## Paths in the special Euclidean algebra and rod shapes

Giulio G. Giusteri

Mathematical Soft Matter Unit (Prof. Fried)

NCTS, January 13, 2017



OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

#### Outline



#### O Special Cosserat rods

- What is the role of the special Euclidean algebra?
- When are Lie algebraic objects essential?

#### Ø Framed curves

- What is their relation with rods?
- How can we represent their shape?

#### Oiscrete rods

- How can we discretize the rod shape?
- When is such a discretization effective?

Shape: A collection of properties invariant under rigid motions.

The special Euclidean group

A rigid-body motion ...



The special Euclidean group

#### A rigid-body motion ...













#### Shape: How it is traced, not where it goes.

Common features:

- Rigid bodies are involved.
- Described by a family of special Euclidean transformations.



Common features:

- Rigid bodies are involved.
- Described by a family of special Euclidean transformations.

Differences:

- The rigid-body motion is parametrized by time, the placement of cross-section by some *s*.
- When a single body moves, it can pass many times through the same region. Cross-sections cannot penetrate one another.

#### Common features:

- Rigid bodies are involved.
- Described by a family of special Euclidean transformations.

Differences:

- The rigid-body motion is parametrized by time, the placement of cross-section by some *s*.
- When a single body moves, it can pass many times through the same region. Cross-sections cannot penetrate one another.

Also, although the motion of each cross-section of a rod is a rigid-body motion, a rod is deformable as a whole.

The special Euclidean algebra

## Turning the shape into a differential equation $d_1(s)$ $\boldsymbol{x}(s)$ $\mathbf{d}_{3}(s)$ $d_2(s)$

The special Euclidean algebra

# Turning the shape into a differential equation $d_1(s)$ $\boldsymbol{x}(s)$ $\mathbf{d}_{3}(s)$ $d_2(s)$

$$\begin{cases} \mathbf{x}'(s) = v_3(s)\mathbf{d}_3(s) + v_1(s)\mathbf{d}_1(s) + v_2(s)\mathbf{d}_2(s), \\ \mathbf{d}'_3(s) = u_2(s)\mathbf{d}_1(s) - u_1(s)\mathbf{d}_2(s), \\ \mathbf{d}'_1(s) = -u_2(s)\mathbf{d}_3(s) + u_3(s)\mathbf{d}_2(s), \\ \mathbf{d}'_2(s) = u_1(s)\mathbf{d}_3(s) - u_3(s)\mathbf{d}_1(s), \end{cases}$$

#### Turning the shape into a differential equation

If we now define the vector field  $\mathcal{R} : [0, s_f] \to \mathbb{R}^{12}$  by  $\mathcal{R} := (\mathbf{x}, \mathbf{d}_3, \mathbf{d}_1, \mathbf{d}_2)$ and the linear operator (O and I are 3 × 3 null and identity matrix)

$$\mathsf{L}(s) := \begin{pmatrix} \mathsf{O} & v_3(s)\mathsf{I} & v_1(s)\mathsf{I} & v_2(s)\mathsf{I} \\ \mathsf{O} & \mathsf{O} & u_2(s)\mathsf{I} & -u_1(s)\mathsf{I} \\ \mathsf{O} & -u_2(s)\mathsf{I} & \mathsf{O} & u_3(s)\mathsf{I} \\ \mathsf{O} & u_1(s)\mathsf{I} & -u_3(s)\mathsf{I} & \mathsf{O} \end{pmatrix},$$

it is possible to rewrite our equation as

$$\mathcal{R}' = \mathsf{L}\mathcal{R}$$
 .

Given the conditions  $\mathcal{R}_0$  at s = 0 a unique solution exists and can be formally written as

$$\mathcal{R}(s) = \mathsf{U}(s; 0)\mathcal{R}_0,$$

where the operator  $U(s_1; s_0)$  represents the propagator of the solution from the point  $s_0$  to  $s_1$ .

#### Rod: $U\mathcal{R}_0$ is where it goes, L is how it is traced

The equation is encoded in L, which describes a possibly discontinuous path on the manifold of matrices generated by

The solution is encoded in  $\mathcal{R}$ , which represents a path in  $\mathbb{R}^{12}$  starting at  $\mathcal{R}_0$ . The tracing of this path can be identified with the path described by the operators U(s; 0), upon varying the parameter s, in their manifold.



• The matrix manifold in which the operators L(s) live is a representation of the special Euclidean algebra.



- The matrix manifold in which the operators L(s) live is a representation of the special Euclidean algebra.
- The shape of the filament is fully encoded in the path traced by L.



- The matrix manifold in which the operators L(s) live is a representation of the special Euclidean algebra.
- The shape of the filament is fully encoded in the path traced by L.
- The appearance of the filament in the ambient space is fully encoded in  $\mathcal{R}$  (and in the shape of the cross-sections), and can be drawn by applying U(s; 0) to the starting point  $\mathcal{R}_0$ .



- The matrix manifold in which the operators L(s) live is a representation of the special Euclidean algebra.
- The shape of the filament is fully encoded in the path traced by L.
- The appearance of the filament in the ambient space is fully encoded in  $\mathcal{R}$  (and in the shape of the cross-sections), and can be drawn by applying U(s; 0) to the starting point  $\mathcal{R}_0$ .
- Any expression for the elastic energy of the filament that only depends on shape must depend on the components of L and not on  $\mathcal{R}_0$  or any other derived quantity.

