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Abstract

We introduce a general decomposition of the stress tensor for incompressible fluids in terms of its components on a tensorial basis adapted to

the local flow conditions, which include extensional flows, simple shear flows, and any type of mixed flows. Such a basis is determined

solely by the symmetric part of the velocity gradient and allows for a straightforward interpretation of the non-Newtonian response in any

local flow conditions. In steady homogeneous flows, the material functions that represent the components of the stress on the adapted basis

generalize and complete the classical set of viscometric functions used to characterize the response in simple shear flows. Such a general

decomposition of the stress is effective in coherently organizing and interpreting rheological data from laboratory measurements and compu-

tational studies in nonviscometric steady flows of great importance for practical applications. The decomposition of the stress in terms with

clearly distinct roles is also useful in developing constitutive models. VC 2018 The Society of Rheology.
https://doi.org/10.1122/1.4986840

I. INTRODUCTION

The typical workflow associated with the mathematical

modeling of physical phenomena starts with the collection of

experimental data. These can originate from laboratory mea-

surements or from computational studies based on “lower

level” physics, for which reliable and well-tested models are

already available. Given the data, two immediate challenges

concern their organization and interpretation. Most often, the

interpretation of experimental data involves making a con-

nection with the specific conditions under which phenomena

were observed, meanwhile tracing the limits of validity of

the conclusions that can be drawn.

The study of rheological properties of fluids and their

mathematical modeling follows this general scheme, with an

emphasis on the main next step: The interpolation and

extrapolation of the collected data. In fact, there is a strong

technological interest in controlling the behavior of fluids in

a variety of flow regimes that are not easily accessible to

experimental measurements. The extrapolation of the

collected data to such regimes is at the heart of constitutive

modeling, where physical insight and mathematical tools

come together with the ultimate goal of providing reliable

simulations of engineering-scale flows of complex fluids.

Rheological measurements are challenging and the identi-

fication of suitably controllable flows is a crucial issue. In

this respect, of great importance is the class of viscometric

flows that provided the basic platform also for the interpreta-

tion of measurements. Within that framework, three material

functions—shear viscosity gS and normal stress differences

N1 and N2—are shown to characterize the fluid response in

viscometric flows as the shear rate is varied [1–3].

Nevertheless, their applicability is limited and relies on the

identification of locally co-moving frames in which the

velocity gradient resembles that of a simple shear.

However, nonviscometric flows are usually observed in

most physical systems, hence the need for exploring the fluid

response in flow conditions other than viscometric ones. A

paradigmatic example of nonviscometric flow is the channel

flow through a contraction (Fig. 1). The sudden reduction of

the channel width leads to an increase in the streaming

velocity at the center of the channel and to the appearance of

counterrotating vortices in the corners right before the con-

traction. In contrast to what happens in a channel with uni-

form width, where the velocity gradient is everywhere

equivalent to that of a simple shear, the gradient of the veloc-

ity field in a steady flow through a contraction is equivalent

to that of extensional flows at the centerline of the contract-

ing region, of shear flows far from the contracting region, of

a rigid rotation at the center of the vortices, and of mixed

flows in the intermediate regions.

The widespread occurrence of similar flow conditions in

real systems has prompted the study of rheological properties

of fluids especially in extensional flows [4–6] and the devel-

opment of computational techniques able to access exten-

sional flows and mixed flows [7–15], which range from pure

extension, to simple shear, to rigid rotation of the fluid.

Through similar studies it has long since become clear that

the non-Newtonian fluid response often depends on the local

flow type (extensional, simple shear, or mixed).

The need for dealing with controllable flows when explor-

ing non-Newtonian responses makes it desirable to generate

uniform flow conditions, but this is not always possible. As

for the planar case, it is known that the four-roll mill appara-

tus devised by Taylor [16] can be used to produce any of the
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mixed flows in a significant neighborhood of the stagnation

point [3,17]. This provided clear hints for the design of cross

channels that produce the same type of flows [18–22].

Nevertheless, not all of the interesting flow conditions can be

investigated through flows with uniform velocity gradient.

This stimulated the development and application of rheo-

optical techniques [22–28], designed to provide local mea-

surements of the stress generated in possibly nonuniform

flows. Techniques that provide local velocity measurements

under controlled stress conditions [29–34] contribute in an

important complementary way to the understanding of the

local response of complex fluids.

In spite of the vast amount of data now available in non-

viscometric flow conditions, the lack of a general scheme to

organize and interpret such data has led to the introduction

of various quantities that are connected via ad hoc relations

to the classical viscometric functions (viscosity and normal

stress differences) associated with simple shear flows. The

main aim of the present paper is to provide a new scheme for

the organization and interpretation of rheological measure-

ments for steady flows of incompressible fluids. In particular,

we show how to define in a unified way the material func-

tions that are needed to describe the local fluid response in

nonviscometric flows such as the contraction flow of Fig. 1.

This is achieved by introducing, in Sec. II, general response

coefficients, each representing a distinct degree of freedom

of the Cauchy stress tensor.

Subsequently, in Sec. III, a complete set of material func-

tions is associated with the response coefficients. Our

scheme goes beyond the one given by viscometric functions

and it is complete in the sense that it gives a coherent inter-

pretation of data obtained for any three-dimensional flow.

This rheometric framework has been applied by the authors

in a recent computational study of dense suspensions [35].

