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Abstract

We introduce general estimates for “gain of regularity” of solutions of the ∂̄-Neumann problem and relate
it to the existence of weights with large Levi form at the boundary. This enables us to discuss in a unified
framework the classical results on fractional ellipticity (= subellipticity), superlogarithmic ellipticity and
compactness. For each case, we exhibit a corresponding class of domains.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Let D be a bounded domain of C
n defined by r < 0 for ∂r �= 0. The ∂̄-Neumann problem

consists in finding the solution of ∂̄u = v which is orthogonal to ker ∂̄ under the compatibility
condition ∂̄v = 0. Here v and u are forms of degree k and k − 1 respectively. Related to this, is
the equation �u = v, with u and v of the same degree k, where � := ∂̄∗∂̄ + ∂̄ ∂̄∗. If � is invertible,
in a suitable Hilbert space, there is well-defined a Neumann operator N := �−1 and the solution
to the first problem is produced by u := ∂̄∗Nv. We discuss estimates for (∂̄, ∂̄∗) and for � which
assure continuity of N in the spaces Hs and C∞ up to the boundary ∂D. We wish to recall the
theory by Catlin of [2]. Assume that, in a neighborhood of a boundary point zo ∈ ∂D, there is a
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family of weights ϕ = ϕδ for δ → 0, which are plurisubharmonic, have bound |ϕ| � 1 over the
strip Sδ := {z ∈ D : dist(z, ∂D) < δ} and whose Levi form ϕij satisfies

ϕij (z) � δ−2ε for any z ∈ Sδ (1.1)

(in the sense that the lowest eigenvalue of ϕij is � δ−2ε ). Here and in what follows, � or �
denote inequality up to a constant. Note that Catlin requires in addition |ϕ| < 1 on the whole D;
it is clear from the proof of Theorem 1.4 that the ϕ’s may be arranged so that this last condition is
fulfilled. In [2] Catlin proves that finite type of ∂D in the sense of D’Angelo [4] yields a family
of weights satisfying (1.1). In turn, he proves that these weights give subelliptic estimates for the
∂̄-Neumann problem (which were already obtained by Kohn [13] for real analytic boundaries).

Theorem 1.1. (See Catlin [2], Theorem 2.2.) Let D be pseudoconvex; then the existence of a
family of weights {ϕδ} which satisfy (1.1) in a neighborhood of zo ∈ ∂D implies, for a smaller
neighborhood V of zo,

|||u|||2ε � ‖∂̄u‖2
0 + ∥∥∂̄∗u

∥∥2
0 + ‖u‖2

0 for u ∈ C∞
c (D̄ ∩ V ) ∩ Dom∂̄∗ of degree k � 1. (1.2)

Here ||| · |||ε is the tangential ε-Sobolev norm. We want to generalize this result in two di-
rections. The first consists in considering more general q-pseudoconvex (or q-pseudoconcave),
instead of merely pseudoconvex, domains and prove (1.2) for forms of related degree k � q

(or k � q); this was already achieved in [10–12,20]. The second, consists in considering es-
timates with a weaker gain of regularity than the tangential fractional ε-Sobolev. This is the
specific novelty of the present paper. To introduce q-pseudoconvexity/concavity we need to de-
velop some notations and terminology: L∂D = (rij )|T C∂D is the Levi form of the boundary, s+

∂D ,
s−
∂D , s0

∂D are the numbers of eigenvalues of L∂D which are > 0, < 0, = 0 respectively and finally
λ∂D

1 � λ∂D
2 � · · · � λ∂D

n−1 are its ordered eigenvalues. We take a pair of indices 1 � q � n − 1
and 0 � qo � n − 1 such that q �= qo. We assume that there is a bundle V qo ⊂ T 1,0(∂D) of rank
qo with smooth coefficients in a neighborhood V of zo, say the bundle of the first qo coordinate
tangential vector fields ∂ω1, . . . ∂ωqo

, such that

q∑
j=1

λ∂D
j −

qo∑
j=1

rjj � 0 on ∂D ∩ V . (1.3)

Definition 1.2.

(i) If q > qo we say that D is q-pseudoconvex at zo.
(ii) If q < qo we say that D is q-pseudoconcave at zo.

