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As is well known, the measurement process of a quantum state
w.r.t. an observable is a random variable, whose outcomes are
associated to elements of an orthonormal basis of the Hilbert
space associated to the system.

Let Z be the random variable produced by a measurement of a
certain particle in a certain state. This defines a set

DZ ≡ {z = (z′, p{Z = z′}) : z′ outcome}

that depends on the state and that we will term random first order
domain.
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We represent by a sequent

Γ ` A1, . . . ,An

the information A1, . . . ,An one can achieve at the same time from a
preparation of a quantum system, in certain hypothesis, all this
described in Γ.

This implies that we must refer to the measurement of the state.
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We consider a particle A and an observable producing a random
variable Z .

We know that

“In the measurement hypothesis Γ, the outcome is z′ with
probability p{Z = z′} for all pairs (z′, p{Z = z′}) ∈ DZ ”.

More formally, we write this “forall z ∈ DZ , Γ ` A(z)”

and finally we summarize the above assertion in the sequent

Γ, z ∈ DZ ` A(z)

(Γ does not depend on z)

We put the equivalence of the definitory equation of forall:

Γ ` (∀x ∈ DZ )A(x) ≡ Γ, z ∈ DZ ` A(z)

Then the proposition
(∀x ∈ DZ )A(x)

represents the superposed state of the particle.
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If state is representable in the Hilbert space C2, with orthonormal
basis {|0〉, |1〉} (for example: we consider Z given by the
measurement of the spin of a particle w.r.t. the z axis):

The outcome is |0〉 with probability a and |1〉 with probability b
(a + b = 1).
The random first order domain is

DZ = {(|0〉, a), (|1〉, b)}

The state is represented by

α|0〉+ β|1〉

(α, β ∈ C , |α|2 = a, |β|2 = b) as a vector and as

(∀x ∈ {(|0〉, a), (|1〉, b)})A(x)

as a proposition.
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When a = b = 1/2 (uniform distribution) we have (up to phase
factors) the “cat state”, written

1/
√

2|0〉+ 1/
√

2|1〉

as a vector of C2.

Its domain is
DU = {(|0〉, 1/2), (|1〉, 1/2)}

The state is represented by the proposition

(∀x ∈ DU)A(x)

When a = 0 we have the sharp state |1〉. Its domain is a singleton

D1 = {(|1〉, 1)}

It is represented by the proposition

(∀x ∈ D1)A(x)
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The case of a compound system, for example a couple of particles,
A and A′.

If the two particles are separated, that is, if the measurement result
on the first is independent from the measurement on the second,
we obtain two different independent random variables, Z and Z ′.

So we define two distinct domains DZ and D′Z and describe the
measurement of the compound system by the sequent:

Γ, z ∈ DZ , z′ ∈ DZ ′ ` A(z),A ′(z′)

that is converted into Γ ` (∀x ∈ DZ )A(x) ∗ (∀x ∈ DZ ′)A ′(x).

Example: the separated state
(1/
√

2|0〉+ 1/
√

2|1〉) ⊗ (1/
√

2|0〉+ 1/
√

2|1〉). The state of the
sistem is represented by the compound proposition

(∀x ∈ DU)A(x) ∗ (∀x ∈ DU)A ′(x)

(two different occurrences of the same first order domain, not
under the scope of the same quantifier).
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The case of entangled particles is different. In such case one does
not have independent measurements and variables.

We adopt a generalized n-ary quantifier, denoted ./n.

It is definable in a paraconsistent setting, in order to represent
entangled states. The proposition

./n
x∈DZ

(A1; . . .An)

represents the entangled state of n particles “sharing” the same
random variable Z , and hence the same r.f.o.d. DZ (in particular,
./1 is ∀).
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Example: the Bell’s states. They are couple of particles for which a
measurement of one of the two determines the symultaeous
identical (or opposite) result on the other. Then they share the
same random variable.

