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Challenge: find an explanation to the quantum computational
speed up (due to superposition and entanglement) in terms of
logical proofs.

The cube of logics

Basic logic B is a core for sequent calculus. Its rules for con-
nectives are given through metalinguistic links. It is extended
to calculi for well-known logics by the addition of structural
rules. This is representable in the following cube:
BLRS
BRS
BLS,

BLR
BR

BL

B = Basic Logic

BL ~ Linear Intuitionistic = BR ~ Dual Linear Intuitionistic
BS ~ Paraconsistent Quantum

BLS ~ Intuitionistic = BRS ~ Dual Intuitionistic

BLR ~ Linear

BLRS ~ Classical

In B and BS rules have no context near active formulae. In
logics with “L” left contexts are allowed, in logics with "R”
right contexts are allowed.

We look for a sequent calculus which describes quantum parallelism
as a further extension of B

Additive + multiplicative parallelism

Combining additive and multiplicative parallelism is allowed
by the distributive law of multiplicative connectives w.r.t ad-
dive connectives. The distributive law A - (B&C') = (A&B) -
(A&C) is provable in logics with “R”. Distributivity is ex-
tended to the predicative case as follows:

(Vz € Dy)A(z)-(Vz € Dy)B(z) = (Vx € Dy)(Vy € Da)(A(x)-B(y)
(classical distributivity).

This requires independent variables in A, B. Computational
drawback: exponential increasing of complexity in the num-
ber of independent variables.

Distributivity with dependent variables:
(Vx € D)A(z) - (Vz € D)B(z) = (Vx € D)(A(z) - B(x))

fails. Reason: it is false!!! Computational advantage: no ex-
ponential increasing of complexity with dependent variables.
It would be proved by the following parallel rule:
I'ze DF A(z), B(z)
I' (Vo € D)A(z), (Vo € D)B(x)
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which fails due to restriction on variables on the right, neces-
sary when formulae can pass from right to left. This does not
hold in B. So adopting the above rule as such in B would be
possible, but would cause inconsistency in its extensions.

Connectives from metalinguistic links

In basic logic we consider the following metalinguistic links
between assertions: yield, and, forall.

1. yield links two assertions at a different level, in a sequen-
tial way.

2. and links two assertions at the same level, in a parallel
way.

3. forall links assertions with a variable in common. The
variable is the reason of the link.

Let us represent assertions by sequents. Then logical connec-
tives and their rules in sequent calculus are the result of im-
porting the links into the object level. This is obtained solving
the following definitory equations:

1.THFA—-B = T,AFB
I', A+ B represents the sequential link between A and B,
in presence of a left context I'. Then implication — is a
way to import sequentiality and this is possible only in

logics with "L”.
2I'FA&YB = T'HFA T'HB
I'tA-B = T'HARB

The couple of sequentsI' - A T' I B is the additive way
to represent and; the comma in the sequent I' - A, B is the
multiplicative way to represent the parallel link between
Aand B.

Then parallelism is imported in two ways: the additive
(by the additive conjunction &) and the multiplicative
(by the multiplicative disjunction, here denoted by -).

3.TH(Vxe D)A(x) = T,z€ DF A(z), znot freein T’
I,z € D - A(z) gathers all assertions A(z) depending on
a free variable on the domain D. This is imported by the

quantifier V.

Since I' does not depend on z, V inherits the features of
the additive parallelism, enforced by the common vari-
able.

(Equations corresponding to the additive disjunction @, the
multiplicative conjunction ® and the existential quantifier 3
can be obtained symmetrically).

A new predicative connective

Idea: good = computationally convenient
(in a paraconsistent framework)

To obtain a better V|| rule: consider a common variable as a
further link.
InT F A(z), B(z) the comma says also “there is a variable in
common, or there used to be a variable in common above in
the derivation”. So we write ,, for it, and put the definitory
equation:

TFAXB = TFA.B

The common link ,. allows the parallel application of the V-

rule:
I'ze DF A(z),, B(z)

't (Vz € D)A(x),, (Vo € D)B(x)

It allows to prove distributivity in the following form:
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(Vo € D)A(x) X (Vz € D)B(z) = (Vx € D)(A(z) X B(x))
(Bell’s distributivity).
This creates a unique multiplicative-additive quantifier
>uep (A(z); B(z))

corresponding to (Vz € D)A(z) X (Vx € D)B(z) or to (Vz €
D)(Vz € D)A(z)) W B(z) equivalently.

