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Abstract

Cornerstone models of Physics, from the semi-classical mechanics in atomic and
molecular physics to planetary systems, are represented by quasi-integrable Hamilto-
nian systems. Since Arnold’s example, the long-term diffusion in Hamiltonian systems
with more than two degrees of freedom has been represented as a slow diffusion within the
‘Arnold web’, an intricate web formed by chaotic trajectories. With modern computers
it became possible to perform numerical integrations which reveal this phenomenon for
moderately small perturbations. Here we provide a semi-analytic model which predicts
the extremely slow-time evolution of the action variables along the resonances of multi-
plicity one. We base our model on two concepts: (i) By considering a (quasi-)stationary
phase approach to the analysis of the Nekhoroshev normal form, we demonstrate that
only a small fraction of the terms of the associated optimal remainder provide meaningful
contributions to the evolution of the action variables. (ii) We provide rigorous analytical
approximations to the Melnikov integrals of terms with stationary or quasi-stationary
phase. Applying our model to an example of three degrees of freedom steep Hamiltonian
provides the speed of Arnold diffusion, as well as a precise representation of the evolution
of the action variables, in very good agreement (over several orders of magnitude) with
the numerically computed one.

1 Introduction

Fundamental problems of Physics are often modeled with small Hamiltonian perturbations
of integrable systems. For example, the problem of the stability and long–term evolution
of the Solar System can be modeled in terms of perturbations to Kepler’s motion of each
planet under the gravity of the Sun.
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Similar perturbative approaches are employed in some of the most classical problems of
Mechanics appearing from the microscopic scale (e.g. the semi-classical treatment of atomic
and molecular dynamics) up to the astronomical one (e.g. solar systems and galaxies).
The above and other important applications, as e.g. in plasma and accelerator physics,
or statistical mechanics, have rendered Hamiltonian near-integrable systems a fundamental
topic in physics (see [56] for a collection of basic papers and reviews in this field).

One of the most interesting questions in near-integrable systems is the long–term fate
of trajectories which belong to the so-called ‘Arnold web’. Following the pioneering work
of V.I. Arnold [1], the Arnold web is understood as an intricate in shape and connected set
in phase–space which contains chaotic trajectories. The Arnold web is tightly related to
the existence, in phase–space, of a corresponding ‘web of resonances’, i.e., domains where
the trajectories undergo near-oscillatory motions with a commensurable set of frequencies.
‘Arnold diffusion’ is a theoretically predicted phenomenon, according to which a trajectory
with initial conditions within the Arnold web undergoes slow chaotic diffusion. When the
number n of the degrees of freedom is equal to 3 or larger, such diffusion renders possible,
in principle, to connect every part of the Arnold web within sufficiently long times. Let us
therefore consider a n-degree of freedom Hamiltonian of the form:

Hε(I, ϕ) = H0(I) + εf(I, ϕ) (1)

where (I, ϕ) ∈ G × T
n are action-angle variables, G ⊆ R

n is open bounded, the integrable
approximation H0 and the perturbation f are real analytic, ε is a small parameter. The
problem we address in this paper is the following:

PROBLEM 1: For given H0, f , small ε > 0, and I∗ ∈ G such that ℓ · ∇H0(I∗) = 0 for
a unique ℓ ∈ Z

n\0 (with its multiples), provide a formula which gives the maximum speed
of the drift along the resonance ℓ · ∇H0(I) = 0 (averaged on time intervals T longer than
1/ε) among all the solutions of Hamilton’s equations with initial conditions I(0), ϕ(0) with
ϕ(0) ∈ T

n and I(0) in the ball B(I∗, C
√
ε) ⊆ G of center I∗ and radius C

√
ε, with some

C > 0.

Remarks:

(i) For special choices of H0, f , and of the resonant vector ℓ ∈ Z
n\0, the previous problem

has a simple solution. In fact, Nekhoroshev provided a class of quasi-integrable Hamil-
tonian systems with variations of the actions of order 1 already on times of order 1/ε
which can be explicitly computed with a simple quadrature.

(ii) For n = 2, instability on times of order 1/ε has been proved for a class of non-convex
Hamiltonians H0 [11]. If instead H0 is iso–energetically non–degenerate, the KAM
theorem provides a topological obstruction to the drift along the resonances of the
system, so Problem 1 is not interesting in this case.

(iii) For H0 satisfying a transversality condition, called by Nekhoroshev “steepness”, the
stability time of the action variables improves dramatically to an exponential order
in 1/ε [57, 58]: precisely, there exist positive constants a, b and ε0 such that for any
0 ≤ ε < ε0 the solutions (I(t), ϕ(t)) of the Hamilton equations of Hε(I, ϕ) satisfy

|I(t)− I(0)| ≤ εb for |t| ≤ TN :=
1

ε
exp

( 1

εa

)

. (2)
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According to Nekhoroshev’s theorem, any large drift of the action variables needs
time intervals longer than the exponentially long time TN . For systems with n ≥ 3
satisfying the hypotheses of Nekhoroshev’s theorem, proving the existence of orbits
with variations of the actions of order 1 in some suitable long time for any small value
of |ε|, is highly non trivial, and these are the conditions under which Problem 1 is
interesting and, up to now, unsolved.

(iv) We do not provide here a rigorous solution to Problem 1, but we provide formulas
which match the very slow drifts observed in numerical experiments. These formulas
are obtained by combining: a semi-analytic argument including the computer assisted
computation of normal forms, whose coefficients are provided in floating point arith-
metics; a rigorous approximation of the Melnikov integrals using methods of asymptotic
analysis based on the so called stationary-phase approximation; a random–phase as-
sumption used in the Melnikov approximation. We call our approach ’semi-analytical’,
since it combines rigorous results (in the stationary-phase method, see Section 3) with
ones based on the numerical (computer-assisted) computations of the Nekhoroshev
normal forms. Whether these ideas can be transformed into a fully rigorous argument
is a question beyond the purpose of this paper.

(v) There is a range of values for the constant C appearing in Problem 1 on which our resuls
apply. In fact, with mild hypotheses onH0 and f , by neglecting the exponentially small
remainder in the Nekhoroshev normal form adapted to the resonance ℓ · ∇H0(I) = 0,
one remains with an integrable Hamiltonian with separatrix loops of amplitude ∆I
in the action variables proportional to

√
ε. The constant C must be chosen so that

C
√
ε > ∆I (see Section 2 for all the details, and Eq. (23) for the explicit choice of C).

(vi) The estimated speed of drift along a resonance expected from the solution of Problem
1 should depend on ε, I∗ and ℓ. Of course, close to I∗ the resonance ℓ ·∇H0(I) = 0 may
intersect an infinite number of other resonances ℓ̃ · ∇H0(I) = 0 with ℓ̃ ∈ Z

n\0 inde-
pendent on ℓ, and solutions with initial conditions close to I∗ may leave the resonance
ℓ · ∇H0(I) = 0 and drift along different resonances, possibly of different multiplicities.
Problem 1 concerns only the orbits which drift along the fixed resonance ℓ·∇H0(I) = 0.

(vii) For systems of n = 3 degrees of freedom a solution of Problem 1 gives the opportunity
to compare the time needed to diffuse along the resonances of multiplicity 1 with the
stability time TN of the Nekhoroshev theorem. In fact for n = 3 distant points of
the action–space on the same energy level are connected through paths of the Arnold
web which are mostly contained in resonances of multiplicity one, where Problem 1
is applicable. The resonances of multiplicity two are just at the points of intersection
of the resonances of multiplicity one. The transit of the orbits through resonances of
multiplicity two, the so–called ’large gap problem’, is one of the hardest theoretical
difficulties in rigorously proving the existence of Arnold diffusion. Numerical studies,
instead, provide overwhelming evidence for the existence of such transits, see [45, 46],
while the key question regarding the quantification of Arnold diffusion is Problem 1.

(viii) Throughout this paper, and mostly in Section 5, we compare our semi-analytic solution
of Problem 1 with numerical experiments. The long-term behaviour of Hamiltonian
systems, including Arnold diffusion, can be numerically investigated with symplectic
integrators (see [5, 59, 34]). In fact, depending on the order of the integration scheme,
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every step φτ of the integrator is exponentially close, with exponential factor −1/τ , to
the exact Hamiltonian flow of a modified Hamiltonian

Kε(I, ϕ) = Hε(I, ϕ) + τνW (I, ϕ; ε) ,

where the integer ν and W both depend on the integration scheme. Therefore, for
suitably small τ the spurious term τνW (I, ϕ; ε) is just a perturbation of the origi-
nal Hamiltonian, and the exponential factor becomes negligible with respect to any
observed diffusion.

(ix) While the KAM and Nekhoroshev theorems, as well as the examples of Arnold diffu-
sion (and also Problem 1), are usually formulated for quasi-integrable Hamiltonians
(1), many quasi-integrable systems of interest for Physics and Celestial Mechanics are
characterized by degeneracies and singularities of the action variables which introduce
additional complications. Proofs of the KAM and Nekhoroshev theorems, as well as of
the existence of hyperbolic tori, have been provided also for many cases of interest for
Celestial Mechanics, see for example, [16, 3, 37, 39, 17, 60, 24].

Problem 1 is an applicative spin-off of the problem of Arnold diffusion, which started with
the fundamental paper published by Arnold in 1964 [1], first providing a quasi–integrable
Hamiltonian system with non trivial long–term instability. Since Arnold’s pioneering paper,
a rich literature has appeared on attempts to prove of existence of Arnold diffusion for more
general quasi–integrable Hamiltonian systems, called, in the context of Arnold diffusion, a
priori stable systems. A simpler, albeit still highly non trivial, case if the one of a priori
unstable systems. In the latter case, the existence of diffusing motions has been proved
using different models and techniques, including Mather’s variational methods, geometrical
methods and the so-called separatrix and scattering maps (among the rich literature see
[16, 7, 21, 64, 19, 6, 35, 49, 48, 22, 12] and references therein).

Due to the long timescales involved, also numerical or experimental observations of
Arnold diffusion are hard to achieve. Already few years after the first numerical detec-
tion of chaotic motions [47], the long-term instability in Hamiltonian systems was discussed
from both an analytical and numerical point of view in [18]. However, only modern com-
puters rendered possible to simulate the phenomenon in simple physical models. In the last
decades, diffusion through the resonances has been clearly identified [51, 25, 50, 36, 52, 45,
32, 42, 36, 27, 28, 63, 43, 44]. Then, in the series of papers [52, 45, 32, 42, 44], diffusion of or-
bits was detected for values of the perturbation parameters so small that the set of resonant
motions has the structure of the Arnold web embedded in a large volume of invariant tori
(the distributions of resonances and tori being computed numerically with chaos indicators
[31, 52, 43]). In these experiments, the instability was characterized by diffusion coefficients
decreasing faster than power laws in ε, compatibly with the exponential stability result of
Nekhoroshev’s theorem. This was confirmed by a direct comparison of the numerical dif-
fusion coefficient with the size of the optimal remainder of the Nekhoroshev normal form
in [27].

In this paper we propose a semi-analytic solution to Problem 1 which is obtained through
the following steps:

(a) Given ε and I∗ we construct a computer assisted normal form adapted to the local
resonance properties at I∗ up to an optimal normalization order, by following the construction
of normal forms which appears within the proof of the Nekhoroshev theorem. The computer
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Figure 1: In the top panel we report the projection of a swarm of 100 orbits in the resonance defined
by ℓ = (1, 1, 0) on the space of the normal form variables σ, F̂1, Ŝ, during a full circulation of the
resonant angle σ, for ε = 0.01 in the numerical experiments conducted with the Hamiltonian (3) (see
text). The 100 initial conditions have been chosen in a small neighbourhood of the stable/unstable
manifolds (represented as shaded surfaces in the picture) of a family of 2-dimensional normally hy-
perbolic tori of an approximated normal form Hamiltonian (which projects on the green lines in the
picture), parameterized by the angles φ1, φ2 (not included in the picture). The 100 orbits are repre-
sented in black; the red curve represents the orbit of the swarm leading to the maximum variation
∆F̂1 after a full circulation of σ; the blue curve represent the analytic computation of the same orbit
with the theory presented in Sections 2, 3 and 4. Apart from small oscillations, we have a very good
agreement between the numerically computed orbit and the prediction of the analytic computation.
In the bottom panel we represent the time variation of the action F̂1 for the same orbits.
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Figure 2: Projection on the space of the normal form variables σ, F̂1, Ŝ of an orbit leading to a
maximum variation ∆F̂1 comparable with the values predicted by the semi-analytic theory presented
in this paper (and reported in Figure 3 below) through a sequence of several circulations/librations
of the resonant angle σ. The initial condition is in the resonance defined by ℓ = (1, 1, 0) and the value
of the perturbation parameter is ε = 0.01.

Figure 3: Comparison of the maximum speed of Arnold diffusion along the resonances ℓ = (1, 1, 0)

(left panel) and ℓ = (1, 3, 0) (right panel) measured from the numerical integrations of different initial

conditions (red dots) with the values obtained using the semi-analytic theory developed in this paper

(the blue dots are correspond to the ratios of |∆F1|P or |∆F1|NP
and Tα reported in Tables 1 and

2) computed for several values of ε.
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assisted construction of a normal form is mandatory, since our purpose is to compare the
predicted values of the drifts with the numerically observed ones. As it is well known (see
[13, 14] for the KAM theorem, and [15, 39] for the Nekhoroshev theorem) purely analytic
estimates which do not use computer assisted methods are highly unrealistic.

(b) We represent the variation of the actions along the resonance with Melnikov integrals
defined from the normal form constructed as indicated in (a). For n = 3 degrees of freedom
Hamiltonians the remainders of the normal forms are represented as expansions of already
millions of very small terms. Hence, the variation of the actions is represented as a sum
of millions of Melnikov integrals, which have to be computed in order to solve Problem 1.
The problem becomes prohibitive if the goal is to maximize the result with respect to some
variables in order to compute the orbits with largest instability. To overcome this difficulty,
we require an analytic method that allows to distinguish between the terms of the remainder
associated with large contribution to the variations of the actions and those of negligible
contribution, therefore reducing the total amount of terms to consider.

