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Introduction

The main interest underlying this thesis is that of the redfypsychological, birth of logic
in the human mind. The need of a psychological foundatioogick has been expressed
also by some mathematician. Already a century ago, F. Eesigquade the proposal of
studying logic as “psychological logic” in [En]. We thinkah in general, such need is
present in the intuitionistic foundations, for example iro®ver. Perhaps logic arises
from the need to overcome what, at a certain point, is focasetontradiction” in our
mind. The thesis focuses on a paraconsistent logic, namielgi@which doesn’t obey
the Aristotelian non-contradiction principle [Pr]. Itsrpaonsistency is due to a specific
treatment of first-order variables. Some hypothesis onévweldpment of the meaning of
variables for the human mind, that could be related to theubas here proposed, is then

illustrated in the last chapter.

A secondary motivation of the thesis is computation, siteedaim is that certain pre-
logical or dis-logical phenomena we can observe, undeglttie logicalrational attitude

of our mind, have computational explanations. We assuntetpamary interest of our
mind is to process assertions, namely what is considered t@f course, one should

discuss also of the meaning of “truth” in this case.

We conceive logical truth as computed by logical rules. Aurddttreatment of logical
rules has been pursued for a long time in logic, at least SB@@zen’s natural deduc-
tion [Ge]. In general, in the last decade, the study of nhtomputational systems has
flourished [CP], in particular, of quantum computation [HNC]. This is particularly

intriguing for a naturalistic study of logic, since, indeddllowing quantum theories of
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mind (see, e.g., [At]), our mind should witness tlfieets of the laws of quantum physics.
People with a naturalisticredoshould be inclined to quantum theories of mind. In fact,
why shouldn’t our mind exploit the enormous quantum compantial advantage? Then
quantum computation should have also important logiftakces, if we assume that a pri-

mary interest of our mind is to process assertions.

The thesis touches threefidirent logical, or, in our view, related to logical, topicsherl
first is a general problem of logic, namely the problem of theaning of the logical
constants, here referred to the meaning of logical cornstarthat introduced by rules,
for which we rely on a specific approach [SBF]. The second &oiinoen physics, namely
the problem of logical models in quantum computation (seg @0CGL1] and [BSmO06],
[BSmO8]). The third is the problem of consciousness, rdlateparticular to Hamend-
Penrose quantum theory of mind [HP], [PH]. They correspandghly, to the three

chapters of the thesis.

The first chapter discusses some points on logical consianie framework ofbasic
logic, a substructural logic proposed as a common platform fgpgsiional extensional
logics, including some kinds of quantum logics [DCGsurvelfe first version of basic
logic [BS99] was proposed as a calculus enucleating somenmomsemantical features
of logical connectives, features obtained, in such a case) the algebraic structures

underlying several substructural logics.

Later, we developed a second version of basic logic [SBRheta a cut-free sequent
calculus, whose rules can be justified in terms of the “raflacprinciple”, for which
connectives and their rules follow from metalinguistikbrbetween assertions. The prin-
ciple allows the natural predicative extension of basiedpgiven in [MS]. The principle
is also exploited in the thesis to develop our paracondistea predicative calculus. We
also furtherly discuss the problem of the meaning of symyreatd of visibility, the two
features of the calculus of basic logic. In the first chapteranalyze how coupling log-
ical connectives could produce compound logical objeatspdrticular, we focus upon

the problem of contexts and parallel strategies of proafgrder to understand which



compound objects are possible. We find that, in the predeatse, parallel strategies
which do not increase the complexity of the objects so agueletermine an inconsistent
framework. It is the framework for quantum parallelism,tthe develop in the second

chapter.

As is well known, the parallelism of quantum computation € §C], [Hi]) is due to
quantum superposition associated to quantum entangler@rntum superposition is
the presence of severalfi#irent states at the same time, e.g. both the spins of a particl
This allows parallel processes of computation. The entanght link is created when, in
a system of two or more superposed particles, the statesoaseparable, namely they
cannot be described as a product of the states of each parfdr this reason, when
the superposed state of the system collapses, the ressiétes of the single particles,
component of the system, are not independent, in terms tdtgtal independence. The
most important example is represented by Bell's stategylesiof particles behaving as
“twins”, namely they collapse into the non superposed stéifie identical results. They
enforce the ffect of parallelism induced by quantum superposition, sthey bound
the computational complexity and allows the so called “quamcomputational speed-
up”, peculiar of quantum computation with respect to cleslscomputation. For, the
effects of quantum superposition and entanglement are natdepible out of a quantum

environment.

The idea to obtain a calculus for quantum computation frosiddagic is natural, since
it was born to include quantum logics ([FS], [BF]). After astiproposal of a paracon-
sistent calculus within propositional logic [Ba05], we liead that our idea requires the

quantifiers.

In quantum computational logics [DCGL1] propositions espond to the qubits and the
quregisters, namely to the states of the quantum comps#df, itather than to the closed
subsets of a Hilbert space, as in traditional quantum log¥e. also adopt such an ap-
proach. Our representation does not require the algebettiog of Hilbert spaces, and

represents quantum superposition and entanglement bysnoéaequents, in order to



describe quantum parallelism in terms of logical proofs.r @presentation allows to
see the computational advantage of quantum parallelismregipect to classical compu-
tation, that consists in knocking down the exponential cexify, that was the original
motivation in the proposal of quantum computation by Feymijiee]. The idea is that
the random variable given by a measurement on a certainqaiysistem produces the
domain of a first order variable, which describes the supapastate of the system. We
see that the gap existing between the description of a sopedpstate, and the probabil-
ity distribution given by the measurement of the state,asgtated into the logical gap
between a predicative representation for the superpositid a propositional representa-
tion for the corresponding probability distribution. Inckusetting, the expressive power
of logical variables seems necessary. This is confirmed byp@wu predicative connective
for the entanglement, which exploits a variable in commauoiii@in a new quantifier. The
variable seems to capture the holistic feature of quantdarrmation [DCGL2]. For, a
variable can glue items of information in a non-composgiomay, as we discuss in the
third chapter. While the algebraic definition of entanglems negative, since it speaks of
non factorizable states, our approach can represent daetbparticles in a positive way.
This is considered a decisive advantage in any computai@malsconstructive setting (see

e.g. [MS] for the problem of a minimal and constructive matlagical foundation).

In the second part of the chapter we begin the developmenpafaconsistent and pred-
icative sequent calculus. We also define a dual copy of theuleed, given a suitable
definition of dual domain. This allows to characterize Befitates. The closer study of
the proof theoretical aspects of such calculus is underldenent, since our first con-
cern was to find a correct semantical representation, frenpdmnt of view of quantum

physics. The problems related to proof theory in a parasters setting are quite un-
explored, and could lead to very intriguing results in theidoof computability, as first

pointed out by Alan Turing in [Tu], where he says:

”...ifamachine is expected to be infallible, it cannot be@intelligent. There are several

theorems which say almost exactly that. But these theoraynsathing about how much



intelligence may be displayed if a machine makes no pretenicgallibility.”

In the thesis we hypothize some possible development, alsorinection with the orig-
inal motivations of quantum computation [Fe]. Another plolesimportant development
of the calculus outlined here, is in the direction of logicalculi including probabilities.
For, the representation by sequents we obtain for quantumpetation includes random
variables in first-order domains and can deal with dependetom variables, even if in
a very simplified way, up to now. This is an important challemg logics for artificial

intelligence, see [So].

The final section of the second chapter is devoted to see leintrpretation of quantum
superposition and entanglement by means of sequents wephgvesed, can be consid-
ered, in the framework of the interpretations of quantumimedcs (see [Ja]). We find
this a very intriguing work on which one can go on, too. Foe can already see clearly,
in our opinion, a connection with the typical problems of ititerpretations. More specif-
ically, we see a connection with counterfactuality and egntality of quantum mechan-
ics, on one side, with the hidden variables interpretattoranother side, and finally with
the stochastic interpretations of quantum mechanics amgritblem of causality. Such
connection is due to the features of quantum parallelisnglet@d by the interpretation
by sequents. Then, one can see the advantage of considaantuq systems from the
point of view of processes, as quantum computation perraits do, even for the purpose

of the interpretations.

In the third chapter we make a comparison between some ésadfithe process of asser-
tions proper of quantum computation, that we have outlinetthé previous chapter, and
some features of the human thinking. We support such cosgaby Hamerfi-Penrose

quantum theory of mind, briefly introduced in the chapter. rébwer, as suggested by
Stuart Hamerfy, we consider “bi-logic”, the logic of the unconscious, augd by the

psychoanalist I. Matte Blanco after thirty years of clinie&perience. It meets the fea-
tures of our calculus in a surprising way. In particular, ithfénitary aspect of the human

unconscious thinking, diagnosed by Matte Blanco, corredppin our view, to the infini-



tary and holistic aspect given by first-order variables toaaiculus.

We conclude the chapter with some personal observationshwiould deserve a much
higher competence in the field of psychology, in order to perly treated. Anyway,
they are so relevant to the topic, in our opinion, that wegrés write down them, even

if in a simple way.

In the future, we would like to develop our research on thechslogical foundations
of human logical thinking also independently from quantimedries. We have already

developed some ideas in [Ba07].
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Chapter 1

Parallel strategies in sequent calculus

Summary: we first recall the main features of basic logic dreldube of its extensions,
focusing on the problem of contexts and parallel strategfggoofs. Then we analyze the
possible parallel strategies of proofs in sequent calcuilishe propositional case, first,

and then in the predicative case. We find that parallel sg@®which do not increase the

complexity of the objects so achieved determine an incemsisamework.

1.1 Sequents and sequent calculi

1.1.1 Sequents and contexts

Sequent calculi were introduced by Gentzen in [Ge]. A setjigseanformal writing of the
following type:
I'rA

wherel' = C,,...,C,andA = D,,...,Dy are finite lists of formulae, separated by
commas. In it the sigm indicates the logical consequence. THeand A are called

premises and conclusions of the sequent, respectivelygédese calculus is a set of rules
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transforming sequents into other sequents. A unary or inge is written as follows:

I'+ Ay IMrA;r IokA;
I'rA I'rA

The axioms of a sequent calculus are sequents of the folipfeirm: A + A. Deriving a
sequent” + A, in a certain sequent calculus, is to obtain it as the comariusf a certain
derivation, that consists of a suitable application of thles of the calculus, starting from

axioms.

In any sequent calculus, one can distinguish two kinds @fstul

1. Rules on the structure of sequer@sr(ictural Rules

2. Rules introducing logical connectives.

Perhaps the most important revolution in sequent calcaftex; Gentzen, is due to Girard
[Gi], who introduced linear logic. In his linear sequentatdi, Gentzen’s structural rules
of weakening, contractioandexchangeare dropped (possibly some of them). This al-
lows to distinguish the connectives of disjunction and aagtion and their rules into two
forms: the additive and the multiplicative one. In the needtgon we will illustrate such
distinction, which is at the basis of our interpretation.vWNee recall that the distinction
between the additive and multiplicative formulation of thiées is due to a dlierent treat-
ment ofcontexts The contexts, in a sequent, are the list of formulae appghesides the
active formulae, namely the formulae which are modified lgyrtiie we are considering.

For example, in the rulé
ILA+FB,A
—_— ﬁ
I'rA—- B,A

the formulaeA, B, A — B are active formulae, the lisisandA are contexts. They are

f

separatedrom the active formulae by a comma.

