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Introduction

The main interest underlying this thesis is that of the natural, psychological, birth of logic

in the human mind. The need of a psychological foundation of logics has been expressed

also by some mathematician. Already a century ago, F. Enriques made the proposal of

studying logic as “psychological logic” in [En]. We think that, in general, such need is

present in the intuitionistic foundations, for example in Brouwer. Perhaps logic arises

from the need to overcome what, at a certain point, is focusedas “contradiction” in our

mind. The thesis focuses on a paraconsistent logic, namely alogic which doesn’t obey

the Aristotelian non-contradiction principle [Pr]. Its paraconsistency is due to a specific

treatment of first-order variables. Some hypothesis on the development of the meaning of

variables for the human mind, that could be related to the calculus here proposed, is then

illustrated in the last chapter.

A secondary motivation of the thesis is computation, since the claim is that certain pre-

logical or dis-logical phenomena we can observe, underlying the logical/rational attitude

of our mind, have computational explanations. We assume that a primary interest of our

mind is to process assertions, namely what is considered true. Of course, one should

discuss also of the meaning of “truth” in this case.

We conceive logical truth as computed by logical rules. A natural treatment of logical

rules has been pursued for a long time in logic, at least sinceGentzen’s natural deduc-

tion [Ge]. In general, in the last decade, the study of natural computational systems has

flourished [CP], in particular, of quantum computation [HP], [NC]. This is particularly

intriguing for a naturalistic study of logic, since, indeed, following quantum theories of
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mind (see, e.g., [At]), our mind should witness the effects of the laws of quantum physics.

People with a naturalisticcredoshould be inclined to quantum theories of mind. In fact,

why shouldn’t our mind exploit the enormous quantum computational advantage? Then

quantum computation should have also important logical effects, if we assume that a pri-

mary interest of our mind is to process assertions.

The thesis touches three different logical, or, in our view, related to logical, topics. The

first is a general problem of logic, namely the problem of the meaning of the logical

constants, here referred to the meaning of logical constants in that introduced by rules,

for which we rely on a specific approach [SBF]. The second comes from physics, namely

the problem of logical models in quantum computation (see e.g. [DCGL1] and [BSm06],

[BSm08]). The third is the problem of consciousness, related in particular to Hameroff-

Penrose quantum theory of mind [HP], [PH]. They correspond,roughly, to the three

chapters of the thesis.

The first chapter discusses some points on logical constantsin the framework ofbasic

logic, a substructural logic proposed as a common platform for propositional extensional

logics, including some kinds of quantum logics [DCGsurvey]. The first version of basic

logic [BS99] was proposed as a calculus enucleating some common semantical features

of logical connectives, features obtained, in such a case, from the algebraic structures

underlying several substructural logics.

Later, we developed a second version of basic logic [SBF], namely a cut-free sequent

calculus, whose rules can be justified in terms of the “reflection principle”, for which

connectives and their rules follow from metalinguistic links between assertions. The prin-

ciple allows the natural predicative extension of basic logic, given in [MS]. The principle

is also exploited in the thesis to develop our paraconsistent and predicative calculus. We

also furtherly discuss the problem of the meaning of symmetry and of visibility, the two

features of the calculus of basic logic. In the first chapter,we analyze how coupling log-

ical connectives could produce compound logical objects. In particular, we focus upon

the problem of contexts and parallel strategies of proofs, in order to understand which
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compound objects are possible. We find that, in the predicative case, parallel strategies

which do not increase the complexity of the objects so achieved determine an inconsistent

framework. It is the framework for quantum parallelism, that we develop in the second

chapter.

As is well known, the parallelism of quantum computation ( see [NC], [Hi]) is due to

quantum superposition associated to quantum entanglement. Quantum superposition is

the presence of several different states at the same time, e.g. both the spins of a particle.

This allows parallel processes of computation. The entanglement link is created when, in

a system of two or more superposed particles, the states are not separable, namely they

cannot be described as a product of the states of each particle. For this reason, when

the superposed state of the system collapses, the resultingstates of the single particles,

component of the system, are not independent, in terms of statistical independence. The

most important example is represented by Bell’s states, couples of particles behaving as

“twins”, namely they collapse into the non superposed statewith identical results. They

enforce the effect of parallelism induced by quantum superposition, sincethey bound

the computational complexity and allows the so called “quantum computational speed-

up”, peculiar of quantum computation with respect to classical computation. For, the

effects of quantum superposition and entanglement are not reproducible out of a quantum

environment.

The idea to obtain a calculus for quantum computation from basic logic is natural, since

it was born to include quantum logics ([FS], [BF]). After a first proposal of a paracon-

sistent calculus within propositional logic [Ba05], we realized that our idea requires the

quantifiers.

In quantum computational logics [DCGL1] propositions correspond to the qubits and the

quregisters, namely to the states of the quantum computer itself, rather than to the closed

subsets of a Hilbert space, as in traditional quantum logic.We also adopt such an ap-

proach. Our representation does not require the algebraic setting of Hilbert spaces, and

represents quantum superposition and entanglement by means of sequents, in order to
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describe quantum parallelism in terms of logical proofs. Our representation allows to

see the computational advantage of quantum parallelism with respect to classical compu-

tation, that consists in knocking down the exponential complexity, that was the original

motivation in the proposal of quantum computation by Feynman [Fe]. The idea is that

the random variable given by a measurement on a certain physical system produces the

domain of a first order variable, which describes the superposed state of the system. We

see that the gap existing between the description of a superposed state, and the probabil-

ity distribution given by the measurement of the state, is translated into the logical gap

between a predicative representation for the superposition and a propositional representa-

tion for the corresponding probability distribution. In such setting, the expressive power

of logical variables seems necessary. This is confirmed by our new predicative connective

for the entanglement, which exploits a variable in common toobtain a new quantifier. The

variable seems to capture the holistic feature of quantum information [DCGL2]. For, a

variable can glue items of information in a non-compositional way, as we discuss in the

third chapter. While the algebraic definition of entanglement is negative, since it speaks of

non factorizable states, our approach can represent entangled particles in a positive way.

This is considered a decisive advantage in any computational and constructive setting (see

e.g. [MS] for the problem of a minimal and constructive mathematical foundation).

In the second part of the chapter we begin the development of aparaconsistent and pred-

icative sequent calculus. We also define a dual copy of the calculus, given a suitable

definition of dual domain. This allows to characterize Bell’s states. The closer study of

the proof theoretical aspects of such calculus is under development, since our first con-

cern was to find a correct semantical representation, from the point of view of quantum

physics. The problems related to proof theory in a paraconsistent setting are quite un-

explored, and could lead to very intriguing results in the topic of computability, as first

pointed out by Alan Turing in [Tu], where he says:

”. . . if a machine is expected to be infallible, it cannot be also intelligent. There are several

theorems which say almost exactly that. But these theorems say nothing about how much
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intelligence may be displayed if a machine makes no pretenceat infallibility.”

In the thesis we hypothize some possible development, also in connection with the orig-

inal motivations of quantum computation [Fe]. Another possible important development

of the calculus outlined here, is in the direction of logicalcalculi including probabilities.

For, the representation by sequents we obtain for quantum computation includes random

variables in first-order domains and can deal with dependentrandom variables, even if in

a very simplified way, up to now. This is an important challenge in logics for artificial

intelligence, see [So].

The final section of the second chapter is devoted to see how the interpretation of quantum

superposition and entanglement by means of sequents we haveproposed, can be consid-

ered, in the framework of the interpretations of quantum mechanics (see [Ja]). We find

this a very intriguing work on which one can go on, too. For, one can already see clearly,

in our opinion, a connection with the typical problems of theinterpretations. More specif-

ically, we see a connection with counterfactuality and contextuality of quantum mechan-

ics, on one side, with the hidden variables interpretation,on another side, and finally with

the stochastic interpretations of quantum mechanics and the problem of causality. Such

connection is due to the features of quantum parallelism enlighted by the interpretation

by sequents. Then, one can see the advantage of considering quantum systems from the

point of view of processes, as quantum computation permits us to do, even for the purpose

of the interpretations.

In the third chapter we make a comparison between some features of the process of asser-

tions proper of quantum computation, that we have outlined in the previous chapter, and

some features of the human thinking. We support such comparison by Hameroff-Penrose

quantum theory of mind, briefly introduced in the chapter. Moreover, as suggested by

Stuart Hameroff, we consider “bi-logic”, the logic of the unconscious, outlined by the

psychoanalist I. Matte Blanco after thirty years of clinical experience. It meets the fea-

tures of our calculus in a surprising way. In particular, theinfinitary aspect of the human

unconscious thinking, diagnosed by Matte Blanco, corresponds, in our view, to the infini-
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tary and holistic aspect given by first-order variables to our calculus.

We conclude the chapter with some personal observations, which would deserve a much

higher competence in the field of psychology, in order to be properly treated. Anyway,

they are so relevant to the topic, in our opinion, that we prefer to write down them, even

if in a simple way.

In the future, we would like to develop our research on the psychological foundations

of human logical thinking also independently from quantum theories. We have already

developed some ideas in [Ba07].
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Chapter 1

Parallel strategies in sequent calculus

Summary: we first recall the main features of basic logic and the cube of its extensions,

focusing on the problem of contexts and parallel strategiesof proofs. Then we analyze the

possible parallel strategies of proofs in sequent calculus, in the propositional case, first,

and then in the predicative case. We find that parallel strategies which do not increase the

complexity of the objects so achieved determine an inconsistent framework.

1.1 Sequents and sequent calculi

1.1.1 Sequents and contexts

Sequent calculi were introduced by Gentzen in [Ge]. A sequent is a formal writing of the

following type:

Γ ` ∆

whereΓ = C1, . . . ,Cn and∆ = D1, . . . ,Dm are finite lists of formulae, separated by

commas. In it the sigǹ indicates the logical consequence. ThenΓ and∆ are called

premises and conclusions of the sequent, respectively. A sequent calculus is a set of rules
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transforming sequents into other sequents. A unary or binary rule is written as follows:

Γ1 ` ∆1

Γ ` ∆
Γ1 ` ∆1 Γ2 ` ∆2

Γ ` ∆

The axioms of a sequent calculus are sequents of the following form: A ` A. Deriving a

sequentΓ ` ∆, in a certain sequent calculus, is to obtain it as the conclusion of a certain

derivation, that consists of a suitable application of the rules of the calculus, starting from

axioms.

In any sequent calculus, one can distinguish two kinds of rules:

1. Rules on the structure of sequents (Structural Rules)

2. Rules introducing logical connectives.

Perhaps the most important revolution in sequent calculus,after Gentzen, is due to Girard

[Gi], who introduced linear logic. In his linear sequent calculi, Gentzen’s structural rules

of weakening, contractionandexchangeare dropped (possibly some of them). This al-

lows to distinguish the connectives of disjunction and conjunction and their rules into two

forms: the additive and the multiplicative one. In the next section we will illustrate such

distinction, which is at the basis of our interpretation. Now we recall that the distinction

between the additive and multiplicative formulation of therules is due to a different treat-

ment ofcontexts. The contexts, in a sequent, are the list of formulae appearing besides the

active formulae, namely the formulae which are modified by the rule we are considering.

For example, in the rule1

Γ,A ` B,∆
Γ ` A→ B,∆

→ f

the formulaeA, B,A → B are active formulae, the listsΓ and∆ are contexts. They are

separatedfrom the active formulae by a comma.

1The label→ f indicates that this is theformationrule of the connective→, in the classification of rules

of basic logic, explained below.
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A critical problem is the following: the use of the comma is somewhat ambiguous. For, it

is also used tojoin formulae, since the interpretation of the commas in

A1, . . . ,An ` B1, . . . , Bm

is “A1& . . .&An ` B1∨. . .∨Bm”, where & and∨ are the conjunction and the disjunction, in

Gentzen’s notation. In linear logic they are the multiplicative conjunction and disjunction

respectively. Then, the interpretation ofA1, . . . ,An ` B1 . . . , Bm is the following2:

A1 ⊗ . . . ⊗ An ` B1 ∗ . . . ∗ Bm

1.1.2 Basic logic and the cube of logics

A solution to the critical problem has been proposed by basiclogic [SBF]. It has been

a radical one, a sequent calculusB, given in table 1.1, where no context at all is present

besides the active formulae. This is “visibility” of the formulae, in basic logic.

In this thesis, we furtherly investigate on the treatment ofcontexts. This is developed in a

predicative extension of basic logic [MS]. For, the rules for quantifiers are the only ones

in which the context matters, since restrictive conditionson the contexts are necessary

in order to obtain the definability of the quantifier itself. As we shall see in details, this

fact induces us to conceive an “inherently parallel” rule for the quantifier, which aims to

represent quantum parallelism. As for the other connectives, parallel rules can be defined,

that, however, can be simulated by a sequential applicationof simpler rules, thanks to the

admissibility of contexts.