(c) We represent the Melnikov integrals with a method from asymptotic analysis, the so-
called method of the stationary-phase (see [10]), recently used also in the related context of
the computation of the splitting of separatrices [29]. In fact, for quasi-integrable systems, the
Melnikov integrals can be reformulated as integrals with a rapidly oscillating phase, and the
computation of the critical points of this phase provides an estimate of the integral. We find
that only the Melnikov integrals whose phase either 1) has critical points, or 2) has a suitably
small derivative with respect to the slow angle variable of the resonance is suitably small,
provide major contributions to the Arnold diffusion. We call the corresponding terms in the
remainder stationary or quasi-stationary, respectively. The Melnikov integrals whose phase
is neither stationary nor quasi-stationary represent the large majority of terms, and their
cumulative contribution to the Arnold diffusion is negligible with respect to the cumulative
contribution of the stationary or quasi-stationary terms. Therefore, we provide a rigorous
criterion to select, from the millions of harmonics of the remainder of the Nekhoroshev
normal form, a few thousand ones. All the relevant integrals of Melnikov theory can be
explicitly represented with an asymptotic formula or directly computed by quadratures.
The asymptotic formula, providing the variation of the actions during a resonant libration,
depends on the initial phases ϕ(0). For all possible values of these phases the formula
represents closely the spread of the actions which is observed with numerical integrations.

(d) Finally, by maximizing with respect to ϕ(0) the variations of the actions obtained from
the Melnikov integrals we obtain the orbits with largest variation of the actions at each
homoclinic loop, as well as the rare initial conditions whose orbit, in a sequence of homoclinic
loops, have a systematic variation of the action variables. Thus we predict which orbits
undergo the ’fastest’ Arnold diffusion which we can observe.

For simplicity, we develop our theory for the resonances defined by integer vectors1 ℓ ∈
Z
N\0 such that, by denoting with

f(I, ϕ) =
∑

K∈Zn

fK(I)eiK·ϕ

the complex Fourier expansion of f with respect to the angles ϕ1, . . . , ϕn, the periodic func-

1The vector ℓ must be chosen so that the integer lattice Λ generated by ℓ is not properly contained in any
lattice of the same dimension.
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tion
vℓ(σ) =

∑

ν∈Z
fνℓ(I∗)e

iνσ

for the considered I∗ has a unique non-degenerate local maximum and a unique non-degenerate
local minimum with respect to the slow angle of the resonance σ = ℓ · ϕ. If this hypothesis
is not satisfied, for example because vℓ(σ) has more than one local maximum, then one has
to perform a straightforward reformulation of the theory presented in this paper; if instead
v′ℓ(σ) = 0 for all σ, then our method needs major modifications.

From steps (a), (b), (c), (d) above we have a qualitative and quantitative description of
the drift along the resonances of multiplicity one. The qualitative picture of the diffusion is
in agreement with the idea having its roots in Chirikov’s fundamental paper [18] and recently
recovered e.g. in [20], namely that the diffusion along a resonance is not uniform in time, but
it is produced by impulsive ‘kicks’ or ‘jumps’ at every homoclinic loop, see [2, 23, 62]. The
new quantitative analysis allows us to determine the frequency of occurrence and amplitude
of these jumps as the resonant angle becomes critical for some Melnikov integrals; also,
we are able to select the initial conditions whose orbits have the fastest Arnold diffusion.
Therefore, for given values of ε, we are able to predict the minimum timescales needed to
observe long–term diffusion along any single resonance.

We finally provide numerical demonstrations of this theory. To this end, we compute
the diffusion in the resonances of multiplicity 1 for the 3-degrees of freedom Hamiltonian
(introduced following [42, 63])

Hε =
I21
2

− I22
2

+
I32
3π

+ 2πI3 +
ε

cosϕ1 + cosϕ2 + cosϕ3 + 4
, (3)

satisfying the hypotheses of the Nekhoroshev theorem (H0 is steep and the perturbation is
analytic). Precisely, after selecting a vector ℓ, for example ℓ = (1, 1, 0), and a value of the
actions I∗ on the resonance ℓ · (I1,−I2+ I22/π, 2π) = 0, we compare the time evolution of the
action variables obtained from the output of numerical simulations with the theory presented
in this paper. Precisely,

• For fixed values of ε, we perform step (a) above by constructing, via a comptuter
program, an explicit canonical transformation in a neighbourhood of I∗

(Ŝ, F̂1, F̂2, σ, φ1, φ2) = C(I1, I2, I3, ϕ1, ϕ2, ϕ3; ε) (4)

conjugating the Hamiltonian Hε to:

HN = ωF̂1 + 2πF̂2 − F̂1Ŝ +
A

2
Ŝ2 +

1

2
F̂ 2
1 +

Ŝ3

3π
+ εfℓ(Ŝ, F̂ , σ; ε) + rℓ(Ŝ, F̂ , σ, φ; ε) (5)

defined in a neighbourhood of (Ŝ, F̂1, F̂2) = (0, 0, 0), where rℓ represents the remainder
of the normal form after an optimal number of normalization steps. Precisely, the
norm of rℓ decreases exponentially with ε (see Tables 1 and 2 for the precise values
of the norm of rℓ). If we neglect, as a first approximation, the exponentially small
remainder rℓ in the normal form (5), the actions F̂1, F̂2 are first integrals, while the
motion of (Ŝ, σ) is integrable, admiting an unstable equilibrium solution along with its
associated separatrices (provided fℓ(0, 0, σ; ε) is a non constant function of σ); these
equilibria for the reduced system (Ŝ, σ) define hyperbolic 2-dimensional hyperbolic tori
parameterized by the angles φ1, φ2 in the complete system, with stable and unstable
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manifolds contained in the sets F̂1, F̂2 = constant. This approximate description of the
motions does not include Arnold diffusion, since for rℓ = 0 the actions F̂1, F̂2 are first
integrals. Nevertheless it allows us to compute a neighbourhood of the stable/unstable
manifolds of the hyperbolic tori where we expect to find Arnold diffusion. Such an
example is shown in Fig. 1. We select a swarm of 100 initial conditions in the neigh-
borhood of the hyperbolic torus of the (1, 1, 0) resonance for the parameters discussed
in Section 5, within an energy interval comparable to the norm of the remainder. We
then back–transform these initial conditions to the original variables (I, ϕ) through
the inverse of the transformation (4), and we numerically compute the solutions of
Hamilton’s equations of the complete Hamiltonian Hε for this swarm of trajectories.
Transforming again to the optimal variables (Ŝ, F̂1, F̂2, σ, φ1, φ2), Fiq. 1 shows the pro-
jection of these orbits in the space σ, F̂1, Ŝ, for a complete circulation of σ. Since for
the numerical integration we use the complete Hamiltonian, the actions F̂1, F̂2 are not
first integrals, but undergo a slow variation determining a drift of the orbits along the
resonance. Due to the different initial conditions φ(0) we observe a spread of the action
F̂1 during this circulation.

• Now, the aim is to predict the variation of the normal form action F̂1 during a circula-
tion without performing the numerical integrations. The red curve in Fig. 1 represents
the orbit of the swarm yielding the maximum negative jump for F̂1. The blue curve
represents the evolution computed analytically using the stationary phase approxima-
tions that we will describe in the paper (see (b) and (c) above). We have a very good
agreement between the numerical integrations and the predictions of our model.

• The fastest drift along the resonance is produced by a systematic variation of the action
F1 caused by a sequence of resonant circulations (or librations), each one producing a
variation ∆F̂1 of the same sign. The amplitude and sign of ∆F̂1 are determined by the
values of the phases φ1, φ2 at the beginning of each circulation from one circulation to
the other. We here assume a random variation of these phases. This is a heuristic as-
sumption, justified by the fact that the dynamics is chaotic, and the phases φ1(t), φ2(t)
are fast with respect to the periods of the circulations. Random variation of the phases
yields a random walk of F̂1 and, by selecting an initial condition such that the values
of the phases at each circulation/libration produce the maximum ∆F̂1 allowed by the
analytic formulas, we obtain a monotonic ballistic motion along the resonance, such as
the one represented in Fig. 1. Our model provides a formula to compute the speed D
of these motions along the resonance (see Eq. (83)). In Fig. 3 we compare the speed
D of Arnold diffusion along the resonance ℓ = (1, 1, 0) measured from numerical exper-
iments (red dots) with the values obtained using the semi-analytic theory developed
in this paper (blue points) (i.e. the values of D computed using Eq. (83)) computed
for several values of ε ∈ [0.0005, 0.08]; we find a very good agreement between the two
quantities.

The paper is organized as follows. In Section 2 we define the Melnikov integrals from the
normal forms of Nekhoroshev theory. In Section 3 we provide the asymptotic representations
of the Melnikov integrals using stationary phase approximations. In Section 4 we present a
semi-analytic solution to Problem 1. Section 5 is devoted to a numerical demonstration of
the theory presented in Sections 2, 3, 4.
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2 Nekhoroshev normal forms and Melnikov integrals

The long–term dynamics of the quasi–integrable Hamiltonian (1) is traditionally studied
using the averaging method. In the refined version of the method defined within the proof
of Nekhoroshev’s theorem, for a d–dimensional lattice Λ ⊆ Z

n defining the resonance

RΛ = {I ∈ G : ℓ · ∇H0(I) = 0, ∀ℓ ∈ Λ},

one constructs a canonical transformation

(S,F, σ, φ) = C(Γ−T I,Γϕ; ε)

defined for (S,F, σ, φ) ∈ GΛ × T
n, where

- Γ is a matrix with Γij ∈ Z and det Γ = 1, that defines a linear canonical map (see [4])

(S̃, F̃ , σ̃, φ̃) = (Γ−T I,Γϕ) (6)

and conjugates H0(I) to h(S̃, F̃ ) such that the resonance RΛ is transformed into

R̃ = {(S̃, F̃ ) ∈ Γ−TG :
∂

∂S̃j

h(S̃, F̃ ) = 0, ∀j = 1, . . . , d} ,

since in the new variables the resonant lattice Λ is transformed into the lattice Λ̃
generated by e1, . . . , ed, (e1, . . . , en denotes the canonical basis of Rn).

- σ ∈ T
d, φ ∈ T

n−d are angles conjugate to the actions S ∈ R
d, F ∈ R

n−d.

- The action domain GΛ ⊆ Γ−TG is an open set whose definition depends both on the
resonant lattice Λ and on ε. In particular, GΛ is a neighbourhood of the resonance
R̃ except for gaps at the crossing with different resonances. In Nekhoroshev theory
the gaps are defined with reference to a cut-off order N := Nε depending on ε, so
that for any (S∗, F∗) ∈ GΛ ∩ R̃ and for any (ν1, . . . , νd, k1, . . . , kn−d) ∈ Z

n\Λ̃ with
0 <

∑

j |νj|+
∑

j |kj | ≤ N we have

|k · ω∗| ≥
c

N q
(7)

where k = (k1, . . . , kn−d),

ω∗ =
(

∂h

∂F1
(S∗, F∗), . . . ,

∂h

∂F n−d
(S∗, F∗)

)

, (8)

c is a constant independent on ε, q = n− d− 1 if H0 is quasi-convex.

- C is a near to the identity transformation which, when composed with (6), conjugates
Hε to the Nekhoroshev normal form Hamiltonian

Hε,Λ = h(S,F ) + εfΛ(S,F, σ; ε) + rΛ(S,F, σ, φ; ε) , (9)

where fΛ does not depend on the angles φ, and the remainder rΛ has norm bounded by
a factor exponentially small with respect to −1/εa (see [57, 61, 54, 55, 41] for precise
definitions and statements).
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The integer d ∈ 1, . . . , n− 1 is called the multiplicity of the resonance.
Although the proof of Nekhoroshev’s theorem grants the existence of normal forms (9) for

suitably small values 0 ≤ ε ≤ ε0 (see Eq. (2)), the precise value of the threshold parameter ε0
is believed to be largely underestimated by the general proofs, while the Fourier coefficients
of fΛ, rΛ are estimated in norm, but not explicitly provided. Both problems can be overcome
by constructing the normal forms (9) with computer assisted methods [37, 15, 38, 27]. We
call Hamiltonian normalizing algorithm (HNA) a computer-algebraic implementation which
provides the coefficients of the Nekhoroshev normal form (9). We use the HNA introduced
in [27], which normalizes quasi-integrable Hamiltonians Hε. The HNA is constructed by
composing N elementary transformations; the input of the HNA is the Hamilton function, a
resonance lattice Λ, a domain G×T

n where the transformation is defined; the output of the
HNA is a canonical transformation (S,F, σ, φ) = CN (I, ϕ) and a normal form Hamiltonian

HN = h(S,F ) + εfN (S,F, σ) + rN(S,F, σ, φ) , (10)

conjugate to Hε by CN . Both fN and the remainder rN are provided as a Taylor-Fourier
series expanded at2 (S∗, F∗) ∈ G× R̃,

fN(S,F, σ) =
∑

m∈Nd

∑

p∈Nn−d

∑

ν∈Zd

fm,p
ν (S − S∗)m(F − F∗)peiν·σ, (11)

rN (S,F, σ, φ) =
∑

m∈Nd

∑

p∈Nn−d

∑

ν∈Zd

∑

k∈Zn−d

rm,p
ν,k (S − S∗)

m(F − F∗)
peiν·σ+ik·φ (12)

with computer-evaluated truncations involving a large number of terms (for example, we
need ∼ 107, 108 for n = 3 and d = 1). We remark that, since fN , rN are produced for any
needed value of ε by a numerical algorithm, their dependence on ε is hidden in the numerical
values of the coefficients fm,p

ν , rm,p
ν,k . The HNA computes also the value of the norms:

∥

∥rN
∥

∥

ρS ,ρF
=
∑

m∈Nd

∑

p∈Nn−d

∑

ν∈Zd

∑

k∈Zn−d

∣

∣

∣
rm,p
ν,k

∣

∣

∣
ρ
|m|
S ρ

|p|
F , (13)

for convenient weights ρS, ρF , which have to be chosen larger than the variations ∆Sj,∆Fj

during the Arnold diffusion. Since the variations ∆Sj satisfy |∆Sj| ≤ C
√
ε and ∆Fj is

extremely small, we set ρS := C
√
ε and we compute the approximate value for the norm of

rN(S,F∗, σ, φ):

∥

∥rN
∥

∥ :=
∥

∥rN
∥

∥

ρS ,0
=
∑

m∈Nd

∑

ν∈Zd

∑

k∈Zn−d

∣

∣rmν,k
∣

∣ ρ
|m|
S , rmν,k := rm,0

ν,k . (14)

Finally, the normalization order N is chosen so that
∥

∥r1
∥

∥ > . . . >
∥

∥rN
∥

∥ and
∥

∥rN+1
∥

∥ >
∥

∥rN
∥

∥, thus the normal form is called optimal, rN the optimal remainder and N the optimal
normalization order.