1The label- f indicates that this is thiermationrule of the connectives, in the classification of rules

of basic logic, explained below.
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A critical problem is the following: the use of the comma isr@what ambiguous. For, it

is also used tgoin formulae, since the interpretation of the commas in
Al,...,An F Bl,...,Bm

Is“Ai& ... &A, + ByVv...VBy’, where & andv are the conjunction and the disjunction, in
Gentzen'’s notation. In linear logic they are the multipiinea conjunction and disjunction

respectively. Then, the interpretationAy, ..., A, - B; ..., By is the following?:

Al®... Ay F By x...x By

1.1.2 Basic logic and the cube of logics

A solution to the critical problem has been proposed by blagic [SBF]. It has been
a radical one, a sequent calcuBisgiven in table 1.1, where no context at all is present

besides the active formulae. This is “visibility” of the foulae, in basic logic.

In this thesis, we furtherly investigate on the treatmerdasftexts. This is developed in a
predicative extension of basic logic [MS]. For, the rulesdoantifiers are the only ones
in which the context matters, since restrictive conditionsthe contexts are necessary
in order to obtain the definability of the quantifier itselfs Ave shall see in details, this
fact induces us to conceive an “inherently parallel” ruletfee quantifier, which aims to
represent quantum parallelism. As for the other connestvarallel rules can be defined,
that, however, can be simulated by a sequential applicafismpler rules, thanks to the

admissibility of contexts.

Our working platform will be the “cube of logics”, a set of sgmt calculi arising from
a common kernel, the sequent calcuBisf basic logic. InB, the connectives only have
some minimal properties: no structural rule, except exgkams valid. Richer logical

calculi are then reached by the addition of structural rulesthis way, one can obtain

2We adopt here the multiplicative notatienfor the multiplicative disjunction, rather than the usual

notation? of linear logic, adopted in basic logic too.
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BLRRS
BRS

BLS

BS

BLR

Bk

131,

K}

cut-free sequent calculi for all the well-known extensidaogics, including some kind of

guantum logics.

This construction is organized in the cube representedabdw it, every vertex is a

sequent calculu€ which obeys the equation:

C = B + suitable structural rules

Looking at the figure, sequent calculi whose label cont&rmave the structural rules
of weakening and contraction. This fact causes the ideatifin of the multiplicative
connectives with the additive ones. At least at a first stdgejdentification is not con-
venient for our purposes, so we will work on the lower facehaf tube (the linear face).
Anyway, we remind that logics witB are important in quantum logic, since the calculus
BS coincides with paraconsistent quantum logic [DCG]. A aeefsequent calculus for
orthologic and a formulation of classical logic as a submysbf paraconsistent quantum

logic are obtainable from it [BF].

Sequent calculi whose label containsadmit a context at the left, beside the active for-
mulae of their rules.BLS is a calculus for intuitionistic logicBL an intuitionistic and
linear calculus. Sequent calculi whose label cont&redmit a context at the right, be-

side the active formulae of their rule8RS represents a dual version of intuitionistic

13



logic andBR is a dual linear and intuitionistic calculus. We will deg&ithe duality in
some details in the following. FinallBLRS is a sequent calculus for classical logic and

BLR for linear logic (without exponentials).

ConditionsL andR concerns the structure of sequents but are not expresseeysm
of real structural rules. This was left as an open problemhenformulation of basic
logic. The problem appeared immediately related to the @dation of quantum logics,
that require to drop at least some contexts. Then the chowsibility (no context at all)
was the right choice, not only from a syntactical point ofwiendeed, it allows to obtain
a cut-elimination proof, that extends also to the quantugickformulated from basic
logic. Besides this, visibility, dropping all contexts]aals to focus on the semantical
problem of considering the comma as a link between formuteer than as a separation
from a context. A particular, interpretation of visibiliflows to obtain an embedding of

classical logic into paraconsistent quantum logic [B98].

In this thesis, we reach a better insight on the conditloasdR, since we show that the
presence of a context at the left (resp. right), that allawddfine the implication, is in
contrast with the definability of the entanglement link, o of quantum mechanics, in
logic. At the end of the next chapter we shall see how the naifdcontextuality”, in the
interpretations of quantum mechanics, can be approach#teliyeatment of contexts in

sequent calculus.

1.2 Parallel strategies in sequent calculus - The proposi-

tional case

1.2.1 Propositional connectives and their natural enviroments

In basic logic, logical connectives and their rules areodtriced following theeflection
principle. This principle states that a logical connective is the ltesfumporting a pre-

existing meta-linguistic link between assertions into digect language. Its rules are
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Table 1.1: The calculus of basic logic

LEILIYFA

————— exchleft
LILE T A

B,ArF A ®
BALFA

AI—Al BI—AZ r
%
A*B}-Al,Az

FA
1A

1f

1k LT

BrA ArA
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ArA BrA
A&BrA A&BFRFA

@ f
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_—
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then a consequence of such correspondence. In the propasitiase, we consider two
links: andandyields The metalinguistic linkandcorrelates two logical judgements at the
same level: in garallel way. The metalinguistic linkieldsis the consequence relation

between two logical judgements: it puts two assertionsttegen asequentialvay.

Assertions can be represented by sequents, possibly vatadtition of a context. The
link andbetweenrA andB is represented in two ways, additive and multiplicativepex-
tively:

I'rA IT't+B

'-AB

The linkyieldsbetweerA andB is represented by the sequent:
I Ar-rB

wherel represents a context.

The links so represented are converted into three propoaitiinear connectives: &, —
(the additive conjunction, the multiplicative disjunatiand the implication). This is ob-

tained by assuming the following definitory equations:

'rA— B = IAr-rB
' A&B = I'tA T+B
I'rA=x=B = I'rA B

Solving the equations one obtains the rules of the calctdash connective is “formed”
by the rule which converts the link into the correspondingreective. Our connectives
&, *,— are formed at the right side of the sequent, hence they deglcaight connec-
tives” and their “formation rules” are the rules at the rigMoreover, each connective
“reflects” its corresponding link to the other side of theiset, by the “reflection rule”,

in other words, the rule at the left.
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The way to solve the equation of the generic connectjvarresponding to the generic

link -, can be represented by the following equation schema:

I'rAoB

F Fseq A * B
where the notatioRseqis an abbreviation for the three cases:
I'rA T'+B

I'-AB
I Ar-rB

The schema of the formation rule is an immediate translabioane direction of the

equation:
F Fsqu * B
I'AoB

The other direction is translated into a rule termed “impheflection”, that hasn’t a valid

of

form for sequent calculus:
I'rAoB

—_— O
F Fsqu * B
To reverse the rule, in order to obtain that the connectiseintroduced below, one first

ir

derives the “reflection axiom”, trivializing the premiken the assumption ofir, so that

the rulecir converts the axiom of sequent calculus B + A o B into the axiom schema
A (e] B Fsqu * B

The reflection axiom is equivalent to the implicit reflectiarte, since we derive ther

rule by cut, following the schema: Then, a rule introducireg the left is derived bgut

'-AoB AoBrAB
r Fsqu‘ B

Again this is simply a general schema of the derivation, witels.,is adapted to three
different cases of application of tieat-rule. The resulting “reflection rules”, in the three

cases, are the following:
ArA ArA

ASBrA AGBrA '
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ABrA

—_— %k

AxBEA
I'trA BrA
_
IA—-BFrA

Such rules are equivalent to the implicit reflection rulesr, Ehey are equivalent to the

r

r

reflection axioms. On one side, one derives the conclusiaraol reflection rule from
its premises by cutting the corresponding reflection axi@n.the other, for every, or
derives the reflection axiom, from the couple of axiofns A andB + B, as we see in the

following schema of derivation:

Ar A BrB
Ao BtseqA B

AoBrAoB

ol
of

We termnatural environmentf a connectiveo the minimum sequent calculus which
allows to derive the axiomo B + Ao B. To discover the natural environment of the three
propositional right connectives, we loose the schema abakson just shown above in

the three possible cases:

ArA BrB &r
A&B+ A A&BI—B&f
A& B+ A&B
Ar A BI—B*r
AxBrAB .
A+*BrFrAxB
Ar A BrB
A->BArB '

ASBrASB
In the above derivations, the sequents obtained at themetiate stage
A&BrA AB+B
A«BrAB

AAA—-BrB

are the reflection axioms of the corresponding connectiVes.presence of the left con-

text is required for—». The natural environments of the connectives:& are then
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B, B andBL respectively. Observe moreover that, in our interpretatibbe two possible
forms of the left rule for the additives are not simply “a neatf commutativity”, rather
they have to be considered the two parts of a unique refleatilen since they are both

necessary to obtain the natural environment.

1.2.2 Parallel strategies and compound objects

Since the linkand can be represented in two ways in a sequent calculus, onmg btz

different ways to implement parallel processes in logical déons: the additive and the
multiplicative. The multiplicative connectives represéme register link in a computer
and can be exploited to represent the parallel processesfl@nedt registers. This is
also exploited in quantum computational logics [DCGL1]. ¥Yall see in the follow-
ing sections why additivity has to be considered respoasiblquantum computational

parallelism.

In order to understand parallelism in logical derivatiom® now analyze the relation
between the two kinds odind in sequent calculus. We will analyze also the relation
betweerand andyields in order to see to what extent each parallelism is, by itsed

behaved w.r.t. the sequential relation.

Then, we assume the two kindsaridtogether, considering a compound assertion of the
following form:
I'-AC I'etB,C

(where bothA and B are together withC) or the additiveand combined withyields

considering a compound assertion of the following form
I, ArB TI,A+C

(where bothB andC are yielded byA) or, finally, the multiplicativeand combined with
yields
ILA+B,C
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(whereB andC together are yielded bg). In the last case, one can consider that the
number of occurrences @ in the sequent is relevant or not. In the following we adopt

the second interpretation.

Is there a logical connectivi€A, B, C) for each of the compound links above? We have
t(A, B,C) when the link is &ectively given in a unique way. A temptative interpretation
of such éfectiveness is the following: it occurs when the syntactwder is irrelevant,
namely when the point is the whole thing so created, not thigcpéar nesting of the two
simple links forming the compound one. In such a case, a newpoand logical object

is created.

Eacht(A, B, C) is determined by the couple of connectives corresponditigg compound

link, namely

(&; *)
(&; =)

(+; =)

The reflection axioms of eadi(A, B, C), as in the simple case, can be derived from the
axioms of sequent calculus by means of the reflection rules.e&ch couple, we have
two different syntactical possibilities, since, in deriving théaxs, one can switch the

rules of the two connectives of the couple. Here are the tefleaxioms so derived:

Couple (&;*):
deriving the axiom by & first: A= (B&C) - A,B A= (B&C)+ A,C
deriving the axiom byr first: (A* B)&(A«C) - AB (AxB)&(AxC)+r AC

Couple (&;-):

deriving the axiom by & first: A - (B&C),A+r B A — (B&C),A+C

deriving the axiom by- r first: (A —» B)&(A - C),A+ B (A — B)&(A —
C),ArC

20



Couple §; —):
deriving the axiom byr first: A - (B« C),A+ B,C
deriving the axiom by r first: (A — B) « (A —- C),A+ B,C

We now see that, for each couple, there is a natural envirohmevhich the compound
connective is definable. To obtain this, the definability a€tle form of the reflection
axiom is not enough: we must include the fact that the symt@obrder is not relevant,
too. This amounts to prove a “distributive law” between tlie tonnectives of the couple.
In the following, the apex means that the number of occurrences of a formula is not

relevant, namely weakening of the same formula and comraate admitted.