Finally, in Sec. IV, we discuss how the material functions

can be used in developing constitutive models. This is done

by reinterpreting well-known models in terms of those func-

tions and suggesting further ways to exploit the physical

insight associated with the general decomposition of the

stress tensor provided in Sec. II.

II. LOCAL DECOMPOSITION OF THE STRESS
TENSOR

Our main result is the construction and interpretation of a

general decomposition of the stress tensor, given in Eq. (9),

for an incompressible fluid motion. Such a decomposition

associates the six degrees of freedom of the symmetric

Cauchy stress with distinct effects. This is achieved by pro-

jecting the stress, at each point in space and instant in time,

on a tensorial basis which is adapted to the local description

of the flow in terms of the symmetric part D of the velocity

gradient

ru ¼ DþW; (1)

with W denoting its antisymmetric part.

The choice of constructing the tensorial basis starting from

D is most effective when it is physically informative to orga-

nize the degrees of freedom of the stress in relation to those of

D. This is particularly true whenever the stress is chiefly deter-

mined by how the material is flowing, since D encodes essen-

tial information concerning the deformation rate associated

with the flow. As we discuss in Sec. III C, this choice enables

us to generalize and complete the standard definition of mate-

rial functions for steady homogeneous flows. Nevertheless,

the general decomposition (9) introduced below is applicable

and provides useful information even in unsteady flows. We

discuss in Sec. II D situations in which different starting points

for the stress decomposition may be helpful.

A. Parametrization of the velocity gradient

We consider situations in which the symmetric tensor D
has a nonvanishing dominant eigenvalue (with largest abso-

lute value). We further denote by d̂1 the unit-norm eigenvec-

tor of D corresponding to the dominant eigenvalue. In the

particular cases in which D has two dominant eigenvalues,

corresponding to the planar flows discussed below, we fix d̂1

by choosing _e in Eq. (2) as the positive eigenvalue.

(However, _e can be negative for generic three-dimensional

flows.) Using the eigenvalues and eigenvectors of D and

from the angular frequency and the axis of the rigid rotation

associated with W (quantities that are defined without refer-

ence to any choice of coordinate system), it is possible to

represent the eight degrees of freedom that characterize the

velocity gradient in any incompressible fluid motion.

Using the decomposition (1) and writing ab for the dyadic

product of vectors a and b, the most general traceless veloc-

ity gradient is given by

D ¼ 2_effiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4a2
p d̂1d̂1 � ð1=2þ aÞd̂2d̂2 � ð1=2� aÞd̂3d̂3

� �
;

(2)

where the dimensionless asymmetry parameter a ranges

from 0 to 1/2, and d̂1; d̂2, and d̂3 are orthonormal eigenvec-

tors of D, and by

W ¼ _e
h
b1 d̂3d̂2 � d̂2d̂3

� �
þ b2 d̂1d̂3 � d̂3d̂1

� �

þ b3 d̂2d̂1 � d̂1d̂2

� �i
; (3)

with bk being a dimensionless parameter for each k¼ 1, 2,

and 3. These encode the angular frequency and the axis of

FIG. 1. The channel flow through a contraction offers a paradigmatic example

of nonviscometric flow. The gradient of the velocity field in such a steady

flow is equivalent to that of extensional flows at the centerline of the contract-

ing region, of shear flows far from the contracting region, of a rigid rotation at

the center of the vortices, and of mixed flows in the intermediate regions.
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the rotation associated with W. Indeed, 2_ebk corresponds to

the component along d̂ k of the vorticity vector, namely,

bk ¼
1

2_e
d̂ k � r � u: (4)

For any value of the dimensionless parameters a and bk

(k¼ 1, 2, and 3), the local timescale of the deformation is set

by the rate j_ej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðD2Þ=2

q
.

Without loss of generality, we have associated the eigen-

vector d̂3 with the eigenvalue with least absolute value. This

choice has the advantage that the velocity in planar flows has

components only in the plane spanned by d̂1 and d̂2.

B. Adapted tensorial basis

Our objective is to construct a decomposition of the stress

tensor which is adapted to the local flow. To this end, we

define an orthogonal basis for symmetric tensors built start-

ing from the identity tensor I and D. We remark that such a

basis is completely independent of W.

Since D is traceless (due to the incompressibility con-

straint) then it is orthogonal to I. The subspace of symmetric

tensors that are diagonal on the basis of the eigenvectors of

D is three-dimensional. We then need to find only one tensor

E which is orthogonal to I and D and diagonal on the basis

ðd̂1; d̂ 2; d̂3Þ. This can be easily shown to be

E¼ _effiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4a2
p �2ad̂1d̂1�ð3=2� aÞd̂2d̂2þð3=2þ aÞd̂3d̂3

� �
;

(5)

where we have chosen the normalization factor in such a

way that

ffiffiffiffiffiffiffiffiffiffiffiffi
trðE2Þ

q
¼

ffiffiffiffiffiffiffiffi
3=2

p
j_ej. To complete the basis, we can

simply consider the three off-diagonal tensors

Gi ¼ _e d̂ jd̂ k þ d̂ kd̂ j

� �
; (6)

with i 6¼ j 6¼ k ranging from 1 to 3.