If we artificially suppress the remainder rΛ in Eq. (9), or correspondingly rN in (10),
we obtain a small perturbation of the original Hamiltonian which possibly exhibits chaotic
motions due to homoclinic and heteroclinic phenomena (for d > 1), but in which the actions
Fj , which we call ’adiabatic’, remain constant in time. Therefore, in the flow of the complete

2 For any p ∈ N
n−d,m ∈ N

d, we use the multi-index notation for (F − F∗)
p and (S − S∗)

m which denote,
respectively, (F1 − F∗,1)

p1 · · · (Fn−d − F∗,n−d)
pn−d and (S1 − S∗,1)

m1 · · · (Sd − S∗,d)
md ; we also denote by

|p| , |m| the lengths
∑n−d

j=1 |pj |,
∑d

j=1 |mj |.

11



Hamiltonian, any long–term evolution of the adiabatic actions is due to the accumulation
of the effects of the very small remainder on very long times. In particular, the adiabatic
actions Fj have a long-term variation, representing the drift along the resonance, bounded
for an exponentially long time by

|Fj(t)− Fj(0)| ≤ |t|
∥

∥

∥

∥

∂rΛ
∂φj

∥

∥

∥

∥

ρS ,ρF

. (15)

The a priori estimate (15) obtained from the Nekhoroshev normal form (9) provides an
upper bound to the average variation of the adiabatic actions; establishing a lower bound
to |Fj(t)− Fj(0)| for a subset of orbits is the fundamental brick in the theory of Arnold
diffusion.

From now on we focus our discussion on resonances of multiplicity d = 1. Denoting by
(S, σ) the resonant action-angle pair, we first consider the dynamics of the approximated
normal form which is obtained from (10) just by dropping the remainder rN(S,F, σ, φ):

H
N

= h(S,F ) + εfN (S,F, σ). (16)

Since the corresponding Hamiltonian H
N

depends only on one angle, it is integrable, and

we represent its motions as follows. Following [4], we first expand H
N

at (S∗, F∗) = Γ−T I∗
identifying the center of the resonance, precisely such that

∂h

∂S
(S∗, F∗) = 0, (17)

and then we represent H
N
∗ (Ŝ, F̂ , σ) = H

N
(S∗ + Ŝ, F∗ + F̂ , σ) by

H
N
∗ = H0 +H1 , H0 = ω∗ · F̂ +

A

2
Ŝ2 + ŜB · F̂ +

1

2
CF̂ · F̂ + εv(σ) , (18)

where F̂ = F −F∗, Ŝ = S −S∗; A ∈ R, ω∗, B ∈ R
n−1, the square matrix C and the function

v(σ) depend parametrically on S∗, F∗. Since the actions F̂ are constants of motion for the

Hamiltonian flow of H
N
∗ , the dynamics of the variables Ŝ, σ is determined by the reduced

one degree of freedom Hamiltonian H
N
∗ (Ŝ, F̂ , σ) where F̂ are treated as parameters, and we

consider the case F̂ = 0 (which corresponds to F (0) = F∗). Following again [4], we rescale
the action Ŝ and the time t:

Ŝ =
√
εS , t = τ/

√
ε,

so that S(τ), σ(τ) are solutions of the Hamilton equations of the effective Hamiltonian:

H(S, σ; ε) := H0(S, σ) +
√
εH1(S, σ; ε) (19)

where

H0(S, σ) =
A

2
S2 + v(σ) (20)

is independent of ε and
√
εH1, defined from the Taylor expansion of H1 (see [4] for details),

is of order
√
ε. Since the Hamiltonian H0 represents better the normal form dynamics as

soon as ε goes to zero, we are going to use it as the reference dynamics to conveniently
approximate the Melnikov integrals; we need to state the following hypothesis:

12



(i) For simplicity we assume that v(σ) has a unique non-degenerate local maximum
and a unique non-degenerate local minimum. If this hypothesis is not satisfied, for
example because v(σ) has more than one local maximum, then one has to reformulate
the theory presented in this paper accordingly; if instead v′(σ) = 0 for all σ, then our
method needs major modifications. We denote by

M = max
σ∈[0,2π]

v(σ), M̄ = min
σ∈[0,2π]

v(σ) ,

and (without loss of generality) we assume that the maximum is at σ = 0, M > 0 > M̄ ,
and A > 0, ε > 0.

(ii) For any suitably small value of ε ≥ 0, we have that Hamilton’s equations of (19)
admits an unstable equilibrium S∗

ε , σ
∗
ε close to the equilibrium (S∗

0 , σ
∗
0) = (0, 0) of the

Hamilton’s equations of (20).

(iii) For suitably small values of ε ≥ 0 and α > 0, the equation

H0(S, σ) +
√
εH1(S, σ; ε) = H(S∗

ε , σ
∗
ε ; ε)(1 + α) (21)

is solvable with respect to any σ ∈ [0, 2π], by providing the function:

S := Sα(σ; ε).

We remark that for ε = 0 the equation is solvable for any σ ∈ [0, 2π] providing:

sα(σ) := Sα(σ; 0) = ±
√

2

|A|(M(1 + α)− v(σ)). (22)

For any α 6= 0, we denote by T ε
α the period of the corresponding solutions of Hamilton’s

equations under the flow of H
N
∗ (for F̂ = 0), and we set Tα := T 0

α.

Remark:

(x) One is tempted to invoke an implicit function theorem to prove the existence of the
equilibria (S∗

ε , σ
∗
ε) and of the function Sα(σ; ε) for all ε in a neighbourhood of ε = 0.

Unfortunately, since the construction of the Nekhoroshev normal form is not continuous
with respect to ε (the number N := Nε of normalizations is a discontinuous function of
ε), applications of classical formulations of the implicit function theorem are prevented.
To gain continuity with respect to ε one may consider a modification of the normal
form Hamiltonian coinciding with the original normal form Hamiltonian except for ε
in a sequence of suitably small intervals Aj (which will be excluded by the analysis)
centered at the discontinuity values εj of Nε, with Nε = j for all ε ∈ [εj , εj−1).

3

3For example, consider the intervals Bj = [εj , εj−1)\(Aj∪Aj−1) and a set of smooth functions χj
ε satisfying

χj
ε =

{

1 if ε ∈ Bj

0 if ε /∈ Aj ∪ Bj ∪ Aj−1
.

The modified Hamiltonian is obtained by replacing the function H1 with the function χεH1, where χε =
∑

j≥1 χ
j
ε, so that we have: χεH1 = H1 for all ε /∈ ∪j≥1Aj , as well as:

lim
ε→0

√
εχεH1(S , σ; ε) = 0,

thus gaining continuity.

13



(xi) The value of C in Problem 1 can be set as follows:

C = 2

√

2

|A|(M −M). (23)

When considering the solutions (S(t), F (t), σ(t), φ(t)) of Hamilton’s equations of the com-
plete Hamiltonian (10), the adiabatic actions Fj can have a slow evolution forced by the
remainder rN , whose variation in a time interval [0, T ] is given by

∆Fj(T ) = Fj(T )−Fj(0) = −
∑

m,p,ν,k

∫ T

0
ikjr

m,p
ν,k F̂ (t)pŜ(t)meiνσ(t)+ik·φ(t)dt =:

∑

m,p,ν,k

∆Fm,p,ν,k
j,T .

(24)
According to the well known Melnikov approach (see [18] for a review) we approximate
∆Fj(T ) with

−
∑

m,ν,k

∫ T

0
ikjr

m
ν,kŜ

N (t)
m
eiνσ

N (t)+ik·φN (t)dt , (25)

obtained by replacing the solution (S(t), F (t), σ(t), φ(t)) in the integrals with

(Sε(t), F∗, σε(t), φε(t)) = (S∗, F∗, 0, 0) + (ŜN (t), 0, σN (t), φN (t))

where (ŜN (t), 0, σN (t), φN (t)) is solution of Hamilton’s equations of H
N
∗ .

For simplicity we only consider the rotational solutions of the normal form dynamics, i.e.
initial conditions characterized by a value of the parameter α > 0 (see Eq. (21)); then, we
change the integration variable in (25) to σ = σN (t), obtaining

∆Fm,ν,k
j,T := ∆Fm,0,ν,k

j,T ≃ ∆0Fm,ν,k
j,T := −ikjr

m
ν,kε

m−1
2 eik·φ(0)

∫ σε(T )

0

Sα(σ; ε)
m

∂H
∂S (Sα(σ; ε), σ; ε)

eiΘν,k(σ;ε)dσ

(26)
where the phase Θν,k(σ; ε) is defined by:

Θν,k(σ; ε) = νσ +

∫ σ

0

k · ∂H̄N
∗

∂F (
√
εSα(σ; ε), 0, σ)√

ε∂H∂S (Sα(σ; ε), σ; ε)
dσ.

The change of the adiabatic action Fj over a full cycle of the resonant angle σ is therefore
approximated by:

∆0Fj =
∑

m,ν,k

−ikjr
m
ν,kε

m−1
2 eik·φ(0) Im,ν,k (27)

where Im,ν,k denote the integrals:

Im,ν,k =

∫ 2π

0

Sα(σ; ε)
m

∂H
∂S (Sα(σ; ε), σ; ε)

eiΘν,k(σ;ε)dσ. (28)

Since for typical computations (see Section 5 for explicit examples) we have to consider
millions of remainder terms rmν,k, the direct numerical computation of millions of integrals
(28) is hardly tractable in practice. As a matter of fact, we find that the direct numerical
computation of all the integrals (28) is not necessary, since most of the terms in (25) (in-

cluding some with the largest
∣

∣

∣
rmν,k

∣

∣

∣
) contribute very little to the sum (25). This fact can be

14



explained by invoking methods of asymptotic analysis inspired by the so–called principle of
the stationary phase (PSP hereafter).

Remark (xii). Usually, Melnikov approximations are introduced to compute the split-
tings of stable-unstable manifolds, so that integrals like (24) are approximated by choosing
(Ŝ0(t), σ0(t), φ0(t)) to be the solution of the approximate normal form H0 corresponding to
a separatrix homoclinic loop (α = 0 in our notation). Our method exposed below differs
from the usual Melnikov approach since, in order to find the orbits which diffuse in shorter
time along the resonance, we evaluate the integrals for a solution (Ŝ0(t), σ0(t), φ0(t)) which
is suitably close to, but not exactly on the separatrix, precisely α ∼

∥

∥rN
∥

∥, with finite period
Tα.

3 Stationary phase approximation of Melnikov integrals

3.1 The principle of stationary phase

In its classical formulation (e.g., see [10]) the principle concerns the asymptotic behaviour
of the parametric integrals

Iλ =

∫ b

a
η(σ)eiλΦ(σ)dσ , (29)

when the parameter λ is large. With mild conditions on the amplitude function η(σ), we
have the following cases:

(A) The phase Φ(σ) has no stationary points, i.e. Φ(σ) 6= 0 for all σ ∈ [a, b], for large λ we
have

Iλ ∼ η(σ)

λΦ′(σ)
ei(λΦ(σ))

∣

∣

∣

∣

∣

b

a

, (30)

where the neglected contributions are of order smaller than 1/λ.

(B) The phase Φ(σ) has a non–degenerate stationary point σc ∈ (a, b), i.e. Φ′(σc) = 0 and
Φ′′(σc) 6= 0. Then, if η(σc) 6= 0, for large λ we have

Iλ ∼ η(σc)e
i(λΦ(σc)±π

4 )

√

2π

λ |Φ′′(σc)|
, (31)

where the ± is chosen according to the sign of Φ′′(σc). If there are more stationary
points in (a, b), we must sum all the corresponding terms.

(C) The phase Φ(σ) has a degenerate stationary point σc ∈ (a, b), i.e. Φ′(σc) = 0,Φ′′(σc) =
0 and we assume Φ′′′(σc) 6= 0. Then, if η(σc) 6= 0, for large λ we have

Iλ ∼ η(σc)e
iλΦ(σc)

√
3Γ(4/3)

(

6

λ |Φ′′′(σc)|

)1
3

. (32)

3.2 Heuristic discussion of the PSP for Melnikov integrals

In this Subsection we discuss the heuristic arguments that lead to produce asymptotic ex-
pansions for (27); rigorous results will be presented in Subsections 3.3 and 3.4.
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We first notice that all the terms appearing in (27) are proportional to the coefficients
rmν,k, which converge exponentially fast to zero for increasing values of |ν|+ |k|; therefore we

limit to consider terms of the expansion such that |ν|+ |k| ≤ N̂ , with suitable N̂ ≥ N . Then,
in each integral (28)

Im,ν,k =

∫ 2π

0

Sα(σ; ε)
m

∂H
∂S (Sα(σ; ε), σ; ε)

eiΘν,k(σ;ε)dσ (33)

we identify the phase function Θν,k(σ; ε) := λΦ(σ) to apply the method of the stationary
phase. In fact, by expressing the derivative of Θν,k(σ; ε) profitting of the representations of
the normal form Hamiltonian considered in Section 2 we obtain:

dΘν,k

dσ
= ν +

1√
ε

k · ∂H̄N
∗

∂F (
√
εSα(σ; ε), 0, σ)

∂H
∂S (Sα(σ; ε), σ; ε)

=

(

ν +
k ·B
A

)

+
1√

ε∂H
∂S (Sα(σ; ε), σ; ε)

k ·
[

ω∗ −B
ε

A

∂H1

∂S (Sα(σ; ε), σ; ε)

+O2(
√
εSα(σ; ε)) + ε

∂fN

∂F
(
√
εSα(σ; ε), F∗, σ)

]

(34)

where O2(
√
εSα(σ; ε)) denotes terms at least quadratic in

√
εSα(σ; ε). We notice that

dΘν,k

dσ
contains:

- the term:
k · ω∗√

ε ∂H
∂S (Sα(σ; ε), σ; ε)

(35)

which is large for ε < ε0, with ε0 suitably chosen positive threshold, if one assumes:

|k · ω∗| ≥ Γ0

√
ε, ∀ε < ε0 (36)

with Γ0 suitably large parameter independent of ε. By Nekhoroshev theory equation
(36) is in particular satisfied by all k ∈ Z

n\0 with |k| ≤ N (see Subsection 3.4); for a
discussion about the case N < |k| ≤ N̂ with suitable N̂ > N see Subsection 3.4; the
terms with |k| ≥ N̂ will be neglected.

- the term:

1√
ε∂H∂S (Sα(σ; ε), σ; ε)

k·
[

−B
ε

A

∂H1

∂S (Sα(σ; ε), σ; ε) +O2(
√
εSα(σ; ε)) + ε

∂fN

∂F
(
√
εSα(σ; ε), F∗, σ)

]

which, for |k| ≤ N , converges pointwise to zero as ε tends to zero.

- the constant term

N = ν +
k · B
A

(37)

which, for |ν|+ |k| ≤ N , is divergent at most as |N | ≤ max(1, ‖B‖ / |A|)N .