> exploits dependent variables and is defined by the equa-
tion:

I'b<pep (A(x); B(z)) = T,ze€ DF A(z2),, B(z)

Substitution of the variable z by a closed term ¢ destroys the
w-link. T' + A(z),, B(z) becomes I' - A(t), B(t) where the
comma is the usual comma of sequent calculus.

Quantum superposition by quantifiers

In probability theory an experiment is a random variable Z
with an associated probability measure p.

Let A be a quantum system. A quantum measurement on 4
is an experiment, considering the possible outcomes as a ran-
dom variable. The set of possible outcomes is an orthonor-
mal basis B of the Hilbert space of A. Let D = D(Z,pz) =
{(z,p{Z = 2} : = € B} such set. Let I a set of hypothesis of
the experiment. Of course, they cannot depend on the out-
come of the experiment.

The assertion I z € D + A(z) is “forall possible outcomes =z
in D, in the hyporthesis I', the possible result of the measure-
ment of A is z”. Since I' does not depend on z, we put the
equivalence of the definitory equation of forall: T' - (Vx €
D)A(z) = TzeDF A(z)

Then the proposition (Vo € D)A(x) represents quantum su-
perposition.

In particular, the derivable sequent (Vo € D)A(z),z € D
A(z) says that the particle described by the proposition (Vz €
D)A(x) can be found in state z for any z. Substituting z by
a closed term t, one has that the superposition (Vz € D)A(z)
is converted into A(t), ¢ corresponding to a fixed element of
the orthonormal basis. The other possibilities are lost. This
describes a collapse. Substitution destroys superposition.

Example: A a particle, the domain D given by the mea-
surement of the spin of A along the z axis. Dz has got
two elements: |1) and ||) (the two directions of the spin).
(Vx € Dz)A(x) represents the superposed state of the two di-
rections of the spin along the z-axis. (Vz € Dz)A(z) F A(|T))
says that A is found in the "up” direction along the z-axis.

Quantum entanglement

Let A and B be two entangled particles, for example two elec-
trons with opposite spin. The possible result of a measure-
ment of the spin along the z axis, performed on A or on B, is
equally described by the assertion I', z € Dz - A(z),, B(z).

The corresponding state is then described by the proposition
>Muep, (A(z); B(z)).

and we have Bell’s ditributivity for entangled particles.
As above, a substitution by a closed term destroys the super-
position, hence the entanglement.

Let C and D be two separated particles. A possible measure-
ment of C is described simply by I', 2 € Dy  C(z). Mea-
surements on both particles are also possible and described
by I,z € D,y € Dy - C(z), D(y), where z and y are indepen-
dent variables. Measurements on both particles and on dif-
ferent axix (e.g. the z-axis for C and the y-axis for D) are also
possibles and described by I', z € D,y € Dy + C(z),D(y)
(different domains). In both cases, one has classical distribu-
tivity with exponential growth of complexity.

Conclusion: entanglement creates Bell’s distributivity and inhibits
classical distributivity.
From this the quantum computational speed-up.

Quantum Computational Speed Up

Quantum computational speed up is due to the so called mas-
sive quantum parallelism, that is the parallel computation cre-
ated by the peculiar quantum features of information, namely
quantum superposition and quantum entanglement. Quan-
tum superposition is the co-existence, in the same particle, of
different states, one of which will be measured.

A quantum unit of information (qubit) is represented by the
vector |¢) = a|0) ©b|1) where a, b are complex numbers (prob-
ability amplitudes) s.t. |a|? + |b|> = 1 and |0), |1) are two or-
thogonal unitary vectors. |¢) is then the superposition of the
two states |0), |1), where |0) will be measured with probability
|a]* and |1) with probability |b|>.

Two qubits are maximally entangled when they are repre-
sented by one of the following four states (Bell’s states)

lgg) = 1/3/2]00)+1/vV2[11)  |qiqe) = 1/3/2]01) +1/+/2|10)

This means that the two states |0) and |1) are equally probable
after measurement, and that the measurement of one of the
two is determined by the measurement of the other.

Alan Turing wrote:

”...if a machine is expected to be infallible, it cannot be also intelli-
gent. There are several theorems [Goedel’s incompleteness theorems]
which say almost exactly that. But these theorems say nothing about
how much intelligence may be displayed if a machine makes no pre-
tence at infallibility.”
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