We now introduce dimensionless tensor fields

D̂ ¼ _e�1D; Ê ¼ _e�1E; Ĝi ¼ _e�1Gi; (7)

so that we can identify a dimensionless adapted basis

B ¼ I; D̂; Ê; Ĝ1; Ĝ2; Ĝ3

� �
: (8)

All of these tensors are orthogonal to each other in the sense

that trðAT � BÞ ¼ A : B ¼ 0 for any choice of A and B in B.

Such a basis depends locally on space and time through the

eigenvalues and eigenvectors of D and is not defined when-

ever D vanishes.

C. Response coefficients

The stress tensor T can be decomposed on the basis B as

T ¼ �pIþ 2_e gD̂ þ k0Ê þ k1Ĝ1 þ k2Ĝ2 þ k3Ĝ3

� �
: (9)

Each of the response coefficients p, g, k0, k1, k2, and k3 is

affected, in principle, by the value of any quantity that

describes the state of the system. Indeed, from Eq. (9) and

the definitions (7) we can easily infer that

p ¼ �T : I

I : I
¼ � 1

3
trðTÞ (10)

and

g ¼ 1

2

T : D

D : D
; k0 ¼

1

2

T : E

E : E
; and kk ¼

1

2

T : Gk

Gk : Gk
(11)

for k¼ 1, 2, and 3, showing that, while the basis B depends

only on D, the response coefficients are influenced by any-

thing that affects the stress tensor T. We used the symbol g,

commonly employed to denote the shear viscosity, for one of

our material coefficients, since the latter is a generalization

of the shear viscosity and, in a steady simple shear, it

becomes exactly the shear viscosity. Nevertheless, it is

important to observe that the coefficient g is defined in a

broader sense than the shear viscosity, being meaningful in

many different flow conditions. We also note that, while r is

a more common notation for the stress tensor, we prefer to

use T and consistently employ greek letters for scalars,

lower-case bold for vectors, and upper-case bold for tensors.

The major advantage of decomposing the stress T accord-

ing to Eq. (9) is that each of the response coefficients has a

precise role that is independent of any specific flow condi-

tions. The coefficient p clearly measures the isotropic pressure

contribution to the stress. The scalar product T : D that defines

g measures the rate at which mechanical energy is being con-

verted into internal energy. In view of this, g contains not only

the contribution due to the irreversible dissipation of mechani-

cal energy (normally associated with viscosity) but also the

reversible storage of kinetic energy into internal elastic energy

[36, Sec. 6]. We can thus consider g as a generalized viscosity.

The response coefficients kk (k¼ 0,…, 3) have a simple inter-

pretation based on how the eigenvectors and eigenvalues of

the stress tensor T are related to those of D (Fig. 2). If they all

vanish identically (but g is nonzero) T has the same eigenvec-

tors of D and proportional eigenvalues. If only g and k0 are

nonvanishing, the eigenvectors of T are still aligned with

those of D, but the relative magnitude of the corresponding

eigenvalues is no longer the same. Hence, the presence of k0

means that the intensity of the stress is not distributed along

its principal directions proportionally to the distribution of the

rate of deformation. In the presence of nonvanishing k1, k2, or

k3, the eigenvectors of T are no longer aligned with the eigen-

vectors of D, a phenomenon typically associated with elastic

effects but also with modifications in the microstructure of

complex fluids.

The above construction and arguments are all local in

nature, meaning that each quantity can take different values

at different points in space and instants in time.

Nevertheless, the meaning of the response coefficients is

everywhere the same. This is a key feature of the decomposi-

tion (9) in comparison to other possible ways of representing

the six degrees of freedom of the symmetric stress tensor T
(such as, for instance, listing its components on a fixed ortho-

normal basis using the lab frame).
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Organizing the data collected (experimentally or computa-

tionally) about the local stress by means of the response coef-

ficients introduced above is particularly useful when one

needs to compare the fluid behavior observed in different con-

ditions and geometries, because the data structure is built with

reference to the same physical facts. The use of the tensor D
as starting point for the definition of a tensorial basis is very

convenient, since it is often possible to have fairly accurate

local measurements of the velocity gradient. Nevertheless,

this does not entail any restriction about the nature of the inde-

pendent quantities that affect the stress tensor. The latter can

depend, for instance, on the history of the strain as well as the

strain rate, as needed in the presence of elastic effects.

D. Remarks on the treatment of elastic effects

Even though the decomposition (9) is applicable and

can give useful information also in the presence of elastic

effects, in many rheological experiments that explore such

elastic properties one can encounter situations in which D
vanishes and the tensorial basis (8) is not naturally defined.

Nevertheless, this issue can be easily overcome in a num-

ber of situations based on the following argument. If D
¼ 0 in a finite three-dimensional region, then the material

there is moving rigidly, or is not moving at all. This

means that, in a generic flow, the tensor D can vanish only

at isolated points, along lines, or on some surface—typical

examples are the axes of vortices where the flow tends to

a rigid rotation. In such cases, it is usually possible to

extend the definition of the dimensionless tensorial basis

(8) to the region where D ¼ 0 by continuity with that in

the neighboring points.

Second, there are important oscillatory flows in which the

velocity uniformly vanishes at the periodic turning points of

the flow. Also in this case, since the static condition appears

only at isolated instants, it is usually easy to extend by conti-

nuity the definition of the tensorial basis (8) to those instants.

Considering, for example, oscillatory shear flows, the nor-

malized basis tensors are constant in time and homogeneous

in space, always well-defined except at the turning instants,

but trivially extendible even there. This shows how the

decomposition (9) maintains its efficacy beyond the context

of steady homogenous flows.