Our working platform will be the “cube of logics”, a set of sequent calculi arising from

a common kernel, the sequent calculusB of basic logic. InB, the connectives only have

some minimal properties: no structural rule, except exchange, is valid. Richer logical

calculi are then reached by the addition of structural rules. In this way, one can obtain

2We adopt here the multiplicative notation∗ for the multiplicative disjunction, rather than the usual

notationM of linear logic, adopted in basic logic too.
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cut-free sequent calculi for all the well-known extensional logics, including some kind of

quantum logics.

This construction is organized in the cube represented above. In it, every vertex is a

sequent calculusC which obeys the equation:

C = B + suitable structural rules

Looking at the figure, sequent calculi whose label containsS have the structural rules

of weakening and contraction. This fact causes the identification of the multiplicative

connectives with the additive ones. At least at a first stage,the identification is not con-

venient for our purposes, so we will work on the lower face of the cube (the linear face).

Anyway, we remind that logics withS are important in quantum logic, since the calculus

BS coincides with paraconsistent quantum logic [DCG]. A cut-free sequent calculus for

orthologic and a formulation of classical logic as a subsystem of paraconsistent quantum

logic are obtainable from it [BF].

Sequent calculi whose label containsL admit a context at the left, beside the active for-

mulae of their rules.BLS is a calculus for intuitionistic logic,BL an intuitionistic and

linear calculus. Sequent calculi whose label containsR admit a context at the right, be-

side the active formulae of their rules.BRS represents a dual version of intuitionistic
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logic andBR is a dual linear and intuitionistic calculus. We will describe the duality in

some details in the following. Finally,BLRS is a sequent calculus for classical logic and

BLR for linear logic (without exponentials).

ConditionsL andR concerns the structure of sequents but are not expressed by means

of real structural rules. This was left as an open problem in the formulation of basic

logic. The problem appeared immediately related to the formulation of quantum logics,

that require to drop at least some contexts. Then the choice of visibility (no context at all)

was the right choice, not only from a syntactical point of view: indeed, it allows to obtain

a cut-elimination proof, that extends also to the quantum logics formulated from basic

logic. Besides this, visibility, dropping all contexts, allows to focus on the semantical

problem of considering the comma as a link between formulae rather than as a separation

from a context. A particular, interpretation of visibilityallows to obtain an embedding of

classical logic into paraconsistent quantum logic [B98].

In this thesis, we reach a better insight on the conditionsL andR, since we show that the

presence of a context at the left (resp. right), that allows to define the implication, is in

contrast with the definability of the entanglement link, proper of quantum mechanics, in

logic. At the end of the next chapter we shall see how the notion of “contextuality”, in the

interpretations of quantum mechanics, can be approached bythe treatment of contexts in

sequent calculus.

1.2 Parallel strategies in sequent calculus - The proposi-

tional case

1.2.1 Propositional connectives and their natural environments

In basic logic, logical connectives and their rules are introduced following thereflection

principle. This principle states that a logical connective is the result of importing a pre-

existing meta-linguistic link between assertions into theobject language. Its rules are
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Table 1.1: The calculus of basic logicB

Axioms

A ` A

Structural rules

Γ,Σ,Π, Γ′ ` ∆
Γ,Π,Σ, Γ′ ` ∆ exch le f t

Γ ` ∆,Π,Σ,∆′
Γ ` ∆,Σ,Π,∆′ exch right

Operational Rules

B,A ` ∆
B⊗ A ` ∆ ⊗ f

Γ ` A, B
Γ ` A ∗ B

∗ f

A ` ∆1 B ` ∆2

A ∗ B ` ∆1,∆2
∗ r

Γ2 ` B Γ1 ` A
Γ2, Γ1 ` B⊗ A

⊗ r

` ∆
1 ` ∆ 1 f

Γ `
Γ `⊥ ⊥ f

⊥` ⊥ r ` 1 1r

B ` ∆ A ` ∆
B⊕ A ` ∆ ⊕ f

Γ ` A Γ ` B
Γ ` A& B

& f

A ` ∆
A& B ` ∆

B ` ∆
A& B ` ∆ & r

Γ ` B
Γ ` B⊕ A

Γ ` A
Γ ` B⊕ A

⊕ r

0 ` ∆ 0 f Γ ` > > f

B ` A
B← A ` ← f

A ` B
` A→ B

→ f

` A B ` ∆
A→ B ` ∆ → r

Γ ` B A `
Γ ` B← A

← r

A ` B C ` D
B→ C ` A→ D

→ u
C ` D A ` B

C← B ` D← A
← u

Cut rules

Γ1 ` A A, Γ2 ` ∆
Γ1, Γ2 ` ∆

cutL
Γ ` ∆1,A A ` ∆2

Γ ` ∆1,∆2
cutR15



then a consequence of such correspondence. In the propositional case, we consider two

links: andandyields. The metalinguistic linkandcorrelates two logical judgements at the

same level: in aparallel way. The metalinguistic linkyieldsis the consequence relation

between two logical judgements: it puts two assertions together in asequentialway.

Assertions can be represented by sequents, possibly with the addition of a context. The

link andbetweenA andB is represented in two ways, additive and multiplicative, respec-

tively:

Γ ` A Γ ` B

Γ ` A, B

The linkyieldsbetweenA andB is represented by the sequent:

Γ,A ` B

whereΓ represents a context.

The links so represented are converted into three propositional linear connectives: &, ∗,→

(the additive conjunction, the multiplicative disjunction and the implication). This is ob-

tained by assuming the following definitory equations:

Γ ` A→ B ≡ Γ,A ` B

Γ ` A& B ≡ Γ ` A Γ ` B

Γ ` A ∗ B ≡ Γ ` A, B

Solving the equations one obtains the rules of the calculus.Each connective is “formed”

by the rule which converts the link into the corresponding connective. Our connectives

& , ∗,→ are formed at the right side of the sequent, hence they are called “right connec-

tives” and their “formation rules” are the rules at the right. Moreover, each connective

“reflects” its corresponding link to the other side of the sequent, by the “reflection rule”,

in other words, the rule at the left.
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The way to solve the equation of the generic connective◦, corresponding to the generic

link ·, can be represented by the following equation schema:

Γ ` A ◦ B ≡ Γ `seq A · B

where the notatioǹseq is an abbreviation for the three cases:

Γ ` A Γ ` B

Γ ` A, B

Γ,A ` B

The schema of the formation rule is an immediate translationof one direction of the

equation:
Γ `seq A · B
Γ ` A ◦ B

◦ f

The other direction is translated into a rule termed “implicit reflection”, that hasn’t a valid

form for sequent calculus:
Γ ` A ◦ B
Γ `seq A · B ◦ ir

To reverse the rule, in order to obtain that the connective◦ is introduced below, one first

derives the “reflection axiom”, trivializing the premiseΓ in the assumption of◦ir , so that

the rule◦ir converts the axiom of sequent calculusA ◦ B ` A ◦ B into the axiom schema

A ◦ B `seq A · B

The reflection axiom is equivalent to the implicit reflectionrule, since we derive the◦ir

rule by cut, following the schema: Then, a rule introducing◦ at the left is derived bycut:

Γ ` A ◦ B A◦ B ` AḂ
Γ `seq A · B cutseq

Again this is simply a general schema of the derivation, where cutseq is adapted to three

different cases of application of thecut-rule. The resulting “reflection rules”, in the three

cases, are the following:
A ` ∆

A& B ` ∆
A ` ∆

A& B ` ∆ ◦ r
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A, B ` ∆
A ∗ B ` ∆ ∗ r

Γ ` A B ` ∆
Γ,A→ B ` ∆ → r

Such rules are equivalent to the implicit reflection rules. For, they are equivalent to the

reflection axioms. On one side, one derives the conclusion ofeach reflection rule from

its premises by cutting the corresponding reflection axiom.On the other, for every◦, ◦r

derives the reflection axiom, from the couple of axiomsA ` A andB ` B, as we see in the

following schema of derivation:

A ` A B ` B
A ◦ B `seq A, B

◦r

A ◦ B ` A ◦ B
◦ f

We termnatural environmentof a connective◦ the minimum sequent calculus which

allows to derive the axiomA◦B ` A◦B. To discover the natural environment of the three

propositional right connectives, we loose the schema of derivation just shown above in

the three possible cases:
A ` A

A& B ` A
B ` B

A& B ` B & r

A& B ` A& B
& f

A ` A B ` B
A ∗ B ` A, B

∗r
A ∗ B ` A ∗ B

∗ f

A ` A B ` B
A→ B,A ` B

→ r

A→ B ` A→ B
→ f

In the above derivations, the sequents obtained at the intermediate stage

A& B ` A A& B ` B

A ∗ B ` A, B

A,A→ B ` B

are the reflection axioms of the corresponding connectives.The presence of the left con-

text is required for→. The natural environments of the connectives &, ∗,→ are then
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B,B andBL respectively. Observe moreover that, in our interpretation, the two possible

forms of the left rule for the additives are not simply “a matter of commutativity”, rather

they have to be considered the two parts of a unique reflectionrule, since they are both

necessary to obtain the natural environment.

1.2.2 Parallel strategies and compound objects

Since the linkandcan be represented in two ways in a sequent calculus, one obtains two

different ways to implement parallel processes in logical derivations: the additive and the

multiplicative. The multiplicative connectives represent the register link in a computer

and can be exploited to represent the parallel processes on different registers. This is

also exploited in quantum computational logics [DCGL1]. Weshall see in the follow-

ing sections why additivity has to be considered responsible of quantum computational

parallelism.

In order to understand parallelism in logical derivations,we now analyze the relation

between the two kinds ofand in sequent calculus. We will analyze also the relation

betweenandandyields, in order to see to what extent each parallelism is, by itself, well

behaved w.r.t. the sequential relation.

Then, we assume the two kinds ofandtogether, considering a compound assertion of the

following form:

Γ ` A,C Γ ` B,C

(where bothA and B are together withC) or the additiveand combined withyields,

considering a compound assertion of the following form

Γ,A ` B Γ,A ` C

(where bothB andC are yielded byA) or, finally, the multiplicativeandcombined with

yields

Γ,A ` B,C
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(whereB andC together are yielded byA). In the last case, one can consider that the

number of occurrences ofA in the sequent is relevant or not. In the following we adopt

the second interpretation.

Is there a logical connectivet(A, B,C) for each of the compound links above? We have

t(A, B,C) when the link is effectively given in a unique way. A temptative interpretation

of such effectiveness is the following: it occurs when the syntacticalorder is irrelevant,

namely when the point is the whole thing so created, not the particular nesting of the two

simple links forming the compound one. In such a case, a new compound logical object

is created.

Eacht(A, B,C) is determined by the couple of connectives corresponding to the compound

link, namely

(&; ∗)

(&;→)

(∗;→)

The reflection axioms of eacht(A, B,C), as in the simple case, can be derived from the

axioms of sequent calculus by means of the reflection rules. For each couple, we have

two different syntactical possibilities, since, in deriving the axioms, one can switch the

rules of the two connectives of the couple. Here are the reflection axioms so derived:

Couple (&;∗):

deriving the axiom by &r first: A ∗ (B&C) ` A, B A∗ (B&C) ` A,C

deriving the axiom by∗r first: (A ∗ B)&(A ∗C) ` A, B (A ∗ B)&(A ∗C) ` A,C

Couple (&;→):

deriving the axiom by &r first: A→ (B&C),A ` B A→ (B&C),A ` C

deriving the axiom by→ r first: (A → B)&(A → C),A ` B (A → B)&(A →

C),A ` C
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Couple (∗;→):

deriving the axiom by∗r first: A→ (B ∗C),A ` B,C

deriving the axiom by→ r first: (A→ B) ∗ (A→ C),A ` B,C

We now see that, for each couple, there is a natural environment in which the compound

connective is definable. To obtain this, the definability of each form of the reflection

axiom is not enough: we must include the fact that the syntactical order is not relevant,

too. This amounts to prove a “distributive law” between the two connectives of the couple.

In the following, the apexi means that the number of occurrences of a formula is not

relevant, namely weakening of the same formula and contraction are admitted.

