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1 Quantum logic and the cube of logics

1.1 Introduction

Different forms of quantum logic can be axiomatized as a sequent calculus
([6], [11], [4], Tamura 1988, Nishimura 1994). This permits to investigate
such logics more and more deeply from the proof-theoretical point of view. A
sequent calculus for orthologic can be obtained from a calculus for classical
logic, by requiring a special restriction on contexts in the rules that would
permit to derive the distributive laws. The critical rules are the following:
the introduction of disjunction on the left, the introduction of conjunction
on the right, the rules concerning implication and negation. However, such
restriction determines some serious proof-theoretical difficulties, in a situa-
tion where we want to have a sufficiently strong negation that satisfies de
Morgan’s laws. The shortcoming becomes apparent when we try to prove
the cornerstone result, that is represented by a cut-elimination theorem. As
is well known, cut-elimination essentially depends on the formulation of the
rules that appear in our proofs.

A simple and compact sequent calculus for orthologic, ([9], [7]), which
admits cut-elimination by means of a neat procedure, can be obtained by a
convenient strenghtening of basic logic. Basic logic is a new logic that has



been proposed in order to find out a general structure for the space of logics
(see [13], [14], [2]).

In the framework of basic logic, constraints on contexts are not consid-
ered a limitation; on the contrary, they are regarded as a positive feature,
which is called wvisibility. At the same time, negation is treated by exploiting
the symmetry of the calculus: the main idea is to use Girard’s linear nega-
tion, which can be interpreted as an orthocomplement in a quite natural
way. This approach shows that orthologic (and non-distributive logics, in
general) admit a proof-theory, which turns out to be simpler than the proof-
theory for classical logic. Describing quantum logic in the framework of an
uniform and general setting gives some other advantages: for instance, this
permits us to study various logics and their mutual relations at the same
time. In particular, we obtain a whole gamma of quantum logics (including
linear orthologic; and for each of these logics we have a proof of the cut-
elimination theorem). Moreover, one obtains a new formulation for classical
logic (see [8]), with respect to which orthologic and the other quantum-like
logics (created by this method) turn out to be characterizable as substruc-
tural logics. On this basis it is easy to compare different logics, and to prove
embedding results (see [1]).

1.2 Basic logic and the cube of logics

As we already know, quantum logic represents a weakening of classical logic,
obtained by dropping the distributive laws. There are at least two other
important ways to weaken classical logic: intuitionistic logic and linear logic
([10]). The situation can be sketched as follows:
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It is natural to ask whether there exists a logic that represents a common
denominator for Q, I and L, in the same way as classical logic includes all
the other logics. A solution to this problem has been found in terms of a
suitable sequent calculus B, that represents a basic logic.



Differently from the calculi we have considered in the previous sections,
a sequent calculus for a given logic £ is based on azioms and rules that
govern the behaviour of sequents. Any sequent has the form

MEN

where M,N are (possibly empty) finite multisets of formulas’. Axioms are
particular sequents. Any rule has the form

MiFN, ... M,FN,
MFN

where My F Ny,..., M, b N, are the premises, whereas M F N is the
conclusion of the rule. Rules can be structural or operational. Operational
rules introduce a new connective, while structural rules deal only with the
structure of the sequents (orders, repetitions, etc.).

A derivation is a sequence of sequents where any element is either an
axiom or the conclusion of a rule whose premises are previous elements of
the sequence.

Basic logic has been introduced in [3], and substantially reformulated in
[14]. In its second formulation, given here in table 1.2%, it is characterized
by three strictly linked principles: reflection, symmetry, visibility, which
we briefly illustrate now. The reflection principle represents a method that
leads to the rules of the calculus, starting from metalinguistic links between
assertions. Such method analyses the following equivalences, which assert a
correspondence between language and metalanguage

MFa-§8 ifandonlyif MFaogrg

a-fFN ifand onlyif aop fFN

Here the generic sign “-”, corresponding to a metalinguistic link between

assertions, is translated respectively into the connective or, when it appears

YA multiset is a set of pairs such that the first element of every pair denotes any
object, while the second element denotes the multiplicity in which the object appears.
Two multisets are equal if and only if all their pairs are equal, that is all their objects
together with their multiplicities are equal.