This condition contains, as a particular case, the classical q-pseudoconvexity (resp. q-pseudo-
concavity) “by compensation” which corresponds to the choice qo = 0 (resp. qo = n − 1),
that is,

∑q

j=1 λ∂D
j � 0 (resp. −∑n−1

j=q+1 λ∂D
j � 0) (cf. [7] and more recent developments by

[19] and [18]). We write k-forms as u = (uJ )J where J = j1 < j2 < · · · < jk are ordered
multiindices. When the multiindices are not ordered, the coefficients are assumed to be alter-
nating. Thus, if J decomposes as J = jK , then ujK = sign

(
J

)
uJ . We take an orthonormal
jK
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basis of (1,0) forms ω1, . . . ,ωn = ∂r and the dual basis of (1,0) vector fields ∂ω1 , . . . , ∂ωn ;
thus ∂ω1 , . . . , ∂ωn−1 generate T 1,0(∂D). Under the choice of such basis, we check readily that
u ∈ Dom∂̄∗ if and only if unK |∂D ≡ 0 for any K . We use the notation rj := ∂ωj

r . Integration
by parts and use of the tangentiality conditions unK |∂D ≡ 0, as well of the vanishing rj |∂D ≡ 0
for j � n − 1 which follows from the choice of the orthonormal basis adapted to the boundary,
yields the “basic” estimates [8,9,21]

‖∂̄u‖2
H 0

ϕ
+ ∥∥∂̄∗

ϕu
∥∥2

H 0
ϕ

+ C‖u‖2
H 0

ϕ

�
∑′

|K|=k−1

n∑
i,j=1

∫
D

e−ϕϕijuiKūjK dv −
∑′

|J |=k

qo∑
j=1

∫
D

e−ϕϕjj |uJ |2 dv

+
∑′

|K|=k−1

n−1∑
i,j=1

∫
∂D

e−ϕrij uiKūjK ds −
∑′

|J |=q

qo∑
j=1

∫
∂D

e−ϕrjj |uJ |2 ds

+ 1

2

(
q0∑

j=1

∥∥δϕ
ωj

u
∥∥2

H 0
ϕ

+
n∑

j=qo+1

‖∂ω̄j
u‖2

H 0
ϕ

)
for u ∈ C∞

c (D̄ ∩ V )k ∩ Dom∂̄∗ . (1.4)

Here the δ
ϕ
ωj

’s are the adjoints to the −∂ω̄j
’s and dv and ds are the elements of volume in D and

of area on ∂D respectively. We refer for instance to [21] for the proof (1.4). By choosing ϕ so that
e−ϕ is bounded, we may remove the weight functions in (1.4). We note that there is no relation
between k and qo in the above inequality and that C is independent of ϕ (and u). However, if
we assume that D is q-pseudoconvex (resp. q-pseudoconcave) and restrain the degree k of u to
k � q (resp. k � q), then the third line of (1.4) can be discarded since it is positive and we get an
estimate which does not involve boundary integrals. Now the crucial point has become to make
the right choice of the weight ϕ in order to get full advantage of the second line of (1.4). Also, we
wish to treat lower bounds for the Levi form, smaller than δ−2ε . Let f be a smooth monontonic

increasing function f : R
+ → R

+ with f (t) � t
1
2 . We consider weights ϕ = ϕδ in C2(D̄ ∩ V ),

absolutely bounded in S̄δ ∩ V and with the property that, if λ
ϕ
1 (z) � λ

ϕ
2 (z) � · · · are the ordered

eigenvalues of the form ϕδ
ij (z), we have

q∑
j=1

λ
ϕ
j (z) −

qo∑
j=1

ϕjj (z) � f

(
1

δ

)2

+
qo∑

j=1

∣∣ϕj (z)
∣∣2

, for any z ∈ S̄δ ∩ V. (1.5)

According to the point (a) of the proof of Theorem 1.4 which follows, we can modify ϕ to a new
weight for which (1.5) holds in the whole D ∩ V , instead of the only Sδ ∩ V , but with the term
in the right reduced to

∑qo

j=1 |ϕj (z)|2. In the same way as (1.3) says that the second line of (1.4)
is positive, we can see that this modified version of (1.5) gives a good lower bound for the first
line over forms in degree k � q .

Definition 1.3. If ∂D is q-pseudoconvex/concave and there is a family of weights {ϕ} = {ϕδ}
which are absolutely bounded on S̄δ ∩ V and satisfy (1.5), we say that D satisfies (f -P -q).