Therefore, the derivative of the phase contains terms which are divergent for ε going to
zero, and we will justify in the next sub-section the use of the method of the stationary phase
by identifying the large parameter λ with the parameter |W|, where

W = ± k · ω∗
√

2 |A| ε(M − M̄)
(38)
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with the sign ± chosen according to the signs of Sα(σ; 0) and A. For the terms with k
satisfying (36) the parameter |W| takes values in the large interval:

Γ0
√

2 |A| (M − M̄)
≤ |W| ≤ |k|√

ε

‖ω∗‖
√

2 |A| (M − M̄)
.

Therefore, also for fixed ε, α, it is meaningful to estimate the asymptotic value of the Melnikov
integrals in the limit of large values of |W|.

According to this idea, the Melnikov integrals whose oscillating phase Θν,k(σ; ε) has crit-
ical points are expected to be dominant over those whose oscillating phase has no critical
points. However, we find that the asymptotic behaviour of the Melnikov integrals is more
complicated than the behaviour of the integrals (29) thus rendering necessary to use a re-
finement of the stationary phase method: specifically, we need to consider also a case which
is intermediate between (A) and (B), called hereafter the quasi-stationary case, produced by
the disappearance of couples of non-degenerate critical points σ1

c , σ
2
c after they merge into

a degenerate critical point. The quasi-stationary case represents a transition between the
stationary and the non-stationary case, which is not considered in the usual formulations of
the PSP method. To be more precise, depending on the values of ν, k, we will consider three
cases

(I) the phase Θν,k(σ; ε) is ’fast’ for all σ ∈ [0, 2π], i.e. we have
∣

∣

∣
Θ′

ν,k(σ; ε)
∣

∣

∣
> |W|1/3 (this

is the case, for example, when N and W have the same sign).

In this case the integral in (26) is estimated smaller than order |W|−1/3, see Eq. (30),

and we will assume that the contribution of ∆Fm,ν,k
j,T (T ) to the series expansion in

Eq. (24) can be neglected. In fact, we find that for the vast majority of remainder terms

one has
∣

∣

∣Θ′
ν,k(σ; ε)

∣

∣

∣ > |W|, in which case the estimate (30) reduces to contributions of

order 1/ |W|, which is much smaller than 1/ |W|1/3.

(II) the phase Θν,k(σ; ε) is ’slow’ only close to non-degenerate critical points σc, provided

they are distant enough with respect to 1/ |W| 13 .
In this case, by invoking the PSP (see (31)), the integral in (26) will be approximated

by the sum of a contribution of order 1/ |W| 12 for each stationary point σc (see Lemma
1).

(III) the phase Θν,k(σ; ε) is quasi-stationary, i.e.
∣

∣

∣
Θ′

ν,k(σ; ε)
∣

∣

∣
≤ |W|1/3 in an interval of size

of order 1/ |W| 13 (notice that this condition can occur in absence of critical points, or
in presence of two very close non-degenerate critical points or of one degenerate critical
point).

While in this case we cannot directly apply (A), (B), (C), we will obtain an asymptotic
formula for the integrals stemming from formula (C) (see Lemma 2).

Remarks:

(xiii) From estimates (A) and (B), any individual integral estimated using (31) is of order
1/
√

|W|, larger with respect to the integrals estimated using (30) which are of order
1/ |W| (when |Θ′| ≥ |W|). The transition between the case (I) where |Θ′| ≥ |W| and
the case (III) will be considered in Section 3.3. Moreover, in the non–stationary case
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(I) the integrals in (30) are estimated only by differences of functions computed at the
border values a, b. Since Arnold diffusion is produced by the variations of Fj through
a sequence of circulations or librations, the border values of the sequence may cancel
(as a matter of fact they may cancel only partially, since from a libration/circulation
to the next one there can be small variations of α and a change of the fast phases φ(0)
in the factor multiplying the integral in (26)).

(xiv) The practical classification of the integrals in one of the categories (I), (II), or (III) will
be done by a fast algorithmic criterion (see below), based only on each term’s integer
labels m, ν, k. Since for the large majority of ν, k the phase satisfies (I) (see Section 5,
Tables 1 and 2, for numerical examples on a n = 3 degrees of freedom Hamiltonian),
we have a criterion to select the few harmonics (∼ 1%◦ in the numerical examples of
Section 5) belonging to (II) and (III), hence, producing the dominant terms in the time
evolution of Fj .

(xv) Despite being more complicated than (II), the inclusion in the computation of the
quasi–stationary terms (III) is essential, since these individual contributions can be as
large as those of (II) and quite often we find algebraic near-cancellations between terms
of the groups (II) and (III) leaving residuals of order only few percent of the absolute
values of the corresponding Melnikov integrals.

Finally, we discuss a further approximation valid for small values of ε. In fact, let us
introduce an auxiliary parameter ξ and the integrals

Îm,ν,k(ε, α, ξ) =

∫ 2π

0

Sα(σ; ξ)
m

∂H0
∂S (Sα(σ; ξ), σ) +

√
ξ ∂H1

∂S (Sα(σ; ξ), σ; ξ)
eiΘ̂ν,k(σ;ε,α,ξ)dσ

with

Θ̂ν,k(σ; ε, α, ξ) = νσ +

∫ σ

0

k ·
(

∂H̄0
∂F (

√
εSα(σ; ξ), 0, σ) +

∂H̄1
∂F (

√
ξSα(σ; ξ), 0, σ; ξ)

)

√
ε
(

∂H0
∂S (Sα(σ; ξ), σ) +

√
ξ ∂H1

∂S (Sα(σ; ξ), σ; ξ)
) dσ.

By assuming the continuity of Sα(σ; ξ) in ξ = 0 (see Remark (x)), by the Dominated Con-
vergence Theorem, for every ε > 0 and α > 0 we have:

lim
ξ→0

Îm,ν,k(ε, α, ξ) = Îm,ν,k(ε, α, 0) =

∫ 2π

0
[sα(σ)]

m−1eiθν,k(σ;ε)dσ (39)

where:

θν,k(σ; ε) = Nσ +
k · ω∗
A
√
ε

∫ σ

0

dx

sα(x)
(40)

with N = ν + k · B/A (from Eq. (37)).

Remark.

(xvi) We are not allowed to compute the limit of the integral Im,ν,k for ε going to zero
using the Dominated Convergence Theorem. In fact, since the phase contains terms
proportional to 1/

√
ε, the integrand has not pointwise limit.
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Since Im,ν,k = Îm,ν,k(ε, α,
√
ε), we will identify Îm,ν,k(ε, α, 0) with the main approxima-

tion of Im,ν,k in the sense given by the limit (39). Even if such approximation is not strictly
necessary, we find remarkable that it gives an excellent agreement with the numerical results.
Furthermore, the computation of the critical points of the phase of Îm,ν,k(ε, α, 0) can be done
explicitly using H0 which, in turn, can be retrieved directly from the original Hamiltonian.
Therefore, the only information needed from the Hamiltonian normalizing algorithm to com-
pute the approximation of ∆F̂j are the values of the coefficients rmν,k multiplying the integrals
Im,ν,k in equation (26).

3.3 Asymptotic formulas for Melnikov integrals

In this Subsection we state the results which allow us to assign all the terms in Eq. (26),
labeled by the integers m ∈ N, ν ∈ Z and k ∈ Z

n−1, into the categories (I), (II) or (III).
We then provide asymptotic representations for the integrals of the terms in (II) and (III).
To simplify the discussion, we assume α > 0; the modifications needed to represent the case
α < 0 are straightforward.

We first analyze the conditions on m, ν, k which imply that the corresponding term has
a phase with stationary points. To simplify the analysis we assume mild conditions on the
potential v(σ) in the normal form Hamiltonian (18). As discussed before, we assume that
v(σ) has only one relative maximum and one relative minimum. Up to a translation of the
angle σ we assume that this maximum is at σ = 0, so that with the notations introduced
in Section 2, we have v(0) = M . For simplicity, we hereafter denote the phase θν,k(σ; ε) of
Eq. (40) as θ(σ). Then, Eq. (40) takes the form:

θ(σ) = Nσ +W
√

1− M̄

M

∫ σ

0

dx
√

1 + α− v(x)
M

, (41)

whereN , W are defined in (37), (38). In particular, the dependence on ε is included in the pa-
rameter W and we study the asymptotic development of the integrals

∫ 2π
0 [sα(σ)]

m−1eiθ(σ)dσ
with respect to W. We have the following:

Lemma 1. Consider a phase θ(σ) defined by the labels ν, k. Then:

- If N ·W > 0 the phase θ(σ) has no stationary points;

- If N ·W < 0, the phase θ(σ) has stationary points if and only if

√

1− M̄
M

√

1 + α− M̄
M

≤ |N |
|W| ≤

√

1− M̄
M√

α
. (42)

Furthermore, suppose that v(σ) has only one non-degenerate local maximum at σ = 0,
one non-degenerate local minimum at σ = σ̄, and v′(σ) 6= 0 elsewhere. For any given

∆Max >
√

1− M̄
M , consider ε suitably small and

α ∈
(

0,min

(

∥

∥rN
∥

∥ ,
1− M̄

M

28∆2
Max

))

. (43)

Then
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(i) If the inequality (42) is strictly satisfied, the phase θ(σ) has two non–degenerate critical

points σ1
c , σ

2
c and for all N = −W∆ with ∆ ∈

(
√

1− M̄
M

√

1+α− M̄
M

,∆Max

)

, we have

∫ 2π

0
[sα(σ)]

m−1eiθ(σ)dσ = I(σ1
c )a1(W,N ) + I(σ2

c )a2(W,N ) , (44)

where

I(σj
c) =

1

|W| 12

√
2π |A| 34

[2(M −M)]
1
4

√

√

√

√

√

√

∣

∣

∣
sα(σ

j
c)
∣

∣

∣

3

∣

∣

∣
v′(σj

c)
∣

∣

∣

[sα(σ
j
c)]

m−1eiθ(σ
j
c)±iπ

4 , (45)

with the ± depending on the sign of v′(σc), and the functions a1, a2 satisfy

lim
|W|→+∞

a1(W,−W∆) = 1 , lim
|W|→+∞

a2(W,−W∆) = 1 . (46)

(ii) If |N |
|W| is equal to the lowermost bound of Eq. (42), the two non-degenerate critical

points merge into one degenerate critical point σc = σ̄.

In the statement of Lemma 1 (as well as of Lemma 2 below) the parameters N ,
∥

∥rN
∥

∥, α,
|W|, |N | depend on ε, or are constrained to intervals depending on the value of ε. In the
practical applications of the Lemmas for specific values of ε, the numerical values of these
parameters are obtained from the output of the Hamiltonian Normalizing Algorithm, so we
directly check if the hypotheses of Lemmas 1 and 2 are satisfied. In Subsection 3.4 we address
the problem of the expected asymptotic dependence of the parameters on ε by assuming the
system in the domain of application of Nekhoroshev’s theorem, and afterwards we discuss
the solvability of condition (42) in the limit of small ε for a set of ν, k.

Proof of Lemma 1. Since we have

θ′(σ) = N +W
√

1− M̄

M

1
√

1 + α− v(σ)
M

,

if N · W > 0 there are no stationary points. If N · W < 0 the stationary points are the
solutions of the equation

|N |
|W| =

√

1− M̄
M

√

1 + α− v(σ)
M

,

which exist if and only if |N |/|W| satisfies (42). By assumption, v(σ) has only one local
maximum σ = 0 and one local minimum σ̄. If (42) is strictly satisfied, the function

θ̃′ = |N | − |W|
√

1− M̄

M

1
√

1 + α− v(σ)
M

,

has a strict maximum at σ = σ̄ with θ̃′(σ̄) > 0 and converges to strictly negative values for σ
tending to 0 or 2π. Therefore there are two values σ1

c , σ
2
c ∈ (0, 2π)\{σ̄} such that θ̃′(σi

c) = 0.
Then, from

θ′′(σ) =
W
2M

√

1− M̄

M

v′(σ)
(

1 + α− v(σ)
M

) 3
2

,
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we have θ′′(σi
c) 6= 0, and consequently the two critical points are non-degenerate. Instead,

when the inequality (42) is satisfied at its lower extremum, we have only one critical point
σc = σ̄, which is degenerate.

It remains to prove Eq. (44). With no loss of generality, we consider the case N > 0,W <
0. Setting N within the phase θ(σ) with N = −W∆ = ∆ |W|, we obtain θ(σ) = |W|Φ(σ)
with

Φ(σ) =



∆σ −
√

1− M̄

M

∫ σ

0

dx
√

1 + α− v(σ)
M



 .

Since, depending on the values of m, the integral

∫ 2π

0
[s0(σ)]

m−1eiθ(σ)dσ

may not be smooth at σ = 0, 2π, we use the technique called neutralization of the extremals.
Precisely, choose a small µ > 0, depending possibly on the given ∆Max, but independent of
|W| and ∆. In the following we denote by k1, k2, . . . suitable constants which do not depend
on m,W,∆, ε, while they may depend on µ,∆Max.

We first prove that in the hypothesis of the Lemma there exists a small µ such that both
critical points σj

c are in (µ, 2π − µ), and for any σ ∈ [0, µ], we have

∣

∣Φ′(σ)
∣

∣ ≥ k1 ,
∣

∣Φ′(σ)sα(σ)
∣

∣ ≥ k1 . (47)

In fact, for the given ∆,W, the critical points σi
c satisfy

√

1 + α− v(σi
c)

M
=

√

1− M̄
M

∆
≥

√

1− M̄
M

∆Max

or equivalently

v(σi
c)

M
≤ 1 + α− 1− M̄

M

∆2
Max

.

Choosing a small µ satisfying

v(µ)

M
> 1− 7

8

1− M̄
M

∆2
Max

(48)

and using (43), we obtain

v(σi
c)

M
≤ 1 + α− 1− M̄

M

∆2
Max

≤ 1− 7

8

1− M̄
M

∆2
Max

<
v(µ)

M

and therefore we have σi
c ∈ (µ, 2π − µ). Then, for all σ ∈ [0, µ], we have

∣

∣Φ′(σ)
∣

∣ ≥

√

1− M̄
M

√

1 + α− v(σ)
M

−∆ ≥

√

1− M̄
M

√

1 + α− v(µ)
M

−∆Max ≥

√

1− M̄
M

16

√

1 + α− v(µ)
M

as soon as

∆Max ≤ 15

16

√

1− M̄
M

√

1 + α− v(µ)
M

, (49)
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which is satisfied if
v(µ)

M
≥ 1 + α−

(

15

16

)2 1− M̄
M

∆2
Max

.

From (43) and (48) we obtain

1 + α−
(

15

16

)2 1− M̄
M

∆2
Max

≤ 1− 7

8

1− M̄
M

∆2
Max

≤ v(µ)

M
.

