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We aim to put assertions from quantum mechanics in terms of
sequents.

A sequent is an object of the form

A1, . . .An ⊢ B1 . . .Bm

summing up Γ ⊢ ∆. It can represent the assertion of the
conclusions ∆ under the premises Γ. The turnstyle ⊢ represents a
consequence relation. Read it yield.

A sequent calculus can derive assertions from other assertions.
There are underivable assertions: A ⊢ A , our axioms. Other
assertions are derived by rules on sequents. For example:

Γ ⊢ A Γ ⊢ B
Γ ⊢ A&B

&f
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We adopt the view of basic logic, developed as a common platform
for sequent calculi of extensional logics.

One derives the rules of logical connectives putting definitory
equations for connectives themselves, of the form

Γ ⊢ A ◦ B ≡ Γ ⊢ A ≈ B

where ◦ is the connective defined in terms of the metalinguistic link
≈. Examples:

Γ ⊢ A&B ≡ Γ ⊢ A and Γ ⊢ B

Γ(−z) ⊢ (∀x ∈ D)A(x) ≡ Γ(−z), z ∈ D ⊢ A(z)

Moreover, one has a Leibnitz-style definition of the equality
relation:

Γ′, Γ(t/s), t = s ⊢ ∆(t/s),∆′ ≡ Γ′, Γ ⊢ ∆,∆′
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We consider a preparation of a physical system. The preparation
and all the measurement hypothesis are described in the set of
premises Γ.
We represent by the sequent

Γ ⊢ A1, . . . ,An

the information A1, . . . ,An one can achieve from the preparation
by a measurement.

Quantum measurements enables us to distinguish three logical
levels:

◮ quantum states prior to measurement: predicative level

◮ density operators: propositional level with probabilities

◮ classical states/sharp states: propositional level

Giulia Battilotti Dept. of Pure and Appl. Math. University of Padova - ItalyQUANTUM SEQUENTS



A discrete random variable Z yields a set

DZ ≡ {z = (s(z), p{Z = s(z)})}

where s(z) is the outcome and p{Z = s(z)} > 0 is its frequency.
We term DZ random first order domain.

We say that a random first order domain DZ is focused w.r.t. an
equality predicate = if and only if it holds

z ∈ DZ ⊢ (z = t1) ∨ · · · ∨ (z = tm)

where the terms ti = (s(ti), p{Z = s(ti)}), i = 1, . . .m, denote the
outcomes of the random variable with their probabilities.

Otherwise, DZ is unfocused.
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The measurement process of a quantum state w.r.t. an observable
is a random variable.
Its outcomes can be associated to elements of an orthonormal
basis of the Hilbert space associated to the system.

Let Z be the random variable produced by a measurement of a
certain particle in a certain state. This defines the random first
order domain

DZ ≡ {z = (s(z), p{Z = s(z)}) : s(z) state of the outcome}
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Propositions to represent probability distributions

We consider DZ = {t1, . . . , tm} the r.f.o.d. of outcomes of a
measurement of a particle A.
We write A(ti) for the proposition “The particle A is found in state
s(ti) with probability p{Z = s(ti)}”.

Let Γ represent a set of premises for the measurement. One has
that Γ yield A(ti), for i = 1 . . .m. This is written Γ ⊢ A(ti) as
sequents.

Then one has
Γ ⊢ A(t1)& . . .&A(tm)

where & is the additive conjunction. The proposition

A(t1)& . . .&A(tm)

represents our knowledge of the state after measurement, namely
the probability distribution of the outcomes.
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Propositions to represent quantum states

To describe the quantum state prior to measurement, one drops
the identification of the outcomes, namely, DZ is unfocused. Then
we consider variables rather than closed terms. We describe the
outcomes of the measurement by the assertion:

“In the measurement hypothesis Γ, the state of the outcome is s(z)
with probability p{Z = s(z)} for all pairs
z = (s(z), p{Z = s(z)}) ∈ DZ ”.

More formally, we write this assertion

“forall z ∈ DZ , Γ ⊢ A(z)”
Then we import the metalinguistic assumption “forall z ∈ DZ as a
further premise in the sequent, writing:

Γ, z ∈ DZ ⊢ A(z)

(where Γ does not depend on z, since the measurement
hypothesis do not depend on the outcome.)
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We put the definition:

Γ ⊢ (∀x ∈ DZ )A(x) ≡ Γ, z ∈ DZ ⊢ A(z)

which summarizes the assertion by means of the quantifier ∀.