2The formulation of the rules of B contained in [14] is based on finite lists rather
than finite multisets of formulas, and hence it contains in addition the structural rule of
exchange. Here we prefer to consider multisets, in order to obtain an easier comparison
with sequent calculi for quantum logics. Moreover, adopting the usual notation of quantum
logic, we will denote denote formulas by «, 3, ..., rather than by A, B,..., as it is more
common in proof theory and in particular in linear logic.
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Table 1: Basic sequent calculus B
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on the right of the sign F, and into the connective oy, when it appears
on the left. In B, rules for connectives are completely determined by such
equivalences. As a consequence, the meaning of a connective turns out to be
uniquely determined by the correspondence with a metalinguistic link, quite
independently of any link with a context. Since every metalinguistic link is
translated into a connective according to two specular ways, the system of
rules, obtained by this method, turns out to be strongly symmetric. In fact
B contains, for every axiom and for every (unary or binary) rule R

M; b N,
MFN

its symmetric rule R?, given by

N7 = M? R
N¢F M?
where the map (—)® is defined by induction (on the degree of formulas),
by putting o}, = oy, and oj = og, given a suitable correspondence between
propositional variables. In accordance with the reflection principle given
above, B satisfies the visibility property. A rule for a given connective is
called visible when the principal formula and the corresponding secondary
formulas appear in the rule without any context®.

As an example let us refer to a rule that plays an important role in the
case of quantum logic. As is well known, in classical logic, disjunction is
introduced on the left according to the following rule

M,o-N M,EN
M,aV3EFN

In the case of B, instead, disjunction is introduced in the following visible
form

aFN (BFN
aViBEN

where context M has disappeared.

From the intuitive point of view, one can read the difference between the
two cases as follows: the rule typical of classical logic attaches a meaning
to the connective V in presence of the link “.” with M (such a link is to be

®In any operational rule, the formula in the conclusion which contains the connective
introduced by the rule itself, that is the formula introduced by the rule, is called the
principal formula; the formulas in the premises which are the components of the formula
introduced by the rule are called the secondary formulas.



interpreted as a conjunction), whereas the visible rule is intended to explain
the meaning of the connective V by referring only to the connective itself.
In particular, the visible rule does not permit us to prove the equation that
links conjunction and disjunction ( the distributive law of A with respect to
V). As a consequence, any sequent calculus for a quantum logic shall adopt
the visible form for the rule that concerns the introduction of disjunction
on the left. As to the other rules, visibility is not strictly necessary in
order to obtain an adequate sequent calculus for quantum logic. However, a
more convenient strategy permits us to axiomatize quantum logic, by adding
only structural rules to basic logic, without any change in the rules for the
connectives. In this way, we can preserve the characteristic properties of
symmetry and visibility of B, that turn out to be highly convenient from
the proof-theoretical point of view (as we will see later).

Basic logic has been introduced in order to offer a general framework that
permits us to investigate various logics, including quantum logics. Actually,
no structural rule is present among its rules. Hence, as justified also by the
semantics given by the principle of reflection, basic logic can be seen as “the
logic of connectives”, from which various stronger logics can be obtained
by adding suitable structural rules, which permit us to deal with contexts.
We can first distinguish three main kinds of structural rules, labelled by the
letters L, R and S. The extensions of B resulting by the addition of any
combination of such rules can be organized in the following cube:

Picture 2
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that is conceived as an architecture whose basis is B. In the cube, every logic



with “S” satisfies the structural rules of weakening and of contraction?; every
logic with “L” allows left contexts in any inference rule; every logic with “R”
allows right contexts in any inference rule. In particular, the cube solves our
initial problem, sketched in picture 1. In fact, vertex BLRS, opposed to B
represents classical logic, vertex BLR and vertex BLS represent respectively
Girard’s linear logic and to intuitionistic logic; finally, vertex BS corresponds
to paraconsistent quantum logic (see next section). Moreover, since logics
with “R” are simply the symmetric copy of logics with “L”, logics containing
both “L” and “R” (BLRS, BLR) or logics containing neither (BS, B), are
symmetric. The study of quantum logics finds place in the diagonal of
symmetric logics.

