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Abstract

In the present paper we give the first proof-theoretical example of an
embedding of classical logic into a quantum-like logic. This is performed
in the framework of basic logic, where a proof-theoretical approach to
quantum logic is convenient. We consider basic orthologic, that corre-
sponds to a sequential formulation of paraconsistent quantum logic, and
which is given by basic orthologic added with weakening and contraction,
in a language with Girard’s negation. In the paper we first consider a
convenient cut-free calculus for classical logic, in the same language; then,
in a language enriched with a new kind of literals, we introduce basic
orthologic with a primitive modality, where classical logic is embeddable.
Similarly to Girard’s negation, our modality is not a connective but con-
ceivable as an operator defined inductively on the set of formulae. This
allows us to obtain a calculus which enjoys cut-elimination.
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1 Introduction

Basic logic is a new logic, introduced first in [4] and then in [19], which is
weaker than linear, intuitionistic and quantum logics. It is then natural to try
to compare its strenghth with that of usual logics. Since the first formulation
of basic logic, we figured a possible solution. Taking example from Girard’s ex-
ponentials, which allow to obtain weakening and contraction inside linear logic,



we expected to solve the problem of embedding a stronger logic into a weaker
one expressing what is inhibited in the weaker logic by means of modalities. To
carry out this plan, anyhow, it is necessary to realize how it is possible to embed
a non-quantum logic into a quantum one, by means of a modality. The only lit-
erature in quantum logic containing embedding results concerns orthomodular
logic and it is developed in [8] and [9], in an algebraic setting. The present one
is the first proof-theoretical solution. A preliminary exposition can be found in
the author’s Ph. D. Thesis, see [1].

In this paper, we consider basic orthologic, which, as seen in [12], is a se-
quential formulation of paraconsistent quantum logic, introduced in [11], that
is a weak form of quantum logic. The calculus for basic orthologic, indicated by
1BS, is obtained by the addition of weakening and contraction to basic logic, in
a language without implication and with Girard’s negation, indicated as usual
by L. It is close to basic logic, but at the same non-linear level of classical logic,
so that it allows us to concentrate on the opposition between the non-quantum
features (of classical logic) and the quantum features (of basic orthologic).

The calculus for basic logic, as well as every quantum calculus (cf. [18],
[10], [4], [12]) has limitations of contexts, on the right and also on the left. In
particular, in basic logic and basic orthologic contexts are limited in all rules for
connectives: this is called visibility, since then the principal and the secondary
formulae are “visible”, and it is the essential hypothesis in their cut-elimination
(cf. [19]). In general, in quantum logics, contexts are necessarily limited in the
introductions of digjunction on the left and conjunction on the right, to avoid
the derivation of the distributive laws. Moreover, they are limited in the rules
for negation and for implication (if present), in order to obtain the failure of the
deduction theorem, which in turn would allow the derivation of the distributive
laws. The limitation of contexts in the rules for implication and negation can
be interpreted as follows: a formula cannot be separated from its contexts and
moved to the other side of the sequent. So, in case of a comparison between a
logic satisfying the distributive laws and the deduction theorem with a quantum-
like logic, one only needs a modality by which one can express, on one side, the
movement of a formula from left to right of the sequent and conversely, and, on
the other side, one can obtain also the missing contexts in the rules. Solving
the two problems by means of the same modality is possible; considering basic
orthologic. The solution is mainly due to the choice of the language. In fact,
as we realized in our first attempts, the difficulty in solving the two problems
together relies in the connectives of implication and negation, which are missing
in the language of basic orthologic.

Moreover, we take another important advantage from such language. In fact,
as first noticed and developed in [14], [13], [12], suitable rules on L, which are
to be considered structural, since L is not a connective, can be added to basic
orthologic, obtaining a calculus for orthologic and, from this last, a calculus for
classical logic to which basic orthologic is substructural. Consequently, such
calculi have a cut-elimination procedure, allowed by the features of visibility
and symmetry, inherited from basic logic and basic orthologic. We also exploit
these facts here, obtaining a convenient formulation of classical logic, denoted



by +C, which has cut-elimination, as we prove. Such formulation of classical
logic consists of basic orthologic added with a pair of structural rules on L,
which state the possibility to separate formulas from their context and transfer
them, negated, to the other side of the sequent. They correspond to the usual
introduction of negation to the left and to the right in classical logic.

Then, restricting the structural rules on L to the case of modalized formulae,
we obtain a first calculus for basic orthologic with a primitive modality, labelled
|1t BSg, where the sign | denotes the modality. It is easy to show that every
rule which does not admit a context in *BS does admit however a context of
modalized formulae in |+ BS. So, by means of the same modality, we capture, in
the case of basic orthologic, the two main characteristics of calculi for quantum
logics, that are, as we said, limitations of contexts and limitation of movement
from left to right and conversely.