The first order variable z (associated to the random variable Z) is
used as a logical glue for the different outcomes.
In this sense we claim that the proposition

(∀x ∈ DZ)A(x)

can attribute a superposed state to the particle A .
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Performing a quantum measurement determines a collapse.

In our terms we consider the “collapse of the variable” due to a
substitution by a closed term.

We consider the provable sequent

(∀x ∈ DZ )A(x), z ∈ DZ ⊢ A(z)

The substitution z/t yields

(∀x ∈ DZ)A(x), t ∈ DZ ⊢ A(t)

from which
(∀x ∈ DZ)A(x) ⊢ A(t)

If t1, . . . , tn denote the n elements of DZ , one obtains (by & rule):

(∀x ∈ DZ )A(x) ⊢ A(t1)& . . .&A(tn)

The proposition A(t1)& . . .&A(tn) represents the mixed state given
by the outcome of the quantum measurement.

We have represented a non selective quantum measurement.
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To represent a selective measurement, yielding a pure state:

We consider a substitution which “forgets” the probability and gives
probability 1 to the result:

(∀x ∈ DZ)A(x) ⊢ Af(s)

where s is a term denoting a state |b〉 with probability 1 after the
measurement: s = (|b〉, 1). The r.f.o.d is the singleton {(|b〉, 1)}.

For every formula A(x), we have

A(s) ⊢ (∀x ∈ {(|b〉, 1)})A(x)

Since it is also (∀x ∈ {(|b〉, 1)})A(x) ⊢ A(s), one has the equality

(∀x ∈ {(|b〉, 1)})A(x) = A(s)

In particular, if the state is sharp, the r.f.o.d. is a singleton and
Af(s) and A(s) are the same.
Sharp states can be identified with propositional formulae.
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But, for n > 1

(∀x ∈ DZ)A(x) , A(t1)& . . .&A(tn)

For, the sequent A(t1)& . . .&A(tn) ⊢ (∀x ∈ DZ)A(x) is not
derivable.

One can prove that:
The sequent A(t1)& . . .&A(tn) ⊢ (∀x ∈ DZ)A(x) holds for every A
if and only if the domain DZ is focused.

As soon as one can focus, the interference disappears!

This enables us to characterize quantum states predicatively.

Note that focusing DZ requires that an equality predicate

z = ti

should be definable in a uniform way on it. In terms of vectors in
Hilbert spaces, this means to choose a unique phase factor.
True if and only if the domain is a singleton.
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If we consider more than one particle, and consider an observable,
we may obtain an assertion of the form Γ ⊢ A1, . . . ,An, n > 1.

For example we have a couple of particles, A and A′.
If the two particles are separated, that is, if the measurement result
on the first is independent from the measurement on the second,
we have two independent random variables, Z and Z ′.

So we define two domains DZ and D′Z and describe the
measurement of the compound system by the sequent:

Γ, z ∈ DZ , z
′ ∈ DZ ′ ⊢ A(z),A ′(z′)

that is converted into

Γ ⊢ (∀x ∈ DZ)A(x) ∗ (∀x ∈ DZ ′)A
′(x)

(where ∗ is the multiplicative disjunction of linear logic).
One derives:

(∀x ∈ D,w ∈ D′)A(x) ∗ B(w) = (∀x ∈ D)A(x) ∗ (∀x ∈ D′)B(x)

that is a distributive law of classical logic.
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With entangled particles, one does not have independent
measurements and hence independent variables.

Again, the variable can act as a glue.
In a paraconsistent setting one can define a generalized n-ary
quantifier, in order to represent entangled states. It is denoted ⊲⊳n

(in particular, ⊲⊳1 is ∀).

The proposition
⊲⊳2x∈DZ

(A1; A2)

represents the entangled state of 2 particles “sharing” the same
random variable Z , and hence the same r.f.o.d. DZ .

