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Sequent calculus and quantum parallelism
GIULIA BATTILOTTI

Department of Philosophy, University of Florence, ITALY

Challenge: find an explanation to the quantum computational
speed up (due to superposition and entanglement) in terms of
logical proofs.

The cube of logics

Basic logic B is a core for sequent calculus. Its rules for con-
nectives are given through metalinguistic links. It is extended
to calculi for well-known logics by the addition of structural
rules. This is representable in the following cube:

B = Basic Logic
BL ∼ Linear Intuitionistic BR ∼ Dual Linear Intuitionistic
BS ∼ Paraconsistent Quantum
BLS ∼ Intuitionistic BRS ∼ Dual Intuitionistic
BLR ∼ Linear
BLRS ∼ Classical

In B and BS rules have no context near active formulae. In
logics with ”L” left contexts are allowed, in logics with ”R”
right contexts are allowed.

We look for a sequent calculus which describes quantum parallelism
as a further extension of B

Connectives from metalinguistic links

In basic logic we consider the following metalinguistic links
between assertions: yield, and, forall.

1. yield links two assertions at a different level, in a sequen-
tial way.

2. and links two assertions at the same level, in a parallel
way.

3. forall links assertions with a variable in common. The
variable is the reason of the link.

Let us represent assertions by sequents. Then logical connec-
tives and their rules in sequent calculus are the result of im-
porting the links into the object level. This is obtained solving
the following definitory equations:

1. Γ ⊢ A → B ≡ Γ, A ⊢ B
Γ, A ⊢ B represents the sequential link between A and B,
in presence of a left context Γ. Then implication → is a
way to import sequentiality and this is possible only in
logics with ”L”.

2. Γ ⊢ A&B ≡ Γ ⊢ A Γ ⊢ B
Γ ⊢ A · B ≡ Γ ⊢ A, B
The couple of sequents Γ ⊢ A Γ ⊢ B is the additive way
to represent and; the comma in the sequent Γ ⊢ A, B is the
multiplicative way to represent the parallel link between
A and B.

Then parallelism is imported in two ways: the additive
(by the additive conjunction &) and the multiplicative
(by the multiplicative disjunction, here denoted by ·).

3. Γ ⊢ (∀x ∈ D)A(x) ≡ Γ, z ∈ D ⊢ A(z), z not free in Γ
Γ, z ∈ D ⊢ A(z) gathers all assertions A(z) depending on
a free variable on the domain D. This is imported by the
quantifier ∀.

Since Γ does not depend on z, ∀ inherits the features of
the additive parallelism, enforced by the common vari-
able.

(Equations corresponding to the additive disjunction ⊕, the
multiplicative conjunction ⊗ and the existential quantifier ∃
can be obtained symmetrically).

Additive + multiplicative parallelism

Combining additive and multiplicative parallelism is allowed
by the distributive law of multiplicative connectives w.r.t ad-
dive connectives. The distributive law A · (B&C) = (A&B) ·
(A&C) is provable in logics with ”R”. Distributivity is ex-
tended to the predicative case as follows:

(∀x ∈ D1)A(x)·(∀x ∈ D2)B(x) = (∀x ∈ D1)(∀y ∈ D2)(A(x)·B(y))

(classical distributivity).

This requires independent variables in A, B. Computational
drawback: exponential increasing of complexity in the num-
ber of independent variables.

Distributivity with dependent variables:

(∀x ∈ D)A(x) · (∀x ∈ D)B(x) = (∀x ∈ D)(A(x) · B(x))

fails. Reason: it is false!!! Computational advantage: no ex-
ponential increasing of complexity with dependent variables.

It would be proved by the following parallel rule:

Γ, z ∈ D ⊢ A(z), B(z)

Γ ⊢ (∀x ∈ D)A(x), (∀x ∈ D)B(x)
∀‖

which fails due to restriction on variables on the right, neces-
sary when formulae can pass from right to left. This does not
hold in B. So adopting the above rule as such in B would be
possible, but would cause inconsistency in its extensions.

A new predicative connective

Idea: good = computationally convenient
(in a paraconsistent framework)

To obtain a better ∀‖ rule: consider a common variable as a
further link.

In Γ ⊢ A(z), B(z) the comma says also ”there is a variable in
common, or there used to be a variable in common above in
the derivation”. So we write ,z for it, and put the definitory
equation:

Γ ⊢ A 1 B ≡ Γ ⊢ A,z B

The common link ,z allows the parallel application of the ∀-
rule:

Γ, z ∈ D ⊢ A(z),z B(z)

Γ ⊢ (∀x ∈ D)A(x),z (∀x ∈ D)B(x)
∀‖

It allows to prove distributivity in the following form:

(∀x ∈ D)A(x) 1 (∀x ∈ D)B(x) = (∀x ∈ D)(A(x) 1 B(x))

(Bell’s distributivity).