Finally, there are experiments, used to study stress relax-

ation phenomena, in which a shearing flow is stopped and

then D vanishes. In this cases, it is clearly necessary to

decompose the stress on bases determined by tensorial

quantities other than D. Measures of an effective stretching,

such as the Finger tensor or the commonly used conforma-

tion tensor, would be an appropriate starting point. We do

not exclude the possibility that some of the tensorial bases

developed in a similar context may provide useful insight

even in more dynamical situations. An interesting contribu-

tion in this direction can be found in a paper of Pasquali

and Scriven [37], where D is projected onto the eigenvec-

tors of the conformation tensor (associated with the elastic

stress) to define a “molecular extension rate” and a

“molecular shear rate”.

FIG. 2. Each of the elements of the adapted tensorial basis B introduced in Eq. (8) encodes a different degree of freedom of the stress tensor T. The response

coefficients p, g, k0, k1, k2, and k3 measure the relevance of each degree of freedom. Considering planar flows, g describes the anisotropy of the stress tensor in

the flow plane and it is associated with the rate at which mechanical energy is being converted into internal energy. The response coefficient k0 governs the

out-of-flow-plane anisotropy, modifying the eigenvalues but keeping the eigenvectors of the stress aligned to those of D. The response coefficients k1, k2, and

k3 generate a rotation of the eigenvectors of the stress with respect to those of D. The length of the axes of the ellipsoids in each panel represents the absolute

value of the stress eigenvalues, while the arrows within the ellipsoids show the direction of the eigenvectors.
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III. FLOW CLASSIFICATIONS AND CONSTITUTIVE
MODELING

The primary purpose of the stress decomposition (9) is a

systematic organization of rheological measurements in dif-

ferent local flow conditions. Nevertheless, it can also be use-

ful in developing constitutive models. Here, we do not

discuss new constitutive models, but we want to highlight

the contexts in which Eq. (9) is most useful and its compati-

bility with any existing constitutive model.

The main steps in this respect involve, first, a discussion

of how the choice of independent descriptors affects the local

flow classification and, second, upgrading the response coef-

ficients introduced above to material functions, in terms of

which constitutive models can be formulated. In this section,

we also clarify how the new material functions are a general-

ization of standard material functions, such as viscometric

functions and extensional viscosity.

A. Independent descriptors and flow types

The choice of the independent fields, the values of which

characterize the local state of a system, is clearly the first

step in constitutive modeling. There is no a priori indication

that one can give about this choice, except that one would

like to use quantities that are measurable and to avoid redun-

dancy, in the sense that two distinct sets of values should

label distinct kinematical states of the system.

In a rheological context, once this initial choice is per-

formed we can also ask whether distinct (local) kinematical

conditions could or should be considered equivalent in view

of the fact that one may expect to measure the same stress in

different conditions. This marks, in our opinion, a useful dis-

tinction between mere parametrizations of the local flow

conditions (in terms of the chosen independent fields) and

local flow-type classifications, which separate the local flow

conditions in various equivalence classes based on reason-

able expectations about the material response.

Flow classification criteria have a long history (nicely

reviewed by Thompson and Souza Mendes [38]) but the dis-

tinction between kinematic parametrization and flow classifi-

cation remains often implicit. It is nevertheless important to

realize that each flow classification scheme incorporates

some constitutive choices and expectations in the way local

kinematic conditions are considered equivalent or not.

A seminal contribution concerning flow classifications

was given by Astarita [39], who lists locality, applicability to

generic flows, and objectivity as important properties of flow

classifications. He motivates the requirement of objectivity

(namely, covariance under possibly time-dependent changes

of observer corresponding to the group of rigid-body

motions) by saying that “Since the main reason for classify-

ing flow fields is to decide which constitutive equation is

more likely to produce useful results, the criterion should

enjoy the same invariance properties that are required of the

constitutive equation.” We share Astarita’s view that a flow

classification is intimately linked to some constitutive prop-

erties, but this opens the possibility of encountering situa-

tions in which the flow classification criterion should not be

objective, but only Galilean covariant.

Indeed, the main point of a classification is to group condi-

tions that are, at the microscopic level, physically equivalent

and entail equivalent material responses at the macroscopic

level. In view of this, two microscopic situations that are

mapped onto each other by means of accelerating changes of

observer, that are included in the objectivity requirement, can

be equivalent only if inertial effects are negligible at the

microscopic level (as discussed by Beris and Edwards [40,

Sec. 7.2.1] and Phan-Thien [41, Sec. 4.3]). This is generally

the case for the type of elastic fluids that motivated Astarita’s

analysis and for many non-Newtonian fluids, but suspensions

of (density-mismatched) particles in viscous fluids are the sim-

plest examples of systems in which microinertial effects may

be relevant and the constraint of objectivity too strong [42].

Here, we give an example of how different flow classifi-

cations can be applied in similar situations in relation to dif-

ferent constitutive assumptions. We begin by considering the

class of steady homogenous planar flows, which can be

parametrized simply by the structure of the velocity gradient.