It comes from the following definition:

Γ ⊢⊲⊳2x∈DZ
(A1; A2) ≡ Γ, z ∈ DZ ⊢ A1(z),Z A2(z)

where A1 and A2 depend on the same variable z and the indexed
comma ,Z indicates the correlation between the outcomes for the
two particles.
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Qubits

We consider the measurement of the spin w.r.t. the z axis. In the
Hilbert space C2 we consider the orthonormal basis {|↓〉, |↑〉}. We
write the state of q as a vector evidentiating its relative phase φ:

|q〉 = α|↓〉+ eiφβ|↑〉

Different qubits yielding the same probability distribution are
characterized by φ. So the unfocused domain
DZ = {(↓, α2), (↑, β2)}, corresponds to the family of vectors
α|↓〉+ eiφβ|↑〉, φ ∈ [0, 2π).
Two qubits in the same family can be distinguished by
measurement if and only if they are orthogonal. This gives
α2 = β2 = 1/2 and φ′ − φ = π.
We consider φ = 0 and φ = π, and characterize the couple of
orthogonal vectors |+〉 and |−〉:

|+〉 = 1/
√

2|↓〉+ 1/
√

2|↑〉 |−〉 = 1/
√

2|↓〉 − 1/
√

2|↑〉
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Domains characterized in C2

So the measurement basis |↓〉 and |↑〉 allows to characterize:

◮ Two singletons D↑ = {(↑, 1)} and D↓ = {(↓, 1)}, relative to the
measurement of qubits in the basis state.

◮ Two unfocused copies of the domain D = {(↓, 1/2), (↑, 1/2)}
(uniform distribution). We shall label them D+ and D−.

D+ and D− are equal as sets, from an extensional point of view.
The labels + and − give an “intensional” characterization, to
represent qubits in states |+〉 and |−〉.
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Propositions from qubits

A qubit in state ↓ is represented by the proposition (∀x ∈ D↓)A(x)

A qubit in state ↑ is represented by the proposition (∀x ∈ D↑)A(x).

Moreover:
A qubit in state |+〉 is represented by the prop. (∀x ∈ D+)A(x).

A qubit in state |−〉 is represented by the prop. (∀x ∈ D−)A(x).

So, for different qubits, we have two different lists of pairs of
propositions.

We find out how such propositions can be characterized by
introducing a different representation.
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Definitory equations can be put in symmetric pairs, as follows:

Γ ⊢ A ◦ B ≡ Γ ⊢ A ≈ B

and
A ◦s B ⊢ ∆ ≡ A ≈ B ⊢ ∆

so that logical connectives come out in symmetric pairs (◦, ◦s),
each pair corresponding to the same metalinguistic link ≈: (&,∨),
(∗,⊗), .... (∀,∃).

Symmetric equations are solved in a symmetric way, finding
couples of rules “mirroring each other”. So, one finds out
symmetric sequent calculi (or couples of symmetric sequent
calculi) and a symmetry theorem:

Π proves Γ ⊢ ∆ iff Πs proves ∆s ⊢ Γs

where p = ps on literals and Πs has the right/left rule for ◦s where
Π has the left/right rule for ◦.
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In logic, the symmetry theorem becomes real when it is applied
considering a duality (−)⊥, that means a negation:

Γ ⊢ ∆ iff ∆⊥ ⊢ Γ⊥

where p⊥ is the negation of p for every literal p (Girard’s duality)
and everything else is as for symmetry. Symmetry acts as a real
duality on connectives!

The duality theorem, but not the symmetry theorem, can be
extended to admit contexts, as follows:

Γ′, Γ ⊢ ∆,∆′ iff Γ′,∆⊥ ⊢ Γ⊥,∆′

This gives the duality the real meaning of negation.
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Symmetry and sharp states

Formally, one could consider a symmetric representation for the
state of a particle, via the existential quantifier ∃.
We consider the symmetric representation for a particleA in one
of the states |↓〉, |↑〉, |+〉, |−〉.
The two sharp states |↓〉 and |↑〉 are associated to the propositions
(∃x ∈ D↓)A(x) and (∃x ∈ D↑)A(x).
One easily proves that

(∀x ∈ D↓)A(x) = (∃x ∈ D↓)A(x)

(∀x ∈ D↑)A(x) = (∃x ∈ D↑)A(x)

Since ∀ = ∃ on singletons.
Then we make a unique list of pairs, shorthanded A↓,A↑. As
observed, they are in turn equal to propositional formulae. They
are like pairs of propositional literals in a logical language (Girard
literals) and we apply Girard duality to them:

A⊥↓ ≡ A↑ A⊥↑ ≡ A↓
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In our case, Girard’s duality describes the action of the Pauli matrix
σX , that is the NOT gate, on the sharp states.