The modality | we introduce is given, like L, by a unary operator, obtained
by adding a new kind of primitive literals (the “classical” literals!) to the lan-
guage and then defined by induction on formulae. In this sense our modality is
primitive and it does not require any introduction rule, so that the only rules
we need for it are the structural ones, which characterize its behaviour. A slight
modification of |+ BSg, labelled |+ BS inherits cut-elimination from +C', which
in turn derives its cut-elimination that of basic logic. We have that basic logic
is substructural to +C, since L is an operator and not a connective, as well
as it is substructural to |*BS, since L and | are operators and they are not
connectives. Moreover, that was the first result in this direction (cf. [12]), basic
logic 1s substructural to orthologic too. All such extensions of basic logic have
cut-elimination, due to the fact they are obtained as structural extensions. We
conclude 1n particular that structural extensions of basic logic are precious when
dealing with the proof-theoretical aspects of quantum logic (cf. [3]).

Ultimately, the logic here introduced with |1BS can be interpreted as a
system which allows the coexistence of two ways of reasoning: the quantum-like
one, represented by basic orthologic 1t BS, and the classical one, that is +C'. The
first deals with any formula, the second can deal only with modalized formulas.
Now, we hope that the method described above can be both exploited for other
quantum calculi, investigating furtherly on their peculiarities, both applied to
basic logic and its extensions, including linear extensions and obtaining a global
and uniform treatment of translations into basic logic.
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2 A calculus for classical logic based on basic
orthologic

In this section we develop some ideas which have been introduced in [12], [14],
and analysed in more details in [13], [15]. For a survey on them, see also [3].
Here we adapt such ideas to the most convenient form for us.

Let us consider a language equipped with two kinds of primitive literals:

P1,P2,P3,- -

and
piopdpd, ..

and with the binary connectives & and V. So, our formulae are the following:
For any i € w, p; and p¢ are formulae and, for any two formulae 4, B, A&B
and AV B are formulae. Moreover, we put in the language the sign L, which
denotes an operator defined on the set of formulae, by the following clauses:

1
i =1, i =pi

on literals, and

(AOB)J' =pBlol At

on formulae, where &t =V, Vi = &.

As one can easily verify, by induction on the complexity of the formulae, any
formula A coincides with A++: so we will say that the formula AL is the formula
“symmetric” or “dual” to the formula A. The degree of AL is equal to the
degree of A, for any A, as one can see by induction, since L is not a connective.
Anyway, L plays the role of negation, as we shall justify in more details in this
section. Actually, it is Girard’s negation. Such negation has been introduced in
the framework of basic logic in [12] and [14] for the first time. In such papers it
1s also specified a suitable pair of structural rules on L, called rules of transfer,
which allows to obtain orthologic from basic orthologic, and a second pair of
structural rules; called separation, which allow to obtain classical logic from
orthologic. Such rules, like any rule involving only L, are to be considered
structural, since they modify the structure of the sequents, without introducing
any connective (we remind that a structural operation for negation has been first
introduced in display logic, cf. [5], [6]). In order to obtain classical logic as an
extension of basic orthologic, we introduce in this paper a convenient variation
of the rules for separation and transfer, which is given by the following pair of
rules on L, named st, from separation and transfer together.

A Y I,SFA
rylra st NG

Here and below, in any sequent I' - A, I and A are finite sets, hence in I', IV - A
and in I' H A, A’ the comma is intended as set-theoretic union, so that, in



particular, the rules of contraction on the left and on the right

I,2,SFA I3, A
I,SFA TFx, A

hold by definition. As it can be seen in [19], the structural rules of weakening and
contraction can be added to basic logic, obtaining a calculus where the additive
and multiplicative connectives are identified, as in the passage from linear to
classical logic. Basic orthologic (c¢f. [12] and [14]) is nothing else than such
calculus in the language given above. Here, we consider a formulation of basic
orthologic in which sequents contain sets of formulae, so that basic orthologic is
characterized by axioms, rules of cut, rules on the connectives & and Vv, and the
structural rules of weakening, as it can be desumed from the table below, from
which basic orthologic can be obtained dropping the last line. We now introduce
system +C, characterized by the following table of rules, which is obtained by
the addition of the structural rules st and st R to basic orthologic.

Axioms
AFA
Cuts
rA AT'FA A A AFA
T ra TEA A Ccul
Rules on connectives
AFA BEFA I'+B A
aeBrA Y Aepra YL trave Y% Trave VE
AFA BFA '-4A4 I'+B
ivera VP TF AR SR
Structural rules
A A
T.ora vl TrAay Wi
r-A Y LYXEA
ryira ot NS

Intuitively, the above table of rules is symmetric, in the sense that the schemata
of the rules appearing on the left column are mirrored in those appearing on
the right one. This fact can be put in more formal terms. As explained in
details in [19] for basic logic, any symmetry operator defined on formulae can
be extended, in a natural way, to sequents and then to inference rules and to



derivations themselves. In particular, considering the operator L, one can define
the symmetric (I' b A)L of the sequent '+ A putting