Lemmal.2.1 Couple(&; *):
The sequent A(B&C) + (A * B)&(A = C) holds inB
The sequentA « B)&(A « C) + A% (B&C) holds inBR

Couple(&; —):
The sequent A> (B&C) + (A — B)&(A — C) holds inBL
The sequentA — B)&(A — C) + A — (B&C) holds inBL

Couple(x; —):
The sequent A> (B C) + (A — B) * (A — C) holds inBLR!
The sequentA — B) = (A — C) - A — (B * C) holds inBL'

The proof consists of the following derivations:

BrB CrC
ArA B&CrB ArA B&CrC
Ax(B&C)r A B Ax(B&C)+AC
Ax(B&C)+r AxB Ax(B&C)+r AxC
A« (B&C) + (A« B)&(A=C)

&t
*xI

x f
&f

that holds inB,
ArA BrB ArA CrC
AxBr A B A«CrAC
AxB)&(A+«C)r- A, B AxB)&(AxC)rAC
(A« B)&(A=C) + A B&C of
(A= B)&(A=xC) + Ax (B&C)

*[

&r
& f
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that holds inBR,

BrB CtC &r
ArA B&CrB ArA B&CrC 7
A — (B&C),A+ B A—- (B&C)+ A,C N
A—- (B&C)rA— B A—)(B&C)l—A—>C&f

A — (B&C)+ (A - B)&(A - C)

that holds inBL . A derivation inB is also possible, substituting the two successive appli-
cations of— f, — r by the basic rule~ uni, which allows here to derive monotonicity

of — w.r.t. the subsequent.

ArA BrB Ar A CI—C_H,
(A—-BA+B A—-CArC &
A= B)&(A—C),Ar B (A—>B)&(A—>C)|—A,C&rf

(A= B)&(A > C),Ar B&C
(A>B&A—>C)rA— (B&C)

f

that holds inBL ,
ArA BrB ArA Ct+C
A—- BArB A—)C,AI—C>l<r
(A-B)«(A—>C),ArB,C of
(A-B)*(A—->C),ArB=«C .
A-B*«x(A->CrA—-(B=+C)

—-Tr

that holds inBL .
BrB C+C .

ArA B=x«CrB,C
A—-B*xC A+B,C
A—-Bx«C+(A— B),(A—C)
A—-B«Cr(A-> B)x(A— C)

r
—r

— f||

% f

that holds inBLR'.

Summing up, propositional compound connectives are edsiipable in the extensions
of basic logic. To have all of them, one needs classical fitegic without weakening.
The natural environment for the couple>(&) is BL; the natural environment for the
couple &, &), namely for the distributive law of the multiplicative mt. the additive
connective, iBR; the natural environment for the couple>(x) is BLR. When= is

presentR is required.

Notice, moreover, that the derivations in the above proetha parallel character in a

natural way, when they contain the additive connective;estiney consist of two equal
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branches for the alternativd andC. In the last case, concerning the multiplicative
connective, we have parallelized the application of the rul f on the formulaeB and

C appearing on the right side of the sequent. We have denotddagaplication by— ||.
Two sequential applications of two occurrences of thef rule, on the formulad and
thenC, are possible, and would produce the same result. But cemsglthe— f|| rule
permits us a parallel strategy in proofs, and hence in preafch, even for the case of
multiplicative connectives. Parallel strategies are @ueiral way to obtain our compound

objects.

1.2.3 The symmetric case

The metalinguistic linkandcan be represented at the left of the sequent sign too. In such

case, itis represented by the following assertions:
ArA BrA

in the additive case, and
ABrA

in the multiplicative case. Moreover, we rewrite the meiglliistic linkyield with a con-

text at the right rather than at the left:
A+ BA
Then we put the definitory equations:
AeBFrA = ArA BrA

and
A®BFrA = ABFA

which define the additive disjunctiamand the multiplicative conjunctiog respectively.

Moreover, from the third assertion, one defines exclusien,

A—BrA = ArBA
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Solving such equations one obtains the rules of the thréicbenectives®, ®, <, which
are formed at the left and reflected at the right. Their nhemaironments ar®, B and

BR respectively.

Then, one can also consider the three couples formed byftrelnectives:
(@, ®)
(®; <)
(®; <)

They gives rise to compound objectsBh, BR andBLR' respectively. This result is

obtained “by symmetry”.

Intuitively, the left connectives are the symmetric copyted right ones. We put in formal
terms the notions of symmetric formula and of dual formulad ghen we enunciate a

theorem for symmetry (see [SBF]):

Definition 1.2.2 For any formula A, we define the symmetric formufaoh A, by the

following inductive clauses:

1) p°= p for every propositional variable p.

i) (AoB)® = B®o°A®for every connective, whereo?® is the left (resp. right) connective

corresponding to the same link of the right (resp. left) aegtiveo.
For any formula A, we define the dual formula éf A, by the following inductive clauses:

i) p* is a literal different from p, interpretable as “a primitive negation of porf

every propositional variable pL is a non trivial involution on the set of literals.

i) (Ao B)t = B* ot At for every connective, whereo* is the left (resp. right)

connective corresponding to the same link of the right (résih) connective.
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Then one can define the symmetric and the dual proof of a gipbly induction on the

depth of the derivation. So one can prove the following theuar

Theorem 1.2.3 The sequerdt + A is provable inB if and only ifAS + I'SandA* + T'* are

provable inB.

The sequent + A is provable inBL (resp. BR) if and only if A + TSandA* + ' are
provable inBR (resp.BL).

1.3 Parallel strategies in sequent calculus - The predica-

tive case

1.3.1 Predicative extension of basic logic

The predicative extension of basic logic has been introdlut¢gMS], putting the defini-
tory equation which converts the metalinguistic lifokall into the quantifiety. In such
case, the metalinguistic assertidorall d in the domairD, A(d) is true” is converted into

the sequent,ze D + A(2). Hence the corresponding equation is:
I'r(YxeD)AX) = T,zeDrA2

Such equation holds under the conditianriot free inI™”. Such condition has a clear
semantical motivation: for, when something depending orreegcz has to be derived,
the assumptions cannot depend on the sano¢herwise we are deriving something de-

pending on a specifiz

The assertion
Ize D+ A2

gathers all assertiomz) depending on the free varial#eanging on the domaib. We

can picture it as a fan spreading from the common kernel dgiyeh, whose branches
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are indexed by th#s and end with thé\(2)'s. In this sense, the assertion could be better

represented by an indexed sequent of the form
r FzeD A(Z)

Anyway, sincez € D has also the role of an assumption, added’,tove prefer, now,
to adopt the more traditional notatidhz € D + A(2). It does not force us to exit the
traditional sequent calculus, where sequents are not @tle$uch notation, moreover,
allows to stress the role ofe D as an assumption, that allows to interpiex € D)A(X)
as “Yx(xe D - A(X))".

We see the solution of the definitory equation, which folldws usual pattern given in

the propositional case. The rules obtained are the follgyMS]:

Ize D+ A(2 e
I'+ (Yx e D)A(X)

namely the formation rule, whefds the condition Z not free inl”. The converse of the
formation rule represents the implicit reflection rule:

'+ (Yx e D)A(X) vir
Ize D+ A2

The explicit reflection rule is:

I"'rzeD T,A@Q*FrA
I, (Yx e D)A(X),I" + A

Note that, in this form, it resembles the r rule of BL. As usual, it is obtained via
the reflection axiom, that in turn is obtained puttifig= (Vx € D)A(X) in the implicit
reflection, giving:

(Vxe D)A(X),ze D+ A(2

Then the following derivation, that exploits the cut ruleyigtes the reflection rule:

(Yxe D)A(X),ze Dr A2 T,A(2*+A
I,(Vxe D)A(X),ze D+rA T"+zeD
I, (Vxe D)AX),I" + A

cutL
cutL

The above rule, applied to the axiolA&) + A(z) andz e D + z<€ D, allows to derive the

reflection axiom, that in turn gives back the implicit refleatrule, by cut.
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The discussion of the existential quantifier, that reprisstiie symmetric of the universal

quantifier, is postponed to the next chapter.

1.3.2 Substitution of variables by terms

Our usual way to conceive the meaning of first order varialbgdies that they can be
substituted by any tertn This means that we adopt the following structural rule ot

calculus:
I'rA

Ix/t] + A[X/1]
(under the condition that the free variables afe not captured by quantifiers appearing

[subst

inT" orA).

Then, from the reflection axion¥k € D)A(X),z € D + A(2), we can derive the following
axioms:

(Vx e D)A(X),t € D + A(t)

for every termt of the first-order language we are considering. In particgiacet € D

is true ift is a closed term denoting an element of the domain, one dettrgesequent
(Vx € D)A(X) + A(t)

for every closed termt. Then, if the domairD hasn elements denoted by the terms
t1,...,ts, One derives
¥x e D)A(X) F A(t)& ... &A(t,)

Anyway, the converse sequent
A& ... &A(t) + (VX € D)A(X)

is underivable, without specific assumptidns

3In the infinitary case, this problem resembles that of thertle” that gives thew completeness of

arithmetic, and hence undetermines the computationakobof the theory of arithmetic.
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Then, even if the conditiohin theV f rule gives the quantifier an additive characteis

much more that a “big &”. We shall see a quantum interpretatitthis in the following.
One can furtherly observe that, in presence of the subistitutile, one can give the
following formulation to the reflection rule:

I"'rteD T,A()FA
I, (Yx e D)A(X),I" - A

Vr —t

Indeed, such form has the same derivation we have just se¢hefgr rule formulated
with a variable, assuming the reflection axiom in its forniola with a termt. In turn,

VYr —t allows to derive the reflection axioms with terms.

The formulation¥r — t is usually considered the most general form for aule in se-
quent calculi, since it can be “particularized” to the caswhich the ternt is a variable.
This requires the further assumption “a variable is a tesmfiich is commonly assumed.
Anyway, this point of view is not convenient for our purposas we shall see in the fol-
lowing. Moreover the term-formulation of the rule dependstioe term-formulation of
the reflection axiom, which in turn is due to the substitutiale, not only to the definitory

equation of the quantifier.

Notice finally that the axiom¥x € D)A(X) + (¥x € D)A(X) is derivable from an axiom of
the formA(2) + A(2), wherezis a free variable, while it is not derivable froA{t) + A(t)

wheret is any term. Then the “natural environment”, that we havengefiabove for the
propositional connectives of the cube of logics, is creatdy by the variable-formulation

of the rules, in the case of the quantifiers.

Then, in our view, which derives the rules from the definiteguations and looks for the
natural environment, we require the variable-formulation
1.3.3 Classical distributivity and the problem of complexty

We now wish to study the combination of the multiplicativenectivex with the quan-

tifier V. This means, as for the propositional case, to find the mimmequirements
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which allow to define a combined connective. Hence we focts, foin the problem of

distributivity.

In the predicative case, distributivity is provable in tioédwing form:
(Vx € D1)A(X) * (¥x € D2)B(X) = (¥x € D1)(¥y € D2)(A(X) * B(y))

here termed classical distributivity. Here is the prooflaf two directions:

zeDi+rzeD; A@QrARZ weD,rweD, B(w)r B(w)
(Yxe D1)A(X),ze D1+ A(2) (Yxe Dy)B(X),w e D, + B(w)
(Vx € D1)A(X) * (VX € D2)B(X),z€ D1, w € D, + A(2), B(w)
(Yx e D1)A(X) = (VX € Dy)B(X),ze D1,w € D, - A(2) = B(w)
(Vx € D)A(X) = (VX € D2)B(X),w € D; + (VX € D1)(A(X * B(w)
(Vx € D)A(X) = (Yx € D2)B(X) + (VX € D1)(Vy € Do)(A(X = B(y))

*I

* f

Al
Al

and
A2+ A(2 B(w)r B(W)

weD,rwe D, A2 x*BWw) A2, B(W)
zeDrzeD (Yy € D2)(A(2) = B(Y)) + A(2) = B(y)
(Vx € D1)(Yy € D2)(A(X) * B(y)),z€ D1, w € D, + A(2), B(w)
(Vx € Dy)(Yy € D2)(A(X) = B(y)),w € D, + (Yx € D1)A(X), B(w)
(Vx € D1)(Yy € D2)(A(X) * B(y)) F (VX € D1)A(X), (VX € D2)B(X)
(Vx € Dp)(Yy € D2)(A(X) = B(y)) F (VX € D1)A(X) = (YX € D2)B(X)

vr

Al

Al
* f

where the two condition$ are ‘z not free inI”” and “w not free inI””. Moreover, the
sequential application of the twf rules is always possible, when the presence of a right
context is allowed (logics withR” in the cube). This implies in particular that it must
bez # w. For, A(2) or B(2), could be carried, negated, at the left, in logics with So

conditiont refers to them too, in such case.