(∃x ∈{u})A(x) = (∀x ∈{u})A(x) holds for every singleton {u}. It is
equivalent to the following sequent:

A(y), z = u ⊢ A(z), y , u

that is derivable by equality rules. In turn, when {u} = D↓ or
{u} = D↑, we rewrite it:

A(y), z ∈ D ⊢ A(z), y ∈ D⊥

where D is D↓ or D↑ and the duality ⊥ switches ↓ and ↑.
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Extending symmetry

We extend such a kind of sequents to unfocused domains, by the
following axioms, termed phase axioms:

A(y), z ∈ D ⊢ A(z), y ∈ D⊤

where D is D+ or D− and ⊤ is an operator switching + and −: we
term it phase duality.

Adopting phase axioms, one can prove the equalities:

(∀x ∈ D+)A(x) = (∃x ∈ D+)A(x)

(∀x ∈ D−)A(x) = (∃x ∈ D−)A(x)

So our logic can be equipped with a second list of pairs of literals,
A+,A−, that we term phase literals, switched by phase duality:

A+⊤ ≡ A− A−⊤ ≡ A+

Note that they are not equivalent to propositional formulae, since
the state is not sharp.
Phase duality describes the action of the Pauli matrix σZ , on the
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Virtual singletons

We can extend the action of duality and phase duality, consistently
with the action of the NOT and the σX gate, to all literals, putting:

A↓
⊤ ≡ A↓ A↑

⊤ ≡ A↑ A+⊥ ≡ A+ A−⊥ ≡ A−

One can see that:

◮ phase axioms are inconsistent on focused domains of
cardinality greater than 1

◮ phase axioms characterize singletons when substitution is
allowed, namely when measurement is considered.

Then, on one side, singletons are comparable to the intensional
domains D+ and D−: they are not splitted by a disjunction.
On the other, D+ and D− are like singletons.
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The analogy with the behaviour of singletons can be extended to a
couple of qubitsA and B, described by propositions A and B . For
couples of separated particles, we have seen that the state of the
couple is described by the proposition

(∀x ∈ D,w ∈ D′)A(x) ∗ B(y) = (∀x ∈ D)A(x) ∗ (∀x ∈ D′)B(x)

If and only if D = D′ = {u} one derives

(∀x ∈ D)A(x) ∗ B(x) = (∀x ∈ D)A(x) ∗ (∀x ∈ D)B(x)

One can derive it via the equality rules.

An analogous derivation could derive the same equality for any
domain D satisfying the phase axiom. In a “normal” logical setting,
this gives inconsistency.
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Bell’s states

We consider a couple of particles in a Bell’s state. To write down
the outcomes of their measurements, we adopt the writing:

Γ, z ∈ D+ ⊢ A(z),i B(z) Γ, z ∈ D− ⊢ A(z),i B(z)

Γ, z ∈ D+ ⊢ A(z),o B(z) Γ, z ∈ D− ⊢ A(z),o B(z)

where the indexed commas ,i/o describe the identical or opposite
correlation between the outcomes in the measurements of the two
particles.

By phase axioms, one can derive the following “parallel” rule for
the quantifier:

Γ, z ∈ D± ⊢ A(z),i/0 ±B(z)

Γ ⊢ (∀x ∈ D±)A(x),i/o (∀x ∈ D±)B(x))
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Bell’s states as virtual singletons

Translating the indexed commas into new connectives Zi ,Zo, one
can prove the analogous of the equality just seen for singletons:

(∀x ∈ D±)A(x) Ziø B(x) = (∀x ∈ D±)A(x) Ziø (∀x ∈ D±)B(x)

This allows to define a generalized quantifier to represent the four
Bell’s states:

1/
√

2|00〉 ± 1/
√

2|11〉 1/
√

2|01〉 ± 1/
√

2|10〉

as four propositions, on the domains D+ and D−:

(∀x ∈ D±)A(x) Zi B(x) (∀x ∈ D±)A(x) Zo B(x)

We can extend phase duality to such propositions, switching the
domains D+ and D−. Moreover, we extend Girard’s duality to them
by the identity, since it is the identity for the domains D+ and D−.
Then the representation of Bell’s states gives other phase literals.
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Conclusions

Phase duality ⊤ is naturally induced by duality ⊥ itself.

It is hidden by measurement.

The information contained in phase literals is independent of the
orientation of the consequence relation ⊢. It is asserted and
refuted at the same time.

Then it allows to process information as if it were asserted as well
as refuted in the same process of derivation.
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Thank you for your attention!
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