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Abstract

We show a correspondence between a predicative character-
ization of quantum states, we have recently introduced, and
bi-logic, a logical setting proposed by the Chilean psychoana-
lyst Ignacio Matte Blanco in order to describe the logic of the
unconscious.

Bi-logic

Bi-logic was described in the 70’s by the Chilean psychoana-
lyst Ignacio Matte Blanco.

Bi-logic has two modes:

• Asymmetric mode: proper only of the conscious reasoning.

It can deal with non-symmetric relations

It can separate objects

It permits ”normal” - sound - logic: two distinct truth
values

• Symmetric mode: it is the mode of the unconscious.

It has symmetric relations only

It gathers, identifies objects

It creates different links between judgements and has an
unsound logical behaviour.

By symmetry: any part is treated as the whole thing
So: any subset and the whole set are idempotent.

So, following Matte Blanco: the ”objects” of the unconscious
are infinite sets.

Other principle linked to symmetry: generalization: the uncon-
scious can make a set larger and larger.

Consequences of symmetry in logic:

• condensation −→ in logic:
the opposites coexist
no mutual contradiction - no negation

• no temporal processesa −→ in logic:
no algorithmic / step-by-step processes
no logical consequence

• displacement−→ in logic:
different hidden symmetric links between judgements
correlations???

aMB suggests to speak about ”manifestations” rather than ”processes” of the unconscious.

Finite and infinite sets:
Meta-level and object-level

Assume that D is any set. By the logical rules on ∃ and =, it is
provable that

z ∈ D ≡ (∃x ∈ D)z = x

However, even if we recognize that D = {t1, . . . , tn} is finite
at the metalevel,

z ∈ D ≡ z = t1 ∨ · · · ∨ z = tn

is not provable by the rules on the finite disjunction ∨a.

If the equivalence holds in a logic, it is possible to count the elements
of D in that logic: D finite in that logic.
If the equivalence does not hold, it is not possible to count the ele-
ments of D: D is infinite in that logic.

Then characterizing the set D as finite coincides with char-
acterizing the membership predicate by means of a proposi-
tional, rather than predicative, connective.

Moreover, the equivalence

z ∈ D ≡ z = t1 ∨ · · · ∨ z = tn

is provable if and only if

(∀x ∈ D)A(x) ≡ A(t1)& . . .&A(tn)

is provable for every A.

Then characterizing something by a propositional rather than
predicative formula can be told in terms of finite rather than
infinite sets.
aWe consider the intuitionistic disjunction.

Virtual singletons

Following Matte Blanco, two facts:

F1 Sets are all infinite - since the part is the whole thing

F2 Relations are all symmetric

Then two questions:

Q1 For which sets is every part equal to the whole thing?

Q2 For which sets is every relation symmetric?

Only one answer: FOR SINGLETONS!

Then, to follow Matte Blanco, we need
infinite sets acting as singletons!

By extensionality: Singletons are sets V for which there is an
element u of V such that, if z is any element of V , then z coin-
cides with u. Then we write V = {u}.

Inside a logic, extensionality is translated into the following
natural assumption:

z ∈ V ⊢ z = u

(where u is a closed term of the logical language denoting the
same element)

This renders singletons finite in that logic.

Finiteness of singletons seems quite unavoidable for a lo-
gician. However, singletons are not splitted by a disjunc-
tion: they are similar to infinite sets in this. They have a
borderline behaviour in logic. So, is our battle hopeless?

One can characterize singletons inside a logic, even without
assuming extensionality, as domains of quantifiers:

(∀x ∈ V )A(x) ≡ (∃x ∈ V )A(x)

for all formulae A.
Equivalentlya, one takes a duality d on propositions and puts:

z ∈ V,A(y) ⊢ A(z), (y ∈ V )d

This characterizes virtual singletons, possibly infinite.
Importing extensionality into our logic, V = {u} and this be-
comes: z = u,A(y) ⊢ A(z), y 6= u (that is provable). So, exten-
sional singletons are the finite shadow of virtual singletons.

Why are virtual singletons so unusual? Because any logic
closed by substitution can prove that any two elements of a

virtual singleton are equal.

aWe apply the definitory equations of basic logic.