#### The stored elastic energy



• Any expression for the elastic energy of the filament that only depends on shape must depend on the components of L and not on  $\mathcal{R}_0$  or any other derived quantity.

Expressed in terms of Lie algebraic quantities:

$$\int_0^{s_f} \varphi(s, u_1(s), u_2(s), u_3(s), v_1(s), v_2(s), v_3(s)) \, ds.$$

Quadratic case:  $L^2$ -norm  $\rightarrow$  piecewise constant finite elements.



Shearing and twisting loose their meaning: we set  $v_1 = v_2 = 0$  and  $u_3 = 0$ . Inextensibility can be imposed by setting  $v_3 = 1$ .

 $d_3$ 

# Degenerate cross-sections



Shearing and twisting loose their meaning: we set  $v_1 = v_2 = 0$  and  $u_3 = 0$ . Inextensibility can be imposed by setting  $v_3 = 1$ .

$$\begin{cases} \mathbf{x}'(s) = \mathbf{d}_3(s), \\ \mathbf{d}'_3(s) = u_2(s)\mathbf{d}_1(s) - u_1(s)\mathbf{d}_2(s), \\ \mathbf{d}'_1(s) = -u_2(s)\mathbf{d}_3(s), \\ \mathbf{d}'_2(s) = u_1(s)\mathbf{d}_3(s), \end{cases}$$

We obtain the curve and a *relatively parallel adapted frame* (Bishop). *The relevant Lie algebra remains the same.* 

#### The inverse problem

$$m{t} = m{x}'$$
 and  $m{t}' = m{x}''$  .

If we now consider the integral equations

$$d_1(s) = d_1(0) - \int_0^s u_2(r) t(r) dr,$$
  
$$d_2(s) = d_2(0) + \int_0^s u_1(r) t(r) dr,$$

and take the scalar product with  $m{t}'=u_2m{d}_1-u_1m{d}_2$ , we obtain

$$u_2(s) = d_1(0) \cdot t'(s) - \int_0^s u_2(r)t(r) \cdot t'(s) dr,$$
  
$$u_1(s) = d_2(0) \cdot t'(s) + \int_0^s u_1(r)t(r) \cdot t'(s) dr.$$

These are Volterra equations of the second kind and admit a unique solution on the interval  $[0, s_f]$ .



Framed curves

#### A simple comparison









Giulio G. Giusteri (OIST)

#### Geometric invariants



Two degrees of freedom: we can picture the shapes of framed curves by means of the *normal development*.

#### Geometric invariants



Two degrees of freedom: we can picture the shapes of framed curves by means of the *normal development*.

#### We introduce the Hasimoto transformation

$$\kappa(s)e^{i\theta(s)}=u_2(s)+iu_1(s)$$

and the geometric invariants are the square-integrable curvature  $\kappa$  and the measure-valued torsion  $\tau = \theta'$ .

#### Kirchhoff rods

For Kirchhoff rods, we assume unshearability and inextensibility:

$$v_1 = v_2 = 0$$
 and  $v_3 = 1$ .

By substituting the identifications

$$d_3 = t$$
,  $u_1 = -\kappa_2$ ,  $u_2 = \kappa_1$ , and  $u_3 = \omega$ 

we find

$$\begin{cases} \mathbf{x}'(s) = \mathbf{t}(s), \\ \mathbf{t}'(s) = \kappa_1(s)\mathbf{d}_1(s) + \kappa_2(s)\mathbf{d}_2(s), \\ \mathbf{d}'_1(s) = -\kappa_1(s)\mathbf{t}(s) + \omega(s)\mathbf{d}_2(s), \\ \mathbf{d}'_2(s) = -\kappa_2(s)\mathbf{t}(s) - \omega(s)\mathbf{d}_1(s). \end{cases}$$

A quadratic shape energy is

$$\frac{1}{2}\int_0^{s_f} \left(a_1\kappa_2^2(s) + a_2\kappa_1^2(s) + a_3\omega^2(s)\right) ds.$$





Giulio G. Giusteri (OIST)

Paths in the special Euclidean algebra and rod shapes

NCTS, Jan 13, 2017 18 / 22

#### Shape relaxation of closed rods





#### Shape relaxation of closed rods



















#### Conclusions



#### O Special Cosserat rods

- The shape is a path in the special Euclidean algebra
- The coordinate fields of this path determine the elastic energy
- The shape energy should not depend on the torsion of the base curve
- Pramed curves
  - Degenerate rods with point-like cross-sections
  - Relatively parallel adapted frames are the best choice
  - Shape described by an equivalence class of paths
  - The definition of geometric invariants does not require smoothness
- Oiscrete rods
  - Piecewise constant finite elements for the shape fields
  - Effective for shape relaxation with generic stiffness tensor
  - No interpolation needed to reconstruct the relevant information

#### Conclusions



#### O Special Cosserat rods

- The shape is a path in the special Euclidean algebra
- The coordinate fields of this path determine the elastic energy
- The shape energy should not depend on the torsion of the base curve
- Pramed curves
  - Degenerate rods with point-like cross-sections
  - Relatively parallel adapted frames are the best choice
  - Shape described by an equivalence class of paths
  - The definition of geometric invariants does not require smoothness
- Discrete rods
  - Piecewise constant finite elements for the shape fields
  - Effective for shape relaxation with generic stiffness tensor
  - No interpolation needed to reconstruct the relevant information

## Thank you!