in basic
logic, with negation defined, as usual, A— L . Finally, the face where S holds
is that of “structural” logics, where structural rules of weakening and contrac-
tion hold, and hence only one connective for conjunction is present, is opposed
to the face of “linear” logics, where one must distinguish two connectives for
conjunction.

The paper is meant as a contribution to the comprehension of propositional
extensional logics. By extensional logics we mean here those logics in which there
is only one way of asserting a proposition, as opposed to intensional logics, where
the assertion “A is true” is accompanied by an assertion like “A is necessarily
true” or “A will be true”, etc., which at the level of propositions is expressed
by means of modalities, A, F'A, etc. A major philosophical concern should be
to characterize the concept of proposition and of proof in a given extensional
logic so clearly that the inference rules specific of that logic can be obtained
as a consequence. At the moment, this has been achieved satisfactorily only
for classical logic, where a proposition is simply a way to denote one of the
two truth values, and intuitionistic logic, where the meaning of a proposition
is given by its proofs; it seems plausible that propositions of linear logic apply
to a less abstract reality, where resources are taken into account (and in fact
the interpretations which have been proposed range from chemistry to games,
plugs, recipes, computers and restaurant menus), but a clearcut philosophical
“definition” 1s still lacking.

Though we make no step in this direction here, we have it in mind when
we show that many different logics can be explained, at least from a proof-
theoretical point of view, by means of a few natural properties; then, it is on such
properties that further philosophical investigations can concentrate. Moreover,

find a common frame to the representation of quantales via pretopologies (cf. [1]) and the
representation of ortholattices via polarities (cf. [2], [3]), since the representation of complete
boolean algebras given in [12] seems to be a particular case of both. We don’t know yet
whether the problem has a simple solution. A talk on this was given in Monselice (Italy),
during the 3rd Linear Logic Italian Workshop, October 14-15, 1994, where the cube was
presented for the first time.



we propose two new logics, basic logic B and its classical counterpart BC,
which are linear and quantic at the same time, to such a conceptual analysis,
hoping that adding consideration of resources to usual quantum logic can be
of use in the study of quantum mechanics. In any case, B and BC seem to
meet a desideratum variously expressed in the recent literature (cf. [M], where
quantales, later shown to be a complete semantics for linear logic, are proposed
as an alternative structure to orthomodular lattices in the study of quantum
mechanics, cf. [4] and [6], where a common sublogic of quantum logic and linear
logic is described, cf. finally [10], in which linear logic plays the role of a dynamic
quantum logic).

A final question is whether weaker logics can be strengthened by adding
modalities in such a way that stronger logics can be interpreted in them. It is
known, for instance, that linear logic, since its birth, has been equipped with a
modality ! which allows to interpret classical and intuitionistic logic. We have
been able to find how to interpret each logic of the cube into each weaker one,
augmented with suitable modalities. However, the study of interpretations is
yet to be completed (for instance we would wish to make all interpretations
commute with each other) and will appear in a sequel to the present paper.

1.1 Acknowledgements
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tum logic to our attention, Silvio Valentini for useful conversations and sug-
gestions. We are indebted to Marisa Dalla Chiara for encouragement and for
inviting us to Florence were on December 19, 1994 we gave the first exposition
of the contents of this paper.

2 A sequent calculus B for basic logic

As mentioned in the introduction, basic logic B is, so to say, the common denom-
inator of intuitionistic, linear and orthologic. So a sequent calculus for B (see
the table of rules below) will sum up the peculiarities of a sequent formulation
of such three non-classical logics.

Like in intuitionistic logic, the context A on the right hand side of a sequent
I, A+ B, A is strictly under control: it must be empty (actually, it is enough
that A 1s empty only for some of the inference rules, but this is inessential at
the moment). For convenience, we choose a formulation in which in addition
there 1s always exactly one formula at the right, thus disregarding sequents like
I'F and F.

Like in linear logic, in place of the classical conjunction there will be two con-
nectives, characterized by the way in which contexts on the left side are handled;
adopting Girard’s terminology and notation in [7], they are the multiplicative
conjunction ® (“times”), characterized by an introductory rule with different
contexts in the premises which are just put one aside the other in the conclusion,



and the additive conjunction & (“with”), where contexts in the premises and
the conclusion are equal. By using only ®-rules and cut, one can easily check
that I'; A, B+ (' is derivable iff ', A® B I C'is derivable, which means that, like
in linear logic, the meaning of the comma “,” at the left is ®, and not & as one
is accustomed from classical logic. Like in the so called intuitionistic linear logic
(see for instance [11] or [13] for an exposition), it is not possible to introduce
multiplicative disjunction, which is defined in classical linear logic either as the
dual of ® or by allowing two formulas at the right; in fact B does not have free
contexts on the right and does not satisfy the double negation principle.