We introduce special coordinates (a, r) ∈ R
2n−1 × R, denote by ξ the dual coordinates to a

and by Fτ the tangential Fourier transform, that is, the partial Fourier transform with respect to a.
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We denote by Λξ = (1 + |ξ |2) 1
2 the standard elliptic symbol of order 1 and by Λ∂ the operator

with symbol Λξ . For a smooth monotonic increasing function f : R
+ → R

+ with f (t) � t
1
2 ,

we consider the symbol f (Λξ ) and the associated tangential pseudodifferential operator f (Λ∂).
This is defined by

f (Λ∂)u = F −1
τ

(
f (Λξ )Fτ (u)

)
.

Here is the main result of the present section.

Theorem 1.4. Let D be q-pseudoconvex (resp. q-pseudoconcave), assume that ∂D satisfies
(f -P -q) for q > qo (resp. q < qo) and let k � q (resp. k � q). Then

∥∥f (Λ∂)u
∥∥2 � ‖∂̄u‖2 + ∥∥∂̄∗u

∥∥2 + ‖u‖2 for u ∈ C∞(D̄ ∩ V ) ∩ Dom∂̄∗ of degree k. (1.6)

Before the proof, some remarks are in order.

Remark 1.5. We point our attention to the rate of f as t → ∞ in three relevant cases:

(i) f � tε ,
(ii) f � k log t for any k,

(iii) f � k for any k.

It is obvious that (i) implies (ii) and (ii) implies (iii). The estimates (1.6) are said subelliptic,
superlogarithmic and of compactness, when f satisfies (i), (ii) and (iii) respectively. For the case
of pseudoconvex domains, the first are discussed, as it has already been said, by Catlin in [2], the
second by Kohn in [16] and the third by Catlin [1], Straube [19], Mc Neal [17], Harrington [6]
and others.

Remark 1.6. Classically, superlogarithmic estimates are defined by

∥∥log(Λ∂)u
∥∥2

0 � ε
(‖∂̄u‖2

0 + ∥∥∂̄∗u
∥∥2

0

) + Cε‖u‖2−1 for any ε > 0. (1.7)

But (1.6) for f satisfying (ii), that is, f � k log t for any k, implies (1.7). In fact, under the
substitution t = |ξa|, we have f � ε−1 log(|ξa|) for any ξa outside a suitable compact Kε �
R2n−1. It follows

∥∥log(Λ∂)u
∥∥2 � ε

∫
(R2n−1\Kε)×R

f 2(Λ(ξ)
)|Fτ u|2 dξ dr + sup

ξ∈Kε

f 2(Λξ )

∫
Kε×R

|Fτ u|2 dξ dr

� ε

∫
(R2n−1\Kε)×R

f 2(Λ(ξ)
)|Fτ u|2 dξ dr + Cε‖u‖2−1.

This, combined with (1.6), yields (1.7).
Similarly, compactness is classically defined by ‖u‖2

0 � ε(‖∂̄u‖2
0 + ‖∂̄∗u‖2

0) + Cε‖u‖2−1 for
any ε; again, this estimate is a consequence of (1.6) for f satisfying (iii).
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Remark 1.7. Let � = ∂̄ ∂̄∗ + ∂̄∗∂̄ be the ∂̄-Neumann Laplacian. It is well known (cf. [5]
and [16]) that subelliptic and superlogarithmic estimates imply local hypoellipticity of �:�u ∈ C∞(D̄ ∩ V ) implies u ∈ C∞(D̄ ∩ V ). On the other hand, compactness over a covering
{D} of ∂D implies global hypoellipticity: �u ∈ C∞(D̄) implies u ∈ C∞(D̄). We have another
version of these two statements. For the equation ∂̄u = v with ∂̄v = 0, we define the “canonical”
solution by u := ∂̄∗Nv where N is the H 0 inverse to �. Thus local (global) hypoellipticity of �
implies that the canonical solution u inherits local (global) smoothness from v at ∂D (it surely
does in the interior).