This creates a unique multiplicative-additive quantifier

⊲⊳x∈D (A(x); B(x))

corresponding to (∀x ∈ D)A(x) 1 (∀x ∈ D)B(x) or to (∀x ∈
D)(∀x ∈ D)A(x)) 1 B(x) equivalently.

⊲⊳ exploits dependent variables and is defined by the equa-
tion:

Γ ⊢⊲⊳x∈D (A(x); B(x)) ≡ Γ, z ∈ D ⊢ A(z),z B(z)

Substitution of the variable z by a closed term t destroys the
,z-link. Γ ⊢ A(z),z B(z) becomes Γ ⊢ A(t), B(t) where the
comma is the usual comma of sequent calculus.

Quantum Computational Speed Up

Quantum computational speed up is due to the so called mas-
sive quantum parallelism, that is the parallel computation cre-
ated by the peculiar quantum features of information, namely
quantum superposition and quantum entanglement. Quan-
tum superposition is the co-existence, in the same particle, of
different states, one of which will be measured.
A quantum unit of information (qubit) is represented by the
vector |q〉 = a|0〉⊕b|1〉 where a, b are complex numbers (prob-
ability amplitudes) s.t. |a|2 + |b|2 = 1 and |0〉, |1〉 are two or-
thogonal unitary vectors. |q〉 is then the superposition of the
two states |0〉, |1〉, where |0〉 will be measured with probability
|a|2 and |1〉 with probability |b|2.
Two qubits are maximally entangled when they are repre-
sented by one of the following four states (Bell’s states)

|q1q2〉 = 1/
√

2|00〉±1/
√

2|11〉 |q1q2〉 = 1/
√

2|01〉±1/
√

2|10〉

This means that the two states |0〉 and |1〉 are equally probable
after measurement, and that the measurement of one of the
two is determined by the measurement of the other.

Quantum superposition by quantifiers

In probability theory an experiment is a random variable Z
with an associated probability measure pZ .

Let A be a quantum system. A quantum measurement on A
is an experiment, considering the possible outcomes as a ran-
dom variable. The set of possible outcomes is an orthonor-
mal basis B of the Hilbert space of A. Let D = D(Z, pZ) =
{(z, p{Z = z} : z ∈ B} such set. Let Γ a set of hypothesis of
the experiment. Of course, they cannot depend on the out-
come of the experiment.

The assertion Γ z ∈ D ⊢ A(z) is ”forall possible outcomes z
in D, in the hyporthesis Γ, the possible result of the measure-
ment of A is z”. Since Γ does not depend on z, we put the
equivalence of the definitory equation of forall: Γ ⊢ (∀x ∈
D)A(x) ≡ Γ z ∈ D ⊢ A(z)
Then the proposition (∀x ∈ D)A(x) represents quantum su-
perposition.

In particular, the derivable sequent (∀x ∈ D)A(x), z ∈ D ⊢
A(z) says that the particle described by the proposition (∀x ∈
D)A(x) can be found in state z for any z. Substituting z by
a closed term t, one has that the superposition (∀x ∈ D)A(x)
is converted into A(t), t corresponding to a fixed element of
the orthonormal basis. The other possibilities are lost. This
describes a collapse. Substitution destroys superposition.

Example: A a particle, the domain DZ given by the mea-
surement of the spin of A along the z axis. DZ has got
two elements: |↑〉 and |↓〉 (the two directions of the spin).
(∀x ∈ DZ)A(x) represents the superposed state of the two di-
rections of the spin along the z-axis. (∀x ∈ DZ)A(x) ⊢ A(|↑〉)
says that A is found in the ”up” direction along the z-axis.

Quantum entanglement

Let A and B be two entangled particles, for example two elec-
trons with opposite spin. The possible result of a measure-
ment of the spin along the z axis, performed on A or on B, is
equally described by the assertion Γ, z ∈ DZ ⊢ A(z),z B(z).

The corresponding state is then described by the proposition

⊲⊳x∈DZ
(A(x); B(x)).

and we have Bell’s ditributivity for entangled particles.
As above, a substitution by a closed term destroys the super-
position, hence the entanglement.

Let C and D be two separated particles. A possible measure-
ment of C is described simply by Γ, z ∈ DZ ⊢ C(z). Mea-
surements on both particles are also possible and described
by Γ, z ∈ D, y ∈ DZ ⊢ C(z), D(y), where z and y are indepen-
dent variables. Measurements on both particles and on dif-
ferent axix (e.g. the z-axis for C and the y-axis for D) are also
possibles and described by Γ, z ∈ DZ , y ∈ DY ⊢ C(z), D(y)
(different domains). In both cases, one has classical distribu-
tivity with exponential growth of complexity.

Conclusion: entanglement creates Bell’s distributivity and inhibits
classical distributivity.
From this the quantum computational speed-up.

Alan Turing wrote:

”. . . if a machine is expected to be infallible, it cannot be also intelli-
gent. There are several theorems [Goedel’s incompleteness theorems]
which say almost exactly that. But these theorems say nothing about
how much intelligence may be displayed if a machine makes no pre-
tence at infallibility.”
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