Lemma 1.2.1 Couple(&; ∗):

The sequent A∗ (B&C) ` (A ∗ B)&(A ∗C) holds inB

The sequent(A ∗ B)&(A ∗C) ` A ∗ (B&C) holds inBR

Couple(&;→):

The sequent A→ (B&C) ` (A→ B)&(A→ C) holds inBL

The sequent(A→ B)&(A→ C) ` A→ (B&C) holds inBL

Couple(∗;→):

The sequent A→ (B ∗C) ` (A→ B) ∗ (A→ C) holds inBLR i

The sequent(A→ B) ∗ (A→ C) ` A→ (B ∗C) holds inBL i

The proof consists of the following derivations:

A ` A
B ` B

B&C ` B
A ∗ (B&C) ` A, B
A ∗ (B&C) ` A ∗ B

A ` A
C ` C

B&C ` C & r

A ∗ (B&C) ` A,C
∗r

A ∗ (B&C) ` A ∗C
∗ f

A ∗ (B&C) ` (A ∗ B)&(A ∗C)
& f

that holds inB,

A ` A B ` B
A ∗ B ` A, B

A ∗ B)&(A ∗C) ` A, B

A ` A C ` C
A ∗C ` A,C

∗r
A ∗ B)&(A ∗C) ` A,C & r

(A ∗ B)&(A ∗C) ` A, B&C
& f

(A ∗ B)&(A ∗C) ` A ∗ (B&C)
∗ f
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that holds inBR,

A ` A
B ` B

B&C ` B
A→ (B&C),A ` B

A→ (B&C) ` A→ B

A ` A
C ` C

B&C ` C & r

A→ (B&C) ` A,C
→ r

A→ (B&C) ` A→ C
→ f

A→ (B&C) ` (A→ B)&(A→ C)
& f

that holds inBL . A derivation inB is also possible, substituting the two successive appli-

cations of→ f ,→ r by the basic rule→ uni, which allows here to derive monotonicity

of→ w.r.t. the subsequent.

A ` A B ` B
(A→ B,A ` B

A→ B)&(A→ C),A ` B

A ` A C ` C
A→ C,A ` C

→ r

(A→ B)&(A→ C) ` A,C & r

(A→ B)&(A→ C),A ` B&C
& f

(A→ B)&(A→ C) ` A→ (B&C)
→ f

that holds inBL ,
A ` A B ` B
A→ B,A ` B

A ` A C ` C
A→ C,A ` C

→ r

(A→ B) ∗ (A→ C),A ` B,C
∗r

(A→ B) ∗ (A→ C),A ` B ∗C
∗ f

(A→ B) ∗ (A→ C) ` A→ (B ∗C)
→ f

that holds inBL i .

A ` A
B ` B C ` C
B ∗C ` B,C

∗r
A→ B ∗C,A ` B,C

→ r

A→ B ∗C ` (A→ B), (A→ C)
→ f ‖

A→ B ∗C ` (A→ B) ∗ (A→ C)
∗ f

that holds inBLR i .

Summing up, propositional compound connectives are easilydefinable in the extensions

of basic logic. To have all of them, one needs classical linear logic without weakening.

The natural environment for the couple (→,&) is BL ; the natural environment for the

couple (∗,&), namely for the distributive law of the multiplicative w.r.t. the additive

connective, isBR; the natural environment for the couple (→, ∗) is BLR . When∗ is

present,R is required.

Notice, moreover, that the derivations in the above proof have a parallel character in a

natural way, when they contain the additive connective, since they consist of two equal

22



branches for the alternativesB andC. In the last case, concerning the multiplicative

connective, we have parallelized the application of the rule→ f on the formulaeB and

C appearing on the right side of the sequent. We have denoted such application by→ ‖.

Two sequential applications of two occurrences of the→ f rule, on the formulaeB and

thenC, are possible, and would produce the same result. But considering the→ f ‖ rule

permits us a parallel strategy in proofs, and hence in proof search, even for the case of

multiplicative connectives. Parallel strategies are the natural way to obtain our compound

objects.

1.2.3 The symmetric case

The metalinguistic linkandcan be represented at the left of the sequent sign too. In such

case, it is represented by the following assertions:

A ` ∆ B ` ∆

in the additive case, and

A, B ` ∆

in the multiplicative case. Moreover, we rewrite the metalinguistic linkyield with a con-

text at the right rather than at the left:

A ` B,∆

Then we put the definitory equations:

A⊕ B ` ∆ ≡ A ` ∆ B ` ∆

and

A⊗ B ` ∆ ≡ A, B ` ∆

which define the additive disjunction⊕ and the multiplicative conjunction⊗ respectively.

Moreover, from the third assertion, one defines exclusion,←:

A← B ` ∆ ≡ A ` B,∆
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Solving such equations one obtains the rules of the three “left connectives”⊕,⊗,←, which

are formed at the left and reflected at the right. Their natural environments areB, B and

BR respectively.

Then, one can also consider the three couples formed by the left connectives:

(⊕;⊗)

(⊕;←)

(⊗;←)

They gives rise to compound objects inBL , BR andBLR i respectively. This result is

obtained “by symmetry”.

Intuitively, the left connectives are the symmetric copy ofthe right ones. We put in formal

terms the notions of symmetric formula and of dual formula, and then we enunciate a

theorem for symmetry (see [SBF]):

Definition 1.2.2 For any formula A, we define the symmetric formula As of A, by the

following inductive clauses:

i) ps ≡ p for every propositional variable p.

ii) (A◦B)s ≡ Bs◦sAs for every connective◦, where◦s is the left (resp. right) connective

corresponding to the same link of the right (resp. left) connective◦.

For any formula A, we define the dual formula A⊥ of A, by the following inductive clauses:

i) p⊥ is a literal different from p, interpretable as “a primitive negation of p”, for

every propositional variable p.⊥ is a non trivial involution on the set of literals.

ii) (A ◦ B)⊥ ≡ B⊥ ◦⊥ A⊥ for every connective◦, where◦⊥ is the left (resp. right)

connective corresponding to the same link of the right (resp. left) connective◦.
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Then one can define the symmetric and the dual proof of a proofΠ, by induction on the

depth of the derivation. So one can prove the following theorem:

Theorem 1.2.3 The sequentΓ ` ∆ is provable inB if and only if∆s ` Γs and∆⊥ ` Γ⊥ are

provable inB.

The sequentΓ ` ∆ is provable inBL (resp. BR) if and only if∆s ` Γs and∆⊥ ` Γ⊥ are

provable inBR (resp.BL ).

1.3 Parallel strategies in sequent calculus - The predica-

tive case

1.3.1 Predicative extension of basic logic

The predicative extension of basic logic has been introduced in [MS], putting the defini-

tory equation which converts the metalinguistic linkforall into the quantifier∀. In such

case, the metalinguistic assertion “forall d in the domainD, A(d) is true” is converted into

the sequentΓ, z ∈ D ` A(z). Hence the corresponding equation is:

Γ ` (∀x ∈ D)A(x) ≡ Γ, z ∈ D ` A(z)

Such equation holds under the condition “z not free inΓ”. Such condition has a clear

semantical motivation: for, when something depending on a genericz has to be derived,

the assumptions cannot depend on the samez, otherwise we are deriving something de-

pending on a specificz.

The assertion

Γ, z ∈ D ` A(z)

gathers all assertionsA(z) depending on the free variablez ranging on the domainD. We

can picture it as a fan spreading from the common kernel givenby Γ, whose branches
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are indexed by thez’s and end with theA(z)’s. In this sense, the assertion could be better

represented by an indexed sequent of the form

Γ `z∈D A(z)

Anyway, sincez ∈ D has also the role of an assumption, added toΓ, we prefer, now,

to adopt the more traditional notationΓ, z ∈ D ` A(z). It does not force us to exit the

traditional sequent calculus, where sequents are not indexed. Such notation, moreover,

allows to stress the role ofx ∈ D as an assumption, that allows to interpret (∀x ∈ D)A(x)

as “∀x(x ∈ D→ A(x))”.

We see the solution of the definitory equation, which followsthe usual pattern given in

the propositional case. The rules obtained are the following [MS]:

Γ, z ∈ D ` A(z)
Γ ` (∀x ∈ D)A(x)

∀ f †

namely the formation rule, where† is the condition “z not free inΓ”. The converse of the

formation rule represents the implicit reflection rule:

Γ ` (∀x ∈ D)A(x)
Γ, z ∈ D ` A(z)

∀ir

The explicit reflection rule is:

Γ′ ` z ∈ D Γ,A(z) ` ∆
Γ, (∀x ∈ D)A(x), Γ′ ` ∆ ∀r

Note that, in this form, it resembles the→ r rule of BL . As usual, it is obtained via

the reflection axiom, that in turn is obtained puttingΓ = (∀x ∈ D)A(x) in the implicit

reflection, giving:

(∀x ∈ D)A(x), z ∈ D ` A(z)

Then the following derivation, that exploits the cut rule, derives the reflection rule:

(∀x ∈ D)A(x), z ∈ D ` A(z) Γ,A(z) ` ∆
Γ, (∀x ∈ D)A(x), z ∈ D ` ∆ Γ′ ` z ∈ D cutL

Γ, (∀x ∈ D)A(x), Γ′ ` ∆ cutL

The above rule, applied to the axiomsA(z) ` A(z) andz ∈ D ` z ∈ D, allows to derive the

reflection axiom, that in turn gives back the implicit reflection rule, by cut.
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The discussion of the existential quantifier, that represents the symmetric of the universal

quantifier, is postponed to the next chapter.

1.3.2 Substitution of variables by terms

Our usual way to conceive the meaning of first order variablesimplies that they can be

substituted by any termt. This means that we adopt the following structural rule in sequent

calculus:
Γ ` ∆

Γ[x/t] ` ∆[x/t]
[subst]

(under the condition that the free variables oft are not captured by quantifiers appearing

in Γ or∆).

Then, from the reflection axiom (∀x ∈ D)A(x), z ∈ D ` A(z), we can derive the following

axioms:

(∀x ∈ D)A(x), t ∈ D ` A(t)

for every termt of the first-order language we are considering. In particular, sincet ∈ D

is true if t is a closed term denoting an element of the domain, one derives the sequent

(∀x ∈ D)A(x) ` A(t)

for every closed termt. Then, if the domainD hasn elements denoted by the terms

t1, . . . , tn, one derives

∀x ∈ D)A(x) ` A(t1)& . . .&A(tn)

Anyway, the converse sequent

A(t1)& . . .&A(tn) ` (∀x ∈ D)A(x)

is underivable, without specific assumptions3.

3In the infinitary case, this problem resembles that of the “ω-rule” that gives theω completeness of

arithmetic, and hence undetermines the computational content of the theory of arithmetic.
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Then, even if the condition† in the∀ f rule gives the quantifier an additive character,∀ is

much more that a “big &”. We shall see a quantum interpretation of this in the following.

One can furtherly observe that, in presence of the substitution rule, one can give the

following formulation to the reflection rule:

Γ′ ` t ∈ D Γ,A(t) ` ∆
Γ, (∀x ∈ D)A(x), Γ′ ` ∆ ∀r − t

Indeed, such form has the same derivation we have just seen for the∀r rule formulated

with a variable, assuming the reflection axiom in its formulation with a termt. In turn,

∀r − t allows to derive the reflection axioms with terms.

The formulation∀r − t is usually considered the most general form for a∀ rule in se-

quent calculi, since it can be “particularized” to the case in which the termt is a variable.

This requires the further assumption “a variable is a term”,which is commonly assumed.

Anyway, this point of view is not convenient for our purposes, as we shall see in the fol-

lowing. Moreover the term-formulation of the rule depends on the term-formulation of

the reflection axiom, which in turn is due to the substitutionrule, not only to the definitory

equation of the quantifier.

Notice finally that the axiom (∀x ∈ D)A(x) ` (∀x ∈ D)A(x) is derivable from an axiom of

the formA(z) ` A(z), wherez is a free variable, while it is not derivable fromA(t) ` A(t)

wheret is any term. Then the “natural environment”, that we have defined above for the

propositional connectives of the cube of logics, is createdonly by the variable-formulation

of the rules, in the case of the quantifiers.

Then, in our view, which derives the rules from the definitoryequations and looks for the

natural environment, we require the variable-formulation.

1.3.3 Classical distributivity and the problem of complexity

We now wish to study the combination of the multiplicative connective∗ with the quan-

tifier ∀. This means, as for the propositional case, to find the minimum requirements
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which allow to define a combined connective. Hence we focus, first, on the problem of

distributivity.