(TEA)E=A+FTE

(where, if T = Cy,...,Cn, A = Dy,..., Dy, then T+ = C+ ... C and
ALt = DL ... Di). In fact, it is (I' = A)t+ = T' F A. Moreover, one can
define the symmetric J+ of a given rule J as the rule containing as premisses
the symmetric of the premisses of J, and as conclusion the symmetric of its
conclusion. Finally, one has the notion of “symmetric proof”, that is the proof
obtained considering the symmetric of every axiom and rule. Note that it is
J+L+ = J for every rule J and II++ = II for every rule II. Since the table of
rules of +C is symmetric, if II is any proof in +C, also its symmetric 11+ is
a proof in +C. This allows to prove the following equivalence. Here and in
the following, we adopt the notation I' Fx A to say that the sequent I' H A is
derivable in the sequent calculus X.

Lemma 2.1 In 1 C, for every I, A,
I'Fic A if and only if Atk Tt
by a derivation of the same length.

Proof. The claim is proved by induction on the depth of the derivation. In
case of the axioms it 1s trivially true. In the inductive case, if I' - A has been
derived by means of a derivation in which J is is the last rule, then A+ F 't is
derivable by means of a derivation in which the symmetric rule J* is the last
rule. So, I' - A is derivable from the axioms 4; + Ay, ..., 4, F A, by means of
a derivation II if and only if its symmetric sequent A+ F I't is derivable from
the dual axioms A{ = A{, ... ALX F AL by means of the symmetric derivation
I+, and conversely. a

The above theorem can be read as a metarule of the calculus which guaran-
tees antimonotonicity of the operator L with respect to the order given by .
Hence, any symmetric calculus, in a language with two kinds of literals, can be
equipped with an antimonotonic operator, obtaining a primitive negation in it.
Moreover, the theorem is used in an essential way in proofs of cut-elimination for
such calculi (see [12], [15] and [13]), in the form of the technique of “swapping”,
which consists of considering, instead of the derivation

I
A
its symmetric
Ik
At FTL

Swapping does not modify the degree of the formulae, as well as their rank. A
convenient definition of rank in our framework (cf. [12]) must take into account



the fact that any formula A appearing on the left (right) side of a sequent is
the same than the formula A+ appearing on the other side, after an st rule has
occurred: 1t is the structure of the sequent which has been modified, not the
formulas in 1t. So, to define the rank of a certain formula A which appears in
the sequent I' = A, which has been derived by the derivation II, consider, in II,
all the paths, i.e. the i.e. the sequences of consecutive sequents, which contain
either A on the same side or its dual A+ on the other side, when an st rule has
occurred, up to where A (or A1) is introduced. The rank is then the maximum
among the leghths of all the paths.

Moreover, we have to observe that +C, like other symmetric extensions of
basic logic, inherits from basic logic the feature of visibility (cf. [19]). “Vis-
ibility” means that, in every rule introducing a connective, the principal and
the secondary formulae are without a context, i.e., they are “visible”. This 1s
an essential hypothesis in the cut-elimination proofs given in the framework of
basic logic.

In the following cut-elimination proof, the swap from I' F A to ALt F I't
inside a derivation will be indicated by the following notation:

r=A
D swap

At ETE

Moreover, the notation wL(X) is adopted to specify that ¥ is the set of rules
introduced by weakening.

Theorem 2.2 Any derivation in +C which ends with an application of cutL or
cut R and where no other application of cut L or cut R occurs, can be transformed
wmto a derivation in which cutl and cut R do not appear. Hence, any derivation
in YC can be transformed into a derivation in which cutL and cutR do not
appear.

Proof.  The proof is by induction on the degree and on the right and left
rank of the cut. (The degree of a cut is the degree of its cut formula, its rank
is the sum of the left and right rank, that is the rank of the cut formula in the
left and right premise of the cut, respectively). Let us suppose the rank is 2. Tf
one of the premises of the cut is an axiom, it is trivially eliminable, otherwise
we have the following reduction to a cut of a lower degree:

r-A IreB AFA
- A&B A&B A A AEFA
A — A

The case of V is symmetric; the cases in which the cut formula is introduced by
weakening will be treated among the rank reductions.

Let us assume the rank is greater than 2. We shall consider only the case
of cutL, since the case of cut R is symmetric. We have then a derivation of the



following form:

o img
I A T, AF A,
T, T1 F A, cutl

It is not limitative to assume that the right rank is greater than 1, for, if it is
1, I'; 18 empty and hence the same cut can be read as an instance of cut R. We
now see how cutL can be lifted along Il g, obtaining a derivation in which either
cutL does not appear any more or which contains occurrences of cutL of lower
right rank.

The last rule of Il cannot be any rule introducing a connective on the left,
by visibility of the rules of ~C' and the hypothesis on the right rank. If it is any
right rule xR (&R, VR, wR, stR), then one can lift the applications of cutL
and %R (in the case of the binary rule &R, the cut is duplicated).