With reference to the representations (2) and (3) of D and W,

such flows correspond to choosing a fixed _e; a ¼ 1=2 (maxi-

mal asymmetry) and b1¼b2¼ 0 with b3 constant (vorticity

orthogonal to the flow plane). Since there are two dominant

eigenvalues of D, we select d̂1 so that _e > 0, as mentioned

above. Within this class of flows, simple shear and (planar)

extensional flow emerge by choosing b3¼ 1 and b3¼ 0,

respectively, while for any other value of b3 the flow is

mixed. Notably, a rigid rotation of the fluid is approached for

b3� 1 and the streamlines are elliptical for b3> 1 (Fig. 3).

FIG. 3. In homogeneous planar flows, the flow type is controlled by the dimensionless parameter b3 which measures the relative importance of vorticity.

Through mixed flows, we can interpolate between purely extensional flows (b3¼ 0), simple shear (b3¼ 1), and rigid rotation (b3¼1). In the latter case, a

limit in which _e ! 0, so that the rotation rate _eb3 remains finite, is understood. The extension and contraction axes are always identified by the eigenvectors

d̂ 1 and d̂ 2 of D.
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It is possible to construct two purely kinematic flow clas-

sifications (one objective and the other one nonobjective) in

which the homogeneous planar flows remain distinct but the

local flow conditions in inhomogeneous flows are grouped in

different ways as regards their local equivalence to homoge-

neous flows. The fact that a classification is able to distin-

guish among different homogeneous planar flows is very

important for all those fluids that display flow-type depen-

dence by behaving differently in extensional and simple

shear flows.

A local flow classification able to distinguish between

extensional and simple shear flow and based exclusively on

the components of the velocity gradient can be established,

by using the local flow parametrization given above, in terms

of the rate _e and the component b3 of the vorticity. This clas-

sification is not objective, since any value of b3 can be

mapped to zero by considering spinning observers. Hence,

this classification might be useful when microinertial effects

are relevant, but it is not otherwise appropriate.

To obtain an objective local flow classification able to dis-

tinguish between extensional and simple shear flow it is nec-

essary to go beyond the exclusive use of the velocity

gradient. We recount here the presentation given by Schunk

and Scriven [43] of a quite simple but effective scheme. The

set of kinematical parameters used for the classification is

expanded to include (some of) the degrees of freedom asso-

ciated with the rate of change of the tensor D along stream-

lines. In particular, the local spin of the eigenvectors of D is

encoded in the vector

w ¼ 1

2

X
k

d̂ k �
@d̂ k

@t
þ u � rd̂ k

	 

: (12)

The new degrees of freedom are the components of w on the

eigenvectors of D, suitably normalized. We thus introduce,

for k¼ 1, 2, and 3, the dimensionless parameters

dk ¼
1

_e
d̂ k � w: (13)

An objective flow-type parameter for planar flows can be

identified with the relative rotation parameter �b3 ¼ b3 � d3.

In this way, planar flows can be locally classified by using

the rate _e and �b3.

In steady homogeneous flows, the eigenvectors of D do

not rotate and d3 vanishes, so that �b3 ¼ b3. As a conse-

quence, homogeneous planar flows are equally distinguished

by the nonobjective scheme and the objective one. A striking

difference, however, arises when considering nonhomoge-

neous flows.

As a paradigmatic example, we can analyze the

Newtonian profile for the tangential velocity component u of

a steady viscometric flow between concentric cylinders. The

objective classification assigns �b3 ¼ 1 everywhere in the

flow domain (while _e is constant along streamlines), showing

that, in the absence of microinertial effects, the flow is

locally equivalent to simple shear. On the other hand, the

nonobjective classification scheme gives a local flow-type

that depends on the radial coordinate r according to

_eðrÞ ¼ 1

2

@u

@r
ðrÞ � uðrÞ

r

	 

; (14)

b3ðrÞ ¼
r
@u

@r
ðrÞ þ uðrÞ

r
@u

@r
ðrÞ � uðrÞ

; (15)

which is not equivalent to a simple shear, except at those

points in which u vanishes, if any. This indicates how flows

between rotating cylinders can provide interesting tests to

assess the presence of microinertial effects, based on analyz-

ing the compatibility of their behavior with the two different

classification schemes.

B. From response coefficients to material
functions

Once a choice of independent descriptors and local flow

classification, appropriate to a specific class of fluids, is

made, it is possible to associate each of the response coeffi-

cients introduced in Sec. II with a distinct material function.

The local flow classification labels distinct experimental con-

ditions, so we can build material functions by interpolating

the values of the response coefficients measured by varying

the experimental conditions.

Nowadays, computational experiments offer important

insight about the material response in conditions that are not

easy to handle in a laboratory experiment. Nevertheless, the

range of local flow conditions that are encountered in real

flow geometries remains wider than that accessible by well-

controlled experiments. This makes it necessary the extrapo-

lation of the measured behavior to those conditions, which is

at the heart of constitutive modeling, and material functions

play an essential role in this.

The material functions p, g, and kk (for k¼ 0,…, 3) have

the remarkable properties of identifying the same degrees of

freedom of the stress in any local flow condition and of being

applicable in conjunction with any flow classification scheme

by simply changing the independent fields on which they

depend. The first property is particularly desirable due to the

important increase of interest and available data in flows other

than viscometric ones. Standard material functions are indeed

defined with reference to a specific flow type (for instance,

simple shear or uniaxial and biaxial extension) with different

choices for the reference deformation rate and the basis on

which the stress tensor is decomposed. Our material functions

overcome these issues, since they are linked to projections of

the stress along the eigenvectors of D (coordinate-indepen-

dent and objective quantities) and are normalized by the rate

_e, which is defined in the same way for any local flow type.