In the predicative case, distributivity is provable in the following form:

(∀x ∈ D1)A(x) ∗ (∀x ∈ D2)B(x) = (∀x ∈ D1)(∀y ∈ D2)(A(x) ∗ B(y))

here termed classical distributivity. Here is the proof of the two directions:

z ∈ D1 ` z ∈ D1 A(z) ` A(z)
(∀x ∈ D1)A(x), z ∈ D1 ` A(z)

w ∈ D2 ` w ∈ D2 B(w) ` B(w)
(∀x ∈ D2)B(x),w ∈ D2 ` B(w) ∀r

(∀x ∈ D1)A(x) ∗ (∀x ∈ D2)B(x), z ∈ D1,w ∈ D2 ` A(z), B(w)
∗r

(∀x ∈ D1)A(x) ∗ (∀x ∈ D2)B(x), z ∈ D1,w ∈ D2 ` A(z) ∗ B(w)
∗ f

(∀x ∈ D1)A(x) ∗ ((∀x ∈ D2)B(x),w ∈ D2 ` (∀x ∈ D1)(A(x ∗ B(w) ∀ f †

(∀x ∈ D1)A(x) ∗ ((∀x ∈ D2)B(x) ` (∀x ∈ D1)(∀y ∈ D2)(A(x ∗ B(y)) ∀ f †

and

z ∈ D ` z ∈ D
w ∈ D2 ` w ∈ D2

A(z) ` A(z) B(w) ` B(w)
A(z) ∗ B(w) ` A(z), B(w)

∗r

(∀y ∈ D2)(A(z) ∗ B(y)) ` A(z) ∗ B(y) ∀r
(∀x ∈ D1)(∀y ∈ D2)(A(x) ∗ B(y)), z ∈ D1,w ∈ D2 ` A(z), B(w) ∀r

(∀x ∈ D1)(∀y ∈ D2)(A(x) ∗ B(y)),w ∈ D2 ` (∀x ∈ D1)A(x), B(w) ∀ f †

(∀x ∈ D1)(∀y ∈ D2)(A(x) ∗ B(y)) ` (∀x ∈ D1)A(x), (∀x ∈ D2)B(x) ∀ f †

(∀x ∈ D1)(∀y ∈ D2)(A(x) ∗ B(y)) ` (∀x ∈ D1)A(x) ∗ (∀x ∈ D2)B(x)
∗ f

where the two conditions† are “z not free inΓ” and “w not free inΓ”. Moreover, the

sequential application of the two∀ f rules is always possible, when the presence of a right

context is allowed (logics with “R” in the cube). This implies in particular that it must

be z , w. For, A(z) or B(z), could be carried, negated, at the left, in logics withR. So

condition† refers to them too, in such case.

The two sequential applications∀ f † are parallelizable, as described in the following

derivation:

z ∈ D ` z ∈ D
w ∈ D2 ` w ∈ D2

A(z) ` A(z) B(w) ` B(w)
A(z) ∗ B(w) ` A(z), B(w)

∗r

(∀y ∈ D2)(A(z) ∗ B(y)) ` A(z) ∗ B(y) ∀r
(∀x ∈ D1)(∀y ∈ D2)(A(x) ∗ B(y)), z ∈ D1,w ∈ D2 ` A(z), B(w) ∀r

(∀x ∈ D1)(∀y ∈ D2)(A(x) ∗ B(y)) ` (∀x ∈ D1)A(x), (∀x ∈ D2)B(x) ∀ f †‖
(∀x ∈ D1)(∀y ∈ D2)(A(x) ∗ B(y)) ` (∀x ∈ D1)A(x) ∗ (∀x ∈ D2)B(x)

∗ f
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which completely resembles the last derivation, containing the rule→ ‖, of lemma 1.2.1.

In both cases, we can adopt a parallel strategy which is equivalent to a sequential strategy,

the last possible in logics withR.

When distributivity holds, one can conceive a unique semantical object given by the

combination of the two connectives, since distributivity guarantees that the definition is

syntax-independent. Then one can define a unique multiplicative-additive quantifier∗∀,

putting the definitory equation:

Γ ` (∗∀x ∈ D1, y ∈ D2)(A(x); B(y)) ≡ Γ, z ∈ D1,w ∈ D2 ` A(z), B(w)

where the free variablesz and w are not free inΓ and z , w. The object so defined

coincides with (∀x ∈ D1)A(x) ∗ (∀x ∈ D2)B(x) or with (∀x ∈ D1)(∀y ∈ D2)(A(x) ∗ B(y)).

The necessary requirementz , w has a heavy computational drawback. For, it implies

independent choices forz ∈ D1 and y ∈ D2. This yields the exponential increasing

of complexity, in the number of variables, of the object combining the two parallelisms

given by∗ and∀.

1.3.4 Manicheist distributivity and the problem of consistency

In order to overcome the problem of complexity, it would be crucial to have distributivity

with respect toonevariable:

(∀x ∈ D)A(x) ∗ (∀x ∈ D)B(x) = (∀x ∈ D)(A(x) ∗ B(x))

here termed manicheist distributivity.

The object that could be given by such equality does not existin logic, since the inter-

pretation of∗ as a disjunction, which is forced in the extensions ofB, makes the above

distributive law false. Very easy counterexample: “since every integer number is odd or

even, then either every integer is odd either every integer is even”. Then logic is not used

to deal with such kinds of objects. The natural environment of our good computational

object is inconsistency.
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One could make the objection that it is not clear what the semantical interpretation of a

“multiplicative disjunction” consists of, and then try to fit the manicheist distributivity in

B or its linear extensions. We now show how this, technically,would be possible. Let

us consider the following parallel, simultaneous, application of the∀ f -rule to a couple of

formulae both depending on the same free variablez:

Γ, z ∈ D ` A(z), B(z)
Γ ` (∀x ∈ D)A(x), (∀x ∈ D)B(x)

∀ f †‖

∀ f †‖ allows to prove (∀x ∈ D)(A(x) ∗ B(x)) ` (∀x ∈ D)A(x) ∗ (∀x ∈ D)B(x), as follows:

z ∈ D ` z ∈ D
A(z) ` B(z) B(z) ` B(z)
A(z) ∗ B(z) ` A(z), B(z)

∗r

(∀x ∈ D)(A(x) ∗ B(x)), z ∈ D ` A(z), B(z) ∀r
(∀x ∈ D)(A(x) ∗ B(x)) ` (∀x ∈ D)A(x), (∀x ∈ D)B(x) ∀ f †‖
(∀x ∈ D)(A(x) ∗ B(x)) ` (∀x ∈ D)A(x) ∗ (∀x ∈ D)B(x)

∗ f

The converse sequent is derivable as seen in the case of classical distributivity. Then∀ f †‖

would prove our new distributivity.

∀ f †‖ is an admissible rule in basic logic. For, consider what follows: In B (and its ex-

tensions withoutR), right contexts are not admitted. In particular, formulaecannot be

carried from the right to the left of̀ in presence of another formula at the right. Then

it makes a sense to consider the condition† referred to the left side of the sequent only.

So, in particular, the additive character of the quantifier,referred to the invariance of the

left contextΓ, is preserved. Moreover, inB and its extensions withoutR, a two-steps

sequential application of the∀ f rule to A(z) and then toB(z) is not possible. Then, our

∀ f †‖ rule is an “inherently parallel rule”, whereA(z) is not to be considered a context for

B(z) and conversely. Note finally that our parallel rule satisfies Gentzen’s original formu-

lation of the† condition in the∀ rule. It is a syntactical condition on the rule rather than

a semantical condition on the premise of the rule itself. It says “the variable bounded by

the application of∀must not occur free in the conclusion of the rule”.

The problem is that, if we added the above∀ f ‖-rule as such to linear sequent calculi, we

would render their non linear extensions inconsistent, since every calculus in the cube is a

conservative extension ofB. Then one has better to hypothize the existence of a new link
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betweenA(z) andB(z), different from the comma, since the last is interpretable in terms

of context. Such new link should allow the∀ f †‖ rule and “collapse” when usual sequent

calculi are reached.

We have obtained this as an interpretation of specific features of quantum physics, and we

now illustrate such an interpretation.
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Chapter 2

Interpreting quantum parallelism by

sequents

We propose an interpretation of quantum superposition by means of quantifiers on first-

order domains equipped with probabilities. From this an interpretation of the entangled

states follows. We show the necessary role of first-order variables and the meaning of

substitution. Then we develop a paraconsistent sequent calculus and its dual copy, given

a suitable definition of dual domain. Finally we make some proposals concerning the

role of the resulting interpretation in the framework of theinterpretations of quantum

mechanics.

2.1 Interpreting quantum superposition

Definition 2.1.1 Let us consider a discrete random variable Z, with set of possible out-

comes B, and with associated probability measure pZ, measuring p{Z = z} for every z∈ B.

This determines a set D= D(Z, pZ), given by

D(Z, pZ) = {z= (z′, p{Z = z′}) : z′ ∈ B}

We term such set “random first order domain” associated to Z.
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Let A be a quantum system. A quantum measurement on it gives a discrete1 random

variableZ, given by the observable. The set of the possible outcomes determines a subset

of the orthonormal basis of the Hilbert space representingA. Finally the probabilitypZ

is determined by the probability amplitude. Then a quantum first order domainD defined

as above is associated to any measurement ofA.

A measurement onA, under certain hypothesis, is described by an assertion, asfollows:

“ forall possible outcomesz in D, under certain hypothesisΓ, the possible result of the

measurement ofA is z.”

whereforall is the metalinguistic link introduced in 1.3.1. We rewrite the assertion, for-

mally, as a sequent:

Γ, z ∈ D ` A(z)

where the first order variablezappears free inA and does not appear free in the hypothesis

Γ. For, the hypothesis of a correct experiment cannot depend on its outcome. So we put

the equivalence defining the quantifierforall, seen in 1.3.1:

Γ ` (∀x ∈ D)A(x) ≡ Γ, z ∈ D ` A(z)

Such definition allows to gather the possible resultsA(z), associated to the observable,

into a unique object, represented by the proposition (∀x ∈ D)A(x)2. Then the quantifier

∀ interpretes quantum superposition. The “logical glue” forquantum superposition is the

variable associated with the random variable of the measurement experiment. When the

superposed state is considered, the variable is bounded, and ranges over the domain given

by the measurement.

By the∀r rule, from the axioms of sequent calculus, one derives the sequent

(∀x ∈ D)A(x), z ∈ D ` A(z)
1We confine our attention to the finite spaces of quantum computation.
2Note that, since the measurement, which determines the domain, is performed on a state, the domain

is linked to the state. Then, writing (∀x ∈ D)A(x), D is linked toA. This does not seem a trouble for us,

since in usual first order logic such feature is present too. For example, there are propositions which make

a sense on the domain of real numbers and do not on the domain ofcomplex numbers.
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namely the reflection axiom of the quantifier∀. In our case, it asserts that the particle

described by the proposition (∀x ∈ D)A(x) can be found in a state associated with any of

thez’s of D.

Substituting the free variablez by a closed term t in it, one has the sequent (∀x ∈

D)A(x), t ∈ D ` A(t) from which, sincet ∈ D is true, one derives the sequent

(∀x ∈ D)A(x) ` A(t)

It asserts that the superposition (∀x ∈ D)A(x) is converted intoA(t), wheret denotes a

fixed element of the orthonormal basis, with its probability. The other possibilities are

lost. This describes a collapse: the substitution operation destroys the superposition.

A description of the original superposition can be recovered a posteriori, by the proposi-

tional connectives, as we illustrate in the example below.

Example 2.1.2 Let us consider a particleA and the random first order domain D given

by the outcomes of the measurement of the spin ofA along the z axis. D has two elements:

(|↑〉, p{Z = |↑〉}) and (|↓〉, p{Z = |↓〉}), denoted by the terms t↑ and t↓ respectively. The

proposition(∀x ∈ D)A(x) represents the superposed state of the two directions of the

spin along the z-axis. The sequent(∀x ∈ D)A(x) ` A(t↑) asserts thatA is found in the

“up” direction along the z axis with the probability given bythe measurement experiment.

Analogously, the sequent(∀x ∈ D)A(x) ` A(t↓) says thatA is found in the “down”

direction along the z axis with the associated probability.

From the two sequents one can derive, by the& f rule ofB, the sequent

(∀x ∈ D)A(x) ` A(t↑)&A(t↓).

The propositional formula (closed terms, no variable!) appearing on the right side of it:

A(t↑)&A((t↓)

describes the probability distribution associated to the superposed state(∀x ∈ D)A(x).

The sequent(∀x ∈ D)A(x) ` A(t↑)&A(t↓), which is derivable (when a substitution rule
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is allowed), states that the probability distribution follows from the superposition. The

converse sequent is not derivable unless one assumes specific axioms.

Then our logical representation can distinguish between superposition and probability

distribution. The distinction is due to the presence of the variable, since it can supply the

logical glue that is lost having the closed terms only. In algebraic terms, one has that real

numbers are enough to describe the probability distribution, while complex numbers are

required to describe the superposed state. It seems that variables are the logical way to

reach what is expressed by complex numbers in algebraic terms.

2.2 A new quantifier for the entanglement

In order to import the manicheist distributivity, described in section 1.3.4, in the realm of

logic, we need to distinguish the case of dependent variables from the case of independent

variables. We will interpret them by different connectives, and keep both cases only in the

paraconsistent setting of basic logic. Then inconsistencywill be avoided in its extensions.

Let us consider a random variableZ and its associated random first order domainD.

Then, a new link between two propositionsA andB is definable, in terms of a common

first-order variable ranging on the domain, as follows. Let us consider the sequent

Γ, z ∈ D ` A(z), B(z),

wherez is a first order variable onD, free inA andB. Let us assume that the comma says

also “there is a variable in common”. This enriches the link betweenA andB, that would

be simply put side by side otherwise.