Quantum correlations and displacement

We can suitably extend the equality

(∀x ∈ V )A(x) ∨B(x) = (∀x ∈ V )A(x) ∨ (∀x ∈ V )B(x)

that is trivially sound only if V is a singleton, to virtual sin-
gletons, and obtain a generalized symmetric quantifier. It per-
mits to represent the quantum correlations of the Bell’s states.

This is obtained widening the action of virtual sigletons to
the second order, considering ”virtual singletons of indexes of
formulae”. The correlation takes place since the same variable
is displace elsewhere, considering another index.

One can see that this is not compatible with the usual defini-
tion of logical implication since it implies a context-sensitive
treatment of information.

Displacement is a way to link judgements that is not present
in the conscious logical reasoning, however it is widely ex-
ploited by the mind. Following Matte Blanco, it takes place
by symmetry, since two subclasses are identified with a larger
class and then treated as identical. This is also a second-order
application of symmetry.
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Infinite sets in a model of quantum states

LetA be any particle. Let us fix an observable and measure it.
We have a random variable Z as an outcome:

DZ = {(s(z), p{Z = s(z)})}

is the set of the eventual outcomes s(z) with their probabili-
ties.

We consider the proposition A(z) ”particle A is found in state
s(z) with probability p{Z = s(z)}” - in the variable z.
Let Γ be the hypothesis on the preparation of A.
We write Γ, z ∈ DZ ⊢ A(z) to say that A(z) is a generic conse-
quence of the preparation.
Then, by definition of ∀, we derivea

Γ ⊢ (∀x ∈ DZ)A(x)

The proposition (∀x ∈ DZ)A(x) describes the state of the particle
A. The variable acts as a glue!

Assume that the observable is discrete and that we recog-
nize the outcomes t1, . . . , tn after measurement. Then DZ =
{t1, . . . , tn}. The measurement says that Γ ⊢ A(ti) for i =
1, . . . , n. By definition of &, it holds

Γ ⊢ A(t1)& . . .&A(tn)

The proposition A(t1)& . . .&A(tn) describes the mixed state, ob-
tained after measurement.

The consequence

(∀x ∈ DZ)A(x) ⊢ A(t1)& . . .&A(tn)

describes the collapse from the pure state to the mixed state
after measurement. This is proved by substituting the free
variable z by the closed terms ti. Substitution is like ”the col-
lapse of the variable”: Substitution represents measurement.

For any A, and hence any A, the equivalence

(∀x ∈ DZ)A(x) ≡ A(t1)& . . .&A(tn)

is true after measurement: by our characterization, DZ is fi-
nite.
The equivalence is not true prior to measurement: DZ is infi-
nite.

Quantum superposition corresponds to the infinite character of the
set DZ .

Notice: In our model, we say that DZ is focused/unfocused
rather than finite/infinite; one can see that defining an equal-
ity predicate which renders DZ focused, namely finite, is
equivalent to dropping the phase factors in the representation
of the state as a vector in the Hilbert space.

aWe apply the definitory equations of basic logic.

Symmetry in the spin model

We measure the spin of a particle w.r.t. the z axis. The sets
associated to the sharp states ↑ and ↓ are two singletons. The
formulae quantified on them are then equivalent to proposi-
tional formulae, say A↑ and A↓. We put a duality ⊥ switching
↑ and ↓. It translates the Pauli matrix σX (namely the NOT

gate) into logic. We extend it to all formulae and obtain a
negation (Girard’s negation), such that A ⊢ B if and only if
B⊥ ⊢ A⊥.

The dual states + and − are switched by the Pauli matrix σZ

and are eigenvectors for σX . Translating all this into logic, we
have a new duality ⊤ from σZ and extend ⊥.
The sets associated to+ and− contain the two opposite pieces of
information ↑ and ↓. The corresponding predicative formulae
are fixed point for negation ⊥.
Such formulae satisfy A ⊢ B if and only if B ⊢ A:
no direction for logical consequence.

Changing the measurement context and measuring the spin
w.r.t. x would produce an objective property for + and −,
that would be represented by singletons. However, different
spin observables are incompatible and so the sets associated to +
and − are virtual singletons, due to the duality ⊤ from σZ .

This is the logical framework expected by bi-logic: an asymmetric
mode where negation is meaningful, a symmetric mode where nega-
tion is meaningless, due to virtual singletons.