Therefore, for µ satisfying (48), for all σ ∈ [0, µ] we have

∣

∣Φ′(σ)
∣

∣ ≥ ∆Max

15
.

Analogously, we have

∣

∣Φ′(σ)sα(σ)
∣

∣ ≥
√

2M

|A|

√

1− M̄

M



1−∆

√

1 + α− v(σ)
M

√

1− M̄
M



 ≥

≥
√

2M

|A|

√

1− M̄

M



1−∆Max

√

1 + α− v(µ)
M

√

1− M̄
M



 ≥ 1

16

√

M

|A|

√

1− M̄

M
.

Let us now consider an infinitely differentiable window function ρ(x, µ) such that ρ(x, µ) = 0
for x ≤ µ/2 and x ≥ 2π − µ/2; ρ(x, µ) = 1 for x ∈ [µ, 2π − µ]. Then, we define

η(σ) = ρ(σ;µ)[sα(σ)]
m−1

and

Î(|W| ,∆) =

∫ 2π

0
η(σ)ei|W|Φ(σ)dσ.

The integrand of Î(|W| ,∆) is smooth and bounded for allm ≥ 0, and vanishes at the extrema
together with all its derivatives. Therefore it has the form suitable for the application of the
rigorous version of PSP (see, for example, [10]). As a consequence, taking into account that
the phase Φ(σ) has two non-degenerate critical points σ1

c , σ
2
c , Î(|W| ,∆) is represented by

(44) with a1, a2 satisfying the limits (46). It remains to estimate the integral
∫ 2π

0
sα(σ)

m−1ei|W|Φ(σ)dσ − Î(|W| ,∆) =

∫ 2π

0
(1− ρ(σ;µ))[sα(σ)]

m−1ei|W|Φ(σ)dσ

=

∫ µ

0
(1− ρ(σ;µ))[sα(σ)]

m−1ei|W|Φ(σ)dσ +

∫ 2π

2π−µ
(1− ρ(σ;µ))[sα(σ)]

m−1ei|W|Φ(σ)dσ.

We prove that there exists a constant κ independent on |W|, ∆ and m, such that
∣

∣

∣

∣

∫ 2π

0
sα(σ)

m−1ei|W|Φ(σ)dσ − Î(|W| ,∆)

∣

∣

∣

∣

≤ Cm
κ

|W| , Cm =

{

‖sα‖m−1 ifm ≥ 1
1 ifm = 0

(50)

so that we have (44) with a1, a2 satisfying the limits (46).
Since the phase Φ(σ) has no stationary points in [0, µ], and if m ≥ 1, integrating by parts

we obtain
∫ µ

0
(1−ρ(σ;µ))[sα(σ)]

m−1ei|W|Φ(σ)dσ = − [sα(0)]
m−1eiθ(0)

i |W|Φ′(0)
−
∫ µ

0

(

(1− ρ(σ;µ))[sα(σ)]
m−1

i |W|Φ′(σ)

)′
ei|W|Φ(σ)dσ.

(51)
We consider the following cases:
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- If m ≥ 3 or m = 1, using (47) we obtain
∣

∣

∣

∣

∣

[sα(0)]
m−1eiθ(0)

i |W|Φ′(0)

∣

∣

∣

∣

∣

≤ |[sα(0)]|m−1 k2
|W| .

Then we estimate
∣

∣

∣

∣

∣

∫ µ

0

(

(1− ρ(σ;µ))sm−1
α (σ)

i |W|Φ′(σ)

)′
ei|W|Φ(σ)dσ

∣

∣

∣

∣

∣

≤
∫ µ

0

∣

∣

∣

∣

ρ′(σ;µ)sm−1
α (σ)

i |W|Φ′(σ)

∣

∣

∣

∣

dσ

+

∫ µ

0

∣

∣

∣

∣

(1− ρ(σ;µ))(m− 1)sm−3
α (σ)v′(σ)

iA |W|Φ′(σ)

∣

∣

∣

∣

dσ+

∫ µ

0

∣

∣(1− ρ(σ;µ))sm−1
α (σ)

∣

∣

∣

∣

∣

∣

(

1

|W|Φ′(σ))

)′∣
∣

∣

∣

dσ .

(52)
Using again (47) we obtain

∫ µ

0

∣

∣

∣

∣

ρ′(σ;µ)sm−1
α (σ)

i |W|Φ′(σ)

∣

∣

∣

∣

dσ +

∫ µ

0

∣

∣

∣

∣

(1− ρ(σ;µ))(m − 1)sm−3
α (σ)

iA |W|Φ′(σ)

∣

∣

∣

∣

dσ ≤ ‖sα‖m−1 k3
|W| .

Since 1/Φ′(σ) is strictly monotone in [0, µ], its derivative has the same sign in [0, µ],
and therefore we have
∫ µ

0

∣

∣(1− ρ(σ;µ))sm−1
α (σ)

∣

∣

∣

∣

∣

∣

(

1

|W|Φ′(σ))

)′∣
∣

∣

∣

dσ ≤ ‖sα‖m−1
∫ µ

0

∣

∣

∣

∣

(

1

|W|Φ′(σ))

)′∣
∣

∣

∣

dσ =

= ‖sα‖m−1

∣

∣

∣

∣

∫ µ

0

(

1

|W|Φ′(σ))

)′
dσ

∣

∣

∣

∣

= ‖sα‖m−1

∣

∣

∣

∣

1

|W|Φ′(µ)
− 1

|W|Φ′(0)

∣

∣

∣

∣

≤ ‖sα‖m−1 k4
|W| .

By collecting all these estimates, we obtain
∣

∣

∣

∣

∫ µ

0
(1− ρ(σ;µ))[sα(σ)]

m−1ei|W|Φ(σ)dσ

∣

∣

∣

∣

≤ ‖sα‖m−1 k5
|W|

with k5 > 0 independent on |W|, ∆ and m.

- If m = 2, we estimate the border contribution in (51), and the first and the third
integrals in (52) as in the case m ≥ 3. It remains to estimate the second integral, whose
denominator is only apparently divergent, since because of (47) we have |Φ′(σ)sα(σ)| ≥
k1. Therefore we have

∫ µ

0

∣

∣

∣

∣

(1− ρ(σ;µ))

i |A| |W|Φ′(σ)sα(σ)

∣

∣

∣

∣

dσ ≤ k6
|W| .

- If m = 0, for any arbitrary small ξ ∈ (0, µ), we have

∫ µ

ξ
(1− ρ(σ;µ))[sα(σ)]

−1ei|W|Φ(σ)dσ = − 1− ρ(ξ;µ)

i |W|Φ′(ξ)sα(ξ)
ei|W|Φ(ξ)+

+

∫ µ

ξ

ρ′(σ;µ)
i |W|Φ′(σ)sα(σ)

ei|W|Φ(σ)dσ −
∫ µ

ξ
(1− ρ(σ;µ))

(

1

i |W|Φ′(σ)sα(σ)

)′
ei|W|Φ(σ)dσ.

Using (47) we obtain, uniformly on ξ,
∣

∣

∣

∣

1− ρ(ξ;µ)

i |W|Φ′(ξ)sα(ξ)
ei|W|Φ(ξ) +

∫ µ

ξ

ρ′(σ;µ)
i |W|Φ′(σ)sα(σ)

ei|W|Φ(σ)dσ

∣

∣

∣

∣

≤ k7
|W| .

23



Since 1/(Φ′(σ)sα(σ)), is strictly monotone in [0, µ], by proceeding as in the cases m ≥ 1,
we obtain

∣

∣

∣

∣

∫ µ

ξ
(1− ρ(σ;µ))[sα(σ)]

−1ei|W|Φ(σ)dσ

∣

∣

∣

∣

≤ k8
|W|

uniformly in ξ, so that
∣

∣

∣

∣

∫ µ

0
(1− ρ(σ;µ))[sα(σ)]

−1ei|W|Φ(σ)dσ

∣

∣

∣

∣

≤ k8
|W| .

By repeating the argument to estimate the integral on [2π − µ, 2π] we obtain (50). �

Lemma 1 provides an explicit criterion allowing to classify Melnikov integrals as belonging
to the categories (I) or (II) depending on the values of of N ,W. Precisely, if N ·W > 0 the
phase is considered in the category (I), and the contribution of the corresponding Melnikov
integral to the Arnold diffusion will be considered negligible. Instead, if N · W < 0, and
|N |/|W| satisfies strictly (42), the phase has two non-degenerate critical points. Then we
distinguish two subcases:

- |N |/|W| is not too close to its lower extremum, according to to a criterion specified
by Lemma 2 below. Then, the phase is considered in the category (II) and the contri-
bution of the corresponding Melnikov integral to the Arnold diffusion can be estimated
analytically using (44).

- N ·W < 0 and |N |
|W| suitably close to its lower extremum. We find that such a term,

while formally ’stationary’, contributes to the Melnikov integral similarly as ’quasi-
stationary’ terms satisfying

|N |
|W| <

√

1− M̄
M

√

1 + α− M̄
M

= Qα. (53)

In fact, a careful investigation of the transition of |N |
|W| from values higher than Qα

to smaller ones, reveals that the transition corresponds to a degenerate critical point

for the phase. The corresponding integral blows to values of order 1/ |W| 13 , at the
transition, and depending linearly on the distance

δ = Qα − |N |
|W| , (54)

for small |δ|. Thus, these intermediate cases will be considered in the quasi-stationary
category (III).

The values of the Melnikov integrals for terms in category (III) are estimated according to
the following:

Lemma 2. Let the potential v(σ) have only one local non–degenerate maximum at σ = 0
and one local non–degenerate minimum at σ = σ̄. Let us consider ε suitably small and
α ∈ (0,

∥

∥rN
∥

∥). For any phase θ(σ) defined by the labels ν, k such that N > 0, W < 0 and

|N | = |W|





√

1− M̄
M

√

1 + α− M̄
M

− δ



 (55)
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with some δ > 0, and defining

I(|W| , δ) =
∫ 2π

0
[sα(σ)]

m−1eiθ(σ)dσ, (56)

we have

I(|W| , δ) = Î(|W| , δ) + b(|W| , δ)
|W| (57)

where
(

∂j

∂δj
Î(|W| , δ)

)

∣

∣

∣
δ=0

= eiθ∗cj |W|
2j−1

3 aj(|W|) , j ≥ 0 (58)

lim|W|→+∞ aj(|W|) = 1, j ≥ 0 (59)

|b(|W| , δ)| ≤ κ (60)

with constants κ and cj independent on |W| and δ, and θ∗ = θ(σ̄)|δ=0. In particular, we have

c0 =

√
3Γ(4/3)

(

2M
|A| (1 + α− M̄

M )
)

m−1
2







√

1− M̄
M

12M

(

1+α− M̄
M

) 3
2
v′′(σ̄)







1
3

, c1 = −
Γ(2/3)√

3

(

2M
|A| (1 + α− M̄

M )
)

m−1
2







√

1− M̄
M

12M

(

1+α− M̄
M

) 3
2
v′′(σ̄)







2
3

, (61)

and, for all j ≥ 2,

|cj | =
Γ((j+1)/3)

3

(

2M
|A| (1 + α− M̄

M )
)

m−1
2







√

1− M̄
M

12M

(

1+α− M̄
M

) 3
2
v′′(σ̄)







j+1
3

αj (62)

with αj ∈ {0, 1,
√
3, 2} depending on j.

Proof of Lemma 2. Let us choose µ > 0 small enough, but independent on |W|, δ and
α; let us define an infinitely differentiable window function ρ(x, µ) such that ρ(x, µ) = 0 for
x ≤ µ/2 and x ≥ 2π − µ/2; ρ(x, µ) = 1 for x ∈ [µ, 2π − µ]. Then, we define

η(σ) = ρ(σ;µ)[sα(σ)]
m−1

and

Î(|W| , δ) =
∫ 2π

0
η(σ)eiθ(σ)dσ.

Let us preliminarly write the phase θ(σ) and its derivative by replacing N using (55):

θ = θ(σ̄) + |W|









√

1− M̄
M

√

1 + α− M̄
M

− δ



 (σ − σ̄)−
√

1− M̄

M

∫ σ

σ̄

dx
√

1 + α− v(x)
M



 (63)

θ′ = − |W|



δ +

√

1− M̄

M





1
√

1 + α− v(σ)
M

− 1
√

1 + α− M̄
M







 (64)
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as well as the expansions at σ = σ̄

θ = θ(σ̄)− |W|






δ(σ − σ̄) +

√

1− M̄
M

12M

v′′(σ̄)
(

1 + α− M̄
M

)
3
2

(σ − σ̄)3 +O(σ − σ̄)4






(65)

In the following we denote by k1, k2, . . . suitable constants which do not depend onm,W, δ, ε, α,
while they may depend on µ. Since (for small µ) σ̄ ∈ (µ, 2π − µ), for all σ ∈ [0, µ] we have
(see (64))

∣

∣θ′(σ)
∣

∣ ≥ |W|
√

1− M̄

M





1
√

1 + α− v(σ)
M

− 1
√

1 + α− M̄
M



 ≥ |W| k1 , (66)

as well as

∣

∣θ′(σ)sα(σ)
∣

∣ ≥ |W|
√

1− M̄

M

√

2M

|A|



1−

√

1 + α− v(σ)
M

√

1 + α− M̄
M



 ≥ |W| k1 . (67)

To estimate

b(|W| , δ)
|W| = I(|W| , δ) − Î(|W| , δ) =

∫ 2π

0
(1− ρ(σ;µ))[sα(σ)]

m−1eiθ(σ)dσ

=

∫ µ

0
(1− ρ(σ;µ))[sα(σ)]

m−1eiθ(σ)dσ +

∫ 2π

2π−µ
(1− ρ(σ;µ))[sα(σ)]

m−1eiθ(σ)dσ ,

we first notice that the phase θ(σ) has no stationary points in [0, µ] and therefore integrating
by parts we obtain

∫ µ

0
(1−ρ(σ;µ))[sα(σ)]

m−1eiθ(σ)dσ = − [sα(0)]
m−1eiθ(0)

iθ′(0)
−
∫ µ

0

(

(1− ρ(σ;µ))[sα(σ)]
m−1

iθ′(σ)

)′
eiθ(σ)dσ .

(68)
We consider the following cases:

- If m ≥ 3 or m = 1, using (66) we obtain
∣

∣

∣

∣

∣

[sα(0)]
m−1eiθ(0)

iθ′(0)

∣

∣

∣

∣

∣

≤ |[sα(0)]|m−1 k2
|W| .