In C2 ⊗ C2 (whose orthonormal basis is {|00〉, |01〉, |10〉, |11〉}) their
representation as vectors is the following:

1/
√

2|00〉 ± 1/
√

2|11〉 1/
√

2|01〉 ± 1/
√

2|10〉

Their representation as proposition has the form

./2
x∈DU

(A1(x); A2(x))

where DU = {(|0〉, 1/2), (|1〉, 1/2)}.

Note that the domain DU is “simpler” than the state, since it is the
same domain of a particle of C2. Two particles share the same
domain.
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Let DZ = {(z, p{Z = z})} a domain where z ∈ {|0〉, |1〉}.

We put
D⊥Z ≡ {(z

⊥, p{Z = z})}

where the state z⊥ is the NOT of z.

D⊥Z is the dual domain of DZ .

The proposition with the dual domain

(∀x ∈ D⊥Z )A(x)

denotes the NOT of the state denoted by (∀x ∈ DZ )A(x).

1. In which terms can the definition of dual domain extend a
usual duality?

2. In which terms is the proposition (∀x ∈ D⊥Z )A(x) to be
considered a logical negation?
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Basic logic puts its definitory equations in symmetric pairs, e.g.:

Γ ` A&B ≡ Γ ` A Γ ` B

and
A ∨ B ` ∆ ≡ A ` ∆ B ` ∆

that are solved in a symmetric way finding couples of rules
“mirroring each other”.

Then, one finds symmetric sequent calculi (or couples of
symmetric sequent calculi) and a symmetry theorem:

Π proves Γ ` ∆ iff Πs proves ∆s ` Γs

where p = ps on literals and Πs has the right/left rule for ◦s where
Π has the left/right rule for ◦.

◦ and ◦s is the couple of logical constants corresponding to the
same metalinguistic link: (&,∨), (∗,⊗), (→,←).... (∀.∃).
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We see the case of ∀. The assertion
“forall z ∈ D, Γ ` A(z)”
considered in a symmetric way gives the assertion
“forall z ∈ D, A(z) ` Γ”
that, semantically, corresponds to the sequent A(z) ` Γ,¬(z ∈ D)
(a negation is required), that normally is converted into
z ∈ D,A(z) ` Γ, namely (∃z ∈ D)A(z) ` Γ.

Then, formally we have a symmetric representation of the state,
through the existential quantifier: (∃x ∈ DZ )A(x).
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In logic, the symmetry theorem becomes real when it is applied
considering a duality (−)⊥:

Γ ` ∆ iff ∆⊥ ` Γ⊥

where p⊥ is the negation of p and everything else is as for
symmetry. Symmetry acts as a real duality on connectives!

We can see that the duality (−)⊥ extends to our case.
We put:

A(z)⊥ ≡ A(z) (where z has its values in D⊥ in A(z)⊥!)

A(z/t)⊥ ≡ A(z/t⊥) (where t⊥ denotes the element obtained
as the NOT of the element denoted by t)

(z ∈ D)⊥ ≡ z ∈ D⊥

Then the dual representation of (∀x ∈ DZ )A(x) is (∃x ∈ D⊥Z )A(x).

We shall see that it extends the usual propositional duality.
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We need to see that (∀x ∈ D⊥Z )A(x) is a negation for
(∀x ∈ DZ )A(x) (it is consistent with the usual negation).

The quantum gate NOT , applied to sharp states, behaves as the
gate NOT of a classical computer. In our terms:

The proposition A(z), z a variable, says that the particle is found in
a generic state z′ with probability p{Z = z′} after measurement.

If we substitute the variable z by a closed term denoting a certain
fixed element of DZ , the other possibilities are lost.

Then substitution is the logical way to describe the collapse of the
superposed state due to the quantum measurement.