The second property highlights the general applicability

of such material functions, because it shows that all the

modeling assumptions come after their definition, which is

based on the decomposition (9) of the stress tensor. This

is also a property of standard viscometric functions and

it is the basis of their enormous practical importance in

rheology. As a matter of fact, our material functions

include and generalize the standard material functions

used to characterize steady flows, by providing a unified
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tool to compare data across different flow conditions and

different classes of fluids.

C. Relation to standard material functions

To provide a clear connection with standard treatments

and to highlight once more what type of generalization we

have introduced, we show how viscometric functions and

extensional viscosity are recovered within the new frame-

work. Since viscometric functions are defined for the planar

simple shear flow, we also confine attention to the planar

extensional flow, but the argument extends easily to three-

dimensional extensional flows. Moreover, since the standard

material functions are usually employed to discuss fluid

models in the absence of microinertial effects, we use the

simple objective flow classification given above in which

simple shear corresponds to the value �b3 ¼ 1 of the relative

rotation parameter, while planar extension corresponds to
�b3 ¼ 0. Then, in this particular case, our material functions

depend on the local rate _e and the flow-type parameter �b3.

If all of the physical effects that describe a system are

invariant under translations in the direction orthogonal to the

flow plane we can reasonably assume the planarity of the

flow. In this case, a significant reorientation of the stress

eigenvectors with respect to the eigenvectors of D can only

take place in the flow plane, entailing k1¼ k2¼ 0. The gen-

eral decomposition (9) becomes now the representation

Tð_e; �b3Þ ¼ �pð_e; �b3ÞI

þ 2_e gð_e; �b3ÞD̂ þ k0ð_e; �b3ÞÊ þ k3ð_e; �b3ÞĜ3

h i
:

(16)

The basis tensors I; D̂; Ê, and Ĝ3, being defined in terms of

the eigenvectors of D, are all objective quantities. Hence, the

representation (16) is objective if and only if the material

functions p, g, k0, and k3 are objective.

We stress that the local vanishing of �b1 and �b2 (always

true in planar flows) does not necessarily cause k1 and k2 to

vanish. Rather, the presence of a stress associated with those

quantities would render the planar flow conditions unstable,

leading to more complex dynamics. Similarly, in a stable

extensional flow (�b3 ¼ 0) we would expect to find k3¼ 0,

but the presence of a nonvanishing k3 (possibly generated by

elastic effects) could break the symmetry and destabilize the

flow, as experiments suggest [44].

The pressure p retains its usual role of measuring the iso-

tropic stress. For incompressible fluids, it combines the result

of various microscopic effects with a reaction (or Lagrange

multiplier) associated with the incompressibility constraint.

For this reason, it cannot be fully given by constitutive pre-

scriptions. In steady viscometric or homogeneous flows,

since the internal energy of each fluid parcel is constant, the

material function g encodes the dissipative viscous effects

and is proportional to the shear or extensional viscosities.

The interpretation of the material functions k0 and k3 in pla-

nar flows is of particular interest (see again Fig. 2). The ten-

sor Ê, in the case a¼ 1/2, reads

Ê ¼ � 1

2
d̂1d̂1 �

1

2
d̂2d̂2 þ d̂3d̂3: (17)

The term 2_ek0Ê induces only a shift in the eigenvalues of

the stress which is isotropic (akin to a pressure) in the flow

plane, with a term �_ek0, while globally anisotropic, since

the eigenvalue in the remaining direction is shifted by 2_ek0.

The anisotropy induced in the stress due to this conservative

effect can be described by the ellipsoidal factor 2_ek0=p.

Meanwhile, the term 2_ek3Ĝ3 induces a reorientation of

the eigenvectors of the stress tensor with respect to those of

D of a reorientation angle u, such that

tan u ¼ k3

gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ k2

3

q ; (18)

which is well approximated by the reorientation factor k3/2g
when k3� g. Since, in the planar case, Ê and Ĝ3 commute,

the redistribution of the eigenvalues and the reorientation of

the eigenvectors are completely independent effects.

For the case of simple shear flows (�b3 ¼ 1), we can easily

relate the material functions to the familiar viscometric func-

tions defined for a simple shear with rate _c ¼ 2_e. Indeed, the

shear viscosity gS and the normal stress differences N1 and

N2 are given by

gSð _c ¼ 2_eÞ ¼ gð_e; �b3 ¼ 1Þ; (19)

N1ð_c ¼ 2_eÞ ¼ �4_ek3ð_e; �b3 ¼ 1Þ; (20)

N2ð_c ¼ 2_eÞ ¼ 2_ek3ð_e; �b3 ¼ 1Þ � 3_ek0ð_e; �b3 ¼ 1Þ: (21)

We remark again that our representation for T helps to dis-

tinguish between two effects, namely, the reorientation of

eigenvectors and redistribution of eigenvalues that can occur

independently but are combined in the definition of N2.

These observations show that our set of material functions

provides a natural generalization of the classical viscometric

functions, which are recovered as specific slices of the former.

Rheological measurements in extensional flows are also

reflected in the description of a specific slice of the general

material functions, that is the one obtained by setting �b3 ¼ 0.