Then we can estimate
∣

∣

∣

∣

∣

∫ µ

0

(

(1− ρ(σ;µ))sm−1
α (σ)

iθ′(σ)

)′
eiθ(σ)dσ

∣

∣

∣

∣

∣

≤
∫ µ

0

∣

∣

∣

∣

ρ′(σ;µ)sm−1
α (σ)

iθ′(σ)

∣

∣

∣

∣

dσ+

+

∫ µ

0

∣

∣

∣

∣

(1− ρ(σ;µ))(m− 1)sm−3
α (σ)v′(σ)

iAθ′(σ)

∣

∣

∣

∣

dσ+

∫ µ

0

∣

∣(1− ρ(σ;µ))sm−1
α (σ)

∣

∣

∣

∣

∣

∣

(

1

θ′(σ))

)′∣
∣

∣

∣

dσ .

(69)
Using (66) we obtain

∫ µ

0

(∣

∣

∣

∣

ρ′(σ;µ)sm−1
α (σ)

iθ′(σ)

∣

∣

∣

∣

+

∣

∣

∣

∣

(1− ρ(σ;µ))(m − 1)sm−3
α (σ)

iAθ′(σ)

∣

∣

∣

∣

)

dσ ≤ ‖sα‖m−1 k3
|W| .

26



Since 1/θ′(σ) is strictly monotone in [0, µ], its derivative has the same sign in [0, µ],
and therefore we have

∫ µ

0

∣

∣(1− ρ(σ;µ))sm−1
α (σ)

∣

∣

∣

∣

∣

∣

(

1

θ′(σ)

)′∣
∣

∣

∣

dσ ≤ ‖sα‖m−1
∫ µ

0

∣

∣

∣

∣

(

1

θ′(σ)

)′∣
∣

∣

∣

dσ =

= ‖sα‖m−1

∣

∣

∣

∣

∫ µ

0

(

1

θ′(σ)

)′
dσ

∣

∣

∣

∣

= ‖sα‖m−1

∣

∣

∣

∣

1

θ′(µ)
− 1

θ′(0)

∣

∣

∣

∣

≤ ‖sα‖m−1 k4
|W| .

By collecting all these estimates, we obtain

∣

∣

∣

∣

∫ µ

0
(1− ρ(σ;µ))[sα(σ)]

m−1eiθ(σ)dσ

∣

∣

∣

∣

≤ ‖sα‖m−1 k5
|W| .

- If m = 2, we estimate the border contribution in (68), and first and the third integral
in (69) as in the case m ≥ 3. It remains to estimate the second integral, whose
denominator is only apparently divergent, since because of (67) we have |θ′(σ)sα(σ)| ≥
|W| k1. Therefore we have

∫ µ

0

∣

∣

∣

∣

(1− ρ(σ;µ))

i |A| θ′(σ)sα(σ)

∣

∣

∣

∣

dσ ≤ k6
|W| .

- If m = 0, for any arbitrary small ξ ∈ (0, µ), we have

∫ µ

ξ
(1− ρ(σ;µ))[sα(σ)]

−1eiθ(σ)dσ = − 1− ρ(ξ;µ)

iθ′(ξ)sα(ξ)
eiθ(ξ)+

+

∫ µ

ξ

ρ′(σ;µ)
iθ′(σ)sα(σ)

eiθ(σ)dσ −
∫ µ

ξ
(1− ρ(σ;µ))

(

1

iθ′(σ)sα(σ)

)′
eiθ(σ)dσ.

Using (67) we obtain uniformly on ξ

∣

∣

∣

∣

1− ρ(ξ;µ)

iθ′(ξ)sα(ξ)
eiθ(ξ) +

∫ µ

ξ

ρ′(σ;µ)
iθ′(σ)sα(σ)

eiθ(σ)dσ

∣

∣

∣

∣

≤ k7
|W| .

Since 1/(Φ′(σ)sα(σ)), is strictly monotone in [0, µ], by proceeding as in the cases m ≥ 1,
we obtain

∣

∣

∣

∣

∫ µ

ξ
(1− ρ(σ;µ))[sα(σ)]

−1eiθ(σ)dσ

∣

∣

∣

∣

≤ k8
|W| ,

uniformly in ξ, so that

∣

∣

∣

∣

∫ µ

0
(1− ρ(σ;µ))[sα(σ)]

−1eiθ(σ)dσ

∣

∣

∣

∣

≤ k8
|W| .

By repeating the argument to estimate the integral on [2π−µ, 2π] we obtain that there exists
a constant κ independent on |W| and δ such that |b(|W| , δ)| ≤ κ.

Then, since the integral Î(|W| , δ) is smooth with respect to δ at δ = 0, we have

(

∂j

∂δj
Î(|W| , δ)

)

∣

∣

∣
δ=0

= (−i)j |W|j eiθ∗
∫ 2π

0
η(σ)(σ − σ̄)jei|W|Φ(σ)dσ
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where

Φ(σ) =





√

1− M̄
M

√

1 + α− M̄
M

(σ − σ̄)−
√

1− M̄

M

∫ σ

σ̄

dx
√

1 + α− v(σ)
M



 .

Therefore, by using the degenerate version of the principle of stationary-phase (see [30]), by
identifying in |W| the large parameter, and by considering that η(σ)(σ − σ̄)j vanishes with
all its derivatives at σ = 0, 2π, we obtain (58), (59), (61), (62). �

Lemma 2 allows us to study the transition in the representations of the Melnikov integrals
from the regime of stationary phases to the regime of non stationary phases. Hence:

- In the case δ ≥ 0, a non-stationary phase is considered quasi-stationary, and the
corresponding Melnikov integral is computed by approximating

∫ 2π
0 [sα(σ)]

m−1eiθ(σ)dσ
with

I(|W| , δ) = c0
eiθ∗

|W| 13
− |c1| δeiθ∗ |W| 13 + . . . (70)

if

0 ≤ δ ≤ δc =
|c1|
c0

1

|W|2/3
, (71)

otherwise the phase is considered non-stationary and the corresponding Melnikov in-
tegral is neglected.

- In the case δ < 0, since I(|W| , δ) is smooth in δ, at δ = 0, we compare two estimates:
one coming from Lemma 1 (stationary phase approximation) and another coming from
the extension of the linear law (70) (quasi–stationary phase approximation) to small
negative δ. We find that, for negative δ suitably close to 0 the quasi-stationary phase
approximation provides a better estimate with respect to the stationary phase ap-
proximation. To determine a threshold to decide which one to use, we compared the
numerical computation of the integrals with the estimates provided by both Lemmas.
Let us, for example, consider v(σ) = cos σ; for α = 0, for all σ ∈ (0, 2π) we have:

θ(σ) = θ(π) +N (σ − π) + 2W ln tan(σ/4) , (72)

and the integrals (for θ(π) = 0):

∆I =

∫ 2π

0
cos (N (σ − π) + 2W ln tan(σ/4)) dσ . (73)

Figure 4 shows the values of the integrals ∆I, computed numerically, for several values
of W < 0, and fixed δ (left panel), or for fixed W and several values of δ (right panel).
The left panel shows that the value of the integrals as computed numerically by solving

Eq. (73) (blue dots) is well approximated by the corresponding asymptotic law 1/ |W| 13
for the values of |W| considered (blue line). In the right-panel we compare the numerical
computations of (73) (blue dots), with the corresponding estimate provided by the stationary-
phase approximation (green curve) and with the linear law (70) (red line), for the sample
value |W| = 15 (very similar pictures are obtained for different values). We see that the
stationary phase estimates reproduce well the values of the integrals for δ ≤ −δc/2. For
δ ∈ [−δc/2, 0] we have a divergence of the stationary phase approximation formula, indicating
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Figure 4: In the left panel we computed numerically the values of ∆I defined in (73) for δ = 0 and

several values of |W| (blue points). The blue line corresponds to the asymptotic law 1/ |W| 13 , that
well approximate the values of the integrals for the whole interval of |W| considered. In the right
panel we compare the numerical values of the integrals ∆I (the blue dots), with the corresponding
estimate provided by the stationary-phase approximation (green curve) and by the linear law (70)
(red line), for the sample value |W| = 15 and several values of δ.

that the approximation is no more valid since we are entering the regime of quasi-stationary
phase. In fact, we observe that the linear law (70) represents much better the value of the
integral for both positive and negative δ in the interval −δc/2 < δ < δc, and therefore, we
use Eq. (70) with c0, c1 given by Lemma 2 also to estimate those integrals. By using the
formula down to δ = δc we introduce some errors, which could be reduced by considering
the non linear corrections (see Remark (xvii) below). On the other hand, δc as computed
from (70) (represented by the point at which the linear law crosses the x–axis) is clearly
underestimated, since the non-linear contributions determine that ∆I has a tail extending
only asymptotically to zero (see remark (xvii)).

Remarks:

(xvii) The non-linear terms of the expansion (70) provide corrections to the critical value δc
necessary to discriminate between the quasi-stationary and the non stationary phases.

(xviii) Lemma 1 and 2 are derived by considering the upper branch of the separatrix solution
θ(σ) and α > 0. Equivalent results are found for the lower branch, and for α < 0, after
some obvious modifications in the formulas.

3.4 Dependence of all the parameters on ε

In the statements of Lemmas 1 and 2 the parameters N ,
∥

∥rN
∥

∥, α, |W|, |N | depend on ε, or
are constrained to intervals depending on the value of ε. In this Subsection we specify this
dependence by assuming the system in the domain of application of Nekhoroshev’s theorem.
For simplicity, we discuss the problem in the hypothesis of quasi-convex h(S,F ).

The dependence of N on ε. Following [61], Theorem 3, we define a cut-off:

Nε =
(ε0
ε

)
1

2(n−1)
, (74)
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and we cover a neighbourhood of radius ρ = ρ0
√
ε of the resonance:

R̃ =
{

(S,F ) :
∂h

∂S
= 0
}

with open sets GM where one constructs normal form Hamiltonians Hε,M which are non-
resonant with respect to some Nε–lattice M ⊆ Z

n containing the lattice Λ generated by
(1, 0, . . . , 0). In particular, for M = Λ, there is an open set G∗

Λ containing the point (S∗, F∗)
along the resonance, such that for (S,F, σ, ϕ) ∈ G∗

Λ × T
n we have the normal form Hamil-

tonian HN (see (10)) with N = Nε. Therefore, in this subsection we identify the optimal
normalization order N with the cut-off Nε.

The dependence of
∥

∥rN
∥

∥ on ε. According to the proof of the Nekhoroshev theorem, for
N = Nε the norm of the remainder within the domain G∗

Λ × T
n is bounded by:

∥

∥rN
∥

∥ ≤ e−Nεσ0F ,

where σ0,F are positive parameters independent of ε.

The dependence of α on ε. Any solution of Hamilton’s equations of the complete normal
form Hamiltonian:

H = H
N
(S,F, σ) + rN (S,F, σ, φ)

has the Hamiltonian H as first integral. Therefore, after any complete circulation of the
resonant variables S, σ, provided all variables remain in the domain G∗

Λ × T
n, we have a

variation of H
N
(S,F, σ) satisfying

∣

∣

∣∆H
N
∣

∣

∣ =
∣

∣∆rN
∣

∣ ≤ 2
∥

∥rN
∥

∥ .

Therefore, even for an initial condition very close on the separatrix of H
N
(S,F, σ) (and so

with α ∼ 0), for the next loop we have to consider a level value of H
N

not larger than
2
∥

∥rN
∥

∥; as a consequence, we limit our considerations to a small interval of α proportional
to
∥

∥rN
∥

∥. Precisely, in both lemmas we assume α ∈ (0,
∥

∥rN
∥

∥).

The dependence of W on ε. As a consequence of the Geometric Lemma of [61], since by
hypothesis (S∗, F∗) ∈ R̃ ∩ GΛ, from (7) and (74) there is a constant γ > 0 such that for any
k ∈ Z

n−1\0 with |k| ≤ Nε we have

|k · ω∗| ≥ γNε

√
ε

implying

|W| ≥ γ
√

2 |A| (M −M)
Nε. (75)

Correspondingly, |W| is large for all small ε.

Solvability of inequalities (42). We consider the solvability of inequalities (42) for some
vectors ν, k such that |ν|+ |k| ≤ N̂ε, at any small values of ε. We first notice that, since α
is exponentially small with respect to ε, the left-hand side is satisfied by all the vectors ν, k

such that |ν|+ |k| ≤ Nε, and the factor

√

1− M
M /

√

1 + α− M
M is close to 1. Since we aim to

find solutions to the inequality with the shortest possible values of |ν|+ |k| (corresponding
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to the larges values of
∣

∣

∣rmν,k

∣

∣

∣), the most favorable case is represented by the vectors k with

W ∼ c√
2|A|(M−M)

Nε and the ν, k such that:

∣

∣

∣

∣

ν +
k · B
A

∣

∣

∣

∣

∼ γ
√

2 |A| (M −M)
Nε. (76)

Therefore, we have the opportunity of finding terms satisfying (42) for any small values of
ε within the terms with |ν| + |k| ≤ Nε, provided that |k · ω∗| ∼ γNε

√
ε and and |ν| ∼ Nε.

Moreover, since |ν|+ |k| ∼ Nε we expect to find a small number of these terms.

Remark:

(xix) We also discuss terms ν, k with Nε < |k| ≤ N̂ε, where N̂ε is a second cut off larger than
Nε (in practice Nε is defined by the maximum truncation order of the remainder rN ,
which must be such as to ensure the practical convergence of the remainder, see [27]
and Section 5 below). By fixing a large parameter W0, within all these terms, if

|k · ω∗| ≥ W0

√

2 |A| (M −M)
√
ε,

we have |W| ≥ W0 and we have the opportunity to satisfy (42) with |ν| ≥ W0. There-
fore we remain with the terms with ν, k such that Nε < |k| ≤ N̂ε and such that the
orthogonal projection Pω∗k of the vector k on the frequency vector ω∗ satisfies:

‖Pω∗k‖ =
|k · ω∗|
‖ω∗‖

<
W0

‖ω∗‖

√

2 |A| (M −M)
√
ε.

Again, we have a small subset of all the terms of the remainder rNε in this condition,
and the few corresponding Melnikov integrals can be numerically evaluated in short
CPU time.

4 A semi-analytic solution to Problem 1

Following the analytical results of Section 3, the semi-analytic solution to Problem 1 that
we provide in this paper goes through the following steps.