Proof of Theorem 1.4. (a) We “globalize” ϕ by multiplication for a cut-off χ and next deform
by composition with a convex function ψ so that the resulting function ψ ◦ (χϕ), that we still
denote by ϕ, satisfies

∑′

|K|=k−1

n−1∑
ij=1

ϕiju
τ
iK ūτ

jK −
qo∑

j=1

ϕjj

∣∣uτ
∣∣2 − 2

∑′

|K|=k−1

∣∣∂ϕ · uτ·K
∣∣2

�
{

0 in D ∩ V ,

f (δ−1)2 in S δ
2
∩ V , (1.8)

for uτ tangential, that is, satisfying uτ
J ≡ 0 if n ∈ J even for z /∈ ∂D, of degree k � q (resp.

k � q). For this, we take a smooth decreasing cut-off function satisfying χ ≡ 1 on [0, 1
2 ] and

χ ≡ 0 on [ 2
3 ,1], and define ϕ̃ = ϕ̃δ by ϕ̃δ := χ(− r

δ
)ϕδ . Recall that rj = 0 for j � n − 1 and

uτ
nK ≡ 0. Then, over such forms we have

(
n−1∑
i,j=1

ϕ̃ij u
τ
iK ūτ

jK −
qo∑

j=1

ϕ̃jj

∣∣uτ
J

∣∣2

)
� χ ·

(
n∑

i,j=1

ϕiju
τ
iK ūτ

jK −
qo∑

j=1

ϕjj

∣∣uτ
J

∣∣2

)
. (1.9)

In fact, if i and j denote derivation in ∂ωi
and ∂ω̄j

respectively, we have

(
χ

(
− r

δ

)
ϕ

)
ij

= χ̈
rirj

δ2
ϕ − χ̇

ϕ

δ
rij − χ̇

rjϕi

δ
− χ̇

riϕj

δ
+ χϕij

= −χ̇
ϕ

δ
rij + χϕij over tangential forms uτ (1.10)

(where we have to remember that rj ≡ 0 for any j � n − 1). Since −χ̇ � 0, then (1.10) implies
(1.9). Note that ∂ϕ̃ = χ̇∂rϕ + χ∂ϕ and recall that ∂r · uτ ≡ 0 (and that u has degree � q). It
follows that ϕ̃ satisfies (1.8) with the constant 2 replaced by a more general c > 0 according to
(f -P -q). To get (1.8) for the precise constant 2 we have to compose ψ ◦ ϕ̃. From

∂∂̄(ψ ◦ ϕ̃) = ψ̇∂∂̄ϕ̃ + ψ̈∂ϕ̃ ⊗ ∂̄ ϕ̃,

we get that ψ ◦ ϕ̃ satisfies (1.8) as soon as⎧⎨
⎩

ψ̈ � 2ψ̇2,

ψ̈ � c
ψ̇.

(1.11)
2
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A choice for such a function is ψ = 1
2e

c
2 (t−1); we still denote by ϕ this new weight ψ ◦ ϕ̃ which

satisfies (1.8). We wish to remove now the weight from the adjunction ∂̄∗
ϕ . We note that

∥∥∂̄∗uτ
∥∥2 � 1

2

∥∥∂̄∗
ϕuτ

∥∥2 −
∑′

|K|=k−1

∥∥∂ϕ · uτ·K
∥∥2

. (1.12)

It follows

QD

(
uτ ,uτ

) + C
∥∥uτ

∥∥2
D

� 1

2

∥∥∂̄∗
ϕuτ

∥∥2
D

+ ∥∥∂̄uτ
∥∥2

D
−

∑′

|K|=k−1

‖∂ϕ · u·K‖2
D

� 1

2

∫
D

( ∑′

|K|=k−1

n−1∑
ij=1

ϕiju
τ
iK ūτ

jK −
qo∑

j=1

ϕjj

∣∣uτ
∣∣2

)
dv

−
∑′

|K|=k−1

‖∂ϕ · u·K‖2
D

�
∫

S δ
2

· −
∑′

|K|=k−1

‖ · ‖2
S δ

2

� f
(
δ−1)2∥∥uτ

∥∥2
S δ

2

, (1.13)

where the first inequality follows from (1.12), the second from (1.4) in addition to q-
pseudoconvexity/concavity, the third from the first occurrence of (1.8) and the fourth from the
second of (1.8).

(b) We will prove in (c) and (d) which follow that (1.13) implies (1.6) for tangential forms uτ .
We prove now that an estimate for uτ entails an estimate for the full u:

Lemma 1.8. The estimate ‖f (Λ∂)u
τ‖2 � Q(uτ ,uτ ) for any uτ implies ‖f (Λ∂)u‖2 � Q(u,u)

for any u.