For instance, the conventional value of the planar extensional

viscosity is given by gEð_eÞ ¼ 4gð_e; �b3 ¼ 0Þ. Notice that our

framework removes the small discrepancies in the standard

choices of reference deformation rates and normalization of

the viscosities for simple shear and extensional flows, provid-

ing consistent definitions for any local flow type.

IV. REINTERPRETATION OF EXISTING MODELS

Here, we show the general compatibility of the rheo-

metric framework introduced above with constitutive mod-

els. As already mentioned, the construction of models

requires, as a first step, the selection of the independent

quantities upon which the material functions can depend.

Based on different choices we can identify different classes

of models. In what follows, we first reinterpret classical

models and then indicate the connection between more
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recent models and the general decomposition of the stress

tensor provided in Sec. II.

A. Response depending on local rate and flow
type

The simplest class of models can be constructed by

assuming that the material functions depend only on the local

rate _e and the flow type. This assumption may seem quite

natural when dealing with homogeneous incompressible flu-

ids and is indeed the basis of the most classical fluid models.

It is easy to argue that, if the velocity gradient ought to be

the only relevant descriptor, any characteristic relaxation

time associated with the microscopic physics of the fluid

must be short compared to the time needed to change the

local flow type. This indicates that such an assumption will

be effective when the response of the fluid can be practically

regarded as instantaneous. Within this framework, the classi-

cal model of Newtonian fluids is obviously recovered by set-

ting g constant, independent of any kinematical parameter,

and letting all the kk (for k¼ 0,…, 4) vanish identically.

1. Reiner–Rivlin fluids

A historically important class of objective models rests on

the assumption that the stress depends only on D. It means

that the material functions are determined by their values as

_e and a are varied while keeping b1¼ b2¼b3¼ 0. In other

words, the fluid behavior is completely characterized by its

behavior in purely extensional flows in which the eigenvec-

tors of the stress tensor remain aligned to those of D, entail-

ing a uniformly vanishing value of k1, k2, and k3.

The flow-type dependence in such models is severely

restricted and the general expression of the stress becomes

T ¼ �pIþ 2gð_e; aÞDþ 2k0ð_e; aÞE: (22)

It is easy to check that these models correspond to the class

of Reiner-Rivlin fluids [2,3], for which the stress tensor takes

the form

T ¼ �pIþ f1ðII; IIIÞDþ f2ðII; IIIÞ D2 � ðII=3ÞI
� �

; (23)

where f1 and f2 are arbitrary scalar functions of the invariants

II ¼ trðD2Þ and III ¼ detD. Indeed, II and III can be

expressed in terms of _e and a, while D2, being obviously

diagonal on the basis of the eigenvectors of D, can be written

as a linear combination of I; D, and E with coefficients that

depend only on _e and a. More explicitly, by applying the def-

inition (11) we find

2g ¼ f1 þ f2
trðD3Þ

II
and 2k0 ¼ f2

D2 : E

E : E
: (24)

2. Models with flow-type dependence

Since for many fluids, even restricting attention to planar

flows, the viscous response in simple shear differs from that

in extensional flows, several models have been developed to

include a dependence on the flow type. Here, we discuss the

connection between our scheme and a few relevant models

[43,45,46].

In the paper of Schunk and Scriven [43], the set of kine-

matical parameters on which the stress tensor can depend is

expanded to include (some of) the degrees of freedom asso-

ciated with the rate of change of the tensor D along stream-

lines. In particular, the local spin of the eigenvectors of D is

encoded in the vector w and the parameters dk (for k¼ 1, 2,

and 3) defined in Eqs. (12) and (13). The dependence on the

flow type is then included in the model by essentially pre-

scribing the material function g in terms of _e and the normal-

ized relative rotation rate encoded in the differences
�bk ¼ bk � dk (for k¼ 1, 2, and 3).

Taking a more general perspective, Souza Mendes et al.
[45] consider the symmetric tensor R ¼ �W

2
, where the rela-

tive rate of rotation tensor is given by

�W ¼ _e
h
ðd1 � b1Þ d̂3d̂2 � d̂2d̂3

� �
þ ðd2 � b2Þ d̂1d̂3 � d̂ 3d̂1

� �

þ ðd3 � b3Þ d̂2d̂ 1 � d̂1d̂2

� �i
; ð25Þ

and then present a general representation of the stress tensor

in terms of D and R. Due to the definition of R, it is clear

that their general representation can be recast in terms of a

generic prescription of the material functions g and kk (for

k¼ 0,…, 3) in terms of _e, a, and �bk (for k¼ 1, 2, and 3).

Nevertheless, the particular choice of the form of R
imposes additional constraints, with the main implication of

a vanishing k3 in simple shear flows, namely, the vanishing

of first normal stress differences. This can be easily under-

stood by checking the form of R in a simple shear flow.

Since we are in the presence of a steady flow with uniform

gradient, �W equals �W and we have

R ¼W2 ¼ �_e2b2
3 d̂1d̂1 þ d̂2d̂2

� �
: (26)

Since R is indeed diagonal on the eigenvectors of D, it can

be represented on the basis of I; D, and E. The same happens

whenever two of the differences bk – dk vanish. The stress

tensor acquires then a form akin to that for Reiner–Rivlin flu-

ids, but with the important addition of a dependence on �b3 in

the material functions g and k0.