Semi-analytic representation of ∆Fj during a resonant circulation. On the basis of
Lemma 1 and Lemma 2 we first define the algorithm which approximates the variation of
the adiabatic actions ∆Fj in the time interval [0, Tα] (t = 0 is chosen so that σ(0) = 0 and
Tα is the circulation period of the dynamics of the resonant normal forms, see Section 2),
with the function (see Eq. (24))

∆Fj : T
n−1 → R

φ(0) 7−→
∑

m,ν,k

fj,m,ν,ke
ik·φ(0) (77)

where the coefficients fj,m,ν,k are provided as floating point numbers obtained by replacing
the integral in

fj,m,ν,k = −ikj
rmν,kε

m−1
2

A

∫ 2π

0
[sα(σ)]

m−1eiθν,k(σ;ε)dσ (78)

according to the following fast algorithm:
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- For any m, ν, k such that rmν,k 6= 0 compute k · ω∗, N and W (see (37), (38)).

- If N ·W > 0, or if |k ·ω∗| > 1, set fj,m,ν,k = 0. If N ·W < 0 and if |k ·ω∗| ≤ 1, check if
condition (42) and δ < −δc/2 are satisfied (δ defined in Eq. (54), δc in Eq. (71)). In
such a case, compute fj,m,ν,k by replacing the integral with its asymptotic expression
as indicated in Section 3, Lemma 1.

- If −δc/2 ≤ δ < δc compute fj,m,ν,k by replacing the integral with its asymptotic
expression as indicated in Eq. (70), with the coefficients c0 and c1 given in Section 3,
Lemma 2. Otherwise, if δ ≥ δc set fj,m,ν,k = 0.

Randomization of the phases, a refinement of equation (78). The above represen-
tation is obtained by first approximating the integrals in (24) with Melnikov integrals, and
then by computing the Melnikov integrals using Lemmas 1 and 2. Then, we describe the
long–term diffusion of the actions caused by a sequence of resonant circulations by applying
iteratively formula (78) and by updating the values of the phases φ(0) at the beginning of
each circulation, assuming a random variation. In fact, during any resonant circulation, the
angles φ(t) deviate from the approximation considered in the Melnikov integrals. Since the
dynamics is chaotic and the phases φ(t) are fast, we expect that this deviation is random.
The small errors introduced by the randomization of the phases during a circulation period
is reduced if we split the period [0, Tα] into two time intervals:

[0, T̄α] , [T̄α, Tα]

where σ(T̄α) = σ̄, and we compute two semi-analytic formulas:

∑

m,ν,k

f1
j,m,ν,ke

ik·φ(0) ,
∑

m,ν,k

f2
j,m,ν,ke

ik·φ(T̄α) (79)

representing the change of the adiabatic actions in the first part of the resonant circulation
(σ(t) ∈ [0, σ̄]) and in the second part (σ(t) ∈ [σ̄, 2π]) respectively. The value of the phases φ
are then updated also when σ = σ̄.

The reason for this improvement is the symmetry of the distribution of the critical points
with respect to the minimum σ̄, so that the change of the actions is really split into two well
differentiated parts, the first one taking place before σ̄ and the second one taking place after
σ̄.

Largest ∆Fj during a resonant libration. From the numerical values of the coefficients
fj,m,ν,k, f

i
j,m,ν,k, one can estimate the maximum variation ∆Fj during a resonant libration

by computing the maximum of the function
∣

∣

∣

∣

∣

∣

∑

m,ν,k

fj,m,ν,ke
ik·φ(0)

∣

∣

∣

∣

∣

∣

(80)

with respect to all the possible initial values of the phases φ(0).

We remark that to obtain results which compare to the numerical experiments we are not
allowed to replace the maximum of the series (80) with the value of the majorant series
∑

m,ν,k |fj,m,ν,k|. In fact, there are examples (see Section 5) where the majorant series is one
order of magnitude larger than (80).
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Orbits with the fastest long-term instability, ballistic diffusion. The long-term
instability of an orbit may arise from a sequence of circulations/librations of S, σ, which
produce very small jumps of Fj and α, while the phases φ are treated as random vari-
ables. Since ∆Fj,∆α are very small at each step, their variations along several circula-
tions/librations are mainly determined by the values of the phases φ at the beginning of
each circulation/libration. Random variation of the phases yields a random walk of Fj

and, by selecting an initial condition such that the values of the phases at each circula-
tion/libration produce the maximum ∆Fj , we obtain a monotonic ballistic motion along
the resonance. The conditions to observe these ballistic motions from swarms of K diffusive
orbits are determined as follows: by assuming a randomization of the phases occurring at
each resonant libration (random phase approximation), half of the orbits will have ∆Fj ≥ 0
and the other half ∆Fj < 0, within the range determined by |∆Fj(Tα)| computed as indi-
cated in the previous step. Therefore, we observe orbits with ∆Fj of the same sign for a
number of M randomizations as soon as K/2M ≥ 1. Correspondingly, given K, we observe
orbits with Fj which increases (or decreases) almost monotonically in time for a time interval
(logK/ log 2)Tα. By denoting with 10−p the precision of the numerical integration, this time
interval is bounded by (p/ log 2)Tα.

The speed of the ballistic diffusion in the sequence of resonant librations is represented
by

∑M
i=1

∣

∣

∣∆F
(i)
j

∣

∣

∣

∑M
i=1 Tα(i)

,

where we estimate the variation
∣

∣

∣
∆F

(i)
j

∣

∣

∣
occurring at the i–th step by the maximum value

computed using the semi-analytic theory previously indicated. The sum of the libration
periods Tα(i) is instead estimated by assuming an average period needed by any libration

Tα =

∫ 2π

0

dσ
√
ε
√

2|A|(M(1 + α)− v(σ))
(81)

with α =
∥

∥rN
∥

∥. In the case v(σ) = εM cosσ, we find

Tα =
1√
AεM

ln
32AεM

‖rN‖ (82)

obtained when the energy of the libration differs from the separatrix value by the norm of the
remainder. Therefore, we obtain the formula for the average speed of the ballistic diffusion
as

D = max
j

maxφ(0) |∆Fj|
1√
AεM

ln 32AεM
‖rN‖

. (83)

Numerical computation of ∆Fj(T ) during a resonant libration. The analytic formu-
las provided above allow us to compute the maximum speed of diffusion along the resonance.
If we are also interested in following, for any given value of the phase φ(0) at the beginning
of the resonant libration, the individual variation ∆Fj(T ) for all T ∈ [0, Tα], it is possible to
compute numerically the function

∆FN
j : [0, Tα]× T

n−1 → R

(T, φ(0)) 7−→
∑

m,ν,k

fj,m,ν,k(T )e
ik·φ(0) (84)
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where the coefficients

fj,m,ν,k(T ) = −ikj
rmν,kε

m−1
2

A

∫ σ0(T )

0
[sα(σ)]

m−1eiθν,k(σ;ε)dσ (85)

are obtained, only for the terms in the category (II) or (III), by evaluating numerically the
integrals in (85). For example, in the n = 3 degrees of freedom system considered in Section
5, the terms in the category (II) or (III) are just 1/1000 of terms of the remainder, and
the numerical computation of all these integrals is well within the possibility of modern
computers.

Remark: (xx) Formula (83) has been obtained from the analysis of the optimal normal
form constructed as indicated in the Nekhoroshev theorem. Therefore it represents an im-
provement of the a priori estimate obtained from the same normal form, for the diffusion
along the resonances of multiplicity 1. In the examples of Section 5 the improvement is of
some orders of magnitude.

5 Numerical demonstrations on a three degrees of freedom

steep Hamiltonian model

We illustrate our theory for the 3-degrees of freedom Hamiltonian (3)

Hε =
I21
2

− I22
2

+
I32
3π

+ 2πI3 +
ε

cosϕ1 + cosϕ2 + cosϕ3 + 4
,

satisfying the hypotheses of the Nekhoroshev theorem (H0 is steep and the perturbation
is analytic) close to I∗ = (0.664887, 0.955495, 1) in the ℓ = (1, 1, 0) resonance and to I∗ =
(1.510988, 0.630, 1) in the ℓ = (1, 3, 0) resonance.

The upper value of ε. Using the method of the Fast Lyapunov Indicator (see [31, 43],
FLI hereafter) we preliminary checked that for the largest value of ε that we considered in
our experiments the resonance Rℓ close to I∗ is embedded in a domain dominated by regular
motions, with the other resonances forming a web, a circumstance ensuring that the diffusion
occurs mainly along the resonance Rℓ. Evidently, the condition persists for smaller values
of ε.

Computation of the normal form using a HNA. For a sample of values of ε we
computed the normal form of Hamiltonian (3) by implementing the HNA described in [27].
For example, by following the notations of Lemma 2 for the resonance determined by ℓ =
(1, 1, 0) (similar analysis can be done for the resonance ℓ = (1, 3, 0)), we preliminary define
the canonical transformation

(S̃, F̃1, F̃2) = Γ−T (I1, I2, I3) = (I2, I2 − I1, I3)

(σ̃1, φ̃1, φ̃2) = Γ(ϕ1, ϕ2, ϕ3) = (ϕ1 + ϕ2,−ϕ1, ϕ3)

with

Γ =





1 1 0
−1 0 0
0 0 1



 ,
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and then, implementing the HNA, we obtain a canonical transformation

(S,F, σ, φ) = C̃(S̃, F̃ , σ̃, φ̃) (86)

conjugating the Hamiltonian to the normal form (10)

HN = h(S,F ) + εfN (S,F, σ) + rN (S,F, σ, φ)

with optimal normalization order N depending on the specific value of ε. For all the details
about the HNA we refer the reader to [27]. Nevertheless we provide below some details about
the output of the algorithm for the case treated in this paper.

- Truncation order, optimal normalization order, optimal reminder. Since the HNA is
implemented on a computer algebra system, any function Z(S,F, σ, φ) is stored in the
memory of the computer as a Taylor–Fourier expansion defined by its series of terms4

(S − S∗)m(F1 − F∗,1)pei(νσ+k·φ),

truncated to some suitably large truncation order. To define the truncation order, as
well as other orders within the algorithm, the series is modified by multiplying each
term by

ξ

(

m+p+
2µ(|ν|+|k1|+|k2|)

ln(1/ε)

)

where ξ is a formal parameter (which at the end of the computation will be set equal
to 1), and µ is defined so that the perturbation is analytic in the complex domain
{ϕ : |ℑϕj| ≤ µ}. Then we represent the modified series Z(S,F, σ, φ, ξ) obtained in
this way as a Taylor expansion with respect to the parameter ξ

Z =

J
∑

j=1

ξjZj(S,F, σ, φ)

truncated at some suitable order J . The truncation order of Z is decided as the
truncation order of the Taylor expansion of Z with respect to the parameter ξ.

The expansions in the formal parameter ξ are used also to define the optimal nor-
malization order. In fact, if we consider all the intermediate Hamiltonians which are
constructed within the algorithm

H i = h(S,F ) + εf i(S,F, σ) + ri(S,F, σ, φ) , i = 1, . . . , N,

any remainder ri has a truncated Taylor expansion in the formal parameter

Ri =
J
∑

j=Ji

ξjRi
j(S,F, σ, φ)

starting from a minimum order Ji such that Ji+1 = Ji +1. The optimal value of N is
then chosen so that

∥

∥r1
∥

∥ >
∥

∥r2
∥

∥ > . . . >
∥

∥rN−1
∥

∥ ≥
∥

∥rN
∥

∥ ,
∥

∥rN
∥

∥ <
∥

∥rN+1
∥

∥ .

4Recall that for the specific Hamiltonian (3) the action F2 = I3 appears only as an isolated linear term.
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A necessary condition for the correct execution of the algorithm is that the truncation
order J is larger than JN . Therefore, the practical limitation for its implementation is
due to the limited memory of the computer to store all the series expansions required
by the HNA to work within the truncation order. Since the optimal normalization
order increases as ε decreases, for any given computer memory we have a lower bound
on the value of ε such that we are able to construct the normal form Hamiltonian. For
the practical purpose of this work, we considered a lower bound of ε = 0.0005.

- Domains of the normal forms. In order to solve Problem 1 we need to provide an
estimate of the norms of the normal form remainders (computed as the series of the
absolute values of the Taylor-Fourier coefficients) in a domain of the actions S,F which
is bounded, in principle, by order

√
ε. The numerical bounds of the action variables

are chosen, for each value of ε, according to the amplitude of the separatrices of the
resonant motions.

- Estimates on the canonical transformation. The canonical transformation C̃ (see (86))

is near to the identity, and in particular the difference
∣

∣

∣Fj − F̃j

∣

∣

∣ can be uniformly

bounded by εb (with some b > 0 defined as in (2)) which is a quantity much larger
than the norm of the optimal remainder rN . As a consequence, even if we suppress
from the normal form the remainder rN , so that the normalized actions Fj are con-
stants of motion, the non-normalized actions have a variation of order εb which cannot
be ascribed to the Arnold diffusion which is instead produced by a variation of the
normalized actions F̃j (the so–called ’deformation’ in Nekhoroshev theory).

In Tables 1 and 2 we summarize the values of the orders of truncation and of optimal
normalization, as well as the norm of the optimal remainders, computed in two resonances
(ℓ = (1, 1, 0) for Table 1 and ℓ = (1, 3, 0) for Table 2) for a sample of values of ε between
ε = 0.08 and ε = 0.0005. The computations were performed with double floating point
precision for the largest values of ε, and with quadruple floating point precision for the
smaller ones. The CPU time required by the execution of the HNA on a modern fast multi-
processor workstation ranges from few minutes for ε = 0.08 to some hours for ε = 0.0005
for the ℓ = (1, 1, 0) case; the strongest limitations are due to the RAM memory, since for
smaller ε we have a largest number of terms to consider within the order N . We notice that
the norm of the optimal remainder spans 9 orders of magnitude in this range of variation of
ε for ℓ = (1, 1, 0).

