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Abstract

We show a logical calculus where massive quantum parallelism is ex-
pressed. This is possible within an inconsistent logical framework, analo-
gous to the logic of the unconscious of I. Matte Blanco. We hypothize that
inconsistency is necessary to intelligence, since it gives strong computa-
tional and then cognitive advantages to our mind.

Alan Turing wrote:

”. . . if a machine is expected to be infallible, it cannot be also intelli-
gent. There are several theorems [Goedel’s incompleteness theorems]
which say almost exactly that. But these theorems say nothing about
how much intelligence may be displayed if a machine makes no pre-
tence at infallibility.”

Quantum Computational Speed Up

As it is well known, quantum computers would allow an enormous speed
up of computation. Quantum computational speed up is due to the so
called massive quantum parallelism, that is the parallel computation cre-
ated by the peculiar quantum features of information, namely quantum
superposition and quantum entanglement. Quantum superposition is the
co-existence, in the same particle, of different states, one of which will be
measured.
A quantum unit of information (qubit) is represented by the vector |q〉

|q〉 = a|0〉 ⊕ b|1〉

where a, b are complex numbers (probability amplitudes) s.t. |a|2+|b|2 = 1
and |0〉, |1〉 are two orthogonal unitary vectors. |q〉 is then the superposi-
tion of the two states |0〉, |1〉, where |0〉 will be measured with probability
|a|2 and |1〉 with probability |b|2.
Two qubits are maximally entangled when they are represented by one of
the following four states (Bell’s states)

|q1q2〉 = 1/
√

2|00〉 ± 1/
√

2|11〉 |q1q2〉 = 1/
√

2|01〉 ± 1/
√

2|10〉

This means that the two states |0〉 and |1〉 are equally probable after mea-
surement, and that the measurement of one of the two is determined by
the measurement of the other.

Consciousness as a quantum phenomenon

Do quantum phenomena contribute to make our mind? Several theories
have been proposed. In 1989 Roger Penrose suggested that consciousness
involved a type of quantum computation involving quantum state reduc-
tion in the brain, implying that processes utilized quantum information -
superpositions of multiple possibilities (i.e. quantum bits or qubits). Pen-
rose further proposed that the specific type of quantum state reduction
was caused by quantum gravity due to an objective treshold - a critical
separation in spacetime geometry underlying the superpositions, and sub-
sequently defined a treshold for such “objective reduction”. In 1994 Pen-
rose and Hameroff proposed that the quantum information in our brain
(our qubits!) was located in tubulines, in turn component of microtubules
in the brain’s neurons. The quantum computation in microtubules was
described as being “orchestrated” by feedback through synapses, and the
model thus called “orchestrated objective reduction”, or Orch OR.
Following such theory, our mind avails of quantum computation, but can-
not be aware of it, since it is unconscious. This could be an explanation
of the reason for which, up to now, we has been able to grasp a so poor
idea of computation, which cannot give back results comparable with the
natural ones.

The logic of the unconscious: Matte Blanco’s
infinite sets

Which features of the unconscious could reveal its quantum computa-
tional origin? What could such origin imply in cognitive terms? We have
tried to answer in logical terms. In fact, logic can link semantics with
syntax, that is, it can focus what our mind retains true in a certain com-
putational framework, that can be a classical or a quantum framework.
To this aim, we have considered bi-logic, proposed by the chilean psy-
coanalyst I. Matte Blanco, that is the unique systematic study concerning
the logic of the unconscious. Following Matte Blanco, the ”symmetrical
mode” underlies our unconscious reasoning. In it, every relation is con-
sidered symmetrical. The main logical consequences are:

- Paraconsistency: contradiction is not forbidden. On the contrary,
two opposite facts can be retained true at the same time.

- Meaningless negation.

- No true implication: reversibility of logical consequence due to the
symmetrical treatment of any relation, including consequence.

- Treatment of any set as an infinite set.

The last point is furtherly precised as follows: The only unit for the (symmet-
rical) unconscious is the class, or set, in which all individuals belonging to it are
included. The unconscious cannot, therefore, deal with parts, except by treating
them as classes or sets. As a consequence, the unconscious cannot recog-
nize individuals, and our sound treatment of first order logical variables
ranging on sets of individuals is not suited to its reasoning.

Basic logic: from metalinguistic links between
assertions to logical rules

Following basic logic, logical connectives are the result of importing into
the formal language some pre-existing meta-linguistic links between as-
sertions. Such links, for the propositional case, are ”and” and ”yields”.
The metalinguistic link ”yields”, is the consequence relation between two
logical judgements, that is it puts two assertions together in a sequential
way. It is translated into the connective of implication →. If assertions
are represented by sequents, its rules are obtained solving the following
definitional equation:

Γ ` A → B ≡ Γ, A ` B.