If the last rule is wl, and if A is not introduced by weakening, one can lift
the application of cutl over wlL; if A is introduced by weakening, that is IIg
ends with

: T
Ty F A,
A, v

then the application of cutl can be avoided, obtaining:
-,
Ty F A, I
I, Ta Ay Y

If the last rule is stL, several cases are possible. The main distinction is the
following:

1. A does not come from the right,
2. A comes from the right.

In the first case, one can again simply lift cutL over stL. In the second case,
one has to distinguish again:

21. A does not appear on the left in the premiss of stl,
29. A appears on the left in the premiss of st L.
In the first case, one has
. g
DT TR AL AL

['FA  Ta,AFA,

stL




that converts into
i L g
A A AL TS
[y, AGF T4
swap
Iy = THAS
[a, Ty F Ay
where the rank of A in 1§ is the rank of A+ in IIg and hence the right rank of
the cut has decreased. In the second case, one has

cutl

stL

—_— %
T, AF AL A
T FA Ty AFA,

where one has to consider the rule x. Note that, to conclude I'y, A+ A+ Al no
stL or stR on A or AL can have been applied, since our sequents contain sets
of formulae. So « is in one of the two following classes of rules:

Ci. stL, stR, or applications of wlL and wR which do not move or introduce

A and AL

Cy. applications of wL or wR, introducing A or A+, respectively, or rules for
connectives which introduce A on the left or A+ on the right.

If x is a rule of the first class, it 1s possible to modify the derivation of the right
premise of the cut as follows:

4, AF AL A
§, A A
AR AL
s A FA,

stL
*

stL

(where the second occurrence of st may not occurr, if it is A}, = Ay). Now one
can lift the application of the cut over st and % up to the upper application of
stL, obtaining a cut of the form:
- */

Yy, AR AL AY ol
LA 9, AFAY I

cut
9, FAY

where ' is a rule of the first or of the second class and the right rank is lower,
since * now appears below.

So, let us suppose we have arrived to a rule of the second class, after n steps.
(If n = 0, that is no rule of the first class occurred, and if A}, # Ay in the
original cut, one has identically to substitute the application of stL with two



applications, and then to lift the cut over the second of them). Now there are
four possibilities:
If % is wR, one simply avoids to introduce A+ by weakening, so that the
application of st immediately below disappears.
If % is wL, that 1s we have:
ot e AL AR _
—— T wL(AT)
s, A A+ AL I
IkA 13,AFA; o
- - cutl
rs,ry E AL

one can avoid wl and apply cut as follows:
© swap
[oFA A AL F QO
Ty, Az T

cutl

and then one can swap again, apply wL of the remaining formulae I' and then
stL to I'y.

If x is a unary or binary rule oR, introducing a connective on the right, that
is one has (with abuse of notation):

I AF B

rparat °f

kA 15,4F 0
5.0, F

the following reduction can be applied:

I FA T2, AF B

5,1 F B R cutl © swap
RN :
5.0y - AL ALFTE
- T cutl
rs, ry EIy I
R

In such derivation the above occurrence (or the above occurrences, in the binary
case) of cutL has lower right rank. Once such occurrence has been eliminated,
it remains to reduce a cut whose right rank (that is the rank of AL in A+ I't)
is the left rank of the original cut, while the left rank is 1. By means of another
swap, one has then a cut in which the original left premise I' = A, together with
the original left rank, is restored, and in which the right rank is 1.

If x 18 a unary or binary rule oL, introducing a connective on the left, one

has:
B; F AL AT
Ar AL an °F
T4 Arag Sth
T F Af cutl

10



which reduces as follows:

swap

I FA AALEBE

[y, AL E B

[y, AL+ AL

swap

[ FA AFTE A2

[y F T, A7

I F AL

where (oL)1 is the dual rule of oL (that is &R if oL is VL and VR if oL is &L).

In such derivation we have first to reduce one or two cuts of lower right rank,
and then a cut of right rank equal to 1.

Now all the cases have been considered. It is easy to realize that, by applying

the procedure just described, either we eliminate the cut or we reduce to having

a cutl whose right rank is 1, that, by visibility of the rules of +C, has the
following form:

cutl
(oL)*

stL

o
kA AFA, ©
T, F A,

where xL 1s the rule introducing A on the left. Such an application of the cut rule
can be considered as an application of cut R, to which the symmetric procedure
of that just described can be applied. The application of such procedure, in
turn, either eliminates the cut or produces a cut of rank 2. a

In basic logic, as well as in the quantum-like calculi which extend it and,
in general, in any sequent calculus for quantum logics (cf. [18], [10]), a form
of the rules which includes contexts is underivable, at least for some of them.
For, otherwise, the distributive laws would be derivable (cf. [19] and see also
next proposition 3.5). We stress moreover that, in basic logic, visibility is an
intrinsic proof-theoretical feature which corresponds to the interpretation of the
meaning of its connectives given by the reflection principle (cf. [2], [1], [19]).
Contrary to this, every rule of 1 C' admits also a form with contexts (a full form,
in the terminology of basic logic, which is then indicated by the apex (.)). A
similar result is known as display theorem in display logic, cf. [5].