To provide an idea of the efficiency of the normalizing transformations, in Fig. 5 we
compare the time evolution of F1 with the time evolution of F̃1 for a swarm of solutions with
initial conditions in a small neighborhood of the separatrix of the resonant normal form,
for ε = 0.01. The solutions (S̃(t), F̃ (t), σ̃(t), φ̃(t)) have been obtained from a numerical
integration of Hamilton’s equations of the original Hamiltonian (3); the evolution of the
adiabatic action F1(t) has been obtained by transforming the numerical solution with the
canonical transformation C̃: (S(t), F (t), σ(t), φ(t)) = C̃(S̃(t), F̃ (t), σ̃(t), φ̃(t)). In the left
panel we see that the variation of F̃1 produces a swarm of points rapidly oscillating in a

band of width 6 × 10−3, which is due to the terms of order εb which bound
∣

∣

∣F1 − F̃1

∣

∣

∣. A

totally different picture appears in the right panel, where the variation of the normalized
action F1 is represented: in this case the slow time evolution is well defined, characterized
by jumps of order 10−7 (typical values of long–term diffusion of the action variables for this
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ε ∆S J JN

∥

∥rN
∥

∥ Tα |∆F1|Nekh

0.08 0.114 9 6 1.179×10−4 165.0 1.95×10−2

0.05 0.090 9 6 3.01×10−5 265.9 7.99×10−3

0.02 0.057 10 7 2.13×10−6 519.6 1.11×10−3

0.01 0.040 12 9 2.07×10−7 864.2 1.78×10−4

0.008 0.036 13 10 8.43×10−8 1028.4 8.67×10−5

0.005 0.029 13 10 1.24×10−8 1468.5 1.82×10−5

0.002 0.018 13 10 2.85×10−10 2705.0 7.70×10−7

0.001 0.013 13 10 3.05×10−11 4216.4 1.29×10−7

0.0005 0.009 13 10 4.01×10−12 6442.7 2.58×10−8

ε |∆F1|Max (II)+(III)1 |∆F1|P |∆F1|NP (II)+(III)2 |∆F1|sa
0.08 5.22 ×10−4 1334 3.45×10−4 3.35×10−4 648(83) 5.42×10−4

0.05 1.75×10−4 1124 1.56×10−4 1.32×10−4 513(48) 2.28×10−4

0.02 1.0×10−5 1696 1.2×10−5 5.2×10−6 601(50) 8.34×10−5

0.01 2.08×10−7 3838 3.6×10−7 2.1×10−7 1300(202) 2.91×10−6

0.008 7.0×10−8 5470 4.8×10−8 2.5×10−8 1703(180) 4.36×10−7

0.005 1.0×10−8 6476 1.2×10−8 6.7×10−9 634(201) 6.79×10−9

0.002 2.36×10−9 7346 4.38×10−9 2.79×10−9 916(7) 6.66×10−9

0.001 1.08×10−9 8350 1.32×10−9 3.87×10−10 885(12) 7.68×10−10

0.0005 2.12×10−10 9364 1.87×10−10 1.86×10−10 836(26) 2.04×10−10

Table 1: Summary of the numerical experiments on the resonance ℓ = (1, 1, 0) of Hamiltonian (3),
The upper table reports the parameters of the Hamiltonian normalizing algorithm and some of the
informations that we can extract from its output: ∆S denotes the amplitude of the domain in the
resonant action S, J the truncation order, JN the optimal normalization order,

∥

∥rN
∥

∥ the norm of
the remainder expansion (12) close to I∗ = (0.664887, 0.955495, 1), Tα the period of the resonant
variables computed using (82); |∆F1|Nekh represents the a priori upper bound of the maximum
variation of F1 over a period Tα forced by the remainder rN . The lower table concerns the numerical
computation and the analytic estimates about the variations of the normalized adiabatic action F1

during a resonant period: |∆F1|Max denotes the maximum variation of F1 after a full resonant period
for a swarm of 100 orbits with initial actions close to I∗ obtained from numerical integrations of the
Hamilton equations; |∆F1|NP denotes the semi-analytic estimate of the maximum variation obtained
by computing numerically the Melnikov integral whose phase is stationary or quasi-stationary (since
the numerical computation of the Melnikov integrals is more precise than the linear approximation,
we include for safety a larger number of terms in the category (III), by checking directly the value
δc for which the integrals are negligible with respect to δ = 0; the number of terms, reported in
the column (II)+(III)1, is still in a ratio of 1 ∼ 1000 of the total number); |∆F1|P is analogous
to |∆F1|N , but obtained with the ’patched’ formula (87); |∆F1|sa is the value obtained using the
asymptotic expansions of Lemmas 1 or 2; (II)+(III)2 represents the number of terms included in this
computation, in parenthesis the number of stationary terms).
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ε ∆S J JN

∥

∥rN
∥

∥ Tα |∆F1|Nekh

0.01 0.0036 10 7 1.387×10−7 1204.7 5.66×10−4

0.008 0.0032 10 7 7.986×10−8 1394.2 2.42×10−4

0.005 0.0025 11 8 2.582×10−8 1882.9 1.18×10−4

0.002 0.0016 12 9 1.793×10−9 3474.5 1.55×10−5

0.001 0.0011 15 12 1.532×10−10 5620.6 2.15×10−5

0.0009 0.00108 15 12 9.861×10−11 6065.9 1.49×10−6

0.0008 0.00102 16 13 5.581×10−11 6635.6 9.26×10−7

ε |∆F1|Max (II)+(III)1 |∆F1|P |∆F1|NP (II)+(III)2 |∆F1|sa
0.01 3.80×10−5 2384 1.63×10−4 4.01×10−5 386(308) 2.98×10−4

0.008 4.19×10−5 2388 1.13×10−4 4.45×10−5 384(298) 2.30×10−4

0.005 3.89×10−5 3888 6.44×10−5 3.92×10−5 532(364) 1.42×10−4

0.002 8.90×10−6 6048 8.83×10−6 8.77×10−6 566(402) 2.07×10−5

0.001 7.89×10−7 17110 7.60×10−7 7.49×10−7 1212(934) 4.93×10−7

0.0009 4.77×10−7 17110 4.70×10−7 4.53×10−7 1212(708) 1.66×10−7

0.0008 2.52×10−7 22886 2.56×10−7 2.57×10−7 1300(1000) 2.30×10−7

Table 2: Summary of the numerical experiments in the resonance ℓ = (1, 3, 0) of Hamiltonian (3)
close to I∗ = (1.510988, 0.630, 1) (see the caption of Table 1 for the explanation of the column titles).
We have a very good match between the values |∆F1|Max provided by the numerical experiments and
the semi-analytic patched or the non-patched estimates |∆F1|P , |∆F1|NP ; for the larger values of ε
the purely analytic estimate |∆F1|sa is affected by the nearby crossing of the resonance ℓ = (1, 3, 0)
by the higher order resonance ℓ = (25,−2, 0).
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Figure 5: Time evolution of the action F̃1 (left panel) and of the normalized adiabatic action F1

(right panel) for the same swarm of 100 solutions with initial conditions in a small neighborhood of
the separatrix of the resonance ℓ = (1, 1, 0), for ε = 0.01. The bold curves in both panels represent
the same sample solution.
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value of ε), that are detectable on such time intervals only thanks to the implementation of
the normalizing transformation.

Before applying the theory developed in Sections 2, 3, 4, we provide, as in the proof
of Nekhoroshev theorem, an upper bound to the variation of the action variables by com-
puting the right-hand side of inequality (15). The upper bound computed for a period
(82) is reported in the column |∆F1|Nekh and is larger up to two order of magnitudes with
the numerically computed variations |∆F1|Max. We therefore proceed by estimating these
variations with the Melnikov integrals.

Estimate of ∆F1 during a resonant libration. Let us analyze more in detail the variation
of the adiabatic action F1. In Fig. 6, as before, we represent the time evolution of F1(t)
during a circulation of the variables σ, S obtained from a numerical integration of Hamilton’s
equations of (3) for a swarm of 100 orbits, for two sample values of ε. The spread of F1(t)
after the circulation is due to the different values of φ(0). We are now able to predict the
time evolution of all these orbits by using the semi-analytic theory developed in Section 3.

Since, due to the discrimination between phases, the number of Melnikov integrals to
take into account is now small, we have the opportunity to compute these integrals also
numerically for all the intermediate times t ∈ [0, Tα]. For these computations, we can safely
extend the value of δc computed from the linear approximation as soon as the phases with
δ > 0 provide non negligible contributions, and still have a small number of terms (see Table
1, column (II)+(III)1).

The red curves of Fig. 6 represent the orbits yielding the maximum negative jump ob-
tained for the numerical integration of the Hamilton equations, while the black and blue
curves represent the Melnikov approximations (without and with the patched formula (87),
respectively). One sees that for both values of ε all the curves are sticked up to a time
corresponding approximately to half a period of a complete homoclinic loop. In the middle
of the homoclinic loop, we distinguish two cases. In the first case the jump is due mostly to
remainder terms which become locally stationary at angles σc sufficiently far from σ̄ = π,
while the slope dθ/dσ is substantially larger than unity at σ = π. In such cases, the jumps
are localized around the two stationary values symmetric with respect to the middle of the
loop, while the associated remainder terms yield a rapid oscillatory evolution of the actions
F1 in between the two jumps. Since the motion is in reality chaotic, the orbits during the
rapid oscillations undergo also a randomization of the phases, implying that the predictions
obtained by computing (26) may introduce an error. This can be remedied using both
representations (79): precisely, the blue curve represents the ‘patched’ evolution given by:

∆F1(t) := ∆FN
1 (t) if t < Tα/2 , (87)

∆F1(t) := 2∆FN
1 (Tα/2)−∆FN

1 (Tα − t) if t ≥ Tα/2 .

On the other hand, in cases where important quasi-stationary terms enter into play, θν,k(σ; ε)
remains at small values over a large interval around σ = π. Then no rapid oscillations of the
fast variables are observed, and the variations become predictable along the whole homoclinic
loop using the original estimate (77). In fact, these are cases where the method illustrates
its full power, as it is able to capture large cancellations taking place between stationary
terms (II), which, however, exhibit near-stationarity in the whole interval between the two
(symmetric with respect to π) critical values σc, and true quasi-stationary terms (III). An
example is provided in Fig 7: the terms of groups (II) and (III) independently produce
jumps of order 10−5, that nearly cancel, leaving a residual of order 10−7 which fits exactly
the numerical evolution of the action F1. Since no rapid oscillations are observed in the
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Figure 6: Evolution of the normalized action F1(t) numerically computed for Hamiltonian (3) for a
swarm initial conditions in the resonance ℓ = (1, 1, 0) and ε = 0.003, 0.01 (top-left and top-right panels
resp.) and in the resonance ℓ = (1, 3, 0) for ε = 0.008, 0.0009 (bottom-left and bottom-right panels
resp.). The initial conditions have been randomly chosen in a two-dimensional square neighbourhood
of (S, σ, F, φ) = (0, 0, F∗, 0, 0) (parameterized by φ1, S, and with values of FLI larger than 3 over a
time interval of T = 1000) and performing a circulation in the S, σ variables. Hamilton’s equations
have been numerically integrated in the original variables (I, ϕ); F1(t) has been then computed from
the numerical solution using the canonical transformation defined by the HNA. The red line highlights
the evolution with the largest ∆F1 over a circulation. The (dotted) black and (thin) blue lines show
the evolutions obtained by numerically integrating the Melnikov integrals (85) whose phase satisfies
(II) or (III), without and with the patched correction (87), respectively.
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Figure 7: Evolution of ∆F1 over a circulation of the resonant variables of an orbit in the resonance
ℓ = (1, 1, 0) for ε = 0.01, by considering the Melnikov integrals whose phase is in the category
(II) (dashed green line), in the category (III) (dotted purple line), and the contribution of the two
categories together (black line). We notice the cancellations occurring between the Melnikov integrals
in the first and second case, which produce a much smaller cumulative variation, represented also in
the zoomed right panel.

middle of the homoclinic loop, the non patched estimate is more precise than the patched
estimate, as also shown in the right panel of Fig. 6.

In Tables 1 and 2, for several different values of ε, we report the values |∆F1|Max repre-
senting the maximum variation of F1 in a full resonant libration, obtained from the numerical
integration of the Hamilton equations for a swarm of 100 orbits with initial actions close to I∗
in the two different resonances; |∆F1|NP denotes the semi-analytic estimate of the maximum
variation obtained by computing numerically the Melnikov integral whose phase is stationary
or quasi-stationary; |∆F1|P is analogous to |∆F1|N , but obtained with the patched formula
(87); |∆F1|sa is the value obtained using the asymptotic expansions of Lemmas 1 or 2. By
comparing |∆F1|Max with |∆F1|N , |∆F1|NP we have a good agreement between the numer-
ical integrations and the predictive model for all the values of ε (we notice that for a given
ε, only one of the two values |∆F1|N , |∆F1|NP is applicable), to within a factor 2 in varia-
tions over 6 orders of magnitude as ε varies between 0.0005 and 0.08). The values |∆F1|sa
are expected to be slightly less precise than |∆F1|N , |∆F1|NP , since they rely on the linear
law (70) for the quasi-stationary cases, and do not take into account the patched formula
(87); we expect that the errors can be more important for larger values of ε. Here we have
an agreement within a factor 3 as ε varies between 0.0005 and 0.08, except in the inter-
val 0.008 ≤ ε ≤ 0.02, where the cancellations (as in Fig. 7) become important. Regarding
the resonance ℓ = (1, 3, 0), we also have a very good match between the values |∆F1|Max

provided by the numerical experiments and the semi-analytic patched or the non-patched
estimates |∆F1|P , |∆F1|NP . For the larger values of ε, the purely analytic estimate |∆F1|sa
is affected by the nearby crossing of the resonance ℓ = (1, 3, 0) by the higher order resonance
ℓ = (25,−2, 0).

Diffusion and ballistic orbits. As discussed in Section 4, the long-term instability of
an orbit may arise from a sequence of circulations/librations of S, σ, which produce very
small jumps of F1 and α, while the phases φ are treated as random variables. The random
variation of the phases determines the random walk along the resonance in jumps of maxi-
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mum amplitude estimated according to the theory of Section 3; for special initial conditions
the sequence of jumps has the same sign, so that we have the orbits which move along the
resonance with the largest speed (ballistic orbits). An illustration of this phenomenon is rep-
resented in Fig. 8 where we represent a ballistic orbit through a sequence of 14 circulations,
which is the limit of the quadruple precision. The speed of the ballistic orbits numerically
measured is in agreement with formula (83) (see Table 1). Note also the overall random walk
nature of the jumps ∆F1 for most other orbits nearby to the ballistic one. Since estimates
on ∆Fj can be regarded as providing the one–step size in the random walk, they are crucial
in modelling the diffusion process for a large measure of trajectories over times of practical
interest in the applications.
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[3] G. Benettin, F. Fassoànd M. Guzzo, Long-term stability of proper rotations of the Euler
perturbed rigid body, Commun. Math. Phys. 250, 133 (2004).

[4] G. Benettin and G. Gallavotti, Stability of motions near resonances in quasi–integrable
Hamiltonian systems, J. Stat. Phys. 44, 293 (1985).

[5] G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near to the identity
symplectic mappings, with application to symplectic integration algorithms, J. Stat.
Phys. 73, 1117 (1994).

[6] P. Bernard, V. Kaloshin and K. Zhang, Arnold diffusion in arbitrary degrees of freedom
and normally hyperbolic invariant cylinders, Acta Math. 217, 1 (2016).

[7] M. Berti, L. Biasco, and P. Bolle, Drift in phase space: a new variational mechanism
with optimal diffusion time, J. Math. Pures Appl. 82, 613 (2003).

[8] M. Berti and P. Bolle, A functional analysis approach to Arnold diffusion, Ann. Henri
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