The constant atomic formulas are exactly the same as in linear logic, and
they are 0, L, 1 and T. The rules for 0 and T say that they are the minimum and
the maximum respectively in the derivability order given by F; in particular,
0 FL and 1 = T hold, while, as we will see, some other relations involving
constants which are derivable in linear logic fail in B.

Note anyway that B is substantially different from (intuitionistic) linear
logic, since, contrary to linear logic but like orthologic, it lacks the usual rules
for implication and for negation, which allow to move formulas from one side
of a sequent to the other. This, however, does not prevent B from having a
connective — for implication and a connective x for negation that, contrary
to usual logics, are not related at all in basic logic. B includes a rule for —
(denoted — U?) and one for » (denoted «PI") which impose the behaviour
usually expected from any implication and any negation for what concerns the
order between formulas given by . The rules —U” and «PI? are enough to
derive antimonotonicity in the antecedent and monotonicity in the consequent
for —, and “pre-involution” properties for x. Hence they make — and * real
connectives, in the sense that a replacement theorem holds or equivalently that
the Lindenbaum algebra construction is possible. The common characteristic of
—U" and xPI" is their limitation to the cases of empty context to the left (in
our notation, such limitation is transcribed by the apices “0”).

The requirement of empty context on the left is present also in other rules
of B (namely VLY and OLm) and 1t is peculiar of any sequent calculus for logics
related to quantum mechanics (cf. e.g. [9], [5]). As we shall see, dropping the
restriction on left context for —U? or xPI° (in our notation, dropping the apex
0, getting —U or xP1I), is enough, if one adds some basic axioms, to get the
usual intuitionistic or classical linear implication, respectively. Note finally that
* enjoys also a rule of x-introduction to the left, like in orthologic (cf. [9], [5]).

Summing up, the language of (propositional) basic logic B contains four
constants for atomic formulas 0, L, T, 1, one sign for unary connective %, four
signs for binary connectives ®,&,V, —. A sequent formulation for B is given
by the following axioms and rules of inference:

Axioms
AR A

Rules of inference



[, A, B,AFC I'FA AAFB

—F,B,A,AI— c exchange T.AF B cut
TFA AFB I A BFC
IAFAcB OF T AcBrC 2F

rrC
1 1R Tirc *
IAFC I,BFC
w &R &I
T F ALB [, A&BFC T,A&BFC
LT TR 0FC 0L
TFA I'FB AFC BFC
4rt b Loy
TFavB Trave YE AvBrc VI
AFB CFD

1]
B—CF A—Dp —U

AF B*
BF A*

*PTY

r-A

S T, A L **

It is possible to add also? the rules introducing — to the left and to the right,
as long as the context is kept empty:

AF B ) FA BFC
Fa—p —f A—BFC

—Lt

Moreover, in the same spirit it is possible to add also3:

AFL
Fa <R

We call B’ the calculus obtained from B by adding —R?, —L? and «R".

To grasp better the meaning of some of the rules, we propose below some
possible alternative formulations of some rules of B. The content of the rule
—U 1s to impose to the connective — the typical behaviour of the implication
with respect to the order given by the derivation I, as it is clarified by :

2Which is the course followed in the actual exposition in Florence at LMPS’95.
3Which is the course followed in a lecture given in Géteborg, November 1995.



Proposition 2.1 The single rule —U" is equivalent to the following pair of
rules, called monotonicity and antimonotonicity for —:

CED . AF B )
A—CFA—D —M B—CF A—C —AM

Proof. Assume —U" holds; then

AFA C+D 0 A+ B c+C 0
— and —U
A—CHF A—D B—CEFA-=C

are the derivations of antimonotonicity and monotonicity, respectively (note
that, in the first derivation, the occurrence of A on the left in the premise
becomes the occurrence of A on the right in the conclusion).

Conversely, assume —M? and —AM? hold. Then we have the following
derivation of —U/?:

A+ B ) CtD )
B—CF A—C M ATC0F A=D —3{‘4
B—CF A=D cu

O

We will later need also a version of the above proposition in which rules
appear with full context; as the reader can easily check, the above proof is
immediately extended to a proof of the fact that the rule

IAFB ACED
A B—CFA—D

—

is equivalent to the pair of rules

I,C+D " LA+ B
[LA—-CFA—D — A B—CFA—=C —

AM

Using only the relation between — and the order - which is expressed by the
rule —U? it is possible to show that the rules —R? and —L? can be expressed
as axioms (we will see the analogue of this for x in proposition 2.4):

Proposition 2.2 Assuming B, one can prove that:
a. The rule —R" is equivalent to the aziom —RAz: F A—A

b. The rule —L" is equivalent to the aziom —LAz: 1—C F C

Proof. a. Applying —R? to the basic axiom A F A one obtains —RAx;
conversely, by the following derivation:

AFB
FA—-A A—-AF A—B
FA—B

—>Mm
cut




b. Applying —L" to the basic axioms 1 and C' + C, one obtains 1—C + C';
conversely, by the following derivation:

A
IFA BFC
A—BF1—C ~U" 1_crC

A—BFC

O

Hence both axioms on — hold in B’. We shall see in proposition 4.6 how
the above equivalences are extended to the case of full contexts.