Then let us write such new link “,Z”, where Z is the random variable which gives the

domain of the first-order variablez. We term the new link “variable-link” and rewrite the

sequent as follows:

Γ, z ∈ D ` A(z),Z B(z),
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Note that the link,Z may be considered even if the first order variablezbecomes bounded.

In fact, in that case, it is included in the random first-orderdomainD(Z, pZ) associated to

Z.

We now put the following version of∀ f †‖-rule:

Γ, z ∈ D ` A(z),Z B(z)
Γ ` (∀x ∈ D)A(x),Z (∀x ∈ D)B(x)

∀ f †‖

In it, the link ,Z is still present in the conclusion, even if the first-order variablez is not

free any more. This is correct for a parallel rule, since it concerns only theforall link, and

does not act on the comma between the two formulaeA andB. Hence such comma must

be kept unaltered.

The variable link,Z has the character of a “semi-predicative” link. For any random vari-

ableZ, with its associated domain, we put the definitory equation of the corresponding

semi-predicative multiplicative connectiveZZ:

Γ ` A ZZ B ≡ Γ ` A,Z B

that we term Bell’s disjunction (with respect toZ). The formation rule of Bell’s disjunc-

tion is
Γ ` A,Z B
Γ ` A ZZ B

ZZ f

Its reflection axiom is

A ZZ B ` A,Z B

The “minimum” reflection rule that allows to derive the reflection axiom is the following:

A ` ∆ B ` ∆′
A ZZ B ` ∆,Z ∆′

ZZ r

Then we must adopt it as a reflection rule. In it, the notation∆,Z ∆′ means what follows:

whenever a propositionA ∈ ∆ and a propositionB ∈ ∆′ depend on the random variableZ,

they are linked through it, an hence theZ link must be considered linking them. Then the

substitution (cut) rule that must be considered is the following:

Γ ` A,Z ∆ A ` ∆′
Γ ` ∆′,Z ∆

cutRZ
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since it allows to derive our reflection rule, cutting the reflection axiom, as we show:

A Z B ` A, B A ` ∆
A ZZ B ` ∆ cut

B ` ∆′
A ZZ B ` ∆,Z ∆′

cut

By the∀ f ‖ rule one can prove the new distributive law, written with respect toZZ:

(∀x ∈ D)A(x) ZZ (∀x ∈ D)B(x) = (∀x ∈ D)(A(x) ZZ B(x))

We term such equality Bell’s distributivity.

After the definition of the semi-predicative connectivesZZ, a new quantifier,./, combin-

ing multiplicative parallelism and superposition, is definable inB, putting the equation:

Γ `./x∈D (A(x); B(x)) ≡ Γ, z ∈ D ` A(z),Z B(z)

wherez is not free inΓ. The following rules are derivable from such equation:

Γ, z ∈ D ` A(z),Z B(z)
Γ ` ./z∈D (A(x); B(x))

./ f †

Γ′ ` z ∈ D Γ1,A(z) ` ∆1 Γ2, B(z) ` ∆2

Γ1, Γ2, ./x∈D (A(x); B(x)), Γ′ ` ∆1,Z ∆2
./ r

The new quantifier./ gives an object equal to (∀x ∈ D)A(x) ZZ (∀x ∈ D)B(x) or to

(∀x ∈ D)(∀x ∈ D)A(x) ZZ B(x). It allows to represent systems of entangled particles, as

we now see.

Example 2.2.1 LetA andB be two entangled particles, for example two electrons with

opposite spin. The possible result of a measurement of the spin along the z axis, performed

onA or onB, is equally described by an assertion of the form

Γ, z ∈ D ` A(z),Z B(z)

where D= {(|↑〉, p{Z =↑}, (|↓〉, p{Z =↓})}, and where A(z) means “A is found in the z

direction”, and B(z) is “B is found in the direction opposite to z”3. Moreover, we have

the usual condition that z is not free inΓ.

3B(z) indicates that the state is a function ofz, the free variable beingz
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So we put now the definitory equation:

Γ `./x∈D (A(x); B(x)) ≡ Γ, z ∈ D ` A(z),Z B(z)

The state of the two entangled particles is then described bythe proposition./x∈D (A(x); B(x)).

The first-order variable, on the random first order domain given by the random variable

describing the measurement experiment, is the glue which allows to describe the super-

posed statetogether withthe entanglement between the two particles at the same time.

What makes the entanglement disappear? In physics, the collapse of the wave function.

In our logical terms, a substitution of the variablez by a closed termt destroys the super-

position and also the entanglement, since no variable is present any more. The assertion

Γ ` A(z),Z B(z), after a substitution, becomesΓ ` A(t), B(t) where the comma is the usual

comma of sequent calculus, since the variable has disappeared. Then, no entanglement is

described at the propositional level.

2.2.1 A comparison with the classical case

Let us consider two independent measurement experiments, with respect to a couple of

observables, producing two independent random variables,Z andY, and two possibly

different random first order domainsDZ andDY. It may even happen that the two domains

coincide, anyway this fact does not affect the independence of the variables. The assertion

describing the couple of measurements has the following form:

Γ, z ∈ DZ, y ∈ DY ` A(z), B(y)

wherezandy are free inA andB, z, y andΓ does not containzandy free. It corresponds

to the object∗∀, given in section 1.2.1, defined by classical distributivity, which implies

exponential growth of complexity.

We can conceive the two measurements applied to two different physical systems, for

example two particles,A andB. We can also conceive two independent measurements on
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the same physical system, sayA. In the first case the propositionsA(z) andB(y) represent

the possible value of the measurements obtained applying the observable corresponding

to Z toA and that corresponding toY toB, respectively; in the second case they represent

the two possible values of the two measurements performed onA. The second case

is possible only if the observables for the two experiments are compatible. Then the

existence of incompatible observables in quantum mechanics should be interpreted as

a way to avoid computational complexity, since the assertions containing independent

variables, that are originated by couples of incompatible observables, are avoided.

We notice the following example, originated by the EPR paradox. It is a border-line event,

since it can make compatible observables that would be incompatible otherwise.

Example 2.2.2 Classical distributivity is restored considering simultaneously two incom-

patible observables for two entangled particles. For example, measurements of the spin

along different axis, z and y, which are incompatible on the same particle, can be applied

as simultaneous independent measurements on two entangledparticlesA andB. In such

case we have an assertion of the form

Γ, z ∈ DZ, y ∈ DY ` A(z), B(y)

The simpler assertion with variable link,Z, namely

Γ, z ∈ DZ ` A(z),Z B(z)

or, as an alternative, the assertion with variable link,Y,

Γ, y ∈ DY ` A(y),Y B(y)

together with the corresponding./ logical object, are not possible when the two simulta-

neous independent measurements are applied. On the contrary, when one measurement

(spin along z or spin along y) is applied, the other is not possible any more, for the effect

of the entanglement.
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Then it seems that the computational effect of the entanglement is alternative to the com-

putational effect of incompatible observables, which become compatible in the particular

case of the EPR paradox.

2.3 A paraconsistent sequent calculus for quantum com-

putation

As we have just seen, the predicative extension ofBLR can perform the calculus of as-

sertions deriving from classical physics. The case of quantum mechanics requires the

introduction of some new specific considerations in treating the assertions, as we have

already noticed. This is given by a particular treatment of variables. Here we gather our

ideas in a more formal framework. We shall obtain an enrichment of the linear intuition-

istic calculusBL , which admits context at the left and so creates the natural environment

for the implication, by a paraconsistent right side, that allows the variable-link and hence

the entanglement. We indicate such calculus byBL + RZ.

In addition to those already considered in basic logic, let us consider a multiplicative link

“ ,Z” for every random variableZ, as we have described in 2.2. Let us put a subscript 0 to

the comma denoting the usual multiplicative link, that involves no variable: then we write

“ ,0” instead of “,”. Letα be a subscript of a comma. We label byα also sets:Dα is the

random first order domainD(Z, pZ) whenα = Z, D0 is simply a first order domain.

Then we define inductively non orderedα-lists of formulae as follows:

• Any formula is aα-list;

• In ∆1,α . . . α∆n, A in ∆i andB in ∆ j are linked by,α.

The link ,α may be not actual, namely, ifA or B do not depend on a common first-order

variable on the random first-order domainDZ, writing A,Z B is like writing A,0 B. The link

is actual even when the common first-order variable becomes bounded by the quantifier.
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The calculus we are looking for will deal with sequents of theform

Γ ` ∆1,α . . . ,α ∆n

where the variable-link is admitted at the right only. Then we shall write “,” at the left

and “,0” at the right. We obtain several kinds of sequents:

i Sequents containing only one type of variable-link;

ii Sequents containing only one type of variable-link different from,0;

iii Sequents containing different types of variable-links.

It is clear that the link is not associative, in the second andthird case.

Then, the structural rule of exchange is as follows:

Γ ` ∆1,α . . . ,α ∆n

Γ ` ∆π(1),α ∆π(n)
exch

whereπ is a permutation of 1. . .n.

The cut rules we need are:

Γ ` A,0∆ Γ′,A ` ∆′
Γ′, Γ ` ∆′,0∆

cut f

that is the cut ofBL , and
Γ ` A,α ∆ A ` ∆′
Γ ` ∆′,α ∆

cutRα

that represents the additional cut rule we need.

The general form of the definitory equation for the multiplicatives is:

Γ ` A1 Zα . . . Zα An ≡ Γ ` A1,α . . . ,α An

We give it in ann-ary form, rather than in the binary one, since we prefer to obtain a

generalizedn-ary connective for the entanglement, rather than a binary one. Then the

n-ary form is required, since the variable-link cannot be used as a context, and then asso-

ciativity of Zα is not provable (see basic logic). We have already shown how to obtain the
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reflection rule ofZα, by means ofcutRα, in section 2.2. The two rules forZα, in then-ary

case are:

Γ ` A1,α . . . ,α An

Γ ` A1 Zα . . . Zα An
Zα f

A1 ` ∆1 . . .An ` ∆2

A1 Zα . . . Zα An ` ∆1,α . . . ,α ∆n
Zα r

If α , 0, Zα is Bell’s disjunction, inn-ary formulation. Ifα = 0, the connectiveZ0

coincides with∗. Its rules are those of∗ in BL , in then-ary form:

Γ ` A1,0 . . . ,0 An

Γ ` A1 ∗ . . . ∗ An
∗ f

Γ1,A ` ∆1 . . . Γn,An ` ∆n

Γ1, . . .A1 ∗ . . . ∗ An ` ∆1,0 . . . ,0∆n
∗ r

Indeed, the cut rule ofBL , cut f, is applied to obtain the reflection rule. Then contexts at

the left are present.

Then, since our calculus must be “inherently parallel”, we put the following definitory

equation for the quantifier:

Γ ` (∀x ∈ Dα)A1(x),α . . . ,α (∀x ∈ Dα)An(x) ≡

Γ, z ∈ Dα ` A1(z),α . . . ,α An(z)

It is a generalized form of the equation for the quantifier, wheren = 1 orα , 0, and where

z is not free inΓ.

If α = 0, we need the requirementn = 1, otherwise we obtain the inconsistency, on one

side, and the parallel behaviour of the∀ is not justified by a common variable, on the

other. The restriction on the variablez is applied to the premisesΓ.

The formation rule obtained from the above equation is the following:

Γ, z ∈ Dα ` A1(z),α . . . ,α An(z)
Γ ` (∀x ∈ Dα)A1(x),α . . . ,α (∀x ∈ Dα)An(x)

∀ f †‖

The implicit reflection rule is its converse:

Γ ` (∀x ∈ Dα)A1(x),α . . . ,α (∀x ∈ Dα)An(x)
Γ, z ∈ Dα ` A1(z),α . . . ,α An(z)

∀ir †‖

In order to derive the explicit reflection rule, two strategies are possible: the first con-

sists in considering the above implicit reflection in the case n = 1. Then, we obtain the
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reflection axiom and explicit reflection rule of the universal quantifier seen in the pre-

vious chapter. This is enough to create the natural environment for the entanglement in

BL + RZ, as we see in the derivation below:

z ∈ Dα ` z ∈ Dα Ai(z) ` Ai(z)
(∀x ∈ Dα)Ai(x), z ∈ Dα ` Ai(z)

∀r i = 1 . . .n

(∀x ∈ Dα)A1(x) Zα . . . Zα (∀x ∈ Dα)An(x) ` A1(z),α . . . ,α An(z)
Zα r

(∀x ∈ Dα)A1(x) Zα . . . Zα (∀x ∈ Dα)An(x) ` (∀x ∈ Dα)A1(x),α . . . ,α (∀x ∈ Dα)An(x) ∀ f †‖
(∀x ∈ Dα)A1(x) Zα . . . Zα (∀x ∈ Dα)An(x) ` (∀x ∈ Dα)A1(x) Zα . . . Zα (∀x ∈ Dα)An(x)

Z f

Switching the application of the reflection rules, or of the formation rules, one derives the

two directions of Bell’s distributivity. We leave the details.