Proof. We decompose u as u = uτ + uν where uτ is the tangential part which collects the
coefficients uJ of u with n /∈ J and uν is the normal part, that is, the complementary component.
Since uν |∂D ≡ 0, we then have by Garding inequality

{
Q

(
uν,uν

)
�

∣∣uν
∣∣2
1 � Q(u,u) + ‖u‖2,

Q
(
uτ ,uτ

)
� Q(u,u) + Q

(
uν,uν

)
� Q(u,u) + ‖u‖2.

(1.14)

We then have

∥∥f (Λ∂)u
∥∥2 �

∥∥f (Λ∂)u
τ
∥∥2 + ∥∥uν

∥∥2
1

� Q
(
uτ ,uτ

) + ∥∥uν
∥∥2

1

� Q(u,u) + ‖u‖2,
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where the first inequality is obvious, the second follows from (1.6) for uτ and the third from
(1.14). �

(c) The rest of the proof is devoted to prove that (1.8) implies (1.6) for uτ . To begin
with, we need the following generalization of [5], Theorem 2.4.5. The generalization con-
sists in passing from the system {∂ω̄j

}j=1,...,n to any elliptic system {Mj }j=1,...,N such as
{∂ωj

}j=1,...,qo ∪ {∂ω̄j
}j=qo+1,...,n.

Proposition 1.9. Let {Mj }j=1,...,N be a elliptic system of vector fields, that is, the symbols σ(Mj )

have no common zeroes in R
2n \ {0}. We then have

2n∑
i=1

∥∥Λ−1
∂ f (Λ∂)Diu

∥∥2 �
N∑

j=1

∥∥Λ−1
∂ f (Λ∂)Mju

∥∥2 + ∥∥f (Λ∂)ub

∥∥2
− 1

2

for u ∈ C∞
c (D̄ ∩ V ), (1.15)

where Di denote all coordinate derivatives and ub the restriction of u to M .

Proof. (i) It is not restrictive to assume that the Mj ’s have constant coefficients, that is, Mj =∑
i aijDi for aij ≡ aij (zo). In fact, if |aij (z) − aij (zo)| < ε in a neighborhood of zo, then, if u

is supported by such neighborhood, each ‖Λ−1
∂ f (Λ∂)(Mj − Mj(zo))u‖2 can be absorbed in the

left of (1.15).
(ii) We define

w := F −1
τ

(
e(1+|ξ |2) 1

2 r Fτ u(ξ,0)
)
,

and set v := u − w. Since v|∂D ≡ 0, then

N∑
j=1

‖Mjv‖2 ∼
N∑

j=1

‖Mjv‖2 +
N∑

j=1

‖M̄j v‖2 ∼
2n∑
i=1

‖Div‖2.

Similarly,
∑N

j=1 ‖f (Λ∂)Mjv‖2 ∼ ∑2n
i=1 ‖f (Λ∂)Div‖2. Combination of these estimates yields

(1.15) for v without boundary integral. It is useful for the following to notice that it is not made
any assumption compactness of the support of v.

(iii) To carry out the proof of the proposition, we need to prove that

∥∥Λ−1
∂ f (Λ∂)Diw

∥∥2 �
∥∥Λ

− 1
2

∂ f (Λ∂)wb

∥∥2
.

We distinguish now the case Di = Dai
(tangential derivative) from the case Di = Dr (normal

derivative). In the first case we have

∥∥Λ−1
∂ f (Λ∂)Dai

w
∥∥2 =

∫
R2n−1

0∫
−∞

(
1 + |ξ |2)−1|ξai

|2(f ((
1 + |ξ |2) 1

2
))2

× exp
[
2
(
1 + |ξ |2) 1

2 r
]|Fτ u|2(ξ,0) dr dξ
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�
∫

R2n−1

(
1 + |ξ |2)− 1

2
(
f

((
1 + |ξ |2) 1

2
))2

( 0∫
−∞

e2ρ dρ

)
|Fτ u|2(ξ,0) dξ

= 1

2

∥∥f (Λ∂)ub

∥∥2
− 1

2
.

In the second case

∥∥Λ−1
∂ f (Λ∂)Drw

∥∥2 =
∫

R2n−1

0∫
−∞

(
1 + |ξ |2)−1(

f
((

1 + |ξ |2) 1
2
))2∣∣2(

1 + |ξ |2) 1
2
∣∣2

× exp
[(

2 + |ξ |2) 1
2 r

]|Fτ u|2(ξ,0) drdξ

=
∫

R2n−1

(
f

((
1 + |ξ |2) 1

2
))2(1 + |ξ |2)− 1

2

( 0∫
−∞

e2ρ dρ

)
|Fτ u|2(ξ,0) dξ

= 1

2

∥∥f (Λ∂)ub

∥∥2
− 1

2
.