The unary connective x may be interpreted as a weak primitive negation.
The behaviour of such negation is illustrated by the following facts. The first
concerns the behaviour of x with respect to the order given by & (it is the ana-
logue of prop. 2.1). The crucial rule is «PI" where PI stands for pre-involution?;
to clarify its meaning, let us consider the condition of antimonotonicity for x,

given by the rule:
AFB

BrFar <AM

Then we have:

Proposition 2.3 The rule xPI" is equivalent to the rule xAM® together with
the aztoms A A**.

Proof. If xPI? holds, we get the sequents A - A** by the deduction:
A*  A*
AT *<PL

and hence we have the following derivation of xAM?:

AFB BFE B*™

AF B~
B A Pl

cut

Conversely, we have the derivation:
AF B*
Br B B Ar rAM
BF A cut

Like 2.1, also proposition 2.3 holds in the case of full-context rules.

As for —, we can show that the rules for x with empty context are equivalent
to axioms:

4A unary operation * on a lattice is usually said to be an involution if it satisfies
a < b= b* < a* and a** = a. The rule xPI? corresponds to the requirement a < b* = b < a*,
which is a weaker condition, that we name indeed “pre-involution”.



Proposition 2.4 Assuming B, one can prove that:

a. The rule xR is equivalent to the aziom 1 FL1*, or equivalently LF 1*
(*RAx);

b. The rule LY is equivalent to the aziom 1* FL (xLAz).

Proof. a. Applying «R? to the axiom Lk L one obtains F1*, hence 1 F.1*,
from which L+ 1* by xPI®. Conversely, by the following derivation:

AbL
LFLir T A A
1 A

- A*

b. Applying «L? to the axiom F 1 one obtains 1* L. Conversely, by the
following derivation:

Hence the axiom 1* F1 holds in B and both axioms hold in B’.
Since in B we have the full context rule xL, we see immediately some of its
equivalents:

Proposition 2.5 In B, xL can be replaced by one of the following equivalents:

I+ A

NC
LAFL

NCAz A, A" +1

In particular, any of the above rules holds in B.

Proof. xL is equivalent to NCAx because:

AbA o TEA AATEL
A AL o LA FL "

Similarly, NC 1s equivalent to NCAx, by the derivations:

A F A* T A* A A L
22 Ne oand ) ¢
A AFL o T AFL e

For the sake of completeness, it is possible to prove the equivalence between
NC and %L in a direct way, via xPI?. We leave it to the reader. a

The absence of a full context xR in the basic calculus will be explained in
proposition 4.10, and its underivability will be proved in proposition 4.7.

10



3 The classical face

The distinction between a sequent calculus for classical logic, like Gentzen’s
LK, and for intuitionistic logic, like LJ, 1s that in the former all rules are
formulated with an arbitrary context at the right hand side of any sequent.
However, adding a right context to the rules of B would be irrelevant to the aim
of getting a classical version of B. In fact, to have an interpretation of comma
on the right hand side of a sequent, one cannot rely on the usual interpretation
of the left context allowed by the ®L rule, as exemplified in the derivation

PEABA

[A B FA L

[LA0BFA ©
*R

T+ (4% @ B, A

In fact, B lacks any form of x-introduction to the right and we will see in the
third section that adding it would strenghten the system up to reach classical
linear logic.

Neither one can rely on the usual interpretation allowed by the V R-rule and
by contraction on the right:

I+ A B,A
TFAVE BA Y
TFAVB AVEA
TFAVEA

R

VR

contr

since B lacks structural rules. So, allowing context on the right, one should
introduce a new primitive connective “par”, which would not be linked to ®
in the usual way of linear logic, because such link is derivable only in presence
of both xL and %R. In any case, adding a full context on the right would
not solve, because of the absence of xR, the problem of deriving the double
negation principle, i.e. sequents A** + A ®. Indeed, we shall see soon how
adding a xR rule or structural rules makes the system collapse into other well
known systems.® So, the axioms A** - A are necessary to get a classical system.
Hence here we adopt, as the simplest, the solution of having a double negation
principle in a calculus with restriction on the right hand side, and we give the
following definition:

Definition 3.1 We say that a sequent calculus satisfies property C when the
double negation principle holds, i.e. A% = A is derivable for any A. IfL is any
calculus, we write CL for the calculus obtained by adding A+ A as axiom for
any A. In particular, BC and CB' are the classical basic sequent calculi defined

5Cf. [9], [5], where the double negation principle is assumed, even if no problem of inter-
pretation of the context on the right arises, because those systems enjoy structural rules.