The two sequential applicationsf™ are parallelizable, as described in the following
derivation:

A2+ A2 BWw)*+ B(W)
weD,rwe Dy, A2 BWw) A2, B(W)

zeD+rzeD (Yy € D2)(A(2) = B(y)) + A(2) = B(y)
(Vx € D1)(Vy € D2)(A(X) = B(y)),z€ D1, w € D, + A(2), B(w)
(7x € D1)(¥y € D2)(A(X) * B(y)) + (VX € D1)A(X), (¥x € D2)B(X)
(Vx € D1)(Vy € D2)(A(X) * B(y)) F (VX € D1)A(X) * (Yx € D2)B(x)

vr
VT
s f

29



which completely resembles the last derivation, contgitine rule— ||, of lemma 1.2.1.
In both cases, we can adopt a parallel strategy which is abpntto a sequential strategy,

the last possible in logics witR.

When distributivity holds, one can conceive a unique seroanbbject given by the
combination of the two connectives, since distributivityagantees that the definition is
syntax-independent. Then one can define a unique multiplecadditive quantifiesV,

putting the definitory equation:
'+ (xYxeDy,yeD)AX);B(y) = T,zeDj,we D;,+ A2, B(w)

where the free variablesandw are not free in[C andz # w. The object so defined
coincides with ¥x € D1)A(X) = (Yx € D,)B(X) or with (Yx € D1)(Yy € D2)(A(X) = B(Y)).

The necessary requirement: w has a heavy computational drawback. For, it implies
independent choices far € D; andy € D,. This yields the exponential increasing
of complexity, in the number of variables, of the object cammyy the two parallelisms

given by andV.

1.3.4 Manicheist distributivity and the problem of consisency

In order to overcome the problem of complexity, it would beatal to have distributivity

with respect tanevariable:
(Yx e D)A(X) = (Yx € D)B(x) = (Vx € D)(A(X) = B(X))

here termed manicheist distributivity.

The object that could be given by such equality does not @xikigic, since the inter-
pretation of« as a disjunction, which is forced in the extension8pimakes the above
distributive law false. Very easy counterexample: “sineerg integer number is odd or
even, then either every integer is odd either every integeven”. Then logic is not used
to deal with such kinds of objects. The natural environmérmur good computational

object is inconsistency.
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One could make the objection that it is not clear what the seical interpretation of a
“multiplicative disjunction” consists of, and then try to fihe manicheist distributivity in
B or its linear extensions. We now show how this, technicallyuld be possible. Let
us consider the following parallel, simultaneous, appigcaof theV f-rule to a couple of
formulae both depending on the same free variable

Ize D+ A(2),B(2 e
I' (Yx e D)A(X), (Yx € D)B(X) I

v {7|| allows to prove {x € D)(A(X) * B(X)) + (¥x € D)A(X) * (VX € D)B(X), as follows:

A2 +B(2 B2+ B(2 o
zeDrzeD A(2=«B(2*r A2),B(2
(Vx e D)(A(X) = B(X)),ze D + A(2), B(2
(Vx € D)(A(X) = B(X)) + (Yx € D)A(X), (YXx € D)B(X)
(Vx e D)(A(X) = B(x)) + (Yx € D)A(X) = (VX € D)B(X)

VT
* f

The converse sequent is derivable as seen in the case atalakistributivity. Thenv ||

would prove our new distributivity.

v {7|| is an admissible rule in basic logic. For, consider whatofei: InB (and its ex-
tensions withouR), right contexts are not admitted. In particular, formuta@not be
carried from the right to the left of in presence of another formula at the right. Then
it makes a sense to consider the condifioeferred to the left side of the sequent only.
So, in particular, the additive character of the quantifiefierred to the invariance of the
left contextrI’, is preserved. Moreover, iB and its extensions witholR, a two-steps
sequential application of thef rule to A(z) and then taB(2) is not possible. Then, our
v £7|| rule is an “inherently parallel rule”, wher&(2) is not to be considered a context for
B(2) and conversely. Note finally that our parallel rule satssfeentzen’s original formu-
lation of the™ condition in theY rule. It is a syntactical condition on the rule rather than
a semantical condition on the premise of the rule itselfaytss‘the variable bounded by

the application of/ must not occur free in the conclusion of the rule”.

The problem is that, if we added the abotf|-rule as such to linear sequent calculi, we
would render their non linear extensions inconsistentesavery calculus in the cube is a

conservative extension &. Then one has better to hypothize the existence of a new link
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betweenA(z) andB(2), different from the comma, since the last is interpretable ingerm

of context. Such new link should allow tiv 7|| rule and “collapse” when usual sequent

calculi are reached.

We have obtained this as an interpretation of specific feataf quantum physics, and we

now illustrate such an interpretation.
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Chapter 2

Interpreting quantum parallelism by

sequents

We propose an interpretation of quantum superposition bgna@f quantifiers on first-
order domains equipped with probabilities. From this arenmpiretation of the entangled
states follows. We show the necessary role of first-ordeiaibes and the meaning of
substitution. Then we develop a paraconsistent sequeciilcal and its dual copy, given
a suitable definition of dual domain. Finally we make someppsals concerning the
role of the resulting interpretation in the framework of timerpretations of quantum

mechanics.

2.1 Interpreting quantum superposition

Definition 2.1.1 Let us consider a discrete random variable Z, with set of {pbs®ut-
comes B, and with associated probability measyrenpeasuring fZ = z} for every ze B.

This determines a set B D(Z, pz), given by
D(Z pz) ={z=(Z,piZ=7}):Z € B}
We term such set “random first order domain” associated to Z.
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Let A be a quantum system. A guantum measurement on it gives atdisandom
variableZ, given by the observable. The set of the possible outcontesdimes a subset
of the orthonormal basis of the Hilbert space represenfind-inally the probabilityp;z
is determined by the probability amplitude. Then a quantush drder domai defined

as above is associated to any measuremefit. of
A measurement o, under certain hypothesis, is described by an assertidollass:

“forall possible outcomesin D, under certain hypothesl§ the possible result of the

measurement ol is z”

whereforall is the metalinguistic link introduced in 1.3.1. We rewrite tassertion, for-
mally, as a sequent:

Ize D+ A2

where the first order variableappears free i and does not appear free in the hypothesis
I'. For, the hypothesis of a correct experiment cannot depent$ @utcome. So we put

the equivalence defining the quantifferall, seen in 1.3.1:
I'(YxeD)A(X) = I, ze D+ A2

Such definition allows to gather the possible resi{®), associated to the observable,
into a unique object, represented by the propositibng D)A(X)2. Then the quantifier
¥ interpretes quantum superposition. The “logical glue"doantum superposition is the
variable associated with the random variable of the measemeexperiment. When the
superposed state is considered, the variable is boundeédaages over the domain given

by the measurement.

By theVr rule, from the axioms of sequent calculus, one derives theesd

(Vxe D)A(X),ze D+ A(2

We confine our attention to the finite spaces of quantum coatiput
Note that, since the measurement, which determines theidpimgerformed on a state, the domain

is linked to the state. Then, writingyx € D)A(X), D is linked toA. This does not seem a trouble for us,
since in usual first order logic such feature is present too.ekample, there are propositions which make

a sense on the domain of real numbers and do not on the domadmgiiex numbers.
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namely the reflection axiom of the quantifiér In our case, it asserts that the particle
described by the propositioifx € D)A(X) can be found in a state associated with any of
thezs of D.

Substituting the free variable by a closedtermt in it, one has the sequen¥X e

D)A(X),t € D + A(t) from which, sincd € D is true, one derives the sequent
(Vx e D)A(X) + A(t)

It asserts that the superpositiofx(e D)A(X) is converted intdA(t), wheret denotes a
fixed element of the orthonormal basis, with its probahilitihe other possibilities are

lost. This describes a collapse: the substitution oparatestroys the superposition.

A description of the original superposition can be recogtexgosteriori, by the proposi-

tional connectives, as we illustrate in the example below.

Example 2.1.2 Let us consider a particled and the random first order domain D given
by the outcomes of the measurement of the spiabng the z axis. D has two elements:
(T, plZ = MY and (Il), p{Z = |1)}), denoted by the terms &nd t, respectively. The
proposition(¥x € D)A(X) represents the superposed state of the two directions of the
spin along the z-axis. The sequé¥k € D)A(X) + A(t;) asserts thatA is found in the
“up” direction along the z axis with the probability given llye measurement experiment.
Analogously, the sequeli¥x € D)A(X) + A(t)) says thatA is found in the “down”

direction along the z axis with the associated probability.

From the two sequents one can derive, by&Herule of B, the sequent
(Vx e D)A(X) + A(t))&A(t)).
The propositional formula (closed terms, no variable!) appng on the right side of it:
Alt)&A((L,)

describes the probability distribution associated to thperposed staté/x € D)A(X).
The sequentvx € D)A(X) + A(t;)&A(t;), which is derivable (when a substitution rule
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is allowed), states that the probability distribution fmlVs from the superposition. The

converse sequent is not derivable unless one assumesspgoins.

Then our logical representation can distinguish betwegemosition and probability
distribution. The distinction is due to the presence of taeable, since it can supply the
logical glue that is lost having the closed terms only. Irebigic terms, one has that real
numbers are enough to describe the probability distribytidhile complex numbers are
required to describe the superposed state. It seems thabhegrare the logical way to

reach what is expressed by complex numbers in algebraisterm

2.2 A new gquantifier for the entanglement

In order to import the manicheist distributivity, desciikia section 1.3.4, in the realm of
logic, we need to distinguish the case of dependent vagdimen the case of independent
variables. We will interpret them by filerent connectives, and keep both cases only in the

paraconsistent setting of basic logic. Then inconsistenitype avoided in its extensions.

Let us consider a random variabfeand its associated random first order domBin
Then, a new link between two propositioAsandB is definable, in terms of a common

first-order variable ranging on the domain, as follows. Lsetansider the sequent
Ize D+ A(2), B(2),

wherezis a first order variable oD, free inA andB. Let us assume that the comma says
also “there is a variable in common”. This enriches the liekneenA andB, that would

be simply put side by side otherwise.

Then let us write such new linkz”, where Z is the random variable which gives the
domain of the first-order variable We term the new link “variable-link” and rewrite the
sequent as follows:

Ize D+ A(2),; B(2),
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Note that the linkz; may be considered even if the first order variatdbecomes bounded.
In fact, in that case, it is included in the random first-ordemainD(Z, pz) associated to
Z.

We now put the following version of f ¥||-rule:

Ize D+ A(2),2 B(2

i)
I'+ (Yx e D)A(X),z (Yx € D)B(X)

In it, the link ,z is still present in the conclusion, even if the first-orderiafle z is not
free any more. This is correct for a parallel rule, since nagrns only théorall link, and
does not act on the comma between the two formAlaeadB. Hence such comma must

be kept unaltered.