This is the equation for the true intuitionistic implication. In basic logic,
implication is weaker. This goes well with the inconsistent framework
a la Matte Blanco we are searching. The metalinguistic link ”and” links
two logical judgements at the same level, that is considered ”in parallel”.
Two kinds of connectives correspond to ”and”: the additive and the mul-
tiplicative. In sequents, we can represent them at the right or at the left
of the sequent sign. Representing at the right, we solve the definitional
equations:

Γ ` A&B ≡ Γ ` A Γ ` B

Γ ` A � B ≡ Γ ` A, B

from which the rules of the additive conjunction & and the multiplicative
disjunction, here denoted �.
For the predicative case, the metalinguistic link ”forall”, at the right, gives
the equation for the universal quantifier ∀:

Γ ` (∀x ∈ D)A(x) ≡ Γ, z ∈ D ` A(z)

(where Γ does not depend on the free variable z!)
If D is any two-elements domain, e.g. D = {|0〉, |1〉}, the equation for
the binary connective & follows from the equation for ∀. Moreover the
quantifier can be interpreted as an infinitary additive connective.
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A logical approach to quantum parallelism

So, one obtains two kinds of parallelism in logical derivations: the ad-
ditive and the multiplicative. The multiplicative connectives are usually
considered to model parallel processes. We have proposed that additive
connectives can give a logical representation of quantum superposition,
responsible of quantum parallelism. The qubit |q〉 is represented by the
proposition A&A⊥. If we consider the two kinds of ”and” together, we
obtain a complex link. The question is: Is there a logical connective for a
complex link? A possible answer is the following: we have a connective
when the link is effectively given in a unique way. A temptative interpre-
tation of such effectiveness is the following: it occurs when the syntactical
order is irrelevant, that is when the point is the whole so created, not the
particular nesting of the two simple links forming the complex one. This
is distributivity:

A � (B&C) = (A � B)&(A � C)

In a predicative setting, we can interpret superposition by the quantifier
∀. What about its relation with the multiplicative �? The sequent

(∀x ∈ D)A(x) � (∀x ∈ D)B(x) ` (∀x ∈ D)(A(x) � B(x)

is derivable. The opposite sequent

(∀x ∈ D)(A(x) � B(x) ` (∀x ∈ D)A(x) � (∀x ∈ D)B(x)

is clearly false, and plenty of counterexamples can be found, interpreting
� as a normal disjunction. We see what one should allow in an attempt
to derive it. In the first derivation, we see that it is derivable dropping the
conditions on the free variable in ]:

A(z) ` A(z) B(z) ` B(z)

A(z) � B(z) ` A(z), B(z)
� r

(∀x ∈ D)(A(x) � B(x) ` A(z), B(z)
∀r

(∀x ∈ D)(A(x) � B(x)) ` (∀x ∈ D)A(x), B(z)
∀f]

(∀x ∈ D)(A(x) � B(x)) ` (∀x ∈ D)A(x), (∀x ∈ D)B(x)
∀f

(∀x ∈ D)(A(x) � B(x)) ` (∀x ∈ D)A(x) � (∀x ∈ D)B(x)
� f

In the second derivation, we see that dropping the condition can be ”hid-
den” by a sort of parallel formation rule for ∀:

A(z) ` A(z) B(z) ` B(z)

A(z) � B(z) ` A(z), B(z)
� r

(∀x ∈ D)(A(x) � B(x) ` A(z), B(z)
∀r

(∀x ∈ D)(A(x) � B(x)) ` (∀x ∈ D)A(x), (∀x ∈ D)B(x)
∀f‖

(∀x ∈ D)(A(x) � B(x)) ` (∀x ∈ D)A(x) � (∀x ∈ D)B(x)
� f

Such derivation creates the logical expression of Bell’s states, considering
D = {|0〉, |1〉}. In fact the Bell’s pair |q1q2〉 = 1/

√
2|00〉 ± 1/

√
2|11〉 is

here the proposition (∀x ∈ D)(A(x) � B(x)), the derived sequent (∀x ∈
D)(A(x) � B(x)) ` (∀x ∈ D)A(x) � (∀x ∈ D)B(x) states that it is all
the information stored in the two-qubit register given by q1 and q2, that is
represented by (∀x ∈ D)A(x) � (∀x ∈ D)B(x).
In the last derivation, we show that the derivations above would be pos-
sible without any variation on rules, if inconsistent axioms of the form
B(z) ` B(y), where y, z are distinct first order variables ranging on the
domain D, were assumed.

A(z) ` A(z) B(z) ` B(y)

A(z) � B(z) ` A(z), B(z)
� r

(∀x ∈ D)(A(x) � B(x) ` A(z), B(y)
∀r

(∀x ∈ D)(A(x) � B(x)) ` (∀x ∈ D)A(x), B(y)
∀f

(∀x ∈ D)(A(x) � B(x)) ` (∀x ∈ D)A(x), (∀x ∈ D)B(x)
∀f

(∀x ∈ D)(A(x) � B(x)) ` (∀x ∈ D)A(x) � (∀x ∈ D)B(x)
� f

We argue a computational equivalence with the logical setting described
by Matte Blanco, where the elements of a domain cannot be determined
and hence axioms of the form B(z) ` B(y) are assumed.