The second strategy consists of admitting the structural rules of weakening and contrac-

tion for ,α, whenα , 0. They are:

Γ ` ∆
Γ ` ∆,α B

Wα,0
Γ ` A,α A,α ∆
Γ ` A,α ∆

Cα,0

Such rules seem quite natural, due to the meaning we attribute to the variable link. The

reflection axiom is obtained trivializing the premiseΓ of the definitory equation in then

possible ways, as follows:

(∀x ∈ Dα)Ai(x) ` (∀x ∈ Dα)Ai(x)
(∀x ∈ Dα)Ai(x) ` (∀x ∈ Dα)A1(x),α . . . ,α (∀x ∈ Dα)An(x)

Wα,0

(∀x ∈ Dα)Ai(x), z ∈ Dα ` A1(z),α . . . ,α An(z)
∀ir †‖

So we have obtained the followingn axioms:

(∀x ∈ Dα)Ai(x), z ∈ Dα ` Ai(z) i = 1 . . .n

Then the explicit reflection, derived cutting the axiom, looks as follows:

Γ′ ` z ∈ D Ai(z) ` ∆i

Γ, Γ′, (∀z ∈ D)Ai(z) ` A1(z),α . . . ,α ∆i ,α . . . ,α An(z)
∀r‖ i = 1 . . .n

In this second perspective, deriving the natural environment for the entanglement requires

contraction too. We leave the details.

As seen in section 2.2, one can summarize∀ andZα defining then-ary quantifier./ by

Γ `./x∈Dα
(A1(x); . . . ; An(x)) ≡ Γ, z ∈ Dα ` A1(z),α . . . ,α An(z)

wherez is not free inΓ. It is clear that the n-ary quantifier./ is ∀ for n = 1.

44



Besides the above definitory equations, we consider the definitory equations of the other

connectives and constants of propositional basic logic, added with a context at the left,

in BL . We avoid exclusion,←, which has its natural environment in logics withR only.

Note that assuming a definitory equation for← with respect to the variable link:

A← B ` ∆ ≡ A ` B,α ∆

is incompatible with the parallel definitory equation of∀. For, in such case, the condition†

on variables is not well-posed, ifn , 1 in the equation of∀, since formulae can be carried

to the left. Then∀‖ and← are incompatible, and then we have to avoid the exclusion in

order to import the entanglement in sequent calculus. Actually, the above position is a

nonsense, forα , 0, since the variable-link doesn’t create a context.

A second possible perpective consists of admitting the exclusion only for the 0-link, for

which the entanglement doesn’t exist, and that is interpretable as a separation from a

context:

A← B ` ∆ ≡ A ` B,0∆

In such case, one derives the reflection axiomA ` A← B,0 B and hence the reflection rule

Γ ` A Γ′, B ` ∆
Γ, Γ′ ` A← B,0∆

← r

We shall make some comment on the dichotomy entanglement/exclusion in the final sec-

tion.

The existential quantifier is also avoided, with similar motivations, and inserted into the

symmetric interpretation, illustrated in the next section.

We conclude with the structural rule which governs the collapse from our sequents with

variable-link to normal sequents, namely substitution:

Γ ` ∆1,α ∆2

Γ[z/t] ` ∆1[z/t],0∆2[z/t]
subst

whent is a closed term. Ift contains a variable onDα, the variable-link remains unaltered

after the substitution.
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Finally, we need to stress that, in the cube of logics, one hasseveral choices for the con-

texts. Then one can also conceive different calculi with entanglement, possibly without a

good implication, like basic logic. This problem is intrigued with that of cut elimination,

which is open, hence it has better to be discussed together. Cut elimination represents

a problem with peculiar aspects, in our case, as we observe inthe following. The rules

derived up to now allow a good interpretation of the problem of parallelism, in our opin-

ion. In the last section of the chapter we show that our rules are in accordance with what

suggested by some well-known interpretations of quantum mechanics.

Below we summarize in a table the rules following from the definitory equations we have

discussed.

2.3.1 Symmetric and dual interpretation

We have reminded in 1.2.3 how to find a symmetric and a dual copyof any logic in

the cube. This fact can be extended to the calculus with entanglement at the the right

BL + RZ, obtaining a calculus with entanglement at the leftBR + LZ. Then, one has to

deal with sequents withα-link at the left, which have the form

Γ1,α Γ2 ` ∆

and then to define the symmetric of the connectivesZα and∀. Moreover, for the duality,

we have to extend the definition of dual literal to the predicative case.

In the symmetric calculus we reintroduce the connective of exclusion←, that has its

natural environment inBR, and we drop its symmetric, the implication→, since it has

no natural environment there. As before, an introduction ofthe implication with 0-link is

possible.

The symmetric of the universal quantifier∀ is clearly the existential quantifier∃. In our

framework, it is defined by the symmetric of the definitory equation of∀:

(∃x ∈ D)A(x) ` ∆ ≡ A(z) ` ∆, z ∈ D
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Table 2.1: Rules for an intuitionistic calculus with entanglement

Axioms

A ` A

Structural rules

Γ,Σ,Π, Γ′ ` ∆
Γ,Π,Σ, Γ′ ` ∆ exch le f t

Γ ` ∆,α ∆1

Γ ` ∆′1,α ∆
exch right

Γ ` ∆
Γ ` ∆,α B

Wα,0

Γ ` A,α A
Γ ` A

Cα,0

Γ ` ∆1,α ∆2

Γ[x/t] ` ∆1[x/t],0∆2[x/t]
subst(t closed)

Operational Rules

Γ, B,A ` ∆
Γ, B⊗ A ` ∆ ⊗ f

Γ ` A1,0 . . . ,0 An

Γ ` A1 ∗ . . . ∗ An
∗ f

Γ1,A1 ` ∆1 . . . Γn,An ` ∆n

Γ1, . . . ,A1 ∗ . . . ∗ An ` ∆1,0 . . . ,0∆n
∗ r

Γ2 ` B Γ1 ` A
Γ2, Γ1 ` B⊗ A

⊗ r

Γ ` A1,α . . . ,α An

Γ ` A1 Zα . . . Zα An
Zα f

A1 ` ∆1 . . .An ` ∆n

A Zα . . . Zα An ` ∆1,α . . . ,α ∆n
Zα r

Γ, z ∈ Dα ` A1(x),α . . . ,α An

Γ ` (∀x ∈ Dα)A1(x),α . . . ,α (∀x ∈ Dα)An(x)
∀†‖ f

Γ ` z ∈ Dα Ai ` ∆i

Γ, (∀x ∈ Dα)Ai(x) ` ∆i
∀‖r

B ` A,0∆
B← A ` ∆ ← f

Γ,A ` B
Γ ` A→ B

→ f

Γ ` A Γ′, B ` ∆
Γ, Γ′,A→ B ` ∆ → r

Γ ` B Γ′,A ` ∆
Γ′, Γ ` B← A,0∆

← r

Cut rules

Γ1 ` A,∆1 A, Γ2 ` ∆2

Γ1, Γ2 ` ∆2,∆1
cut

Γ ` ∆1,α A A ` ∆2

Γ ` ∆1,α ∆2
cutRα
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wherez is not free in∆.

In BR, one can conceive a quantifier by means of the exclusion, so that (∃x ∈ D)A(x) ≡

∃x(A(x) ← x ∈ D) which is, formally, symmetric with respect to the usual wayto

conceive the universal quantifier. Note that the meaning of (∃x ∈ D)A(x) should be

∃x((x ∈ D)&A(x)), then we should rather have (∃x ∈ D)A(x) ≡ ∃x(A(x) ← ¬(x ∈ D)).

This suggests that we should rather conceive a new domain to say¬(x ∈ D), as we do in

the following dual interpretation.

Deserving the interpretation of the domain to the next considerations, we put the parallel

definitory equation of the existential quantifier, to obtainthe symmetric calculus:

(∃x ∈ Dα)A1(x),α . . . ,α (∃x ∈ Dα)An(x) ` ∆ ≡

A1(z),α . . . ,α An(z) ` ∆, z ∈ Dα

The symmetric of the entanglement is then obtained by means of the symmetric of Bell’s

discjunctionZ, namely “Bell’s conjunction”, denoted byZs and defined formally by the

equation:

A1 Z
s
α . . . Z

s
α An ` ∆ ≡ A,α . . . ,α An ` ∆

Then every rule ofBL + RZ has its symmetric, obtainingBR + LZ. In BR + LZ Bell’s

distributivity becomes the following:

(∃x ∈ Dα)A(x) Zs
α (∃x ∈ Dα)B(x) = (∃x ∈ Dα)(A(x) Zs

α B(x))

for α , 0. If α = 0 it becomes the false distributive law:

(∃x ∈ Dα)A(x) ⊗ (∃x ∈ Dα)B(x) = (∃x ∈ Dα)(A(x) ⊗ B(x))

that we term the perfectionist distributivity.

Even if the intuitive interpretation of quantum superposition and entanglement is obtained

in BL + RZ, its symmetric has the advantage that it allows to see the conflict between en-

tanglement and implication in a more intuitive way. Indeed,in BR + LZ the entanglement
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obtained by Bell’s conjunctionZs and∃ has a natural environment, while the usual im-

plication→ is not definable. In a second perspective, it is definable by assuming the

following equation, with respect to the 0-link only:

Γ ` A→ B ≡ Γ,0 A ` B

To have a dual interpretation, we have to define the dual of every primitive literal, since

duality coincides with symmetry on connectives. Then we need only to defineA(z)⊥,

A[z/t]⊥ and (z ∈ D)⊥.

Let us considerD = D(Z, pZ), whereZ is the random variable of a measurement ex-

periment on a quantum system represented in a finite Hilbert spaceC2n
, which is the

Hilbert space representing the quantum registers of lenghth n in a quantum computer.

ThenD = D(Z, pZ) = {(z′, p{Z = z′}) : z′ ∈ B}whereB is a subset of an orthonormal basis

of the Hilbert space. An intriguing definition of (z ∈ D)⊥ is the following:

(z ∈ D)⊥ ≡ z ∈ D⊥

where

D⊥ ≡ {z= (NOT(z′), p{Z = z′)}) : z′ ∈ B}

whereNOT is the unitary transformation that supplies theNOT gate in the quantum

computer. Then also

D⊥ = {z= (z′, p{Z = NOT(z)′)}) : z′ ∈ NOT(B)}

whereNOT(B) is the image of the subsetB under the mapNOT.

Let us consider a language with a term for every element ofB. If t is a closed term

denoting an element (b, p{Z = b}), we definet⊥ as the term denoting≡ (NOT(b), p{Z =

b}). Then, for example, in the notations of the example 2.1.2,t⊥↓ ≡ t⊥↑ and conversely (any

sharp state is mapped into its “opposite”).

We keep that, if a certain literalA depends ont, its dual is the sameA depending ont⊥, so

we define:

[A(t)]⊥ ≡ A(t⊥)
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One could furtherly say thatA(z)⊥ is A(z⊥), wherez⊥ is something that has to be substi-

tuted witht⊥ rather thant, but this is ininfluent when we consider aforall link. Then one

has simply to substitute the domainD with D⊥.

Then the dual of the assertion

Γ, z ∈ D ` A(z)

is

A(z) ` Γ⊥, z ∈ D⊥

and so the dual ofΓ ` (∀x ∈ D)A(x) is (∃x ∈ D⊥)A(x) ` Γ⊥. The symmetric of the dual is

then

(Γ⊥)s ` (∀x ∈ D⊥)A(x)

Then a quantum state originates a couple of the different representations inBL + RZ, one

is the symmetric of the dual of the other. The symmetric of thedual actually represents

theNOT of the quantum state we are considering.

The states that are eigenstates of theNOT gate are characterizable as those representable

in a unique way. For,D = D⊥ if and only is the measurement experiment is performed on

an eigenstate. As is well known, the “most significant” states for quantum computation

are eigenstates ofNOT. We refer to the so-called “cat state” representable inC2, that is

1/
√

2|0〉+1/
√

2|1〉, and the Bell’s states representable inC4, that is the states 1/
√

2|00〉±

1/
√

2|11〉 and 1/
√

2|10〉 ± 1/
√

2|01〉.

2.3.2 Some short considerations on cut elimination

The problem of normalization of proofs is completely under development. In general, we

find it a difficult problem, for several reasons.

Technically, we can distinguish two kinds of derivations:

i Derivations with one type of variable-link only;
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ii Derivations mixing different types of variable-links.

In the first case, forα = 0, we have the derivations ofBL enriched with the universal

quantifier. In such case, one need to extend the cut-elimination procedure of basic logic

to the predicative case. For a fixedα , 0, we have derivations ofBL enriched with

the parallel rules for the universal quantifier, and with theconnectiveZα. This is also a

situation similar to that of basic logic, sinceα is fixed.