The variable linkz has the character of a “semi-predicative” link. For any mndvari-
ableZ, with its associated domain, we put the definitory equatibthe corresponding

semi-predicative multiplicative connective:
I'-rAxzB = T+AzB

that we term Bell's disjunction (with respectZ). The formation rule of Bell's disjunc-

tionis
I'+ A’Z B
— = i f
I'rA Mz B
Its reflection axiom is
Ax; B+-A;B

The “minimum” reflection rule that allows to derive the refiea axiom is the following:

ArFA BrA/
Al><lz BI—A,ZA/

Mz I

Then we must adopt it as a reflection rule. In it, the notatigil\” means what follows:
whenever a propositioA € A and a propositio® € A’ depend on the random varialae
they are linked through it, an hence théink must be considered linking them. Then the
substitution (cut) rule that must be considered is the falhg:

I'rAzA Ar A
FI—A/,ZA

CUutR,

37



since it allows to derive our reflection rule, cutting theeefion axiom, as we show:

AxBrAB AFAcut
Axz BrA Br A

Any BrA,A cut

By theV f|| rule one can prove the new distributive law, written withpest tos:
(Yx e D)A(X) mz (Yx € D)B(X) = (VX € D)(A(X) 1z B(X))

We term such equality Bell's distributivity.

After the definition of the semi-predicative connectives a new quantifier<, combin-

ing multiplicative parallelism and superposition, is dabie inB, putting the equation:
[ +yep (AX);B(X) = T,zeDrA(2).zB(2

wherezis not free inl". The following rules are derivable from such equation:

Ize D+ A(2),z B(2

Ik ><ep (A(X); B(X))

I"'tzeD T, AQ+A; T2,B@FA;
I'1, T2, 5a5ep (A(X); B(X)), I + Ag,z Az

ba 1

The new quantifiee« gives an object equal to/k € D)A(X) »z (Yx € D)B(X) or to
(Vx € D)(¥x € D)A(X) »z B(x). It allows to represent systems of entangled particles, as

we now see.

Example 2.2.1Let A and 8 be two entangled particles, for example two electrons with
opposite spin. The possible result of a measurement of thakmg the z axis, performed

onA or on B, is equally described by an assertion of the form
Ize D+ A(2),2 B(2

where D= {(IT), p{Z =T}, (1), p{Z =l})}, and where £&) means ‘A is found in the z
direction”, and B(2) is “ 8 is found in the direction opposite to Z” Moreover, we have

the usual condition that z is not freeln

3B(2) indicates that the state is a functionzmthe free variable being

38



So we put now the definitory equation:
[ yep (AX);B(X) = T,zeDrA(2.zB(2

The state of the two entangled particles is then describelddogroposition<,.p (A(X); B(X)).
The first-order variable, on the random first order domainegiby the random variable
describing the measurement experiment, is the glue whiotvailto describe the super-

posed statéogether withthe entanglement between the two particles at the same time.

What makes the entanglement disappear? In physics, thepsellof the wave function.
In our logical terms, a substitution of the variallby a closed ternh destroys the super-
position and also the entanglement, since no variable septeany more. The assertion
I' + A(2),z B(2), after a substitution, becom&s- A(t), B(t) where the comma is the usual
comma of sequent calculus, since the variable has disaggh€Bnen, no entanglement is

described at the propositional level.

2.2.1 A comparison with the classical case

Let us consider two independent measurement experimeittsy@gpect to a couple of
observables, producing two independent random variaBles)d Y, and two possibly
different random first order domaiBs andDy. It may even happen that the two domains
coincide, anyway this fact does ndfect the independence of the variables. The assertion

describing the couple of measurements has the following:for
I',ze Dz,y € Dy + A(2), B(y)

wherez andy are free inA andB, z # y andI” does not contaimandy free. It corresponds
to the object«V, given in section 1.2.1, defined by classical distribugiwthich implies

exponential growth of complexity.

We can conceive the two measurements applied to tferdnt physical systems, for

example two particlesd and8. We can also conceive two independent measurements on

39



the same physical system, sdy In the first case the propositioA$z) andB(y) represent
the possible value of the measurements obtained applyenglikervable corresponding
to Z to A and that corresponding ¥to B, respectively; in the second case they represent
the two possible values of the two measurements performedi.oiThe second case

is possible only if the observables for the two experimemésa@mpatible. Then the
existence of incompatible observables in quantum mechastiould be interpreted as

a way to avoid computational complexity, since the assesticontaining independent

variables, that are originated by couples of incompatibleeovables, are avoided.

We notice the following example, originated by the EPR paxadt is a border-line event,

since it can make compatible observables that would be ipatibvie otherwise.

Example 2.2.2 Classical distributivity is restored considering simuigously two incom-
patible observables for two entangled particles. For exEnmeasurements of the spin
along djferent axis, z and y, which are incompatible on the same payitan be applied
as simultaneous independent measurements on two entgagtedesA and 8. In such

case we have an assertion of the form
I',ze Dz,y € Dy + A(2), B(y)
The simpler assertion with variable link, namely
Ize Dz + A(2),z B(2
or, as an alternative, the assertion with variable ligk

I,y € Dy + A(y).v B(y)

together with the corresponding logical object, are not possible when the two simulta-
neous independent measurements are applied. On the cgniveen one measurement
(spin along z or spin along y) is applied, the other is not gadssany more, for thefgect

of the entanglement.
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Then it seems that the computationfiket of the entanglement is alternative to the com-
putational &ect of incompatible observables, which become compatibilee particular

case of the EPR paradox.

2.3 A paraconsistent sequent calculus for quantum com-

putation

As we have just seen, the predicative extensioBIdR can perform the calculus of as-
sertions deriving from classical physics. The case of quantechanics requires the
introduction of some new specific considerations in trgptime assertions, as we have
already noticed. This is given by a particular treatmentasfables. Here we gather our
ideas in a more formal framework. We shall obtain an enriaftroéthe linear intuition-

istic calculusBL, which admits context at the left and so creates the natava@ment

for the implication, by a paraconsistent right side, thbives the variable-link and hence

the entanglement. We indicate such calculu8hy+ R™.

In addition to those already considered in basic logic, $atensider a multiplicative link
“,z" for every random variabl&, as we have described in 2.2. Let us put a subscript O to
the comma denoting the usual multiplicative link, that imes no variable: then we write

, Instead of “”. Leta be a subscript of a comma. We label dyalso setsD, is the

random first order domaiB(Z, pz) whena = Z, Dg is simply a first order domain.

Then we define inductively non orderedists of formulae as follows:

e Any formula is aa-list;

e INAg,,... ,An, Ain AjandBin A; are linked by,,.

The link,, may be not actual, namely, X or B do not depend on a common first-order
variable on the random first-order dom&g, writing A,z B is like writing A,o B. The link

is actual even when the common first-order variable becomesded by the quantifier.
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The calculus we are looking for will deal with sequents of fibren
F + Al,a...,Q/An

where the variable-link is admitted at the right only. Thea shall write ;" at the left

and “o" at the right. We obtain several kinds of sequents:

i Sequents containing only one type of variable-link;
il Sequents containing only one type of variable-linkelient from,;
lii Sequents containing ffierent types of variable-links.
It is clear that the link is not associative, in the secondthird case.

Then, the structural rule of exchange is as follows:

'k Al,a cees An eXCh
'+ Ax1ysa Arn

wherer is a permutation of 1..n.

The cut rules we need are:

I'rAogA T/, A+ A

Drraga  outf

that is the cut oBL, and
I'rA,A Ar A

Tra.a  CUR

that represents the additional cut rule we need.

The general form of the definitory equation for the multipties is:

FI-Allxla...lea

F"Al,a---,aAn

We give it in ann-ary form, rather than in the binary one, since we prefer ttaioba
generalizech-ary connective for the entanglement, rather than a binasy dr'hen the
n-ary form is required, since the variable-link cannot bedusg a context, and then asso-

ciativity of <, is not provable (see basic logic). We have already shown baktain the
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reflection rule o#<,,, by means otutR,, in section 2.2. The two rules fe4,, in then-ary

case are:

F'_Al,a---’(zAn e f All‘Al...Anl-Az T
@ a
' A, ..., Apvd, oo X, A ALy e An

If @ # 0, »q, is Bell's disjunction, inn-ary formulation. Ifa = 0, the connective«

coincides withx. Its rules are those ofin BL, in then-ary form:

rf—Al,o...,oAn f Fl,AI-Al rn,Anl-An r
*k *k
rf—Al*...*An Fl,...Al*...*AnI—Al,o...,oAn

Indeed, the cut rule dBL, cutf, is applied to obtain the reflection rule. Then contexts at

the left are present.

Then, since our calculus must be “inherently parallel”, we e following definitory

equation for the quantifier:

I'F(YXEDY)AL(X)sg - - 50 (YXEDR)AN(X) =
IzeD,FAL1(D,q -0 An(2

Itis a generalized form of the equation for the quantifierevém = 1 ora # 0, and where

zis not free inr.

If @« = 0, we need the requirement= 1, otherwise we obtain the inconsistency, on one
side, and the parallel behaviour of tieis not justified by a common variable, on the

other. The restriction on the varialdés applied to the premisds

The formation rule obtained from the above equation is thewang:

F, VAS Da F Al(z),a Y17 An(z)

Vi
'k (YX€DL)AL(X),q - - -sa (VX E Dy)An(X) I
The implicit reflection rule is its converse:
'k (VX € Da)Al(X),a Rt (VX € D(z)An(X) vlr’f”

F, Ze D(y F Al(z)’a/ IR Y01 An(z)

In order to derive the explicit reflection rule, two strategjiare possible: the first con-

sists in considering the above implicit reflection in theecas= 1. Then, we obtain the
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reflection axiom and explicit reflection rule of the univérgaantifier seen in the pre-
vious chapter. This is enough to create the natural enviemifor the entanglement in

BL + R™, as we see in the derivation below:
zeD,+zeD, A@+rA@ , .
(/xeD)AM.zeD, rA@ "' =1
(VX € D)AL(X) ™y ... >0 (VX E DA FALD e -0 A(D e
VX € DAL (X) My ... 2y (VX € Do)An(X) - (X € D)ALX)r ooa (IX € DAY "1
(VX € Dy)As(X) g ..., (VX € D)An(X) F (VX € Dg)A1(X) Mg ... >, (VX € Dy)An(X) ™

f

Switching the application of the reflection rules, or of tbenfiation rules, one derives the

two directions of Bell’s distributivity. We leave the ddtai

The second strategy consists of admitting the structutesrof weakening and contrac-
tion for ,,, whena # 0. They are:

I'eA 'k AL ALA
m W0 m Coaz0
Such rules seem quite natural, due to the meaning we atribuhe variable link. The
reflection axiom is obtained trivializing the premiEef the definitory equation in the
possible ways, as follows:

(7x € Da)AI(X) F (VX € Da)AI(X)
(VX € D)AX) F (YX € Du)AL(X),q - - - 50 (YX € Dy)An(X)
(VX € D(t)Ai (X)’ VAS D(l F Al(z)’a s An(z)

Vvath
vir |

So we have obtained the followimgaxioms:
(Vxe Dy)A(X),ze D, -A(z) 1=1...n

Then the explicit reflection, derived cutting the axiom,ke@s follows:
I"trzeD A@*rA

[LI',(V2e D)A(@D F A1(D.er - - - 50 Aiver - - - 50 An(2)

In this second perspective, deriving the natural enviramrfeg the entanglement requires

vril i=1...n

contraction too. We leave the details.

