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The free fall problem

Space and frames for the free fall

We consider a rigid body dropped from rest in an otherwise quiescent
fluid filling all of space.
Gravitational forces give rise to a motion which is then influenced also by
hydrodynamic interactions.
Such forces conspire to produce an asymptotic motion, which can be
represented by a steady velocity field in a suitable reference frame.

Inertial frame Co-moving frame The gravitational
acceleration vector g
may not be constant in
the co-moving frame
during the transient
motion, but it becomes
asymptotically constant.
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The free fall problem

Mathematical formulation

We introduce the disturbance field u: it is the difference between the
actual flow and the flow which would take place in absence of the body,
both observed in the co-moving frame.

div u = 0 , (1)

∂u

∂t
+ Re {[(u−U) · ∇]u + ω × u} = divT(u, p) + g , (2)

lim
|x|→∞

u(x, t) = 0 , (3)

u(x, t) = U(x, t) = ξ(t) + ω(t)× x on Σ× [0,+∞) , (4)

m
dξ

dt
+ Re(mω × ξ) = meg + f , (5)

J
dω

dt
+ Re[ω × (Jω)] = −mc(r × g) + t , (6)

dg

dt
= Re(g × ω) , (7)
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The free fall problem

Steady low-Reynolds-number flow

Every quantity is dimensionless and the Reynolds number is defined as
Re = ρ2gd3/µ2, thus measuring the relative importance of the
gravitational and viscous forces. With this normalization |g| = 1.

div u = 0 , (8)

divT(u, p) + g = 0 , (9)

lim
|x|→∞

u(x) = 0 , (10)

u(x) = ξ + ω × x on Σ , (11)

meg = −f , (12)

mc(r × g) = t , (13)

g × ω = 0 , (14)

Note that only the last equation is non-linear.
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One-dimensional filaments

Slender bodies and tubular neighborhoods
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One-dimensional filaments

Second-gradient dissipation functional

The classical Stokes equations for the steady low-Reynolds-number flow
are related to a first-gradient dissipation functional:

D1 := µ

∫
|Sym∇v|2 .

We introduce a second-gradient dissipation functional:

D2 := µ

∫ (
|Sym∇u|2 +

L2

2
|∆u|2

)
,

associated with the effective stress tensor

T(u, p) := −pI + µ
(
∇u +∇uᵀ − L2∇∆u

)
.

Why?

Because 1- or 0-dimensional sets have vanishing H1-capacity, that is, if we
can only control the norm of the first gradient of the velocity, they are
mechanically invisible, just as ghosts within the fluid.
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Fluid–structure interaction

Hydrodynamic force and torque

Introducing the r -neighborhood of the filament Σ

Vr (Σ) :=
{

x ∈ R3 : d(x ,Σ) ≤ r
}
,

we can define the hydrodynamic force on Σ as

f(u, p) := lim
r→0

∫
∂Vr (Σ)

T(u, p)n ,

and the hydrodynamic torque as

t(u, p) := lim
r→0

∫
∂Vr (Σ)

x× T(u, p)n .

Those quantities are well defined, and would simply vanish for a
Newtonian fluid.
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Fluid–structure interaction

Auxiliary problems

Consider now the solutions (h(i), p(i)) and (H(i),P(i)) (i = 1, 2, 3) of
div h(i) = 0 in R3 ,

divT(h(i), p(i)) = 0 in R3 ,

h(i) = ei on Σ ,

and 
divH(i) = 0 in R3 ,

divT(H(i),P(i)) = 0 in R3 ,

H(i) = ei × x on Σ .

By linearity, the combinations

u =
3∑

i=1

[ξih
(i) + ωiH

(i)] , p =
3∑

i=1

[ξip
(i) + ωiP

(i)] + g · x , (15)

for suitable vectors ξ and ω, solve the steady free fall problem.
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Fluid–structure interaction

Resistance tensors

Kji := − lim
r→0

∫
∂Vr (Σ)

T(h(i), p(i))n · ej ,

Sji := − lim
r→0

∫
∂Vr (Σ)

T(H(j),P(j))n · ei ,

Cji := − lim
r→0

∫
∂Vr (Σ)

x× T(h(j), p(j))n · ei ,

Bji := − lim
r→0

∫
∂Vr (Σ)

x× T(H(i),P(i))n · ej .

The matrices K, B, and

A :=

(
K S
C B

)
are symmetric and positive definite, thanks to a generalization of the
Reciprocal Theorem.
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Fluid–structure interaction

Reduction to an algebraic problem

The geometric constraint g × ω = 0 implies that ω = λg for some λ ∈ R,
and the rigid motion equations reduce to the following algebraic system in
the unknowns ξ, λ, and g (recall that |g| = 1):

(−f =) Kξ + λSg = meg ,

(−t =) Cξ + λBg = −mc(r × g) .
(16)

This non-linear algebraic problem admits at least a solution, thanks to
the properties of the resistance tensors.
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Filaments with symmetries

Symmetry under reflection

Theorem

Assume that Σ has a plane of material symmetry. Then there exists an
orientation of the body, such that g lies in the same plane of symmetry,
which gives rise to a purely translational solution.

Corollary

If the body has two orthogonal planes of symmetry, then the free fall with
g lying along the intersection of such planes gives rise to a purely
translational motion.
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Filaments with symmetries

Symmetry under rotations

We say that a one-dimensional body Σ is helicoidally symmetric if there
exists a co-moving frame such that it is invariant under a discrete group of
co-axial rotations of order strictly grater than 2.

Theorem

If the body has helicoidal and fore-aft symmetry, then, for any given
orientation, the body falls with a purely translational velocity given by

ξ = meK−1g .
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Summary and perspectives

1 If we want to use 1-dimensional filaments to model the effect of
nanoparticles in viscous fluids we need a second-gradient dissipation.

2 Also the existence of solutions for the non-linear steady free fall has
been obtained.

3 An important open issue is the numerical simulation of such problems
with dimensional gap.

4 The free fall of elastic filaments is under investigation, but it involves
a far-from-obvious extension of the mathematical techniques.

Thank you
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