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I

Challenge: to find an explanation to the quantum
computational speed up in terms of logical proofs.

To obtain logical proofs we consider sequent
calculus. A sequent is an object of the form

A1, . . . An ` B1 . . . Bm

(summing up Γ ` ∆). The calculus is given by rules
on sequents. We distinguish two kinds of rules:

1. Rules on the structure of sequents (Structural
Rules)

2. Rules introducing logical connectives.
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The cube of logics

Basic logic B is a core for sequent calculus.
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Connectives from metalinguistic links

Basic logic considers the following metalinguistic links between
assertions: and, yield, forall.

1. yield links two assertions at a different level, in a sequential
way.

2. and links two assertions at the same level, in a parallel way.
3. forall links assertions with a variable in common. The

variable is the reason of the link.

Assertions are represented by sequents.
Then logical connectives and their rules in sequent calculus
are the result of importing the links into the object level
obtaining a sequent calculus.
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Definitory equations

1. Γ ` A → B ≡ Γ, A ` B

where Γ, A ` B represents the sequential link between A

and B, in a context Γ.
2. Γ ` A&B ≡ Γ ` A Γ ` B

Γ ` A · B ≡ Γ ` A, B

where the couple Γ ` A Γ ` B is the additive translation of
and; Γ ` A, B is the multiplicative translation of and.

3. Γ ` (∀x ∈ D)A(x) ≡ Γ, z ∈ D ` A(z), z not free in Γ
where Γ, z ∈ D ` A(z) gathers all assertions A(z) depending
on a free variable on the domain D.

Rules of ∀:

Γ, z ∈ D ` A(z)

Γ ` (∀z ∈ D)A(x)
∀f

Γ′ ` z ∈ D Γ, A(z) ` ∆

Γ, (∀x ∈ D)A(x), Γ′ ` ∆
∀r
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Multiplicative + additive parallelism

The distributive law A · (B&C) = (A&B) · (A&C) is provable in
BR and its extensions.

Distributivity is extended to the predicative case as follows:

(∀x ∈ D1)A(x)·(∀x ∈ D2)B(x) = (∀x ∈ D1)(∀y ∈ D2)(A(x)·B(y))

(classical distributivity). One has to require that x and y are
independent variables.

Computational drawback: exponential increasing of complexity
in the number of independent variables.
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Dependent variables

Distributivity with dependent variables:

(∀x ∈ D)A(x) · (∀x ∈ D)B(x) = (∀x ∈ D)(A(x) · B(x))

fails. It is false!!!

Computational advantage: no exponential increasing of
complexity.

It would be proved by a parallel application of the ∀f -rule:

Γ, z ∈ D ` A(z), B(z)

Γ ` (∀x ∈ D)A(x), (∀x ∈ D)B(x)
∀f‖
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A new link

We consider a common variable as a further link.

In Γ ` A(z), B(z) the comma says "there is a variable in
common, or there used to be a variable in common above in
the derivation".
We write ,z and put the definitory equation:

Γ ` A on B ≡ Γ ` A,z B

New ∀f‖-rule:

Γ, z ∈ D ` A(z),z B(z)

Γ ` (∀x ∈ D)A(x),z (∀x ∈ D)B(x)
∀f‖

Then distributivity is:

(∀x ∈ D)A(x) on (∀x ∈ D)B(x) = (∀x ∈ D)(A(x) on B(x))

(Bell’s distributivity).
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A new quantifier

A new multiplicative-additive quantifier

./x∈D (A(x); B(x))

equal to (∀x ∈ D)A(x) on (∀x ∈ D)B(x) or to
(∀x ∈ D)(∀x ∈ D)A(x) on B(x) is definable to exploit
dependent variables.

It is defined by the equation:

Γ `./x∈D (A(x); B(x)) ≡ Γ, z ∈ D ` A(z),z B(z)

Rules of ./:
Γ, z ∈ D ` A(z),z B(z)

Γ ` ./z∈D (A(x); B(x))
./ f

Γ′ ` z ∈ D Γ1, A(z) ` ∆1 Γ2, B(z) ` ∆2

Γ1, Γ2, ./x∈D (A(x); B(x)), Γ′ ` ∆1, ∆2

./ r
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What makes the system collapse?

Substitution of the variable z by a closed term t destroys the
,z-link.

Γ ` A(z),z B(z) becomes Γ ` A(t), B(t) where the comma is
the usual comma of sequent calculus.
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Experiments

Let A be a quantum system.

A quantum measurement on A is an experiment. The set of its
possible outcomes determines an orthonormal basis B of the
Hilbert space of A. The hypothesis Γ of the experiment cannot
depend on its outcome.

In probability theory an experiment is a random variable Z with
an associated probability measure. In quantum mechanics
such measure is given by a probability amplitude. Let

D = D(Z, pZ) = {(z, p{Z = z}) : z ∈ B}

such set.
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Superposition by a quantifier

The assertion
"forall possible outcomes z in D, in the hyporthesis Γ, the
possible result of the measurement of A is z"
is formally

Γ, z ∈ D ` A(z)

Since Γ does not depend on z, we put the equivalence of the
definitory equation of forall:

Γ ` (∀x ∈ D)A(x) ≡ Γ, z ∈ D ` A(z)

Then the proposition (∀x ∈ D)A(x) represents quantum
superposition.

So the logical glue for quantum superposition is the variable
associated with the random variable of the experiment.



- p. 13/17

Substitution for collapse

The derivable sequent

(∀x ∈ D)A(x), z ∈ D ` A(z)

says that the particle described by the proposition
(∀x ∈ D)A(x) can be found in a state associated with any of
the z’s of D.

Substituting z by a closed term t, one has that the
superposition (∀x ∈ D)A(x) is converted into A(t), t

corresponding to a fixed element of the orthonormal basis. The
other possibilities are lost. This describes a collapse.
Substitution destroys superposition.



- p. 14/17

Example

A a particle, D given by outcomes of the measurement of the
spin of A along the z axis.

D has got two elements: |↑〉 and |↓〉. (∀x ∈ D)A(x) represents
the superposed state of the two directions of the spin along the
z-axis.

(∀x ∈ D)A(x) ` A(|↑〉) says that A is found in the "up" direction
along the z-axis.
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Representing entanglement

Let A and B be two entangled particles, for example two
electrons with opposite spin. The possible result of a
measurement of the spin along the z axis, performed on A or
on B, is equally described by an assertion of the form

Γ, z ∈ D ` A(z),z B(z)

Since we have put

Γ `./x∈D (A(x); B(x)) ≡ Γ, z ∈ D ` A(z),z B(z)

the corresponding state is then described by the proposition

./x∈D (A(x); B(x)).

Again the variable is our unique glue. As seen before:
We have Bell’s distributivity for entangled particles.
Substitution by a closed term destroys the superposition,
hence the entanglement.
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Separated particles

Let C and D be two particles described by a product state
(separated). A measurement of C is described simply by
Γ, z ∈ D ` C(z).

Measurements on both particles are also possible and
described by

Γ, z ∈ D, y ∈ D ` C(z), D(y)

Measurements on both particles and on different axis (e.g. the
z-axis for C and the y-axis for D) are also possibles and
described by

Γ, z ∈ DZ , y ∈ DY ` C(z), D(y)

(different domains).

In both cases, one has classical distributivity with exponential
growth of complexity.
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I wish to thank the organizers, the audience and Sandro Sozzo.
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