As seen in section 2.2, one can summawzand, defining then-ary quantifier< by

[ Foagep, (As(X¥);...;A(X) = T,2eDyk Al(De-- 50 An(2)

wherezis not free inl". It is clear that the n-ary quantifierisV forn = 1.
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Besides the above definitory equations, we consider theitbefirequations of the other
connectives and constants of propositional basic logideddvith a context at the left,
in BL. We avoid exclusions—, which has its natural environment in logics wkhonly.

Note that assuming a definitory equation erwith respect to the variable link:

A—BrA = ArB,A

is incompatible with the parallel definitory equationvfFor, in such case, the conditiéon

on variables is not well-posed,nif# 1 in the equation o¥, since formulae can be carried
to the left. Therv| and« are incompatible, and then we have to avoid the exclusion in
order to import the entanglement in sequent calculus. Algiuhe above position is a

nonsense, fow # 0, since the variable-link doesn’t create a context.

A second possible perpective consists of admitting theusiah only for the 0-link, for
which the entanglement doesn’t exist, and that is integptetas a separation from a
context:

A< BrA = A+ BoA

In such case, one derives the reflection ax®mA « B,o B and hence the reflection rule

I'crA I",B+A

—Tr
[,I'+F A« ByA

We shall make some comment on the dichotomy entangl¢meision in the final sec-

tion.

The existential quantifier is also avoided, with similar mations, and inserted into the

symmetric interpretation, illustrated in the next section

We conclude with the structural rule which governs the gdéafrom our sequents with

variable-link to normal sequents, namely substitution:

't Ao Ao

T2/t - Alz/tho Atz 0!

whent is a closed term. If contains a variable oD, the variable-link remains unaltered

after the substitution.
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Finally, we need to stress that, in the cube of logics, oneskhasral choices for the con-
texts. Then one can also conceivéfelient calculi with entanglement, possibly without a
good implication, like basic logic. This problem is intrggiwith that of cut elimination,
which is open, hence it has better to be discussed togethdrelithination represents
a problem with peculiar aspects, in our case, as we obseveifollowing. The rules
derived up to now allow a good interpretation of the probldrmparallelism, in our opin-
ion. In the last section of the chapter we show that our rulesreaccordance with what

suggested by some well-known interpretations of quantuichir@cs.

Below we summarize in a table the rules following from themi&dry equations we have

discussed.

2.3.1 Symmetric and dual interpretation

We have reminded in 1.2.3 how to find a symmetric and a dual ad@ny logic in
the cube. This fact can be extended to the calculus with glgarent at the the right
BL + R™, obtaining a calculus with entanglement at the Bt + L™. Then, one has to

deal with sequents with-link at the left, which have the form
Fl’af FZ FA
and then to define the symmetric of the connectig@andV. Moreover, for the duality,

we have to extend the definition of dual literal to the pretiveacase.

In the symmetric calculus we reintroduce the connectivexafusion <, that has its
natural environment i8R, and we drop its symmetric, the implicatien, since it has
no natural environment there. As before, an introductiotmefimplication with O-link is

possible.

The symmetric of the universal quantifiéns clearly the existential quantifiét. In our

framework, it is defined by the symmetric of the definitory atjpn ofV:

AxeDAX)FA = A@*rAzeD
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Table 2.1: Rules for an intuitionistic calculus with entlergent

LEILTFA

Axioms

Ar A

Structural rules

I'rA,A

———— exchleft — 271 axchright
LILE I+ A TF AL A J
I'rA
— W,
r+A,B 70
I'rA,A
eJ04 Ca,
r'rA #0
't A1, A
subst(tclose
T[x/t] + Aq[X/t],0 A2[X/1] ( 9
Operational Rules
IB,AFA o I'FAo....0A ¢
- k
I BALA 'k Apx...ox Ay
F]_,A]_I-A]_...Fn,Anl-An ; le-B F]_I-A
k
I, AL o A Ao .0 A I, I -BeA
FI—A]_,Q...,QAn
b, f
Fl—A]_lXIa...lea,An
All-Al...Anl-An
Ay ... Ak ALy osaAn
Ize D, F A1(X)so - - - 50 An el
'k (YX€E€D)AI(X)q - -0 (YX € Dy)An(X)
I'rzeD, AFA viIr
[, (VX € Dy )AI(X) + A
BrApA I ArB
—  f >
B« ArA 'rA— B
I'-rA I",BrA I'rB I",ArA
- T
Il A— BrA I T+ B« ApA

Fl }-A,Al A,rz = Az

', TaFAg Aq

Cut rules
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wherezis not free inA.

In BR, one can conceive a quantifier by means of the exclusion,addik € D)A(X) =
AX(A(X) <« x e D) which is, formally, symmetric with respect to the usual way
conceive the universal quantifier. Note that the meaningdaf € D)A(X) should be
AX((x € D)&A(X)), then we should rather havax € D)A(X) = AX(A(X) « —(x € D)).
This suggests that we should rather conceive a new domaayts(g € D), as we do in

the following dual interpretation.
Deserving the interpretation of the domain to the next atersitions, we put the parallel
definitory equation of the existential quantifier, to obtdia symmetric calculus:

(Ax e Dy)A1(X)s - 0o (AXE DA FA =

A2, e A(@D +FA,ze D,

The symmetric of the entanglement is then obtained by meahe symmetric of Bell’s
discjunctions, namely “Bell’s conjunction”, denoted by® and defined formally by the

equation:

AppS oS AgEA Ay....o AnF A

Then every rule oBL + R™ has its symmetric, obtaininBR + L™. In BR + L™ Bell’s

distributivity becomes the following:
(Ax € D,)A(X) <5 (Ix € D,)B(X) = (Ix € D, )(A(X) < B(X))
fora # 0. If @ = O it becomes the false distributive law:
(Ax € Do)A(X) ® (Ax € D,)B(X) = (Ix € D,)(A(X) ® B(X))

that we term the perfectionist distributivity.

Even if the intuitive interpretation of quantum superpiosiand entanglement is obtained
in BL + R™, its symmetric has the advantage that it allows to see thi#icidretween en-

tanglement and implication in a more intuitive way. IndéedR + L™ the entanglement
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obtained by Bell's conjunctios® andd has a natural environment, while the usual im-
plication — is not definable. In a second perspective, it is definable Byragg the

following equation, with respect to the O-link only:

'rA-B = T,,A+B

To have a dual interpretation, we have to define the dual afyguemitive literal, since
duality coincides with symmetry on connectives. Then wedneely to defineA(2)*,
Alz/t]* and g€ D)*.

Let us consideD = D(Z, pz), whereZ is the random variable of a measurement ex-
periment on a quantum system represented in a finite HillpertesC?', which is the
Hilbert space representing the quantum registers of lénghih a quantum computer.
ThenD = D(Z pz) = {(Z, p{Z = Z}) : Z € B} whereB is a subset of an orthonormal basis
of the Hilbert space. An intriguing definition of € D)~ is the following:

(ze D)* =ze D*
where
D' ={z=(NOT(Z),p{Z=2)}):Z € B}

whereNOT is the unitary transformation that supplies tNOT gate in the quantum

computer. Then also
Dt ={z=(Z,p{Z = NOT(2)")}) : Z € NOT(B)}
whereNOT(B) is the image of the subsBtunder the maNOT.

Let us consider a language with a term for every elemerB.oflf t is a closed term
denoting an elemenb(p{Z = b}), we definet* as the term denoting (NOT(b), p{Z =
b}). Then, for example, in the notations of the example 21:1:.%, tTl and conversely (any

sharp state is mapped into its “opposite”).

We keep that, if a certain liter@l depends o, its dual is the samA depending oir*, so
we define:
[AM]" = AtY)
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One could furtherly say tha(2)* is A(z"), wherez" is something that has to be substi-
tuted witht* rather thart, but this is ininfluent when we considefaall link. Then one

has simply to substitute the domdinwith D+.

Then the dual of the assertion
Ize D+ A2

A2 T+, ze D*

and so the dual df + (Yx € D)A(X) is (Ax € D*)A(X) + I'. The symmetric of the dual is
then
(T (Yx e DHAX)

Then a quantum state originates a couple of tifiedknt representations BL. + R™, one
is the symmetric of the dual of the other. The symmetric ofdhal actually represents

theNOT of the quantum state we are considering.

The states that are eigenstates ofM@T gate are characterizable as those representable
in a unique way. FoD = D+ if and only is the measurement experiment is performed on
an eigenstate. As is well known, the “most significant” stdte quantum computation
are eigenstates ™MOT. We refer to the so-called “cat state” representabl€inthat is

1/ V2/0) + 1/ V2|1), and the Bell’s states representabl€fh that is the states/1V2|00) +

1/ v2/11) and ¥ v2/10) + 1/ V2|01).

2.3.2 Some short considerations on cut elimination

The problem of normalization of proofs is completely undevelopment. In general, we

find it a difficult problem, for several reasons.

Technically, we can distinguish two kinds of derivations:

i Derivations with one type of variable-link only;
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i Derivations mixing diferent types of variable-links.

In the first case, forr = 0, we have the derivations &L enriched with the universal
quantifier. In such case, one need to extend the cut-elimmatocedure of basic logic
to the predicative case. For a fixed# 0, we have derivations dBL enriched with

the parallel rules for the universal quantifier, and with tb@nective<,. This is also a

situation similar to that of basic logic, sineds fixed.

In the second, the mixing of two filerent types of subscrips is allowed by the application
of thecutR,-rule to sequents with possiblyfterent variable-links. In particular, we have
the applications of theq, r-rule (that is due teutR,). This situation is complicated by

the possible presence offidirent types of cuts.

Moreover, the problem of the meaning of the normalizatiomp@ofs in a paraconsis-
tent setting, like ours, is very delicate, the idea cannasib®ly “good=cut free”. For
example, if one can prove a result, in the usual logical laggy by means of a paracon-
sistent derivation in an enriched language, the derivadimesn’t satisfy the subformula
property, and hence a cut must be used. It is an advantagadb tiee proof, even if in
a paraconsistent framework. In general, such a possisligft open, even in the theory
of arithmetic. Does the ineliminability of cut, in such caksad to the unprovability of

certain results in a consistent computational framework?

Our system is motivated by the search of alternative contipnta strategies, since this is
the aim of quantum computation. Then normalization shoaldibcussed as a local prop-
erty, concerning the completely paraconsistent fragmeatsely fragments containing
only a-links, for one or morer # 0, or, obviously, the completely consistent fragments,
containing onlyr = 0. This corresponds to what is suggested by quantum connputét

the logical system we have outlined, if we prove a result @ubual language of sequents
via a paraconsistent proof, we need the application of atsutisn rule, representing the
unique rule which can convert arlink into a comma. This should be like the collapse
of the quantum state into a classical state, from a physicalt pf view. Then, since

the collapse is an irreversible moment, our proof shouldogohormalizable, since nor-
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malization corresponds to reversibility of proofs. But veeild also isolate the fragments
of proofs corresponding to the quantum computational @®e® prior to measurement.

Such fragments should be normalizable.

Moreover, as R. Feynman, introducing quantum computingsséd, quantum physics
can be simulated by a classical computer, at the price of parential slow-down of the
computational processes [Fe]. Then it should also be pedsilzonvert our proofs into

classical proofs. Then it is also open the problem of a giyafter such conversion.