In the second, the mixing of two different types of subscrips is allowed by the application

of thecutRα-rule to sequents with possibly different variable-links. In particular, we have

the applications of theZα r-rule (that is due tocutRα). This situation is complicated by

the possible presence of different types of cuts.

Moreover, the problem of the meaning of the normalization ofproofs in a paraconsis-

tent setting, like ours, is very delicate, the idea cannot besimply “good=cut free”. For

example, if one can prove a result, in the usual logical language, by means of a paracon-

sistent derivation in an enriched language, the derivationdoesn’t satisfy the subformula

property, and hence a cut must be used. It is an advantage to reach the proof, even if in

a paraconsistent framework. In general, such a possibilityis left open, even in the theory

of arithmetic. Does the ineliminability of cut, in such case, lead to the unprovability of

certain results in a consistent computational framework?

Our system is motivated by the search of alternative computational strategies, since this is

the aim of quantum computation. Then normalization should be discussed as a local prop-

erty, concerning the completely paraconsistent fragments, namely fragments containing

only α-links, for one or moreα , 0, or, obviously, the completely consistent fragments,

containing onlyα = 0. This corresponds to what is suggested by quantum computation. In

the logical system we have outlined, if we prove a result in the usual language of sequents

via a paraconsistent proof, we need the application of a substitution rule, representing the

unique rule which can convert anα-link into a comma. This should be like the collapse

of the quantum state into a classical state, from a physical point of view. Then, since

the collapse is an irreversible moment, our proof should notbe normalizable, since nor-

51



malization corresponds to reversibility of proofs. But we could also isolate the fragments

of proofs corresponding to the quantum computational processes prior to measurement.

Such fragments should be normalizable.

Moreover, as R. Feynman, introducing quantum computing, stressed, quantum physics

can be simulated by a classical computer, at the price of an exponential slow-down of the

computational processes [Fe]. Then it should also be possible to convert our proofs into

classical proofs. Then it is also open the problem of a strategy for such conversion.

2.3.3 A forgetful substitution

We describe now a particular kind of conversions of proofs, leading to inconsistent deriva-

tions, that will be useful in the considerations of the next chapter. For every random first

order domainD ≡ D(Z, p{Z = z}) one can consider the first order domainDZ0 of the set

of outcomes without the associated probabilities. For example, if Z is associated to a dice

toss,DZ0 is the set of the first six integer numbers, no reference to their probabilities. The

randomness of the elements of the domain is forgotten and onehas simply a first order

domain. We now consider the substitution ofz ∈ D with d ∈ DZ0. Such substitution

forgets the probabilities and eliminates the variable-link. Then the sequent

Γ, z ∈ D ` ∆1,Z ∆2

is converted into the sequent

Γ[z/d], d ∈ DZ0 ` ∆1[z/d],0∆2[z/d]

Let us suppose to apply the forgetful substitution to the rules ofBL + RZ. The rulesWα,0

andCα,0, are converted into the usual rules of weakening and contraction at the right,

hence the three disjunctions (additive, multiplicative and Bell’s disjunction) converge to a

unique disjunction, the usual intuitionistic one. The∀‖ rule is converted into an inconsis-

tent rule, which proves the manicheist distributivity. In general, derivations ofBL + RZ

are converted into inconsistent derivations by a forgetfulsubstitution applied to a whole

proof.
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An exception is given by the trivial case of having a unique certain outcome, as in the

case of the measurement of sharp states. In such case, the domainD = DN is the singleton

given by the unique outcome, with probability one, of a “nullrandom variable” that we

denote byN. Bell’s distributivity, for N, is

(∀x ∈ DN)A(x) ZN (∀x ∈ DN)B(x) = (∀x ∈ DN)(A(x) ZN B(x))

If one applies the forgetful substitution, the equality becomes (∀x ∈ DN0)A(x) ∗ (∀x ∈

DN0)B(x) = (∀x ∈ DN0)(A(x) ∗ B(x)), the manicheist distributivity. In such case it is

true, even if∗ is interpreted as a normal disjunction, since the domain hasone element

only. BL + RZ can prove Bell’s distributivity and, in the particular caseof a singleton as

a domain, the forgetful substitution doesn’t produce an inconsistent derivation.

Then the advantage of considering null random variables, namely singletons as domains,

is that, even with paraconsistent derivations, truth is notlost.

2.4 Comments in the framework of the interpretations of

Quantum Mechanics

Counterfactuality

Counterfactuality is at the root of Bohr’s interpretation of quantum mechanics. Bohr

points out the importance of the transition between potentialty and actuality. We think

that sequents, representing assertions, can clearly express such point. Indeed, it seems to

us that the interpretation of quantum superposition, obtained by means of the definitory

equation of the metalinguisticforall link:

Γ ` (∀x ∈ D)A(x) ≡ Γ, z ∈ D ` A(z)

is a way to describe the counterfactual definiteness of the outcomes of quantum measure-

ments. It is obtained thanks to the adoption of the idea of variable, that represents the
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way in which our mind can deal with a mathematical/abstract object without giving it

actually. Then the quantum state is decribed by means of the quantifier, that allows to

grasp it as a whole. This gives a sort of “objectivity” to the quantum state. Indeed, such

objectivity is very thin, since the variable, inside the quantifier, is bounded, in other words

“locked”, it can get no value actually! In order to unlock thevariable, one has to consider

the transition

(∀x ∈ D)A(x), z ∈ D ` A(z)

(obtained as the reflection axiom of the definitory equation), that describes the transition

from a state toany of the possible outcomes of its measurements, potentially.Then, as

we have seen, the transition between potentiality and actuality is obtained by substituting

the variable by a closed termt, obtaining:

(∀x ∈ D)A(x) ` A(t)

Such further step is also due to a further attitude of our mind, that produces the ability of

substituting. We attribute such attitude to the “objectivization” of the variable. Only when

we see the variable as an object, namely only when we can actually conceive it as an object

consciously, we can substitute it, since we are aware of its status of potential representative

of any of the possible values in a certain range. Such furtherstep, in conclusion, is due to

our consciousness of the meaning of the variables.

After substitution, the original superposed state is lost,as the potentiality given by the

variable is lost. As we have observed, logic cannot reconstruct a quantifier by means of

propositional logic, as physics cannot reconstruct the superposed state after measurement.

This means that our objectivation of the variable destroys its original richness, that is

hidden to our consciousness.

Hidden variables

Perhaps considering variables as logical first order variables, as our approach suggests,

could allow a wider discussion concerning what variables mean, in order to discover, in
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particular, in which sense they should be hidden in quantum mechanics. One can hypoth-

ize a hidden treatment of variables, due to a logical reason,proper of quantum mechanics.

In particular, the logical hidden treatment of variables wehave hypothized allows to con-

sider the variable-link between assertions, in order to represent the entanglement link, by

the definitory equation:

Γ `./x∈DZ (A(x); B(x)) ≡ Γ, z ∈ DZ ` A(z),Z B(z)

The variable-link, interpreted in the usual logical framework, gives false propositions.

This is why, ultimately, the variable must be hidden!

We remind that a quantum system with Hilbert spaceH admits hidden variables if there

exists a measurable space (Λ,Σ) such that every stateψ ∈ H can be represented as a

probability measureµψ on Λ, and every observableA as a measurable map:̃A : Λ →

R, whose expectation value with respect toµψ is consistent with quantum mechanical

predictions:

〈ψ|A|ψ〉 =
∫
Λ

Ãdµψ

(In such a scheme, the hidden variablesλ ∈ Λ are thought as the subquantum extension

of the classical phase space (p, q) of Hamiltonian mechanics).

The proposal of hidden variable theories was made with the aim to support a realistic

view of quantum mechanics, but it has been observed ([Sm]) that one could interpret a

hidden variable theory as a simple counterfactual definitness, rather than an actual value

definitness. Admitting such particular view, even if not contemplated, perhaps, by the

original proposal, it makes a sense to look for an analogy between the above equality and

the position

Γ ` (∀x ∈ D)A(x) ≡ Γ, z ∈ D ` A(z)

An integral is like an infinitary sum and its variable is bounded. The domain of the

variable, in the integral above, is the sample spaceΛ. In our interpretation, the quantifier

is also like an infinitary sum (cf. the intuitionistic interpretation in [ML84]), its variable

is bounded, and its range is a probabilistic domain. We consider logical propositions
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on variables, on a domain given by an observable, rather thanmeasurable maps on the

sample space representing an observable. Then it seems to usthat our definitory equation

resembles the equality of the hidden variable theory reminded above.

Contextuality

The hidden treatment of variables in building links betweenassertions, in our hypothesis,

is that determined by the quantum computation. In terms of sequents, it is translated

into the adoption of parallel rules, rather than having sequentializable rules in presence

of contexts in the sequents. Note that a calculus performed in presence of contexts is

context-insensitive; context-sensitive calculi are those in which the context matters and

then, definitely, it is not a context any more. In such case, there is an actual link with the

context. The problem of contexts in sequent calculus, in theinterpretation by sequents,

can represent a direct translation of the problem of contexts in quantum mechanics.

In particular, the von Neumann-Gleason-Kochen-Specker theorem proves that a hidden

variable theory compatible with the predictions of quantummechanics must be contex-

tual. A measurement context is defined as a set of commuting observables. Then, any

measurement restricts the possible contexts to compatibleobservables. The same fact

can be pointed out by sequents, as we have seen in section 2.2.1. Then again we find

a meet between the use of logical variables in sequent calculus, as in our interpretation

of quantum computational parallelism, and the hidden variable theories and their conse-

quences. The computational framework of the interpretation by sequents points out that

contextuality creates a computational advantage, then it shouldn’t be felt as a penalty.

Causality

We conclude with the problem of causality, that is also inherent the interpretation by

sequents, at least at a formal level, if we consider theyield in metalinguistic link, that

originates the logical implication, as a causal link.
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Logical implication is introduced by the following definitory equation:

Γ ` A→ B ≡ Γ,A ` B

then it requires that the premisesΓ are a context with respect to the antecedentA of the

implication.

The variable-link, in its dual formulation ofBR + LZ, creates assertions of the form

A,Z B ` ∆

In such case,A (or B) cannot be considered as antecedent of an implication, treating B (or

A) as if it were a context. For, the variable-link creates a whole that cannot be separated.

Then, where the entanglement is present, the implication isimpossible, and conversely.

It seems that the stochastic nature of the variable link is incontrast with the causality

expressed by the implication.
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Chapter 3

Quantum computation and unconscious

computation

We compare the semantical features of the computational model of quantum parallelism,

with some aspects of human thinking. The thesis is that humanthinking adopts quantum

computational strategies. This is supported by quantum theory of mind, and by Matte

Blanco’s bi-logic.

3.1 Logical processes for the mind

The substantial failure of artificial intelligence, in achieving an imitation of the human

natural intelligence, has made clear that the logical processes that have been considered up

to now are insufficient, if not unsuitable, in order to represent the humand mind processes.

This is witnessed also by recent results in neuroscience, connected with the discovery of

mirror neurons. Indeed, such research has shown that the comprehension of the meaning

of an action isn’t obtained in aproceduralway, namely by comparing the information

just achieved with those already present in a supposed database in the mind, that was

the way in which A.I. intended to explain and to re-create human comprehension. In

some interpretations, research on mirror neurons has shownthat the comprehension of
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the meaning of an action is obtained since the subject “livesagain” the action itself.

Then logic has the challenge to propose alternative logicallinks, which can reproduce the

process in our mind by an “imitation of nature”. We have to discover how our mind can

process assertions, without assuming logic as already given. So we think that a tool as

the principle of reflection, we have exploited in justifyingour logical rules, is particularly

suggested in order to obtain significant logical rules. Then, one must furtherly discuss

what kind of truth has to be considered. As we will see below, aparaconsistent setting is

needed then.

3.1.1 Quantum mind and computation: Hameroff-Penrose theory

The crucial problem is now: what are the processes of our mind, up to now unexplored

from a computational point of view, that we should consider?A further question is: why

are they so hidden?

Following quantum theories of mind (see [At]), the quantum processes, which take place

in our brain, contribute to form our mind. Then we could speakof quantum processes

in our mind. In particular, Hameroff-Penrose quantum theory of mind sets the quantum

processes of the brain in the tubulins, which are proteins forming the microtubuli, which

in turn are component of the neural cells. Tubulines are dimers characterized by two

different states, which are present in a quantum superposed state [HP].

Following Hameroff-Penrose theory, the quantum processes in the tubulins are at the basis

of a distinction between unconscious and conscious states.While the first would coincide

with the states of quantum superposition, consciousness would coincide with the moment

of the decoherence of the superposition. Following Penrose, such particular decoherence

wouldn’t be caused by an external factor (for example a measurement), but by a sponta-

neous collapse, due to a quantum gravitational treshhold, whose mathematical description

cannot be translated into computational terms. This shouldbe a point inherently non com-

putable in physics. This fact would have the same consequence in the mind. Following
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Penrose, consciousness is non computable, and, for this reason, artificial intelligence can

never be obtained.