1.3 Sequent calculus for Orthologic

The logic BS is non-distributive. Let us consider the fragment of BS re-
stricted to the connectives A and V. If we want to obtain, from it, a quantum
logic, what is still missing is an involutive negation, satisfying de Morgan.
This aim can be reached by extending the language to adopt Girard’s nega-
tion. The key point is to assume as primitive symbols of the language
both the propositional variables and their duals. In other words, the propo-
sitional literals are assumed to be given in pairs, consisting of a positive
element (written p) and of a negative one (written pt). On this basis, the
negation of a formula is defined as follows:

prtt=p (A Bt =atvpt (aV Bt =at Apt

With this choice, the calculus, denoted by 1BS (where the symbol * re-
minds us that the calculus is applied to a dual language), produces a logic,
here called basic orthologic, that turns out to be equivalent to paraconsis-
tent quantum logic (PQL), introduced in [5]. As we already know, PQL
represents a weakening of orthologic, that is obtained by dropping the non
contradiction and excluded middle laws. On this basis, a calculus for ortho-
logic, denoted by +O, is obtained by adding such laws. These are expressed
as two new rules named transfer, which are structural (since they modify
the structure of the sequent, without introducing any connective).

*In linear logic, connectives for conjunction and disjunction are distinguished into mul-
tiplicative and additive. In fact, there are two ways of formulating contexts in rules for
connectives, which lead to a moltiplicative or additive form for each rule. The multi-
plicative and additive formulation are equivalent in presence of the structural rules of
weakening and contraction. For this reason, the distinction is present in linear logic and a
fortiori in basic logic, where weakening and contraction fail, and vanishes in classical logic
and in orthologic.



The rules of L O are the following, where rows (i) up to (v) constitute
basic orthologic® whilst (vi) is transfer.

(7) ab o

abFN BEN MFoa MEQS
@) —avprnN VE MrFang MM
(iii)
akF N pEN ME o MEp
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(“]) m weakemng
M,0,0+ N,N,P ,
(v) M,OFN,P contraction
o MEN MEN_
(vi) M,N-+ FM-,N

The calculus O contains both p, ¢, r... and p*, ¢+, rt.
rule of the calculus, the calculus shall contain also the symmetric one. As
a consequence, whenever the calculus produces a derivation II, it will also
produce the dual derivation I, obtained substituting every axiom p - p
with the axiom pt F pt and every occurrence of rule with an occurrence of

the symmetric rule (e.g. AR with VL). On this basis one has the following:

... Moreover, for any

Lemma 1.1 The following rule is derivable for +O:

MFEN
N+t Mt

Proof.  One can see that M + N is derivable by a derivation II if and
only if Nt + M* is derivable by the symmetric derivation I1+. O

It is now immediate that:

®Note that, in *BS, weakening and contraction are redundant. In fact, one can see
that such a calculus admits elimination of contraction, whilst weakening on the right and
on the left can be simulated by AL and VR, respectively. So, PQL has a very simple
formulation, given by (i), (ii), (iii).



Theorem 1.1 +O is a calculus for orthologic.

We now see that the structure of the calculus +O allows to prove the
following cut-elimination result.

Theorem 1.2 L0 admits elimination of the cuts

OFp MyubEN OFu, P puEN
MoFN  cul OFN,P

cutR

Sketch of the proof. Like in Gentzen, the cut-elimination procedure is ob-
tained by induction on two parameters: degree and rank of the cut-formula®.

The calculus 1O permits us to overcome in a simple way two ques-
tions that usually make cut elimination for orthologic so complicated: (i)
constraints on contexts and (ii) negation. We give a sketch of the proof,
considering the two points. The first problem is solved by visibility and the
second by symmetry.

(i) As we have seen, in any calculus for quantum logic the rule that in-
troduces V on the left (here indicated with VL) shall have an empty
context on the left. Now consider, for a generic calculus, the derivation

abFyASd BEAYAS M,vE A
aviFyrs VP M AASFA
MaviFA cutl

In this derivation, the cut-formula is principal on the right premiss;
hence the right rank is 1. In such a situation, Gentzen’s procedure to
lower the rank must operate on the left; this would necessarily produce
the two derivations

abFyANS MyAdFA BEyYANS M,yANOFA

M aFA cutl M.AFA cutl

5Given a derivation and a sequent containing a formula occurrence a, we can consider
the paths, e.g. the successions of consecutive sequents, between that point and the point
where the formula is introduced, both as an axiom, or by weakening, or as the principal
formula of a rule on connectives. We define as rank the maximum among the lengths of
those paths. That is, intuitively, the ‘maximum length’ between the formula occurrence
we are examining and the point where that occurrence has been introduced.
The degree of a formula is, on the other side, its complexity, that is the number of
connectives it is composed of.