6To be pedantic, in absence of xR it is even possible to conceive sequent calculus systems
that are structural on the left and linear on the right side or viceversa, but we are not interested
at the moment in such solutions.

11



by all axioms and rules of B and B’, respectively, and in addition the axioms

AT F A

A proof of the fact that the double negation axioms are not derivable in B
will be provided after proposition 4.4 (while we leave it to be done for B).

By analogy with proposition 2.3, an alternative to double-negation axioms
is given by the following rule xI?, where I stands for involution:

AFB
B F A *L

The next lemma explains why we can not assume x«I? to hold in B. In fact:

Lemma 3.2 The rule I° is equivalent to the rule xAMY together with double-
negalion axioms A F A,

Proof. Applying xI? to the axiom A* F A* one obtains A**  A; conversely,

by the derivation
A*FA AFB

A~ F B
B F AF

O
Proposition 3.3 All the following assumptions on the connective x give equiv-
alent formulations of BC:
1. xPI" together with A~ + A, i.e. BC;
2. *xAM" together with A = A
3. *I? together with A - A ;
4. *AMP together with the rules

AFB A B
A*FB and AFB

Proof. (1) is equivalent to (2) by proposition 2.3, and (2) is equivalent to
(3) by the above lemma. Finally, equivalence of (4) with (2) is obtained easily
by cut. m]

As usual, the same statements can be proved substituting rules xPI? and
*I" with their full-context versions P and *I.

12



4 The deductive face

In the basic sequent calculus B, and also in its classical version BC, the con-
nective — does not satisfy the usual characterization of implication, namely the
statement of the deduction theorem:

[LAFBiff TFA—B DT

A proof of the fact that the basic system B does not enjoy D7 will be provided
later in this section, see proposition 4.6. We see now which conditions can be
added to B or BC to obtain the usual rules for implication and thus usual
deductive logics. In a sequent calculus, the two rules introducing — to the right
and to the left are usually of the form

[LAF B
Ira_p I
and
A ABFC s
[A,A—BFC —

both in intuitionistic (linear or not) and classical (linear or not) logic. Tt is now
easy to see that — R and — L together are equivalent to the condition D7 over
basic logic. We first have to find some equivalents of —L:

Proposition 4.1 All the following assumptions are equivalent over B:

I'4A  BAFC

—L:
I'A—=B,AFC

MPAz: A A—BtF B (Modus Ponens as an axiom)

r-A4 AFA—B

MP: TAFB (Modus Ponens)
' A—B
ML Mil—_% (”Move Leﬂ”)

Proof. We first prove that — L is equivalent to M P Az; in fact, a derivation

of MPAx from —L 1s
AFA BFB

A A-BrB

and conversely

rkA AA-BFB
T,A-BF B A BRC
[,A—B,AFC

cut

Now we see that M P 1s derivable from M PAx:

13



AFA—-B A A-BFB

THA AAEB cut
[AF B o
and that M L 1s derivable from M P:
AFA T'HA—RB
rArp  MP
To complete the proof, it 1s enough to note that:
A—BF A—-B
A—B AF B
is a derivation of M PAx from M L. a

Now one can easily see that:
Proposition 4.2 The following assumplions are equivalent over B:
The rules =R and —L hold
The characterization DT holds.

Proof. One direction of D7 is exactly —R, the other is exactly M L, which
is equivalent to — 1 by the preceding proposition. a

A consequence of the above proposition 4.2 is that, if one added both any
equivalent to — R and any equivalent to — L to B, one would obtain a calculus at
least as strong as the linear commutative intuitionistic sequent calculus without
exponentials ILLg, as formulated e.g. in [13]. On one hand, the only rules
of ILLg not appearing inside B, namely —R, —L, VL and 0L, hold in any
extension of B satisfying condition D7 ; in fact, —R and — L are derivable by
proposition 4.2, and the full context rules VL and 0L are derivable from their
weak form VL? and 0L?, respectively, because by using —R, —L, @R and cut,
the context can be moved from the left to the right and conversely, i.e. I' A+ C
iff AF ®@T'—C holds. On the other hand, all rules of B and B’, except those for
— and «, trivially hold in ILLg; since —R and —L are assumed in ILLg, — R?
and —L? trivially hold, while —U? is easily derivable, moreover, by interpreting
the negation A* as the linear negation A— L, usually shorthanded as AL, it is
immediate to check that ILLg enjoys x rules of B.