However, it seems that Hameroff-Penrose theory allows a better comprehension of our

mind from a computational point of view, since it allows to answer the couple of questions

posed above. For, it compels to consider the features of quantum computation in order to

describe the nature of the computation of our mind. Moreover, if quantum computation

takes place only in the unconscious, we cannot be aware of itsconsequences, contrary to

the effects of classical computation, of which we are aware. This would allow to explain

why a fundamental part of the links between assertions performed by the mind would be

hidden to us.

Kurt Goedel, referring to the conclusions of his own incompleteness theorems, used to

say that an intelligent machine cannot exist, or at least it cannot be known to us. For, if

any such machine existed, and we were aware of its functioning, we should conclude that

it cannot compute some true facts, since our awareness of itsfunctioning would allow

us to repeat the coding of the incompleteness theorems themselves. Then, Alan Turing

observed that [Tu]

”. . . if a machine is expected to be infallible, it cannot be also intelligent. There are several

theorems which say almost exactly that. But these theorems say nothing about how much

intelligence may be displayed if a machine makes no pretenceat infallibility.”

Infallibility in logic means non contradiction, then one can escape the conclusions of

Goedel’s theorems dropping their assumption of consistency. Of course, no mathemati-

cian likes dropping such hypothesis. Anyway, if we want to observe the computational

aspects of our mind, it is exactly what we need to do. Not by chance, it is also what

we find in the computational models of quantum parallelism. Ultimately, the judgements

“non computable”, given up to now, have referred to the fact that something isn’tcon-

sciouslycomputable. Just connecting computation and consciousness suggests, now, that

we can try to reconstruct, consciously, unconscious paraconsistent strategies of computa-

tion. There is a hope they can reach an imitation of our our processes to achieve truth: no
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theorem goes against this fact.

3.1.2 Matte Blanco’s bi-logic

The idea of considering Matte Blanco’s bi-logic was suggested by Stuart Hameroff, in

order to find analogies for the computational model of the unconscious he had found with

his quantum theory of mind.

As is well-known, the chilean psychoanalist I. Matte Blancoproposed a description of

the logic of the unconscious, syntetized after thirty yearsof clinical experience, in his

main bookThe uncounscious as infinite sets[MB]. Bi-logic consists on the contraposition

between usual “bivalent” logic, that is proper of our conscious reasoning, and the so called

“symmetric mode”, or “indivisible mode” proper of the unconscious reasoning. Bivalent

logic is based on the two usual truth values, that are separated, and is consistent. In the

indivisible and symmetric mode, the opposites are identified and unified into a whole

thing, for which negation is meaningless. It is governed by aprinciple of symmetry,

following which every relation is considered as if it were symmetric. In particular, the

part and the whole are identified. Such identification is furtherly discussed in terms of

“infinite sets”, since, as concluded by Matte Blanco himself, when a set is identified with

a subset, they must have the same cardinality and hence the set is infinite.

Matte Blanco’s method outlines precisely the fundamental logical features of the uncon-

scious with the aim of a better comprehension of the unconscious itself. Obviously, his

method has no computational purposes. Neverthless, we think that the features described

by Matte Blanco meet the features of the paraconsistent calculus for quantum computa-

tion we have proposed, and some features of quantum computation in general, as we now

see. This can be considered an argument in favour of quantum mind, too.

Matte Blanco clearly describes a paraconsistent logical system. The absence of negation

finds its corresponding in the auto-duality we find for the quantum states that are eigen-

vectors of theNOT gate (cf. section 2.3.1). Actually, every quantum state, represented by
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a∀, summarizes pieces of information that are considered “opposite” after measurement,

while they are present together before. Moreover, implication isn’t possible in presence

of the variable-link, and hence negation, if considered defined by means of implication.

Implication gives an asymmetric relation between propositions, hence its absence fits with

the symmetric mode of the unconscious. On the other side, theentanglement link gives

a symmetric kind of relation. Moreover, the idea of the “infinite sets”, in our view, is

in accordance with the necessity of the variables in representing quantum parallelism, as

we see in more detail below. In particular, where substitution is impossible, one cannot

decide the equality, and hence the domain has to be considered infinite, since counting the

elements implies that one can always decide if they are equalor not. In a second perspec-

tive, one can decide that two elements are always equal and hence the domain is identified

with a singleton, namely “the stereotype” for that class. This is treated in details by Matte

Blanco, in commenting his infinite sets. It could correspondto a computational solution,

as we see below.

3.2 Holistic thinking given by the variable

In quantum computation, the entanglement creates a holistic kind of link, where the whole

thing isn’t equivalent to the sum of its parts [DCGL2]. This can be read in two ways: the

sum of all parts is not enough to obtain the whole thing and/or the sum of all parts is not

necessary to it. This is like understanding a sentence, knowing the meaning of each word

(given that this is possible) isn’t enough to understand thesentence, but, on the contrary,

sometimes it is possible to understand the sentence withoutknowing some or even a lot of

its words. In this last sense, the holistic link is an advantage for our mind, that can exploit

it.

We might think that logic cannot deal with holistic links, since logical connectives are

defined in a compositional way, but this is not the case of predicative logic. Indeed,

in order to understand (∀x ∈ D)A(x) we have, usually, two strategies: to consider each
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element of the domain or to consider a generic element, as a variable. The second strategy

is necessary when the domain is infinite, then it correspondsto an “infinitary idea” of the

domain. In the second case, one creates a new logical entity without composition of parts.

For this reason predicative logic gives room to the entanglement link too.

Note that the variable becomes a part of our object-languagein the adolescence, when

we reach self-consciousness. We can retain that the logicalprocesses of which we are

aware, described in classical predicate calculus, interpret such idea of variable. Beside

this, it should exist a child-level for the variable, in which it is exploited in the process

of computation but not objectivized. For example, quite bigchildren can understand

the meaning of a rule as “the last going out must close the door” (that, like every rule,

contains a variable), even if they are not able to understandthe meaning of a juridical

code or of a mathematical theory containing variables. Smaller children are not even able

to understand the rule. Exploiting a sort of passage to the limit, one could say that the use

of variable in mental processes is even more inward, up to being completely unknown for

the subject. Moreover, it is plausible that the variable is kept as hidden as much one is far

from self-consciousness.

What is the advantage of all this? An enormous computationaland cognitive advantage.

Children are “very bad” logicians, mainly in the first childhood, anyway they have a neat

advantage in cognition. For example, children learn the mother language in the first three

years, before the separation from the mother; the mother language must be achieved in

the first childhood, otherwise it is not possible any more, and finally a second language

can reach the level of the mother language only if acquired before the end of childhood.

As we have seen in the previous chapter, the holistic link producing the entanglement is a

constraint in logic, since it is alternative to logical consequence. Then our mind, linking

assertions, should adopt at least two modalities: the first one is holistic, computationally

advantageous, through free unconscious associations of variables. We would like to call

it “pre-logical modality”. It doesn’t consider the usual truth values, but rather a different

global truth that we describe at the end. The second one is analytic and methodologic,
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it gives up the free associations obtained by variables in favour of a conscious use of

them, and so gives room to the logical consequence. This lastone is a computational

mode of which we are aware, founded on the separation betweenthe two truth values,

even in a constructive setting for reasoning. It avoids the contradiction between them.

The two modalities are due to different modes in self-consciousness. It is clear that the

two modes are intertwined in our life and hence they give riseto different mixed types of

thinking. Moreover, we can have exchanges of roles with dis-logical effects, that can also

be observed in our thinking. In particular, the dis-logicaleffects concern the truth one

concludes, applying a pre-logical modality in presence of the truth values we adopt in our

logical modality. We give below some examples of what we mean.

The perfectionist and the manicheist

Manichaeist thinking is present in human thinking, both in terms of social, religious and

philosophical, proposals, and in terms of individual conclusions, of which the subject is

often unaware. A short example: a very good but very depressed mathematician. She

would never prove that, since every integer number is odd or even, then every integer

number is odd or every integer number is even. But, when she isasked “What is wrong?”,

she answers “everything”. Then clearly she is not applying the same schema of reasoning

in the two cases. Of course, in the second case the schema leads her to a wrong conclusion,

but her problem is that she feels it as true. We have the case ofa wrong truth.

An analogous problem arises with the perfectionist distributivity, namely, in our view, the

schema that we have characterized as symmetric to the manichaeist distributivity. The

idea of perfection is also present in religious and philosophical human thinking, with the

idea of the “perfect being” or the “perfect aesthetics”. Moreover, it is an individual attitude

of mind one can often encounter, and which isn’t in accordance to the usual treatment of

the existential statements in mathematics. For example, people who would like to get

married, but they cannot, because they are looking for a man or woman with “all the best

features”. They cannot accept any husband or wife, since no one corresponds to the truth
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they have in mind, that is necessary for them.

The manichaeist thinking is also adopted in decision making, when one needs to “hurry

up” and hence renounce to the analytical thinking, usually with bad results. But, in psy-

chological research on decision making for marketing, it has also been discovered that

an unconscious strategy, rather that the usual analytical one, consciously performed, is

adopted with better results. In such case, the advantage of the unconscious reasoning in-

creases if the number of variables of the given problem is high [Dijk]. This could be a

confirmation of the hypothesis that the different treatment of variables gives the compu-

tational advantage to the unconscious reasoning.

Stereotyping

Another fact one can observe is the tendency to use stereotypes, namely to identify every

element of a certain class with a prototype. For example, in certain circumstances, one is

lead to consider every dog as the dog of her childhood, which coincides with The Dog.

In a different setting, someone who needs to reach a certainty about acertain unknown

person, often makes the choice of considering the person in acertain class, applying then

her stereotype for that class. For example, one may come to know that the person is a

teacher, and then he applies his idea of teacher.

Stereotyping means to reduce every domain to a singleton. Aswe have noticed in section

2.3.3, this means that we can apply a paraconsistent reasoning without renouncing to

truth. In some cases it can be that we are trying to recover a truth that has been forgotten,

as in the case of the dog; in some other, we are desperately trying to obtain some kind of

truth, that is a very poor one. Actually knowing something about a person is as difficult

as knowing the state of a quantum system, deciding that it is asharp state is to renunce to

the richness of the system allowed by quantum physics.
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Irreversible thinking

The so called “irreversible thinking” was first observed by Piaget. We describe it by a typ-

ical example: there is a box containing several pieces of twodifferent colours (red/blue),

two different sizes (big/small), two different shapes (circle/square). Then children up to

four years old can form two subsets distinguishing the pieces by colour, or by size, or

by shape. But, once they have made a choice of one of the three different “observables”,

they doesn’t change her mind in favour of a second different classification. Children if

encouraged, can do this at five years old. Children’s thinking is irreversible up to four

years old, in this example.

In our view, this corresponds to the computational advantage of quantum mechanics, cre-

ated by the fact that non commuting observables are incompatible (see 2.2.1). The non-

analytic thinking of children doesn’t allow the increasingof complexity, while probably

it allows that other associations are created, so that theirthinking is different and original

with respect to the adult thinking, and everyone can agree that it creates a different flavour

of life. Indeed, childhood is ofted considered as “lost”.

Perception and truth

One can make the hypothesis that we have a different associative thinking originated by

our first attitude of mind. For example, one can associate twodifferent objects by colour,

something which was as red as ..., and so on. Usually perception favours associations, for

example one can remind something forgotten after hearing a certain sound, or smelling a

certain smell, or tasting a certain taste. The information we process is mainly achieved

by our senses, so one can make the hypothesis that a paraconsistent setting is a particular

advantage in such case. This is confirmed by the fact that mostof the processes concerning

perception are unconscious, since the storage of all the information achieved is impossible

at the conscious level.

“None so deaf as those that won’t hear”. Perception requiresopen-minded people, without
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prejudices, the proverb says. One has to be ready to any truth, for a correct perception.

If an object can be black or white, we have to be ready to both colours, considering that

both are possible with equal probability. LetC = {(black, 1/2), (white, 1/2)}. Then the

truth, namely the correct judgement, before perception, has the following form1:

(∀x ∈ C)A(x)

Looking at the object is like a measurement, and then one has only one of the two, black or

white. The difference with quantum systems is that the object is always in a sharp state,

black or white, not in a superposed state of black and white. Then “black” or “white”

becomes a judgement, not a prejudice. This comes from our experience. Anyway the

best attitude of mind for an observer is the same attitude of the observer of a quantum

system. The fact that it isn’t a quantum system is discoveredlater, from experience.

Perhaps this induces everybody to disregard the original attitude of mind, and then the

original judgements processed by our mind, before the experience of the external world,

that can be only experience of the macroscopic world, gets the upper hand of us. Then one

conceives the Aristotelian truth values, for which different kinds of processes are suited.

1This is also what is made evident by the famous pictures proposed in the 20’s by the Gestalt psychology,

like, for example, the picture of the young-and-old lady.
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