The collapse is described by the sequent

(∀x ∈ DZ )A(x) ` A(t)

that is provable by a substitution rule.
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In quantum mechanics there are two kinds of meaurements:
non-selective and selective. Non selective measurements yield the
mixed state given by all possible kinds of outcome with their
probabilities. Selective measurements select one kind, one state.
Then the result is a pure state with probability 1 (a sharp state).

In our setting, we represent the result of a non-selective
measurement on the state (∀x ∈ DZ )A(x) by the conjunction
A(t1)&A(t2), where t1 and t2 are the terms denoting the elements
of DZ .

The result of the measurement is represented by a propositional
and compound formula.
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In order to represent a selective measurement, we consider a
“forgetful substitution” which drops the real probability attributing
probability 1 to the outcome |b〉.
Then we obtain the sequent (∀x ∈ DZ )A(x) ` A(s), where s is a
term denoting (|b〉, 1).
A(s) is the proposition denoting the state of the particle after
measurement. A(s) must be identified with a sharp quantum state.
Then, only in this case, we require that the probability distribution
after measurement determines the state and put the axiom
A(s) ` (∀x ∈ {(|b〉, 1)})A(x).

Then it is A(s) = (∀x ∈ {(|b〉, 1)})A(x) (the sharp state is a
propositional state).

For the same reasons, we identify A(s) with (∃x ∈ {(|b〉, 1)})A(x)
in the symmetric representation.
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The propositions A(s) are like propositional literals p.
Since (∀x ∈ {(|b〉, 1)})A(x) coincides with A(s) that coincides with
(∃x ∈ {(|b〉, 1)})A(x), it is ps = p.
We obtain a consistent extension of the symmetry theorem.

The dual domain of the singleton {(|b〉, 1)} is the singleton
{(NOT |b〉, 1)}. If s⊥ denotes its element, the dual of the state A(s)
is A(s⊥)

The propositions A(s) and A(s⊥) are like a couple of propositional
literals: py and pn, that can be interpreted as a couple of opposites.

We obtain a primitive negation.

If we put p⊥y = pn and conversely, we obtain a consistent extension
of the duality theorem.
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On the other side, a random first order domain coincides with its
opposite when the domain corresponds to an eigenstate of the
NOT gate.

In C2, the domain DU = {(|0〉, 1/2), (|1〉, 1/2)} is equal to its dual.

In C2 ⊗ C2 the four maximally entangled states (Bell’s states) are
representable by means of an entanglement quantifier which has
the same domain DU.

So, in our setting, we have formulae which coincide with their
negation. We can consider them another kind of primitive literals
and label them by capital letters U. We term them “uniform
literals”. It is Uy ≡ Un.

Uniform literals aren’t propositional formulae and do not coincide
with their symmetric, with the existential quantifier. We must
distinguish universal literals U∀ and existential literals U∃, where
the symmetric of U∀ is U∃ and conversely.

On uniform literals duality coincides with symmetry: the dual of U∀
is U∃.
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The role of symmetry and duality is exchanged for uniform literals!

Since Uy ≡ Un, in U ` U′, U and U′ can be considered as asserted
and as rejected at the same time. This does not mean that the
sequent U ` U′ is like the sequent U′ ` U, since from U ` U′ one
has U′s ` Us . They can be distinguished w.r.t. the turnstyle ` by
symmetry.

In any proof Π containing U, U is considered asserted as well as
rejected. Only when we can substitute the variable, that is
bounded in U, by a term, we fix something.

Literals U are maximal with respect to this, since any other
component of a proof is obtained as a composition of elements
which admit a dual different from themselves.

It is important to gather as much information as possible in literals
U. This is what we represent.

The so called “massive quantum parallelism” exploits quantum
superposition and Bell’s states. Here we represent this when the
computation is a computation of assertions, namely a logical proof.
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Matte Blanco (The Unconscious as infinite sets):

there is the “bivalent mode” for the conscious thinking

there is the “indivisible/symmetric mode” for the unconscious
thinking, where “...the opposites merge to sameness”.
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