2.3.3 A forgetful substitution

We describe now a particular kind of conversions of pro@ading to inconsistent deriva-
tions, that will be useful in the considerations of the névdpter. For every random first
order domairD = D(Z, p{Z = z}) one can consider the first order domép, of the set
of outcomes without the associated probabilities. For gtanif Z is associated to a dice
toss,Dz, is the set of the first six integer numbers, no reference to pinebabilities. The
randomness of the elements of the domain is forgotten andchassimply a first order
domain. We now consider the substitutiono& D with d € Dz. Such substitution

forgets the probabilities and eliminates the variabl&:lihhen the sequent
Ize Dr A1,z As
is converted into the sequent
I['z/d],d € Dz, + Aq[z/d].0 Ax[Z/d]

Let us suppose to apply the forgetful substitution to theswfBL + R™. The rules\,.q
andC,.o, are converted into the usual rules of weakening and cdrdgraat the right,
hence the three disjunctions (additive, multiplicativd &=lIlI's disjunction) converge to a
unique disjunction, the usual intuitionistic one. T¥ierule is converted into an inconsis-
tent rule, which proves the manicheist distributivity. lengral, derivations dBL + R™
are converted into inconsistent derivations by a forgetfudstitution applied to a whole

proof.
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An exception is given by the trivial case of having a uniqudaae outcome, as in the
case of the measurement of sharp states. In such case, thedde Dy, is the singleton
given by the unique outcome, with probability one, of a “malhdom variable” that we

denote byN. Bell’s distributivity, for N, is
(Vx € DN)A(X) iy (VX € DN)B(X) = (VX € DN)(A(X) »any B(X))

If one applies the forgetful substitution, the equality i@es §x € Dy,)A(X) * (VX €
Dn,)B(X) = (VX € Dny)(A(X) = B(X)), the manicheist distributivity. In such case it is
true, even if« is interpreted as a normal disjunction, since the domainonaselement
only. BL + R™ can prove Bell’s distributivity and, in the particular casfea singleton as

a domain, the forgetful substitution doesn’t produce aomststent derivation.

Then the advantage of considering null random variablasghasingletons as domains,

is that, even with paraconsistent derivations, truth islostt

2.4 Comments in the framework of the interpretations of

Quantum Mechanics

Counterfactuality

Counterfactuality is at the root of Bohr’s interpretatiohquantum mechanics. Bohr
points out the importance of the transition between paaéigtand actuality. We think
that sequents, representing assertions, can clearlysspuoeh point. Indeed, it seems to
us that the interpretation of quantum superposition, abthby means of the definitory

equation of the metalinguistforall link:
I'+ (Yxe D)A(X) = Ize D+ A(2

is a way to describe the counterfactual definiteness of thkmmes of quantum measure-

ments. It is obtained thanks to the adoption of the idea abisée, that represents the
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way in which our mind can deal with a mathematiabktract object without giving it
actually. Then the quantum state is decribed by means ofubatijer, that allows to
grasp it as a whole. This gives a sort of “objectivity” to theagtum state. Indeed, such
objectivity is very thin, since the variable, inside the niiier, is bounded, in other words
“locked”, it can get no value actually! In order to unlock teriable, one has to consider
the transition

(Vxe D)A(X),ze D+ A(2

(obtained as the reflection axiom of the definitory equatitmt describes the transition
from a state tany of the possible outcomes of its measurements, potentiahgn, as
we have seen, the transition between potentiality and Bigtisaobtained by substituting

the variable by a closed terinobtaining:
(Vx e D)A(X) + A(t)

Such further step is also due to a further attitude of our nitimat produces the ability of
substituting. We attribute such attitude to the “objea@tion” of the variable. Only when
we see the variable as an object, namely only when we canlgataaceive it as an object
consciously, we can substitute it, since we are aware agtasof potential representative
of any of the possible values in a certain range. Such fudtegr, in conclusion, is due to

our consciousness of the meaning of the variables.

After substitution, the original superposed state is lastfhe potentiality given by the
variable is lost. As we have observed, logic cannot recoost quantifier by means of
propositional logic, as physics cannot reconstruct thequgsed state after measurement.
This means that our objectivation of the variable destrégriginal richness, that is

hidden to our consciousness.

Hidden variables

Perhaps considering variables as logical first order vEsalas our approach suggests,

could allow a wider discussion concerning what variableamé order to discover, in
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particular, in which sense they should be hidden in quant@wohranics. One can hypoth-
ize a hidden treatment of variables, due to a logical reggaper of quantum mechanics.
In particular, the logical hidden treatment of variableshage hypothized allows to con-
sider the variable-link between assertions, in order toasgnt the entanglement link, by

the definitory equation:
[ k<yep, (AX);B(X)) = T,zeDz+ A(2.zB(2

The variable-link, interpreted in the usual logical franoeky gives false propositions.

This is why, ultimately, the variable must be hidden!

We remind that a quantum system with Hilbert sp&€@admits hidden variables if there
exists a measurable spaak, k) such that every stat¢ € H can be represented as a
probability measure,, on A, and every observablé as a measurable magk : A —

R, whose expectation value with respect/pis consistent with quantum mechanical

predictions:
i) = [ Adu,
A

(In such a scheme, the hidden variables A are thought as the subquantum extension

of the classical phase spaqe ) of Hamiltonian mechanics).

The proposal of hidden variable theories was made with tiretaisupport a realistic
view of quantum mechanics, but it has been observed ([Smat)dhe could interpret a
hidden variable theory as a simple counterfactual defisgneather than an actual value
definitness. Admitting such particular view, even if not onplated, perhaps, by the
original proposal, it makes a sense to look for an analogyden the above equality and
the position

'+ (Yxe D)A(X) = Ize D+ A(2

An integral is like an infinitary sum and its variable is boedd The domain of the
variable, in the integral above, is the sample spacé our interpretation, the quantifier
is also like an infinitary sum (cf. the intuitionistic integtation in [ML84]), its variable

IS bounded, and its range is a probabilistic domain. We demdbgical propositions
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on variables, on a domain given by an observable, ratherrieasurable maps on the
sample space representing an observable. Then it seem#hiat osir definitory equation

resembles the equality of the hidden variable theory reedrabove.

Contextuality

The hidden treatment of variables in building links betwassertions, in our hypothesis,
is that determined by the quantum computation. In terms qéieets, it is translated

into the adoption of parallel rules, rather than having sedalizable rules in presence
of contexts in the sequents. Note that a calculus performgaésence of contexts is
context-insensitive; context-sensitive calculi are thoswhich the context matters and
then, definitely, it is not a context any more. In such casaetls an actual link with the

context. The problem of contexts in sequent calculus, inrtexpretation by sequents,

can represent a direct translation of the problem of costexuantum mechanics.

In particular, the von Neumann-Gleason-Kochen-Speclasrdm proves that a hidden
variable theory compatible with the predictions of quantmechanics must be contex-
tual. A measurement context is defined as a set of commutisgreéibles. Then, any
measurement restricts the possible contexts to compaitigervables. The same fact
can be pointed out by sequents, as we have seen in sectidn Z2en again we find

a meet between the use of logical variables in sequent cslicak in our interpretation

of quantum computational parallelism, and the hidden éitheories and their conse-
quences. The computational framework of the interpretabyp sequents points out that

contextuality creates a computational advantage, thdmiildn’t be felt as a penalty.

Causality

We conclude with the problem of causality, that is also iehértthe interpretation by
sequents, at least at a formal level, if we consideryileéd in metalinguistic link, that

originates the logical implication, as a causal link.
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Logical implication is introduced by the following definripequation:
I'rA— B = I ArB

then it requires that the premisEsare a context with respect to the anteced®wf the

implication.

The variable-link, in its dual formulation B8R + L™, creates assertions of the form
A,Z BrA

In such caseA (or B) cannot be considered as antecedent of an implicationirtgea (or

A) as if it were a context. For, the variable-link creates a lelioat cannot be separated.
Then, where the entanglement is present, the implicatiamp®ssible, and conversely.
It seems that the stochastic nature of the variable link isontrast with the causality

expressed by the implication.
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Chapter 3

Quantum computation and unconscious

computation

We compare the semantical features of the computationathoddjuantum parallelism,
with some aspects of human thinking. The thesis is that hiinir@king adopts quantum
computational strategies. This is supported by quanturorthef mind, and by Matte

Blanco’s bi-logic.

3.1 Logical processes for the mind

The substantial failure of artificial intelligence, in aehing an imitation of the human
natural intelligence, has made clear that the logical meegthat have been considered up
to now are insfficient, if not unsuitable, in order to represent the humantiprocesses.
This is witnessed also by recent results in neuroscienesemed with the discovery of
mirror neurons. Indeed, such research has shown that thprebension of the meaning
of an action isn't obtained in proceduralway, namely by comparing the information
just achieved with those already present in a supposed atah the mind, that was
the way in which A.l. intended to explain and to re-create hnrsomprehension. In

some interpretations, research on mirror neurons has stimtrthe comprehension of
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the meaning of an action is obtained since the subject “ggsn” the action itself.

Then logic has the challenge to propose alternative logiided, which can reproduce the
process in our mind by an “imitation of nature”. We have tacdiger how our mind can
process assertions, without assuming logic as alreadygi8e we think that a tool as
the principle of reflection, we have exploited in justifyiagr logical rules, is particularly
suggested in order to obtain significant logical rules. Themre must furtherly discuss
what kind of truth has to be considered. As we will see belopa@consistent setting is

needed then.

3.1.1 Quantum mind and computation: Hamerdf-Penrose theory

The crucial problem is now: what are the processes of our mipdo now unexplored
from a computational point of view, that we should consid&rfairther question is: why

are they so hidden?

Following quantum theories of mind (see [At]), the quantumgesses, which take place
in our brain, contribute to form our mind. Then we could speékjuantum processes
in our mind. In particular, HameftbPenrose quantum theory of mind sets the quantum
processes of the brain in the tubulins, which are proteinaiftg the microtubuli, which

in turn are component of the neural cells. Tubulines are dincharacterized by two

different states, which are present in a quantum superposedriit

Following Hamerd-Penrose theory, the quantum processes in the tubuling the [@asis
of a distinction between unconscious and conscious stéathege the first would coincide
with the states of quantum superposition, consciousneskiwoincide with the moment
of the decoherence of the superposition. Following Penmaseh particular decoherence
wouldn’t be caused by an external factor (for example a nreasent), but by a sponta-
neous collapse, due to a quantum gravitational treshhdldsezmathematical description
cannot be translated into computational terms. This shoeilglpoint inherently non com-

putable in physics. This fact would have the same conseguerthe mind. Following
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Penrose, consciousness is non computable, and, for tisigimeartificial intelligence can

never be obtained.

However, it seems that Hamérd’enrose theory allows a better comprehension of our
mind from a computational point of view, since it allows tcsarer the couple of questions
posed above. For, it compels to consider the features oftgopracomputation in order to
describe the nature of the computation of our mind. Morea¥guantum computation
takes place only in the unconscious, we cannot be aware ofiitsequences, contrary to
the dfects of classical computation, of which we are aware. Thiglavallow to explain
why a fundamental part of the links between assertions padd by the mind would be

hidden to us.

Kurt Goedel, referring to the conclusions of his own incoetphess theorems, used to
say that an intelligent machine cannot exist, or at leasinhot be known to us. For, if
any such machine existed, and we were aware of its funcgomia should conclude that
it cannot compute some true facts, since our awareness fafnicsioning would allow
us to repeat the coding of the incompleteness theorems éheess Then, Alan Turing

observed that [Tu]

"...ifamachine is expected to be infallible, it cannot beaintelligent. There are several
theorems which say almost exactly that. But these theoraynsathing about how much

intelligence may be displayed if a machine makes no pretanicdallibility.”