Hence, we adopt the following characterization of property D; here and in
the sequel we write A = B when A is equivalent to B, in the sense that A+ B
and B F A hold.

Definition 4.3 We say that a sequent calculus is deductive, or distributive,” if
it satisfies property D, that is — satisfies DT and for any formula A, A* = A— 1.
Moreover, we adopt for property D the same convention as for property C; in
particular, BD and DB’ are the deductive basic calculs.

"In fact, in a complete lattice the definability of a binary connective for implication is
equivalent to distributivity.

14



Note anyway that adding D vanishes the distinction between B and B, i.e.
BD = DB/, in fact, not only — rules are available, but also xR, because
property D includes the fact that x is definable in terms of —. What we have
shown above definition 4.3 is:

Proposition 4.4 The system BD 1is equivalent to the system of intuitionistic
linear logic (without exponentials) ILLg.

As a corollary, one can see that B is strictly weaker than BC; in fact, if one had
a derivation of A** F 4 in B, one would derive also A++ + A in ILLg. Another
corollary 1s the following:

Proposition 4.5 The system BCD 1is equivalent to the system of classical lin-
ear logic (without exponentials) CLLg.

Proof. One can immediately see that BCD is equivalent to ILLg augmented
with the double negation axioms At F A. In fact, BD is equivalent to ILLg
by the previous proposition, while property C', in presence of D, is exactly
A+L = A To conclude, it is enough to notice that ILLg added with the axioms
AL F A is equivalent to CLLg; this is an exercise out of the scope of the
present paper. O

Now one can see how the presence of a context in the rule —U is linked to
deductivity:

Proposition 4.6 The following are equivalent over B:
The rule —U with the azioms —RAx and —LAx.
The rules —R and —L.

Proof.  Assuming (1), one has the following derivation of —R from —M and

—RAz:

[BFC "
+ B—B TI,B—Bt B—C
TF B—C cut

and one has the following derivation of —L via —U and —LAx:

re4 .
T.iFA Y ABrC
T.A A—BF1—C VU 1—crcC
A, A—=BFC

cut

Conversely, assuming (2), one can derive the axioms by proposition 2.2 and the
rule —U as follows:

TAFB ACED
T.A A B—CFD
T.A B—CF A—p &

—L

15



Now we see semantically why B’ is a proper enrichment of B. The facts that
B’ is strictly weaker than BD and CB’ is strictly weaker than DCB’ will be
shown at the end of next section.

To obtain independence of —Rax and —Lax over B, we consider an alge-
braic model of B in which they fail. Let Z = ZU{—00, 400} be the commutative
boolean quantale obtained completing the set of integer numbers 2 with respect
to its order and then putting +00 + —oco = 0, +0o+n = +00 and —oco+n = —o0,
for every n € Z. Let us consider the interpretation V of formulas of B into Z
defined by the clauses (warning: of course, such interpretation is different from
the interpretation of linear logic in a quantale):

V(0) = 400, V(T) = —o0, V(1) =0, V(1*) = z, where z is an integer, and
V(L) = n, where n is a fixed integer < z;

V(B C)=V(B)+V(C);
V(BAC) =max{V(B),V(C)};
V(BVC)=min{V(B),V(C)};
V(B = -V(B) + =

V(B—=C)=1+V(C)-V(B).
Similarly, let W be the interpretation defined by the clauses:

W(0) = —oo, W(T) = 400, W(1) =0, W(1*) = z, where z is an integer, and
W(L) = n, where n is a fixed integer > z;

W(B®C)=W(B)+W(C);
W(B AC) = min{W(B), W(C)};
W(BV C) = maz{W(B), W(C)};
W(B*) = —W(B) + 2

W(B—C)=14+W(C)—-W(B).

Hence W differs from V in the valuation of the additive fragment, and possibly
of L. Of course, if T = {C;}ier, V(I') and W(T') are to be interpreted as
YierV(C;) and ;e fW(C;). So, when I is empty, V(I') = W(T') = 0. By
properties of ordered groups, it is easy to verify that, for every axiom A - B
of B one has V(A) > V(B) and W(A) < W(B), and that > inequalities are
preserved by rules of B when formulae are interpreted by valuation V', as well
as < inequalities are preserved by rules of B when formulae are interpreted by
valuation W. Hence we have:

I'kC= V() > V() I'kC= W) < W(C)

for every theorem I' b C' of B. Finally, note that, by definition of V' and W, the
double negation axioms A** = A are validated, and hence Z with interpretations
V and W are models of BC too.

It is now easy to prove that:
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Proposition 4.7 None of the following ts derivable in BC, and a fortiori in
B:

1. the sequents — RAz and — Laz;
2. the equivalence of A* with A— 1;
3. the axiom LF 1*.