Another framework that can be easily recast within our

scheme is that of Hartkamp et al. [46], originally developed

for planar flows. They discuss general constitutive prescrip-

tions for the pressure tensor P ¼ �T in terms of a general-

ized viscosity, which is exactly the material function g, the

lagging angle D/ between the eigenvectors of D and those

of P in the flow plane, which corresponds to our reorienta-

tion angle u, and a measure a of the out-of-flow-plane

anisotropy of the pressure tensor, that is proportional to our

material function k0. The effectiveness of their framework is

tested by building a constitutive model able to nicely capture

numerical results for the pressure tensor of a Weeks–

Chandler–Andersen fluid in any mixed planar flow. The

importance of the results of Hartkamp et al. [46] should be

emphasized by their reinterpretation within the framework

introduced in the present paper. We offer a possibly more
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flexible and general scheme, but some important ideas are

clearly present in their work.

3. Second-order fluids

In the classical models of second-order fluids, the stress

tensor T is represented in terms of the first and second

Rivlin–Ericksen tensors, respectively, 2D and

2ð _D þW � D� D �WÞ, according to

T ¼ �pIþ 2g0Dþ 4a1D
2 þ 2a2ð _D þW � D� D �WÞ:

(27)

The term proportional to _D can have components on any of

the elements of the tensorial basis (8). On the other hand, if

we restrict attention to steady homogeneous planar flows

( _D ¼ 0), second-order fluids correspond to choosing material

functions of the form

gð_e;�b3Þ¼g0; k0ð_e;�b3Þ¼�
4

3
a1 _e; and k3ð_e;�b3Þ¼a2 _e�b3;

(28)

since the term W � D� D �W has components only along Ĝ3.

B. Response depending on other evolving fields

The usefulness of the interpretative scheme introduced in

Sec. II goes beyond the construction of models in which the

material response depends only on the velocity gradient. To

exemplify this fact, we can analyze the models of particulate

suspensions proposed by Stickel et al. [47] and Miller et al.
[48].

In [47], the microstructural properties of the suspension

are encoded in a symmetric tensor Y and the effective stress

in the fluid is an isotropic polynomial function of D and Y.

The general representation of such a function given in their

Eq. (27) can be readily replaced by the following procedure.

First, we represent the six degrees of freedom of the symmet-

ric tensor Y using its three eigenvalues (y1, y2, y3) and the

three Euler angles (h1, h2, h3) that identify its eigenvectors

with respect to the eigenvectors of D. Then, the general rep-

resentation of the stress tensor becomes Eq. (9) with all the

material functions depending on the set of parameters

P ¼ f_e; a; y1; y2; y3; h1; h2; h3g: (29)

Even though dealing with five arbitrary functions of the

parameter set P can still be very complicated, the interpreta-

tion of the material functions gives a better idea of the role

of each term in the stress tensor. Moreover, any evolution

of the microstructure Y can be described independently and

then translated into the updated values of the relevant

degrees of freedom.

In the paper by Miller et al. [48], the parameter jwj associ-

ated with the relative rotation rate is used to identify the flow

type. The volume fraction / of particles in the fluid is

another field evolving in the system. The contribution to the

stress due to the presence of the particles is modeled through

a dependence of g on / and a term proportional to the tensor

parameter Qct, which is said to represent normal stress dif-

ferences, with a coefficient that depends on both / and jwj.
The tensor Qct given in their Eq. (17) can be easily seen to

be a linear combination of I; D̂; Ê, and Ĝ3 with coefficients

that depend on _e; /, and jwj, since their “tension-

compression coordinates” are determined exactly by the

eigenvectors of D. We thus see how the constitutive model

discussed in [48] can be used to exemplify the effectiveness

of our scheme also in the presence of additional evolving

fields such as the volume fraction /.

V. CONCLUSIONS

In this article, we have introduced a tensorial basis adapted

to local flow conditions which can be used to organize data

regarding the material response of incompressible fluids in any

flow. Such a basis is determined, for each point in space and

instant in time, by the symmetric part of the velocity gradient.

Within this framework, a description of the effects associated

with the independent degrees of freedom of the stress can be

easily given. This supports a coherent interpretation of rheolog-

ical measurements and computational results obtained under

different flow conditions.

The material functions associated with the decomposition

of the stress on the adapted tensorial basis generalize and

complete the classical set of viscometric functions, which

describe the response only in viscometric flows. The

enhanced characterization of the fluid behavior in steady

flows can then be used to extrapolate constitutive models for

complex fluids starting from rheological data in both visco-

metric and nonviscometric flows.

Consider, for instance, the contraction flow of Fig. 1 and

assume that we are dealing with a fluid the behavior of which

is consistent with the simple flow classification given by _e
and �b3. It means that these are the only variables that influ-

ence the stress. We choose such a restricted situation for sim-

plicity, but similar arguments can be extended to more

complex fluids. However, this assumption is reasonable for

steady flows such that the timescale over which the flow con-

dition experienced by a fluid parcel changes is long com-

pared to the characteristic time for the stress to reach a

steady value in a homogeneous flow.

In this case, we can experimentally or computationally

determine the material functions g, k0, and k3 by varying _e
and �b3 in homogeneous steady flows and then use their val-

ues to predict the flow everywhere in the contraction geome-

try. This would be impossible by using viscometric functions

as they can predict the behavior only where the flow is

equivalent to simple shear. In contrast, the material functions

g, k0, and k3 provide a coherent description of the flow

response also in the regions where the local flow condition is

of extensional or mixed type.
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