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Outline

@ Special Cosserat rods

o What geometric structures describe their shape?
e When are Lie algebraic objects essential?

@ Discrete rods

e How can we discretize the rod shape?
e When is such a discretization effective?

© Framed curves

o What is their relation with rods?
e How can we represent their shape?

Shape: A collection of properties invariant under rigid motions.
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The special Euclidean group

A rigid-body motion
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The special Euclidean group

A rigid-body motion ...
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The special Euclidean group

A rigid-body motion ...or a rod?
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The special Euclidean group

A rigid-body motion ...or a rod?

Shape: How it is traced, not where it goes.

Giulio G. Giusteri (OIST) The shapes of a rod are traced in a Lie algebra GEMS, Oct 15, 2016 6 /18



The special Euclidean group

A rigid-body motion ...or a rod?

Common features:
@ Rigid bodies are involved.

@ Described by a family of special Euclidean transformations.
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The special Euclidean group

A rigid-body motion ...or a rod?

Common features:
@ Rigid bodies are involved.

@ Described by a family of special Euclidean transformations.

Differences:

@ The rigid-body motion is parametrized by time, the placement of
cross-section by some s.

@ When a single body moves, it can pass many times through the same
region. Cross-sections cannot penetrate one another.
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The special Euclidean group

A rigid-body motion ...or a rod?

Common features:
@ Rigid bodies are involved.

@ Described by a family of special Euclidean transformations.

Differences:

@ The rigid-body motion is parametrized by time, the placement of
cross-section by some s.

@ When a single body moves, it can pass many times through the same
region. Cross-sections cannot penetrate one another.

Also, although the motion of each cross-section of a rod is a rigid-body
motion, a rod is deformable as a whole.
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The special Euclidean algebra

Turning the shape into a differential equation

di(s)
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The special Euclidean algebra
Turning the shape into a differential equation é%

x'(s) = v3(s)d3(s) + vi(s)di(s) + vo(s)d2(s),
d3(s) = wa(s)di(s) — u1(s)da(s),

di(s) = —ux(s)d3(s) + us(s)d>(s),

d5(s) = u1(s)ds(s) — us(s)di(s),
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The special Euclidean algebra

Turning the shape into a differential equation

If we now define the vector field R : [0, sf] — R'?2 by R := (x, d3,d1, d>)

and the linear operator (O and | are 3 x 3 null and identity matrix)

0 V3(S)| V1( s)l

|0 o) w(s)l  —u(s)l
LS =10 s O uls)
(0] U1(5)| —U3(S)| (0]

it is possible to rewrite our equation as
R =LR.

Given the conditions Rg at s = 0 a unique solution exists and can be
formally written as
R(s) = U(s;0)Ro,

where the operator U(s;; sp) represents the propagator of the solution from

the point sg to s3.
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The special Euclidean algebra

Rod: URy is where it goes, L is how it is traced é%

The equation is encoded in L, which describes a possibly discontinuous
path on the manifold of matrices generated by

0010 0001 0100
000 0 0000 0000
=10 0 0 o0 2=10 0 0 0 s=10 0 0 0
000 0 0000 0000
000 O 0 0 00 00 0 O
000 -1 0 0 10 00 0 O
U=1000 o L=10 10 0 B=100 0 1
010 0 0 0 00 00 -1 0

The solution is encoded in R, which represents a path in R'? starting at
Ro. The tracing of this path can be identified with the path described by
the operators U(s; 0), upon varying the parameter s, in their manifold.
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The special Euclidean algebra

Shape description and shape energy

@ The matrix manifold in which the operators L(s) live is a
representation of the special Euclidean algebra.
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The special Euclidean algebra

Shape description and shape energy

@ The matrix manifold in which the operators L(s) live is a
representation of the special Euclidean algebra.

@ The shape of the filament is fully encoded in the path traced by L.
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The special Euclidean algebra

Shape description and shape energy é%

@ The matrix manifold in which the operators L(s) live is a
representation of the special Euclidean algebra.