Proof. (1) f =RAz or —LAxz were theorems of B, it would be V(1) =
0> V(IC—=C) =10 W(1=C) =14+ W(C) < W(C), respectively. (2) The
equivalence of A* with A— L would give =V (A)+z = =V(A)+14+V (L), which
is equivalent to 1 + V(L) = z; hence it is enough to choose V(L) # —1+4 2. (3)
It is possible to choose V' so that V(L) < V(1) = =. O

Hence B is weaker than B’ and BC than CB’, so a fortiori we have:

Proposition 4.8 None of the conditions forming property D holds in BC or
B. 50 B and BC are not deductive.

A natural question is then whether, in the case of BC and other classical
logics, a connective of implication is definable by means of other connectives,
and whether it satisfies property D. Since no connective interpreting the comma
at the right is available in BC, we are lead to define classical implication by
means of negation and the conjunction interpreting comma at the left, namely
®. We thus put

ADB=(A® B)*

which is exactly one of the usual characterizations of implication in classical
linear logic. It is easy to show that D is antimonotonic in the first argument
and monotonic in the second argument, that is; by proposition 2.1, that it
satisfies D U? in B; a derivation is:

CrD
A+B D FC*
Ao D" F BoC*

(Bo C*)* F (A® D*

*AMPO

) *AMP

We thus may consider D as the basic classical implication.
Contrary to what happens in classical linear logic, however, the system BC
is not strong enough to prove that D satisfies property D, namely the condition

(DT) for D:
A+ B iff r-A>B

and the condition A* = A D L. As for this last condition, we have the following
lemma:

Proposition 4.9 In BC one can prove:
a. xR is equivalent to A DLF A*

b. *xL? is equivalent to A¥+ A DL
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Proof.  Assuming *xR? and xL", respectively, one has the following deriva-
tions:

F1
kL, FEL
AFA FLx xR AF A J_*I—lgR
AF Ao L* A0 L A
(o Dy b =AM oy G 1o =AM’

The two converse directions of a. and b. are obtained by putting A = 1 in the
sequents (A® L*)* F A* and A* F (A®@ L*)* respectively, thus getting 1F 1*
and 1* L, respectively, that are equivalent to «R? and «L? by proposition 2.4.
O

,From this we have the following characterization of condition D for D:
Proposition 4.10 In CB, the following are equivalent:

1. D R and «R";

2. xR;

3. classical implication D satisfies D.

Proof.  Assuming (1), from I'; AFL one has T = A DL by D R, hence also
' A* since A D1F A* by the above proposition, so xR holds.
Assuming xR, one has the following derivations for (DT ):

AFA B*FB* T'HADB

I AF B ABFAoB TAoprL V€

T 4B L *F T A B FL cut

T Aop L b T AF = *f B~ B
TFasp *¢ T AF B cut

where *xNC' is an equivalent of %L, as seen in 2.5. Moreover, A* = A D1 is
an equivalent of xR? and «L? by the previous proposition, hence it holds in
BC with xR. Finally, assuming (3), (1) is obvious by definition of D7 and
proposition 4.9. a

As a consequence of propositions 4.7 and 4.10, we have:
Proposition 4.11 Property D fails for D in BC.

In the last section we will see that property D for O fails also in CB’.

In BC there are two different connectives for implication, — and D, which
have little to do with each other. In fact, it is easy to see that A—=Bt/ A D B
and A D Bt/ A—B by means of the interpretations W and V', respectively.
This is possible since D7 does not hold; in fact, it is easy to check that, in
general, two connectives for implication coincide if they both satisfy D7 .

The following fact was implicit in proposition 4.5; here we give a direct proof:

Proposition 4.12 In BCD, D satisfies D, and hence it coincides with —.
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Proof. The assumption ', A+L gives ' H A— 1 by —R, but A— L= A*
by D, hence I' F A*; so xI? holds. Then, by proposition 4.10, D too satisfies
D. The last statement follows by the above remark. a

The following is analogous to 4.6 for the case of classical implication; it
shows how a full context in xAM and possibly two axioms on % give a deductive
classical logic.

Proposition 4.13 In BC the following are equivalent:
1. xAM with LF 1% and 1" FL;
2. xR together with xL.

Proof.  Assuming (1), and recalling that L 17 if and only if 1 ~1* by «PT?
and if and only if FL* by cut, one has (2) by the following derivations:

TE A
LARL LiFd

Fir ToF A M o AM
TF 4 T A FL cut

Conversely, one gets the axioms by proposition 2.4 and the rule xAM by the
derivation:

rAFB
T ABFL ™
T.BFa *f

5 The structural face

It is well known that adding structural rules to intuitionistic and classical linear
logic, 1.e. the systems BD 22 ILLg and BCD = CLLg, produces intuition-
istic and classical logic, respectively. Now we see which systems arise adding
structural rules to B and BC.

