Normal stress differences and flow-type dependence in dense suspensions

Giulio G. Giusteri

Department of Mathematics, Università di Padova giulio.giusteri@math.unipd.it in collaboration with Ryohei Seto (Kyoto University)

AERC 2019, Portorož

Take-home messages

- Orthogonal stress projections are most helpful in data analysis
- Flow-type dependence in dense suspensions of hard spheres manifests itself in normal stress differences (not in the viscosity)
- ullet Hydrodynamic and contact interactions contribute together to negative values of N_1
- ullet Positive values of N_1 near jamming cannot be explained with a simple hard-sphere model. They must be related to the presence of boundaries or to additional persistent interactions

Classical projections

Given the Cauchy stress σ in a simple shear flow, tensorial projections are used to compute the material coefficients σ , N_1 , and N_2 :

$$\hat{S} \equiv xy$$
, $\hat{N}_1 \equiv xx - yy$, $\hat{N}_2 \equiv yy - zz$
 $\sigma = \sigma : \hat{S}$, $N_1 = \sigma : \hat{N}_1$, $N_2 = \sigma : \hat{N}_2$

Drawback 1: \hat{N}_1 and \hat{N}_2 are not orthogonal (\hat{N}_1 : $\hat{N}_2 = -1$) and orthogonality is important to identify independent effects

Solution 1: we can define $\hat{N}_0 \equiv \frac{1}{2}(xx+yy)-zz$, which is orthogonal to \hat{N}_1 and \hat{S} and obtain the "zeroth" normal stress difference

$$N_0 = \boldsymbol{\sigma} : \hat{N}_0 = N_2 + \frac{1}{2}N_1$$

Drawback 2: the definitions above depend on the choice of a basis, which is adapted to *simple shear flows only*

General projections

Solution 2: a general orthogonal basis for the stress tensor (planar case)

We use the eigenvectors \boldsymbol{d}_1 , \boldsymbol{d}_2 , and \boldsymbol{d}_3 of $D = \frac{1}{2}(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T)$ and set

$$\hat{\sf D} \equiv {m d}_1 {m d}_1 - {m d}_2 {m d}_2, \quad {\sf with} \ {\sf D} = \dot{arepsilon} \hat{\sf D} \ {\sf and} \ {m d}_3 \ {\sf the} \ {\sf vorticity} \ {\sf direction},$$

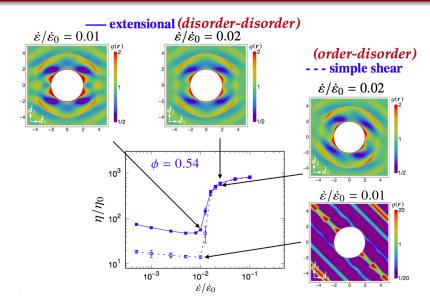
$$\hat{E} \equiv -\frac{1}{2} d_1 d_1 - \frac{1}{2} d_2 d_2 + d_3 d_3$$
 and $\hat{G}_3 \equiv d_1 d_2 + d_2 d_1$

With these, $(I,\hat{D},\hat{E},\hat{G}_3)$ are symmetric tensors, orthogonal to each other, and we have

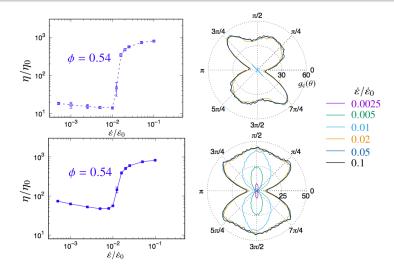
$$\sigma = \frac{1}{2}\boldsymbol{\sigma}:\hat{D}, \qquad N_1 = -\boldsymbol{\sigma}:\hat{G}_3, \qquad N_0 = -\boldsymbol{\sigma}:\hat{E}$$

These definitions work for simple shear, extensional, and mixed flows Details in: Giusteri G.G., Seto R., J. Rheol. 62(3), 713–723, 2018

Shear thickening is not an order-disorder transition



Shear thickening is a transition in contact statistics



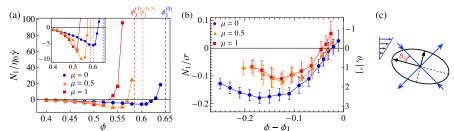
Details in: Seto R. et al., J. Fluid Mech. 825, R3, 2017

The reorientation angle

The ratio between the shear stress and the first normal stress difference determines the misalignment between the stress σ and D given by