Lemma 2.3 The following rules are derivable in ~C':

Cut

TFAA AT FA
[T FA A

Rules on connectives

cutf

rAFA TF A A )
T, AGBF A &L TFAvVB A VE

11



LAFA DBEA I'FAA [FBA
T,AvBra VL IF ALB, A

& RY

Proof. We see below the proof of VLS by means of stL, stR and VL.

PAFA o TBEA
AFTE A’ ka&AiL
AVBFTL A

[LAVBFA

stL

The proof of the other derived rules is completely similar. a

The above lemma allows to prove that +C is equivalent to LK. To verify
this fact, let us first define an interpretation ¢; of the formulae in the language
of +C into the formulae of a language including a set of literals p1, ps, ps, . ..
and the connectives &, V and —. Such interpretation is given by the clauses:

i1(pi) = pi i1 (pf) = —pi i1(Ao B) =id1(A)oir(B)

for any binary connective o. Then one can see that i;(AL) = —=(i;(A)), by
induction on the degree of A. Conversely, we define an interpretation iy of the
classical formulae into the formulae of +C, given by the clauses:

io(pi) = pi in(—A) = (ia(A))* is(A o B) = is(A) 0 iz(B)

for any binary connective o. One can see that ;(i2(A)) = A, for every classical
formula, and that i5(i1(A4)) = A for every formula of +C. The equivalence of
L and LK can now be proved as follows:

Proposition 2.4 1 C is equivalent to LK, that is
kbl A if and only if i1(T) bk 1(A)

and

ok A if and only if i2(T) Figo ia(A)

Proof. Tt is easy to prove that ' i A implies ¢1(T') Frk ¢1(A), and that
I Frk A implies i5(T') Foe i(A), by induction on the depth of the derivation.
To prove the first, the only fact to notice is that stL and stR become the
introductions of — to the left and to the right, respectively. To prove the second,
note that conversely the introductions of — are translated into the st rules, and,
as for the rules of LK introducing & and V, apply the lemma above. Then one
has in particular that é2(T") b @2(A) implies 1 (42(T)) Frk ¢1(é2(A)) and that
i1(T) Frk ¢1(A) implies é2(i1(T)) Fic 2(i1(A)). So, since it is 41(d2(A)) = A,
for every classical formula and i5(i;(A)) = A for every formula of (', one
obtains the two equivalences. a

12



3 Basic orthologic with a primitive modality

The result we have reached in the previous section could be put in the following
equality (already obtained in [12], [13])
classical logic = basic orthologic + structural rules

Now, given such an equality, we can easily obtain an embedding of classical
logic into basic orthologic, by forcing the structural rules st L and st R to act only
in the case of modalized formulae. In this, we take example from the treatment
of the structural rules of weakening and contraction by means of exponentials
in linear logic. The novelty of our approach is that we introduce the modality |
by means of new literals, and then we extend it to all formulae by an inductive
definition. In this sense, we say that our modality is “primitive” since it is
present as a distinguished set of formulae, where the distinction has been made
at the origin, in the literals, before any rule on it. These facts will be better
explained in this section.

To obtain basic orthologic equipped with a primitive modality, we need a
language equipped with the usual binary connectives & and V and with four
kinds of primitive literals:

P1,P2,P3, ...
iP5, 05,
q1,92,93, - ..
ai, 43,45, - -
The intended meaning of the literals p and ¢ is clarified by the definition of the
operator | on the atomic formulae, as follows:
lpi=a, Ipi=d, lu=a ld =4,
Such an operator is then extended to all formulae putting:

(Ao B)=]A0|B.

for any connective o.
Note that the degree of | A is equal to the degree of A. Moreover, we extend
the duality L to the new literals, as follows:

We now see that the operator L is still a duality, that | is an idempotent
operator and that the operators 1 and | commute. Then it will be possible to
study the structural operator L in a modal setting too (for the treatment of
structural operations in modal logic, in the framework of display logic, cf. [20]).

Proposition 3.1 For ecvery formula A in the above language, il is
At =4, lA=14, (14)F = (4
where the equality means that the formula on the right and the formula on the

left are the same formula.

13



Proof. It is easy to check this by induction on the complexity of the formula.
As for the base of the induction, note that 1+ =z, ||z = |z, [(z1) = (|=)t,
for any literal # of any kind; then, to obtain the thesis, suppose that A is Bo C
and apply the inductive definitions of L and |. a

Since the operator | i1s idempotent, the formulae made out of literals ¢ and
¢?, that are the formulae preceded by |, are a proper subset of the set of all
formulae. Then i1t makes sense to consider notions which apply to |-formulae
only. We introduce here the couple of structural rules |stl and |stR, that is
the rules st which apply only to |-formulae:

IFA Y
Lzt FA

ISk A

(L ST a
bs TEA Nt

lstR

Now we can consider a new calculus, which we shall call |*BSg, in the new
language, whose rules are those of ', with the exception of the st rules, which
are substituted by the |st rules. Note that it is, by definition,
|+ BS= basic orthologic + structural rules

where however basic orthologic is intended in the new language.

