Optimal energy transfer in disordered quantum networks with application to light-harvesting complexes

Giulio G. Giusteri, G. L. Celardo and F. Borgonovi

Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Brescia, Italy

LHI-RC complex of Rhodobacter Sphaeroides	Abstract
Geometry and interactions - $N = 32$ peripheral chromophores on LHI and 4 in RC - nearest-neighbor (Ω_1 , Ω_2 , Ω_{sp}) and dipole interaction - decay width γ_{rc} from the RC special pair (red) - dissipation via fluorescence	We study the interplay of cooperativity (super/sub-radiant transfer) and static disorder in the Light Harvesting complex I (LHI) of purple bacteria, a ring-like structure of $N = 32$ sites surrounding the Reaction Center (RC). At zero disorder the LHI eigenstates separate into a superradiant (small) and a subradiant (much larger) subspace of the single-excitation Hilbert space. As the static diagonal disorder increases, superradiance is destroyed, and subradiant states display a maximum in the energy transfer efficiency.
Ω_2 Ω_1	condition as a function of RC energy and disorder is obtained when an RC state is at resonance with the initial subradiant state and the effective disorder on that state ($\propto 1/\sqrt{N}$) equals the superradiant coupling ($\propto \sqrt{N}$) between LHI states and RC states.

The building block: a trimer model

Many important features regarding the efficiency of energy transfer from subradiant states in systems

Energy spectra at zero disorder

displaying the **Ring-RC structure** can be understood from the analysis of the simplest ring, i.e. two sites, connected with a central site representing the RC with equal coupling Ω_{re} and between them with coupling Ω . The excitation can escape the system from the RC with decay width γ_{re} . The site energies E_1 and E_2 are Gaussian random numbers with mean zero and variance W^2 , thus introducing disorder in the system.

We introduce the new basis formed by $|\text{rc}\rangle$ and the subradiant and superradiant states $|SUB\rangle = (|1\rangle - |2\rangle)/\sqrt{2}$ and $|SR\rangle = (|1\rangle + |2\rangle)/\sqrt{2}$, and the trimer can be viewed as a **three-site chain**.

 $V_{\rm rc} = \sqrt{2}\Omega_{\rm rc}$ is the superradiant coupling, x has mean zero, y has mean $E_{\rm rc}$ and both have variance $W^2/2$.

Energy transfer optimization from the subradiant state of the trimer

The behavior of a disordered trimer (left) is captured by a model with deterministic coupling X (right). Efficiency, $\Delta = 1 \text{ cm}^{-1}$, $V_{rc} = 10 \text{ cm}^{-1}$

0.4

Optimal conditions *Resonance:* $\delta E_{\rm rc} = E_{\rm rc} - E_{\rm in} = 0$

Disorder comparable to superradiant coupling:

giulio.giusteri@unicatt.it

Left: energies of the peripheral LHI complex, two bands of 16 levels with 7 pairs of degenerate levels enclosed by 2 non-degenerate levels

Right: energies of the RC structure, the opening γ_{rc} induces the reported decay widths Γ_k (cm⁻¹)

$$W' = W/\sqrt{2} = V_{\rm re}$$

Note the width ($\sim V_{
m rc}$) of the high-efficiency region.

In the regions where disorder is small or large if compared to the superradiant coupling $V_{\rm re} = 10 \text{ cm}^{-1}$, we can apply perturbation theory to predict the relevant resonances (white curves).

Energy transfer optimization in the LHI-RC complex 12900 12800 12700 12600 12500 0.83 0.6 0.6 0.6 0.6

Reduction to independent trimers and optimal conditions

Due to the thermal environment, the **most likely populated** ring eigenstates are the three lowest-energy levels: ground state $|g_s\rangle$, subradiant $|sub\rangle$ and superradiant $|sr\rangle$. This fact makes it possible a **simultaneous optimization** of transfer from those states to the lowest RC level $|rc\rangle$, since the gap between $|sr\rangle$ and $|g_s\rangle$ is of the order of the **superradiant coupling** $V_{rc} \approx 40 \text{ cm}^{-1}$ with $|rc\rangle$.

Due to the **direct coupling** with $|rc\rangle$, transfer from $|sr\rangle$ is very efficient up to $W \approx 100 \text{ cm}^{-1}$, when disorder localizes edge states, hindering superradiance.

Applying the results for **suitable trimer models**, transfer from $|gs\rangle$ and $|sub\rangle$ would be optimal at the respective resonant energies, and at $W \approx 200 \text{ cm}^{-1}$, when the effective disorder strength W/\sqrt{N} equals the superradiant coupling $V_{\rm rc}$. Since efficiency remains very high within a region **of the order of the**

Energy transfer efficiency of the LHI-RC complex obtained starting from a **room-temperature** Gibbs' distribution of LHI states. By varying the strength W of static diagonal disorder and the energy e_s of the RC sites, the efficiency is optimized in accordance with our theoretic estimate (blue cross) and within the range of disorder strength (30–200 cm⁻¹, dashed lines) which is estimated to characterize the LHI-RC complex **in physiological situations**. Also the prediction for the low-disorder resonance (dot-dashed line) is very good and it does not simply correspond to the resonance with LHI energy levels (cyan bars).

superradiant coupling $V_{\rm rc}$ about the foregoing estimates, we can predict a global optimization at $e_s \approx 12570 \ {\rm cm}^{-1}$ and $W \approx 150 \ {\rm cm}^{-1}$.

Related ongoing research

Interplay of superradiance and dirsorder or dephasing:G. L. Celardo, G. G. Giusteri, F. Borgonovi. Phys. Rev. B, 90, 075113 (2014).G. L. Celardo, P. Poli, L. Lussardi, and F. Borgonovi. Phys. Rev. B 90, 085142 (2014).

Effectiveness of non-Hermitian terms in modeling probability loss: G. G. Giusteri, F. Mattiotti, G. L. Celardo. Phys. Rev. B, 91, 094301 (2015).

Firenze, QuEBS2015

12400