Infallibility in logic means non contradiction, then onencascape the conclusions of
Goedel’s theorems dropping their assumption of consigte@€ course, no mathemati-
cian likes dropping such hypothesis. Anyway, if we want tgeve the computational
aspects of our mind, it is exactly what we need to do. Not bynchait is also what
we find in the computational models of quantum parallelisitimately, the judgements
“non computable”, given up to now, have referred to the faet something isn’ton-
sciouslycomputable. Just connecting computation and consciossuggests, now, that
we can try to reconstruct, consciously, unconscious pasastent strategies of computa-

tion. There is a hope they can reach an imitation of our oucgsses to achieve truth: no
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theorem goes against this fact.

3.1.2 Matte Blanco’s bi-logic

The idea of considering Matte Blanco’s bi-logic was suggediy Stuart Hameff in
order to find analogies for the computational model of theomscious he had found with

his quantum theory of mind.

As is well-known, the chilean psychoanalist I. Matte Blaqroposed a description of
the logic of the unconscious, syntetized after thirty yearslinical experience, in his
main bookThe uncounscious as infinite sg¥4B]. Bi-logic consists on the contraposition
between usual “bivalent” logic, that is proper of our consisireasoning, and the so called
“symmetric mode”, or “indivisible mode” proper of the unamous reasoning. Bivalent
logic is based on the two usual truth values, that are seggrand is consistent. In the
indivisible and symmetric mode, the opposites are identifiad unified into a whole
thing, for which negation is meaningless. It is governed hyriaciple of symmetry,
following which every relation is considered as if it werargyetric. In particular, the
part and the whole are identified. Such identification ishferly discussed in terms of
“infinite sets”, since, as concluded by Matte Blanco himselfen a set is identified with

a subset, they must have the same cardinality and hencettisardeite.

Matte Blanco’s method outlines precisely the fundamermigical features of the uncon-
scious with the aim of a better comprehension of the unconsdtself. Obviously, his

method has no computational purposes. Neverthless, wettiahthe features described
by Matte Blanco meet the features of the paraconsistentilcaldor quantum computa-
tion we have proposed, and some features of quantum corngutageneral, as we now

see. This can be considered an argument in favour of quanindy to.

Matte Blanco clearly describes a paraconsistent logicgtbsy. The absence of negation
finds its corresponding in the auto-duality we find for therguan states that are eigen-

vectors of theNOT gate (cf. section 2.3.1). Actually, every quantum statesasented by
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aV, summarizes pieces of information that are considereddsipg’ after measurement,
while they are present together before. Moreover, imgbeeitsn’t possible in presence
of the variable-link, and hence negation, if considerednéefioy means of implication.
Implication gives an asymmetric relation between propas#, hence its absence fits with
the symmetric mode of the unconscious. On the other sidesritenglement link gives
a symmetric kind of relation. Moreover, the idea of the “iitBnsets”, in our view, is
in accordance with the necessity of the variables in reptesgequantum parallelism, as
we see in more detail below. In particular, where substtuis impossible, one cannot
decide the equality, and hence the domain has to be condinhdirgte, since counting the
elements implies that one can always decide if they are exqunadt. In a second perspec-
tive, one can decide that two elements are always equal arue llee domain is identified
with a singleton, namely “the stereotype” for that classisTétreated in details by Matte
Blanco, in commenting his infinite sets. It could corresptmd computational solution,

as we see below.

3.2 Holistic thinking given by the variable

In quantum computation, the entanglement creates a ledtistd of link, where the whole
thing isn’t equivalent to the sum of its parts [DCGL2]. Thandbe read in two ways: the
sum of all parts is not enough to obtain the whole thing/anthe sum of all parts is not
necessary to it. This is like understanding a sentence, kgptive meaning of each word
(given that this is possible) isn’t enough to understandstér@ence, but, on the contrary,
sometimes it is possible to understand the sentence wikmouting some or even a lot of
its words. In this last sense, the holistic link is an advget®r our mind, that can exploit
it.

We might think that logic cannot deal with holistic linksnee logical connectives are
defined in a compositional way, but this is not the case of ipadete logic. Indeed,

in order to understand/k € D)A(X) we have, usually, two strategies: to consider each

62



element of the domain or to consider a generic element, asabl@ The second strategy
IS necessary when the domain is infinite, then it corresptmdsa “infinitary idea” of the
domain. In the second case, one creates a new logical eritiitgw composition of parts.

For this reason predicative logic gives room to the entangld link too.

Note that the variable becomes a part of our object-languagige adolescence, when
we reach self-consciousness. We can retain that the logioaksses of which we are
aware, described in classical predicate calculus, inteéarch idea of variable. Beside
this, it should exist a child-level for the variable, in whit is exploited in the process
of computation but not objectivized. For example, quite bigldren can understand
the meaning of a rule as “the last going out must close the’dduat, like every rule,
contains a variable), even if they are not able to understi@daneaning of a juridical
code or of a mathematical theory containing variables. f&melhildren are not even able
to understand the rule. Exploiting a sort of passage to thig, lone could say that the use
of variable in mental processes is even more inward, up tagoempletely unknown for
the subject. Moreover, it is plausible that the variablegptkas hidden as much one is far

from self-consciousness.

What is the advantage of all this? An enormous computatiandlcognitive advantage.
Children are “very bad” logicians, mainly in the first chilathd, anyway they have a neat
advantage in cognition. For example, children learn theherdtinguage in the first three
years, before the separation from the mother; the mothgukge must be achieved in
the first childhood, otherwise it is not possible any morel ainally a second language

can reach the level of the mother language only if acquirédrbe¢he end of childhood.

As we have seen in the previous chapter, the holistic linklpcing the entanglement is a
constraint in logic, since it is alternative to logical cegsence. Then our mind, linking
assertions, should adopt at least two modalities: the firsti® holistic, computationally
advantageous, through free unconscious associationsiables. We would like to call
it “pre-logical modality”. It doesn’t consider the usualith values, but rather aféierent

global truth that we describe at the end. The second one Igtenand methodologic,
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it gives up the free associations obtained by variablesvouaof a conscious use of
them, and so gives room to the logical consequence. Thiofastis a computational
mode of which we are aware, founded on the separation bettheetwo truth values,
even in a constructive setting for reasoning. It avoids thetradiction between them.
The two modalities are due tofterent modes in self-consciousness. It is clear that the
two modes are intertwined in our life and hence they givetosdifferent mixed types of
thinking. Moreover, we can have exchanges of roles witHatigzal &fects, that can also
be observed in our thinking. In particular, the dis-logiefiects concern the truth one
concludes, applying a pre-logical modality in presencéefttuth values we adopt in our

logical modality. We give below some examples of what we mean

The perfectionist and the manicheist

Manichaeist thinking is present in human thinking, botheémits of social, religious and
philosophical, proposals, and in terms of individual cosans, of which the subject is
often unaware. A short example: a very good but very depdessghematician. She
would never prove that, since every integer number is oddven.ethen every integer
number is odd or every integer number is even. But, when shekisd “What is wrong?”,
she answers “everything”. Then clearly she is not applylvegstame schema of reasoning
in the two cases. Of course, in the second case the schensdnleratd a wrong conclusion,

but her problem is that she feels it as true. We have the cas&oing truth.

An analogous problem arises with the perfectionist diativity, namely, in our view, the
schema that we have characterized as symmetric to the naastidistributivity. The
idea of perfection is also present in religious and phildscgd human thinking, with the
idea of the “perfect being” or the “perfect aesthetics”. Bver, itis an individual attitude
of mind one can often encounter, and which isn’t in accorddndhe usual treatment of
the existential statements in mathematics. For examplapleevho would like to get
married, but they cannot, because they are looking for a mamman with “all the best

features”. They cannot accept any husband or wife, sincenea@orresponds to the truth
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they have in mind, that is necessary for them.

The manichaeist thinking is also adopted in decision mgkivigen one needs to “hurry
up” and hence renounce to the analytical thinking, usuaiti Wad results. But, in psy-
chological research on decision making for marketing, & aso been discovered that
an unconscious strategy, rather that the usual analytreal consciously performed, is
adopted with better results. In such case, the advantagdpe africonscious reasoning in-
creases if the number of variables of the given problem i Figjk]. This could be a
confirmation of the hypothesis that thdfdrent treatment of variables gives the compu-

tational advantage to the unconscious reasoning.

Stereotyping

Another fact one can observe is the tendency to use steesgtgpmely to identify every
element of a certain class with a prototype. For examplegitat circumstances, one is
lead to consider every dog as the dog of her childhood, whiatcedes with The Dog.
In a different setting, someone who needs to reach a certainty almautaan unknown
person, often makes the choice of considering the persogentain class, applying then
her stereotype for that class. For example, one may comedw kmat the person is a

teacher, and then he applies his idea of teacher.

Stereotyping means to reduce every domain to a singletomeAsave noticed in section
2.3.3, this means that we can apply a paraconsistent regsaiihout renouncing to
truth. In some cases it can be that we are trying to recovettlatihat has been forgotten,
as in the case of the dog; in some other, we are desperately toyobtain some kind of
truth, that is a very poor one. Actually knowing somethinguatoa person is as filicult
as knowing the state of a quantum system, deciding that ise&gp state is to renunce to

the richness of the system allowed by quantum physics.
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Irreversible thinking

The so called “irreversible thinking” was first observed ligdet. We describe it by a typ-
ical example: there is a box containing several pieces ofdifierent colours (retlue),

two different sizes (bigmall), two diferent shapes (cirglequare). Then children up to
four years old can form two subsets distinguishing the sidnecolour, or by size, or
by shape. But, once they have made a choice of one of the tHfeeedt “observables”,
they doesn’t change her mind in favour of a secorftedent classification. Children if
encouraged, can do this at five years old. Children’s thopksnirreversible up to four

years old, in this example.

In our view, this corresponds to the computational advantdguantum mechanics, cre-
ated by the fact that non commuting observables are incobi@dsee 2.2.1). The non-
analytic thinking of children doesn't allow the increasioigcomplexity, while probably
it allows that other associations are created, so that thieiking is diferent and original
with respect to the adult thinking, and everyone can agragttbreates a dierent flavour

of life. Indeed, childhood is ofted considered as “lost”.

Perception and truth

One can make the hypothesis that we haveffedint associative thinking originated by
our first attitude of mind. For example, one can associatedifferent objects by colour,
something which was as red as ..., and so on. Usually peocefatrours associations, for
example one can remind something forgotten after hearirggtain sound, or smelling a
certain smell, or tasting a certain taste. The informati@pnocess is mainly achieved
by our senses, so one can make the hypothesis that a pasteahsetting is a particular
advantage in such case. This is confirmed by the fact thatohtist processes concerning
perception are unconscious, since the storage of all tbemation achieved is impossible

at the conscious level.

“None so deaf as those that won't hear”. Perception reqopes-minded people, without
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prejudices, the proverb says. One has to be ready to any fauth correct perception.
If an object can be black or white, we have to be ready to bolibues, considering that
both are possible with equal probability. L&t= {(black 1/2), (white 1/2)}. Then the

truth, namely the correct judgement, before perceptios the following form?:
(Vx € C)A(X)

Looking at the object is like a measurement, and then onerilg®oe of the two, black or
white. The diterence with quantum systems is that the object is always hagsstate,
black or white, not in a superposed state of black and whiteenT*black” or “white”
becomes a judgement, not a prejudice. This comes from oweriexe. Anyway the
best attitude of mind for an observer is the same attitudé@fobserver of a quantum
system. The fact that it isn’t a quantum system is discovémest, from experience.
Perhaps this induces everybody to disregard the origitidi@® of mind, and then the
original judgements processed by our mind, before the éxper of the external world,
that can be only experience of the macroscopic world, getapiper hand of us. Then one

conceives the Aristotelian truth values, for whiclfféifent kinds of processes are suited.

1This is also what is made evident by the famous pictures m@pm the 20's by the Gestalt psychology,

like, for example, the picture of the young-and-old lady.
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