Then |+ BSy is a symmetric system in which the operator | acts as a unary
monotonic connective. In fact, one obtains the following structure theorem,
which extends lemma 2.1:

Lemma 3.2 In |1BS, the following metarules hold:
T '_lJ-BSD A Zf and only Zf AJ' '_lJ-BSD FJ'
by a derivation of the same length; and
ZfF '_lJ-BSD A, then lF '_lJ-BSD lA

by a derivation of the same length.

Proof. The first claim 1s proved as in lemma 2.1, exploiting proposition
3.1; the second holds because any rule of |1 BSg can be applied in particular to
modalized formulae. So, if I' - A is derivable from the axioms Ay - Ay, ..., A, F A,
the same derivation, applied to the axioms |A; F |Ay,..., | A, F | A,, derives
ITE A O

Moreover, |+ BSy satisfies visibility. The following result, analogous to the
result obtained in lemma 2.3, shows that contexts in rules of lJ‘BSO can be
allowed, if they are made of |-formulae only.

Lemma 3.3 The following rules are valid in |+ BSy:

Cluts
T AA AT FA TFAA AT FA
T A A cult L UFA A cuRl
Rules on connectives
IT,AF A ) THA A )
I T, AGBF A &L TFAVB, | A VE
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ITLAFA | T,BFA IHALA TFB|A
T, AVBFaA VL TFALB, | A

&R

Proof. Any rule J! can be derived by means of the corresponding rule J of
L1BSy, by applying |stL and |stR. |

Comparing the tables of rules of +C and of |+ BSy, one can easily find an
embedding of classical logic into basic orthologic with a primitive modality. This
is obtained considering a translation f of |+*BSy-formulae into +C-formulae,
defined putting

f(p:) =pi () = pd Jlai) = ps fla) = pf

and f(A o B) = f(A) o f(B). Such translation simply forgets the | of the |-
formulae of |+BSy; in fact one can prove by induction on the degree of the
formula that

fA)y=A

for every formula A. Conversely, one defines a map d of +C-formulae into
|+ BSg- formulae, putting:

d(pi) = g d(pf) = qf

and d(A o B) = d(A) o d(B). It maps the formulae of +C into the |-formulae
of |*BS,. Note that f(d(A)) = A for every formula of -, as it is easy to see.
So, we obtain a formal proof of our embedding theorem:

Theorem 3.4 For any pair of finite sets of formulae I', A, in the language of
LC, one has:

kg A if and only if d(I') Figs, d(A)

Proof. One can see, by induction on the derivation, that I' F.- A implies
d(I') Fj1ps, d(A) and that I' b igg, A implies f(I') Fio f(A). Then, if
d(T') b 1ps, d(A), one has f(d(I')) Fie f(d(A)), that is ' oo A. d

After this theorem, we can say that |-formulae of lJ‘BSO are, so to say,
“the classical formulae of lJ‘BSO”. Besides classical formulas, we have also
“basic” formulas, that is formulas containing only literals p; or pf. Then, we
have also “non classical” formulas, that are those containing at least one literal
p; or p¢, as well as “non basic” formulas, containing at least one literal ¢; or
q¢. Dealing with such “mixed” formulae, |1 BS; takes the interesting feature
of distributivity of classical formulae with respect to any kind of formula.

Proposition 3.5 In |1BSy, the distributive laws are provable in the following
form:

|C&(AV B)F (|C&A)V (IC&B)  (AV |D)&(BV |D)F (AV B)&|D
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Proof. The two sequents |C, At (|C&A)V (|C&B) and |C,BF (|JC&A)V
(1C&B) are derivable from the axioms |C'F |C; A+ Aand |CF |C, BF B,
respectively, by means of weakening, & R and VR, that are rules of basic ortho-
logic. Now, one can conclude |C, AVB F (|C&A)V(|C&B) by VL! which holds
by lemma 3.3. Finally, one has the conclusion |C&(AV B) F (|C&A)V(|C&B)
by two applications of the rule & R to the axioms |C'F |[C' and AV BF AV B,
each of them followed by a cut. Symmetrically one can derive the other dis-
tributive law, by means of the rule &R} and hence exploiting again lemma 3.3.

d

In basic logic, the validity of the distributive laws of the multiplicative con-
junction (disjunction) w.r.t. the additive digjunction (conjunction) is equivalent
to the presence of contexts in the rules VI and &R, respectively, as it is shown
in details in [19]. In such case, the distributive laws admit a natural cut-free
derivation. The same proof cannot be adapted to |1 BSg, and actually, as one
can see, no cut free derivation of the above distributive laws is possible in it.
So, the cut rules allows to prove, in case of “non basic” formulae, more than
what basic orthologic would prove.