The usual formulation of structural rules in an intuitionistic sequent calculus
is the following

r-c

W TAFC (weakening)
IAJARC :
C: TArC (contraction)

In propositions 4.1 and 4.2, we showed that structural rules are not needed to
prove the equivalence of different formulations of properties of implication; we
now show the reciprocal fact, namely that the various formulations of structural
rules are already equivalent in B, and thus in absence of usual implication.
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Proposition 5.1 The structural rule of weakening W is equivalent over B to
any of the following axioms: AQ B+ A&B; A,BF B; AF1; TFI1.
Stmalarly, the rule C' is equivalent over B to any of the axioms: A&BF A® B;
AFA® A

Hence, the rules W and C together are equivalent over B to A®@ B = A&B.

Proof. Assuming W, a derivation of A ® B+ A&B is

AtA ,, _BEB
A BFA A, BF B
A BF ALB
A®BF A&B

w

From A ® B F A&B and A&B + B, one obtains A ® B - B and hence the
axiom A, B+ B. Then, by taking B to be 1 in A, B+ B, one obtains A, 1+ 1
and hence, from F 1 by cut, also AF 1; T F 1 is then a special case. Finally, a
proof of W from T 1 1s

AFT TFH1 TFC
AF1 T,1FC

TAFC

cut

Assuming C', we have

AYBFA A&BF B
A&B,AXBF Ao B

A&BFA® B

and from A&B F A ® B we have as a special case A&LA F A ® A from which
AF A® A. Finally, assuming the axioms A - A ® A,

@R

A AFC I
AFA©A RA@AFC®t
TAFC o
1s a derivation of contraction. O

The structural rules of weakening and contraction do not exhaust the condi-
tions we must require for the property S which characterizes structural logics.
In fact, among structural logics there is intuitionistic logic which we expect to
obtain by adding properties S and D to B. In intuitionistic logic, the negation
of A, which is defined as usual by =4 = A— 1, must satisfy ez falso quodlibet,
that is the axiom A, —A F C or, equivalently, L+ C'; since the constant 0 is
already present in the language of B, and with the rule 0 - C'| to obtain ez
falso quodlibet, it is enough to require LF 0, or equivalently L= 0. We thus add
1 =10 to the structural rules W and C' to form property S.

Note that it is not possible to put L= 0 among the conditions defining
property D). In fact, the rule of weakening is derivable over BCD from LF 0
as follows: from LF 0 and 0 F T* one has 1 T* hence 1* F T* since 1* F.L
holds in B, and so finally T F 1, which is equivalent to weakening by 5.1. So, if
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1 =0 were derivable from D, we would obtain that BCD satisfies weakening,
contrary to the expectation that it is equivalent to classical linear logic.

To the same conclusion we would be lead by requiring that adding properties
C and S to B we should obtain orthologic. In fact, in orthologic the axiom
A, A* F 0 must hold (since it corresponds to a A a* = 0 which holds in an
ortholattice) and it is obtained from A, A* FL by requiring L= 0. On the other
hand, by the same reason as above, we could not put L= 0 among the conditions
forming property C.

In conclusion, we put:

Definition 5.2 We say that a sequent calculus satisfies the property S when
it satisfies weakening, contraction and L= 0. We call structural any system
satisfying S, in particular BS and SB’ are the basic structural systems.

In BS, since L= 0 holds, the non-contradiction principle expressed by NC Az
A, A* F1 becomes A, A* F (', like in intuitionistic logic. Moreover, like in intu-
itionistic and classical logic, the conjunctions ® and & coincide by proposition
5.1. In addition, the structure of constants becomes exactly that of intuitionistic
logic, as shown by:

Proposition 5.3 In BS, up to equivalence, there are only two constants, L
and T, and they salisfy 1*=T and T* =L.
Moreover, the condition A* = A DL of property D is derivable.

Proof. By definition of S, L= 0. By proposition 5.1, weakening is equivalent
to T+ 1, while 1+ T holds by T R, and hence 1 = T. The equivalence T = 0*
hold also in  B; in fact, 0* - T by TR, and T* F 0 by «PI? from 0 F T*.
Hence also 1*= T. To show T* =1, it is enough to recall that 1* L holds in
B, hence T* L holds in BS, while LF T* by 0L and 0 =_.

Finally, A D1l= A D 1* because 1* = T* =L, and A D 1*¥ = (A ®
1**)* = (A ® 1)* = A* because ' = T =1*=T = 1. O

As a consequence, one can see that BS can be characterized by the axioms
AF A, 1F 0 and the inference rules exchange, W, C, cut, &R, &L, 0L, VR,
VLY —U? «PI" xL.