This completes the proof of Proposition 1.9. �
(d) We complete the proof of (1.6) for uτ . We begin by noticing that the term

N∑
j=1

∥∥Λ−1
∂ f (Λ∂)Mju

τ
∥∥2

of (1.15) can be estimated by Q(uτ ,uτ ); thus what is left to prove is that

∥∥f (Λ∂)ub

∥∥2
− 1

2
� Q

(
uτ ,uτ

) + ∥∥uτ
∥∥2

.

The first part of the discussion holds for general u, not necessarily tangential. We recall the
microlocalization procedure of Catlin. Let {pk}k be a sequence of C∞ functions in R

+ such that

∑
k

p2
k = 1, supp(pk) ⊂ (

2k−1,2k+1), supp(p0) ⊂ (0,2),
∣∣p′

k

∣∣ � 2−k.

By the aid of the pk’s we introduce, following Catlin, the pseudodifferential operators

P τ
k u = F −1

τ

(
pk(Λξ )Fτ u

)
.

We can then show that

∥∥Λs
∂f (Λ∂)u

∥∥2
0 ∼

∑
22ksf

(
2k

)2∥∥P τ
k u

∥∥2
0.
k
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This is a standard result granted that

2ksf
(
2k

)
�

(
1 + |ξ |2) 1

2 f
(|ξ |) � 2(k+1)sf

(
2k+1) for |ξ | ∈ (

2k−1,2k+1
)
.

We apply this result for s = 1
2 . We follow now step by step the procedure of the proof of Theorem

2.2 of [2]. We use the elementary inequality

∣∣g(0)
∣∣2 � 2k

η

0∫
−2−k

∣∣g(r)
∣∣2

dr + 2−kη

0∫
−2−k

∣∣g′(r)
∣∣2

dr,

which holds for any g such that g(−2−k) = 0. If we apply it for g(r) = χk(r)Pku(·, r), where
χk ∈ C∞

c (−2−k,0] with 0 � χk � 1 and χk(0) = 1, we get

∥∥f (Λ∂)ub

∥∥2
− 1

2
∼

∞∑
k=0

f
(
2k

)22−k
∥∥χk(0)Pkub

∥∥2

� η−1
∞∑

k=0

f
(
2k

)2
0∫

−2−k

∥∥χkPku(., r)
∥∥2

dr

+ η

∞∑
k=0

f
(
2k

)22−2k

0∫
−2−k

∥∥Dr

(
χkPku(., r)

)∥∥2
dr.

We specify now u = uτ and denote by (I) and (II) the two sums in the second line of the above
estimate. Now,

(I) � η−1
∞∑

k=o

Q
(
Pku

τ ,Pku
τ
)

� η−1(Q(
uτ ,uτ

) + ∥∥uτ
∥∥2 + ∣∣∣∣∣∣Dru

τ
∣∣∣∣∣∣2

−1

)
, (1.16)

where the first inequality follows from (1.13) and the second from the estimates of the commu-
tators [∂̄, Pk] and [∂̄∗,Pk]. We also have the estimate

(II) � ηQ
(
uτ ,uτ

) + η
∥∥f (Λ∂)u

τ
∥∥2

. (1.17)

By combining (1.16) and (1.17) and by absorbing η‖f (Λ∂)u‖2 in the left-hand side of the esti-
mate we get

∥∥f (Λ∂)ub

∥∥2
− 1

2
� Q

(
uτ ,uτ

) + ∥∥uτ
∥∥2

.

The proof of Theorem 1.4 is complete. �
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2. A geometric criterion for (f -P -q) property

When the Levi form of the boundary is nondegenerate one has the strongest estimates for the
∂̄-Neumann problem, that is, 1

2 -subelliptic ones. When the Levi form decreases with a certain
rate in correspondence to a submanifold S ⊂ ∂D, with dimCR S � q − 1, then we can prove
(f -P -q) for f related to the inverse of the Levi vanishing rate. Let ∂D be q-pseudoconvex (resp.
q-pseudoconcave) in a neighborhood of zo and let S ⊂ ∂D, be a submanifold containing zo and
with the properties

{
(i) T CS ⊃ V qo |S

(
resp. T CS ⊂ V qo |S

)
,

(ii) dim
(
T C

z S
)
� q − 1

(
resp. dim

(
T C

z S
)
� q − 1

)
for any z close to zo.