@ The shape of the filament is fully encoded in the path traced by L.
@ The appearance of the filament in the ambient space is fully encoded

in R (and in the shape of the cross-sections), and can be drawn by
applying U(s; 0) to the starting point Ry.
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The special Euclidean algebra
Shape description and shape energy é%

@ The matrix manifold in which the operators L(s) live is a
representation of the special Euclidean algebra.

@ The shape of the filament is fully encoded in the path traced by L.

@ The appearance of the filament in the ambient space is fully encoded
in R (and in the shape of the cross-sections), and can be drawn by
applying U(s; 0) to the starting point Ry.

@ Any expression for the elastic energy of the filament that only
depends on shape must depend on the components of L and not on
Ro or any other derived quantity.
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Discrete rods

The stored elastic energy

Expressed in terms of Lie algebraic quantities:

/0 " (s, ua(s), ua(s), us(s), va(s), va(s), vi(s)) ds.

Quadratic case: L?-norm — piecewise constant finite elements.
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Discrete rods

The stored elastic energy

Expressed in terms of Lie algebraic quantities:

s¢
[ els.0a(5),wa(5),ua(s). (5).va(5),w(s)) s
0
Quadratic case: L?-norm — piecewise constant finite elements.

A special shape energy

For Kirchhoff rods, we assume unshearability and inextensibility:

1 [
2/ (a1ui(s) + a2u3(s) + a3u3(s)) ds.
0

The constraints are exactly compatible with the discretization.
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Discrete rods

Shape relaxation of closed rods
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Discrete rods

Shape relaxation of closed rods
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Discrete rods

Shape relaxation with anisotropic bending stiffness
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Discrete rods

Shape relaxation with anisotropic bending stiffness
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Framed curves

Degenerate cross-sections

d;

Shearing and twisting loose their meaning: we set v; = vo = 0 and u3 = 0.
Inextensibility can be imposed by setting v3 = 1.
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Framed curves

Degenerate cross-sections é%

d;

Shearing and twisting loose their meaning: we set v; = vo = 0 and u3 = 0.
Inextensibility can be imposed by setting v3 = 1.

x'(s) = ds(s),
d3(s) = uz(s)d1(s) — ui(s)d2(s),
1(s) = —w(s)ds(s)
d>(s) = ui(s)ds(s),
We obtain the curve and a relatively parallel adapted frame (Bishop).

The relevant Lie algebra remains the same.
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Framed curves

A simple comparison

Shape fields Shape fields
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Framed curves

Geometric invariants

Two degrees of freedom: we can picture the shapes of framed curves by
means of the normal development.
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Framed curves

Geometric invariants

Two degrees of freedom: we can picture the shapes of framed curves by
means of the normal development.
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We introduce the Hasimoto transformation

i0(s)

k(s)e'”") = up(s) + iur(s)

and the geometric invariants are the square-integrable curvature x and the
measure-valued torsion 7 = €',
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Conclusions

@ Special Cosserat rods
e The shape is a path in the special Euclidean algebra
e The coordinate fields of this path determine the elastic energy
e The shape energy should not depend on the torsion of the base curve

@ Discrete rods
o Piecewise constant finite elements for the shape fields
o Effective for shape relaxation with generic stiffness tensor
e No interpolation needed to reconstruct the relevant information

© Framed curves
o Degenerate rods with point-like cross-sections
o Relatively parallel adapted frames are the best choice
e Shape described by an equivalence class of paths
o The definition of geometric invariants does not require smoothness
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Conclusions

@ Special Cosserat rods
e The shape is a path in the special Euclidean algebra
e The coordinate fields of this path determine the elastic energy
e The shape energy should not depend on the torsion of the base curve

@ Discrete rods
o Piecewise constant finite elements for the shape fields
o Effective for shape relaxation with generic stiffness tensor
e No interpolation needed to reconstruct the relevant information

© Framed curves
o Degenerate rods with point-like cross-sections
o Relatively parallel adapted frames are the best choice
e Shape described by an equivalence class of paths
o The definition of geometric invariants does not require smoothness

Thank you!
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