Now, one would like to conclude by applying VL in order to obtain
M,aV 8 F A. However, this step is here not allowed, unless M is
empty. Such a problem does not arise for the calculus O, because,
by visibility, every principal formula has an empty context.

(ii) In 1O the only rules about negation are the structural rules of transfer.
Let us consider a derivation of the form:

Il
MEp

OFut M uthk
K s cutl

M,0F

We can reduce the rank in a quick way, by exploiting symmetry. In
fact, Girard’s negation has the nice property that every formula «
and its dual at have exactly the same degree. The same idea can
be extended to derivations, and hence to the rank of a cut. As we
have seen in lemma 1.1, whenever we have a derivation II for the
sequent M F N, we also have the dual derivation IT+ , which derives
N+t + ML, The two derivations II and IIt have exactly the same
(symmetrical) structure. Hence in particular, if u is principal, ut is
principal. If y has rank r, then also u will have the same rank r.
In such a situation, in order to raise the cut rule, we can substitute
1T+ by I (flipping derivation). As a consequence, the initial derivation
will be simply reduced to:

1.4 Quantum logics and classical logic

We will now consider the symmetric diagonal of the cube in the following
diagram:

10



Picture 3
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where calculus O appears as an intermediate point between basic orthologic
and classical logic. Similarly, we have another intermediate point between
basic logic and linear logic: this is given by +B 4 tr, which represents
the common denominator for orthologic and linear logic (we will call it
“ortholinear logic” 1OL). In the same way, 1B turns out to be the common
denominator of basic orthologic and linear logic. On this basis, we obtain
a whole gamma of quantum logics, which are all cut-free. The last of our
logics, 1B + tr, seems to be a good candidate in order to represent a linear
quantum logic in the sense of Pratt ([12]).

So far we have only dealt with a fragment of basic logic, which has no im-
plication connective. With this linguistic restriction, we have easily proved
the equivalence between our calculi and the usual formulations of paracon-
sistent quantum logic and of orthologic. However, the same methods can
be naturally applied to the complete versions of our calculi, preserving cut-
elimination and flipping of derivations. In this way, we will have a primitive
implication connective — (together with its dual <) in every logic given
above. An interesting question to be investigated concerns the possibility of
physical interpretations of such new connectives.

In the diagram above, we have still a question mark concerning the path
from orthologic to classical logic. Our question can be solved as follows:

Theorem 1.3 A calculus for classical logic is obtained from a calculus for
orthologic by adding a pair of structural rules, named separation:
M,0OF FN,P
3 ———— sepl _—
(vit) Mt Ot
It is easy to see that, in the framework of L O, separation rules are equivalent
to the following form of cut

Myt pu, Ny My, ut Ny
M17M2 l_N17N2

cut

11



It is well known (cf. [Dummett 1976], [Cutland e Gibbins 1982]) that adding
such cut rule to orthologic yields classical logic. The theorem above gives a
more effective content to this fact; for, generally, in any calculus, cut is well
accepted only if it represents a metarule (that is eliminable).

It is natural to ask what is the meaning of sep. In the same way as the
tr rules are equivalent to tertium non datur and non contradiction, the sep
rules turn out to be equivalent to reductio ad absurdum ©

M, ot

MF o RAA

Let us consider again our picture 3, where the question marks have been
substituted by sep. Given the logic B as a basic calculus, which contains
the fundametal rules for the connectives, several structural rules can be
added: each rule permits us to reach a “superior” logic. The strongest
element is represented by classical logic, which can be characterized as be
1B+ S+ tr+ sep. With respect to such formulation for classical logic
(denoted by +C) all the other logic in the diagram can be described as
substructural logics: for, they can be obtained by dropping some structural
rules. This situation holds in particular for quantum logics, which turn out
to be simpler and more basic than classical logic, from the proof-theoretical
point of view.

As we have seen, the examples of quantum logic (we have considered so
far) are, at the same time, substructural with respect to classical logic and
substructural one with respect to the other. On this basis, on can prove
some embedding theorems, by convenient restriction of our structural rules
to suitable kinds of formulas, by means of special modalities. In the case of
linear logic, exponentials have been introduced in order to express weakening
and contraction. In the case of quantum logics, instead, we should obtain
rules of separation and of transfer in a suitable way. How to express the
separation rules in orthologic, in order to obtain an embedding of classical
logic into orthologic? Given 10O, let us first assume in the language, besides
the literals p and pt, two new kinds of literals, |p and |p*. This permits us
to obtain a new kind of formulas, that will be named “separable formulas”,
defined by the following clauses:

w=lp =t W= ldph) =t

In [Gibbins 1985, pag.361], Gibbins shows that dropping the rule RAA has a direct
justification in terms of quantum mechanics, and this is the only case of direct justification,
among all the rules which must be restricted in quantum logic.