To obtain a cut-free system, it is necessary to limit some possibilities on
“non basic” formulae. This is obtained limiting the rules of basic orthologic,
so that they cannot produce non basic formulae, unless they are really classical
formulae. To do this, we need a formal definition of “non classical formula”: the
literals p; and p¢ are non classical formulae and, if « is a non classical formula
and B is any formula, then « o B is a non classical formula.

Now we can introduce the calculus lJ‘BS, which is defined by the following
axioms and rules of inference. In such system, some rules on connectives are
splitted into two, with respect to those of basic orthologic. (4, B... are formulae;
a, (... are non classical formulae and T', A... are sets of formulae).

Axioms
AbF A
Cuts
TFA AT'FA THFAA AFA R
N Tra A o
Rules on connectives
akA prA I'-p Tk a
akBr A " FggE R ekl TFave "V Trave "V E
AFA o ABEA T+ |B Tk A
[A&|BFA € [A&|BFA € TriAviB ‘VE TraviB ¢
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AFA BEA r-A IreB

avera VP TFaep Ut
Structural rules
T'HA | VAN
T.ora vl TrAay Wi
T'tA X I'|XFA
Tra s o LIEFA g
I|ZtFA I'EA Xt

As it is immediate to realize, |*BS has the same results given in 3.2 and
3.3 for |[*BS,. Moreover, it inherits also the result given in theorem 3.4, that
is classical logic is embeddable in |+*BS too. So, |*BS proves, on classical
formulae | A, exactly the theorems provable in |*BS,, that is the theorems of
classical propositional logic. It is also easy to realize that the cut-free derivations
for basic formulae which can be performed in |1BS are exactly the cut free
derivations which can be performed in |1 BSg, that is, the derivations of basic
orthologic.

The two systems |1 BS and |1 BSy differ in their behaviour on non basic (or
non classical) formulae. Actually, |1 BSy proves more than basic orthologic on
this kind of formulae (e.g. distributivity) while |1 BS can prove less. Sequents
of the form ¢;&p; = ¢;, which are derivable in |1+ BSy, by means of the rule &L
inherited from basic orthologic, are underivable in |+ BS (incidentally, sequents
of the form ¢;&p; b p; are derivable yet). An unpleasant consequence is that
axioms A F A, where A is neither basic nor classical, are not derivable from
the literals which form the formula A. Also the distributive laws derived in
lemma 3.5 are underivable, since their derivation requires sequents of the form
JC&A F |C, or their symmetric, in an essential way.

The loss of lemma 3.5 is compensated by the following lemma, which allows
to obtain cut-elimination for |+ BS as a consequence of that for +C'.

Lemma 3.6 If the sequent I' F |A s derived in lJ‘BSO by a_cui-free proof,
then there exists a cui-free proof II' and a finite set of formulae ', such that the
same sequent is derivable as follows

S I
1T F |A

rFia i)

where T' =T, [TV, Symmetrically for any sequent of the form |T F A.

Proof. By induction on the depth of the derivation of the sequent. If I' - | A
is the axiom | A F | A, we are finished; in the inductive cases we shall see that the
premises of the last rule applied are also sequents of the same form, so that the
inductive hypothesis can be applied, obtaining a proof and a set of formulas (or
two, in the binary cases), from which then I’ and T can be obtained, essentially

17



permuting the applications of the last rule and of the weakening obtained by
the inductive hypothesis. Let us see the details.

wR

wl

IstR

|stL
&L

VL

&R

If the last rule applied is wR, then it has to be |[A = |A’ |A”  where
A’ has been introduced by wR from the premise I' + |A’. So, by the
inductive hypothesis, one has a proof II} followed by wL(T;), from which
one obtains a proof II' given by II' followed by wR(|A") and the set

T =T, satisfying the thesis.

If the last rule applied is wL(I''), its premise has the form [ F | A. Then
we have Il and I'y by the inductive hypothesis, and then Il = II} and
' =TI'y, I satisfy the thesis.

The premise of |stR must be of the form I', |[A” + |A’. Such sequent,
by the inductive hypothesis, is derivable by applying wL(T;) to I}, but
then I} followed by wL(]A") and then by |stR(]A") is a good II', while

r=r;, - |A".
In this case it is enough to choose I' = I} + |stL and T =T;.

If A& B F A follows from A - A by means of one of the two &L rules, then
by the inductive hypothesis it must be A = | A unless A has been intro-
duced by weakening. Then either we already have a derivation of the se-
quent F | A, to which wL(A&B) can be applied, or the rule &L must have
the form e& L, so that B = | B and hence A&B = |A&|B = |(A&B), so

that the original derivation satisfies the thesis.

In this case we have AV B I | A which follows from the premises A F |A
and B F |A. As in the previous case, if in one of them the left formula 1s
introduced by weakening from = | A then one can introduce by weakening
the formula A V B itself, otherwise we have A = |A and B = | B by the
inductive hypothesis, so that it is AV B = |(A V B) and the original
derivation satisfies the thesis.