If one adds also property D to BS, one has, by D7

A&BF Cif and only if A+ B—C,

so that — is the intuitionistic implication, and hence A* = A— L tells that
A* is the same as the intuitionistic negation. Then, after proposition 4.4, it is
immediate that every rule of BDS is derivable in LJ (after putting T = A— A,
0 =1 and A* = A— 1), and conversely. So we have the statement:

Proposition 5.4 The system BDS is equivalent to Gentzen’s intuitionistic cal-
culus LJ.

Then 1t 1s also clear that:
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Proposition 5.5 The system BCDS is equivalent to Gentzen’s classical cal-
culus LK.

To complete the proof of the claim pictured in the cube, we must verify that
the structural classical basic systems BCS and CB’, defined, of course, by the
axioms and rules of BS and SB’, plus the double negation axioms A™ A, give
a calculus for orthologic. Actually, BCS contains an extra connective, namely
the connective —, which is not reducible to the connectives corresponding to
operations in an ortholattice. So let us call SCB~ and SCB’~ the systems ob-
tained from BCS and BCS’, respectively, by suppressing the connective — and
its rules. First, note that xR? holds in BCS and hence BCS’, by propositions
5.3 and 2.4. Hence SCB~ and SCB’~ are the same and we will deal only with
SCB~.

We prove that SCB™ is equivalent to system GO?, i.e. Nishimura system
GO (cf. [9]), restricted to the normal form sequents, that is, sequents with at
most one formula at the right. This is enough because, as proved in [9], the
logic of ortholattices (as formulated for instance in [8]), is given by the normal
sequents of calculus GO, and every normal sequent has a normal proof, 1.e. one
containing only normal sequents.

We write below the set of rules for system GO?; the sequents are of the
form I' = A, where T is a finite set of formulas and A is a singleton {A} or the
emptyset. By a little abuse of notation, we write I' = A instead of T' = {A}.

Axioms

A=A

Rules of inference

F,FH:>TAA L extension FF:?A R extension
I'=A AA=1 y
A= 11 e
AT = A B, I = A I'=4 I'=B
AABT=A AABT=A T T=4asrB
r=4 _
T-A=
A=A -
-A = —A
AT = A = A

Proposition 5.6 The systems GO and SCB™ are equivalent.

Proof. Apart from differences in notation, the differences between GO and
SCB~ are essentially two. One one side, GO allows sequents with empty
succedent I' = and we interpret them as sequents I' FL in SCB~. On the
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other side, GO?! lacks disjunction V any any constants, and we define them by
putting AV B=(A*AB*)*, LI=AA—-Aand T =-(4AA-A).

Then it is not difficult to show that, under such interpretation and with such
definitions, all rules of GO? are derivable in SCB~, and conversely. a

A subtle argument now 1s needed to show that the full system BCS is strictly
weaker than classical logic,i.e. BCDS. In fact, what is well known is that GO1,
and hence SCB™ | is strictly weaker than classical logic. To be able to use this
fact, we need:

Proposition 5.7 BCS is conservative over SCB™, in the strong sense that if
I'F C s derivable from the assumptions 'y = Cy, ..., Iy F Cy, in BCS and all
of T = C, T'; & C; do not contain occurrences of —, then I' & C' is derivable
from Iy FCp,...,Ty F C, also in SCB™.

Similarly, BCS' is conservative over SCB’~ = SCB™.

Proof. Given a derivation Il of I' F C' from I'y - C4,..., Ty F C}, it is
enough to substitute each occurrence of — in II with classical implication D.
Thus, since the rule D U? is derivable in B and — does not appear in I' F C,
I'; B C;, one obtains a derivation II’ in SCB~ with equal assumptions and
conclusion.

Similarly, classical implication D satisfies the rules D L? and D R". In fact,
by proposition 2.2, O L? is equivalent to 1 D €'+ C, which is derivable from
C** F C because 1&C* = C*; again by 2.2 O R? is equivalent to - C D C,
which is derivable in SCB™ since C'&C* F 1*, which holds by 2.5 and 5.3, gives
1 (C&C*)*, by xPI?. So BCS' is conservative over SCB~ a

We now can conclude the argument as follows. Assume that BCS = BCDS,
that is, assume that property I were derivable for — in BCS. Then, as already
seen in the proof of proposition 4.12, also xR would be derivable in BCS, hence,
by the preceding proposition, xR would be derivable also in SCB™, and so, by
proposition 4.10, SCB~ would be equivalent to classical logic. But then, by
proposition 5.6, also GO would be equivalent to classical logic, which is not
the case. A fortiori, BCS 2 BCDS.

Finally, note that SCB~ with O is an example of a system in which > R?
and O L? hold but D R and O L do fail. This proves as promised that B’ is
weaker than BD and CB’ is weaker than BCD.
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