12



for basic literals
HaoB) =laols

for every binary connective o.
Separable formulas are precisely those formulas that satisfy the separation
rules, which are then defined as follows:

M,LOF
(vii') ML Ot

-l N, P

861 —_—
bsep INTEP

1 sep2

where formulas in M, N are any kind of formulas, whereas formulas in | M,
LN are separable formulae. We can now introduce the system |+O, which
is defined by the rules of O and by the rules |sep. In this system, the sign
J plays the role of a modality, that is of a unary monothonic connective,
since, if M F N, is a derivable sequent in |+ O, then [ M F [N is a derivable
sequent in it too.

Let us consider now the system +C for classical logic, and let us consider
| as a map from formulas of the language of +C into formulas of the language
of |1 0. It is easy to show, by induction on the depth of the derivation, that
the following statement holds:

Proposition 1.1 For every M, N, M = N is derivable in +C if and only
if UM & LN is derivable in |+O.

which proves the embedding of +C in |+ O. Then it is clear that formulas of
the kind | are interpretable as “the classical part of |[*0”. Similarly to L,
the sign | does not represent here a connective; therefore, there is no need of
introduction rules. As a consequence, sequents like la F « or like o - Jov are
not provable (differently from the exponentials in linear logic). In this way,
the system |+ O is simply a way to represent the coezxistence of classical and
quantum logic: it does not assert that “classical” propositions are stronger
or weaker than “quantum” propositions. All this can be proved as in [1],
where an embedding of classical logic into basic orthologic is treated. All
proofs needed can be adapted to the case of orthologic.

References

[1] G. BATTILOTTI, Embedding classical logic into basic orthologic with a
primitive modality, Logic Journal of the IGPL, special issue on gener-
alized sequent systems, H. Wansing ed. to appear.

13



[2]

[3]

—, Logica di base attraverso il principio di riflessione, PhD thesis,
Universita di Siena, February 1997. advisor: G. Sambin.

G. BATTILOTTI AND G. SAMBIN, Basic logic and the cube of its exten-
stons, in Logic in Florence '95, A. Cantini, E. Casari, and P. Minari,
eds., Kluwer, 1997. to appear.

N. J. CuTLaNnD aND P. F.GIBBINS, A reqular sequent calculus for
quantum logic in which A and V are dual, Logique et Analyse - Nouvelle
Serie -, 25 (1982), pp. 221-248.

M. L. Darra CHIARA AND R. GIUNTINI, Paraconsistent quantum
logics, Foundations of Physics, 19 (1989), pp. 891-904.

M. DUMMETT, Introduction to quantum logic, 1976. Unpublished type-
script.

C. FAGGIAN, Basic logic and linear negation: a new approach to ortho-
logic, 1997. first draft.

C. Facaian, Classical proofs via basic logic, in Proceedings of the CSL
97, Aarhus, Denmark, August 23-29, L.N.C.S., Springer, 1997. to
appear.

C. FacgaianN aAND G. SAMBIN, From basic logic to quantum logics with
cut elimination. expanded abstract, Quantum Structures 96, Berlin,
Book of Abstracts, pp. 36-38 (the extended version to appear in the
proceedings of Quantum Structures Berlin 96, International Journal of
Theoretical Physics).

J. GIRARD, Linear Logic, Theoretical Computer Science, 50 (1987),
pp- 1-102.

H. NISHIMURA, Sequential method in quantum logic, Journal of Sym-
bolic Logic, 45 (1980), pp. 339-352.

V. R. PrATT, Linear logic for generalized quantum mechanics, in Proc.
Workshop on Physics and Computation (PhysComp’92), Dallas, 1993,
IEEE, pp. 166-180.

G. SAMBIN, Basic logic, a structure in the space of logic, 1997. in
preparation.

G. SAMBIN, G. BATTILOTTI, AND C. FAGGIAN, Basic logic: reflection,
symmetry, visibility, Journal of Symbolic Logic. to appear.

14