By hypothesis, the formula introduced by the last rule must have the form
1 A& | B, and hence we have the derivations I1; of I' - | A and [ of T' + | B,

which by the inductive hypothesis can be converted into a derivation IT}

of |[T1 F |A followed by wL(T';) and into a derivation I}, of |T's F | B
followed by wL(T3), respectively. Then we obtain the derivation:

i A
Ty |4 Ty F |B
TN O I R D S R
10, [ Ta - A& B
'+ |A&|B

wL(fl s Fz)

(possibly with some redundancy in the weakenings).
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VR Here the formula introduced by VR must be of the form |A V |B, so
that in the premise we have, e.g., the sequent I' - | A to which we apply
the inductive hypothesis, obtaining II{ and I';. Then we have finally II}
followed by VR and wL(I"y).

d

The lemma allows to exploit the cut-elimination procedure for +C' described
in the previous section, obtaining cut-elimination for |+ BS.

Theorem 3.7 Any derivation in |1 BS which ends with an application of cutL
or cutR and where no other application of cutl or cutR occurs, can be trans-
formed into a derivation in which cutl and cutR do not appear. Hence, any
derivation in |TBS can be transformed into a derivation in which cutL and
cut R do not appear.

Proof. Asitis easy to control, the modification of the rules &L and VR of C'*
which occurs in |tBS is irrelevant in the cut elimination procedure described
in theorem 2.2, both in the degree reduction than in the rank reduction. The
only additional difference between +C and |+BS relies in the rules st, which,
in case of |1BS, are applied only to the |-formulae. The reductions described
in the procedure of theorem 2.2, when applied to derivations of |+*BS, do not
introduce any new application of such rules, except in the case of |stL, in the
subcase 2, that is when the cut formula itself comes from the right. But then
the cut formula is certainly an |-formula and the derivation is as follows:

1_[L F/Za'_l AL,A/Z

Tyl A T | AF A,

| stL
cutl

When reducing this cut, a problem arises, since the derivations one obtains
contain several applications of the rule |stL to the dual I'{ of the set of rules
I';. Such applications are not allowed in |+*BS, unless I'; consists of |-formulae
only. By the above lemma, one can modify Il obtaining

-,
ITh - A
ToFa

and then one can modify the above derivation of I'y,I'; F Ay substituting Ip
with T, and applying wl after the cut rule, obtaining:

LT TR AN A

I TV F| A To [ AF A, lszL
[y, [ TTF A, Lfcut
T, T F Ay @ ()
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In such derivation the cut rule can be eliminated by the same procedure seen
in 2.2. In fact such procedure reduces the right rank of cutL, without any
assumption on the left rank, so that it is insensitive to the change of left rank
which may occurr substituting Iy with II;. Then cutl is reduced to a cut
whose right rank is 1, that appears as follows:

:H/

e
| TiHFA | AF A,

[T E A

where x is VL or &L. Now, one has possibly to apply again the lemma (in its
dual form). Such application does not modify the fact that |A is a principal
formula in the right premise of the cut, so that the reduction of the left rank
can again be performed as in theorem 2.2. d

From lemma 3.6 and from the above cut-elimination result, we can derive
the following feature of the modality | in |+ BS:

Proposition 3.8 The schemata |A+ A and A | A are not provable in lJ_BS,
and, equivalently, the following rules
LAFA Iy r'-A4AA
T IAFA TFAA

are not valid in |1 BS.

| RS

Proof. By lemma 3.6 and 3.7, a proof of a sequent of the form B F |A is
possible only if - | A is derivable or B = |C' for some formula C. Symmetrically
for a sequent of the form |A = B. Then in particular the schemata |A F A
and A F | A are not true. Finally, one can see that the rules | L and | R/ are
derivable from the schemata | A+ A and A F | A, respectively, by an application
of cutL and cut R, respectively; conversely, the schemata are derivable applying
the rules to the axiom A - A. d

If we had adopted a connective for | and, with it, introduction rules like
the above ones, as it is actually done for exponentials in linear logic ([16]), the
application of our cut-elimination procedure would have been impossible. In
fact, if one of the two rules is added to |*BS, lemma 3.6 fails. Moreover, in
any symmetric calculus, the rules | LY or | R/ could be present only together
with their symmetric. This would force us to introduce the symmetric lJ‘ of the
connective |, and hence a second modality, different from |, as 1t is also done in
classical linear logic, with the two exponentials ! and 7. In fact, putting lJ‘ =|
would lead to |A = A, since then the symmetric of | L/ would be exactly | RS,
so that, by 3.8, the two schemata |A F A and A F | A would hold at the same
time. On the other side, putting lJ‘ # | would have required an interpretation
for the presence of two modalities in the calculus. Ultimately, since we did
not see any reason for which one of the two schemata above should hold, we
made the choice to try to avoid both of them, and our primitive modality was
a solution. So we have obtained a system in which two ways of reasoning, the
classical one and the quantum-like one, coexist and do not interfere.
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