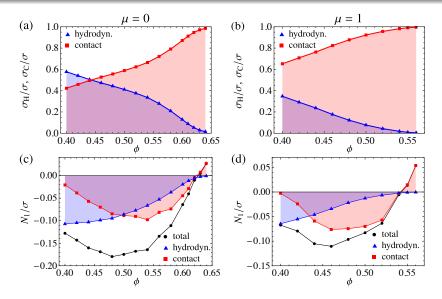
$$\theta_{\text{s}} \equiv \arctan\left(\frac{-\textit{N}_{1}/\sigma}{2+\sqrt{4+(\textit{N}_{1}/\sigma)^{2}}}\right)$$

This provides a cleaner way to assess the entity of the normal stress effect

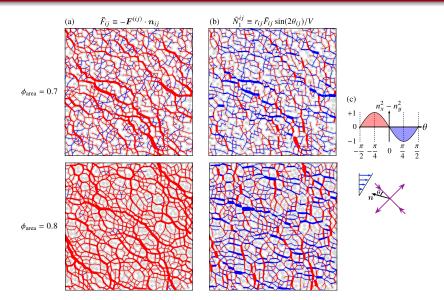


Details in: Seto R., Giusteri G.G., J. Fluid Mech. 857, 200-215, 2018

Both hydrodynamic and contact forces give negative N_1

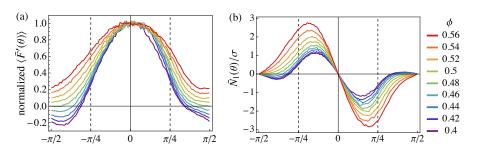


The origin of N_1 is in the normal force network



The value of N_1 is the result of cancellations

From the angular distribution of forces (in a three-dimensional simulation) we can deduce the contributions to N_1 coming from different directions

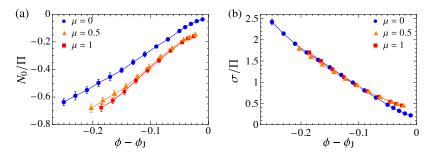


The advection due to the vorticity present in simple shear flow is responsible for the mild imbalance leading to a nonzero N_1

Anisotropy due to the planarity of the flow

The "zeroth" normal stress difference N_0 measures a stress contribution that is isotropic in the flow plane, but anisotropic when we consider the vorticity direction.

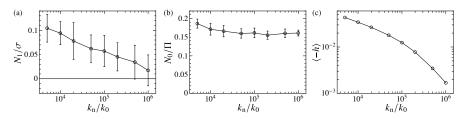
We can quantify its relevance with the ratio over $\Pi = -\text{tr}(\boldsymbol{\sigma})/3$.



Approaching jamming, the force network tends to be isotropic but some trace of the planarity of the flow remains in the frictional case.

The significance of positive values of N_1

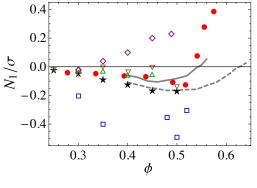
Approaching the jamming condition, the effects of vorticity in a hard sphere system should become negligible entailing a vanishing N_1 . Indeed, we find that positive values of N_1 decrease as we increase the numerical stiffness $k_{\rm n}$ of the spheres used in our simulation.



This indicates that positive values of N_1 measured in experiments cannot be explained simply by a hard-sphere model.

Possible origins could be in the presence of boundaries or in the presence of additional interactions between the particles.

Comparison with experiments



$$\mu = 1$$
 $\mu = 0$

- ★ Stokesian Dynamics
- 1. Royer et al. (2016)
- □ 2. Cwalina & Wagner (2014)
- △ 3. Dai *et al*. (2013)
- ♦ 4. Dbouk *et al.* (2013)
- ▼ 5. Couturier *et al*. (2011)

Take-home messages

- Orthogonal stress projections are most helpful in data analysis
- Plow-type dependence in dense suspensions of hard spheres manifests itself in normal stress differences (not in the viscosity)
- ullet Hydrodynamic and contact interactions contribute together to negative values of N_1
- ullet Positive values of N_1 near jamming cannot be explained with a simple hard-sphere model. They must be related to the presence of boundaries or to additional persistent interactions

Take-home messages

- Orthogonal stress projections are most helpful in data analysis
- Plow-type dependence in dense suspensions of hard spheres manifests itself in normal stress differences (not in the viscosity)
- $oldsymbol{0}$ Hydrodynamic and contact interactions contribute together to negative values of N_1
- ullet Positive values of N_1 near jamming cannot be explained with a simple hard-sphere model. They must be related to the presence of boundaries or to additional persistent interactions

Thank you!