(2.1)

We denote by dS the distance-function to S, consider a real function F = F(δ), δ ∈ R+ such
that F(δ)

δ2 ↗ +∞ as δ ↘ 0, denote by F ∗ the inverse to F and define f (t) := (F ∗(t−1))−1. With
these notations we have

Theorem 2.1. Let ∂D be q-pseudoconvex (resp. q-pseudoconcave) and let S ⊂ ∂D be a sub-
manifold satisfying (2.1). Suppose that

q∑
j=1

λ∂D
j −

qo∑
j=1

rjj � F(dS)

d2
S

. (2.2)

Then (f -P -q) property holds for q > qo (resp. q < qo) where f (t) := (F ∗(t−1))−1.

Proof. We first consider the case q-pseudoconvex. We take χ = χ(t) in C∞ with χ ≡ 1 for
0 � t � 1 and χ ≡ 0 for t � 2 and define our family of weights ϕ = ϕδ by

ϕδ = − log

(−r

δ
+ 1

)
+ cχ

(
d2
S

2f −2(δ−1)

)
log

(
d2
S

2f −2(δ−1)
+ 1

)
, (2.3)

where c is a small constant to be specified later. Note that the ϕ’s are absolutely bounded on
S̄δ ∩ V . We observe that

∂∂̄d2
S = 2∂dS ⊗ ∂̄dS + 2dS∂∂̄dS. (2.4)

When we compose with log we get

∂∂̄ log
(
d2
S + 2f −2) = 2∂dS ⊗ ∂̄dS + 2dS∂∂̄dS

(d2
S + 2f −2)

− 4
d2
S∂dS ⊗ ∂̄dS

(d2
S + 2f −2)2

= ∂dS ⊗ ∂̄dS(2d2
S + 4f −2 − 4d2

S) + 2dS∂∂̄dS(d2
S + 2f −2)

(d2 + 2f −2)2
. (2.5)
S
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Now, if d2
S < f −2, then (2.5) can be continued by

�
2∂dS ⊗ ∂̄dSf −2 + 2dS∂∂̄dS(d2

S + 2f −2)

(d2
S + 2f −2)2

�
2
3∂dS ⊗ ∂̄dS + 2dS∂∂̄dS

(d2
S + 2f −2)

�
2
3∂dS ⊗ ∂̄dS + 2dS∂∂̄dS

3f −2
. (2.6)

We denote by (dS)j and (dS)ij the components of ∂dS and ∂∂̄dS respectively in the basis of
forms {ωj }. We notice that by (2.4) implies for forms u of degree k � q ,

∑′

|K|=k−1

∣∣∣∣∑
j

(dS)jujK

∣∣∣∣
2

� |u|2. (2.7)

We also notice that

dS

∑′

|K|=k−1

∑
ij

(dS)ij uiKūjK � −ε|u|2. (2.8)

We introduce the notation (Bij ) := ∂∂̄(log(
d2
S

2f −2 + 1)). In conclusion, if d2
S < f −2, combination

of (2.5), (2.6), (2.7) and (2.8) yields

n∑
ij=1

BijuiKūjK −
qo∑

j=1

Bjj |uJ |2 � f −2|u|2. (2.9)

Because of (1.3) for ∂∂̄r and the similar property for (Aij ) := ∂∂̄(− log(−r
δ

+ 1)), we have that
(2.9) is true not only for (Bij ) but also for ∂∂̄ϕδ .

We suppose now d2
S � f −2; then

F(dS)

d2
S

� F(f −1(δ−1))

f −2(δ−1)
= δ

f −2
(
δ−1

) . (2.10)

It follows that

n∑
ij=1

AijuiKūjK −
qo∑

j=1

Ajj |uJ |2 � f 2(δ−1)|u|2. (2.11)

Now, because of the cut-off χ , the contribution of (Bij ) can get negative when d2
S � f −2 and

therefore χ̇ �= 0 or χ̈ �= 0. However, (Bij ) � −cf 2(δ−1) and hence (Aij ) controls this negative
term by a suitable choice of c; thus (2.11) implies the similar estimate for ∂∂̄ϕδ .

The family of weights {ϕδ} satisfies (1.5) on S̄δ ∩ V without the term
∑qo

j=1 |ϕj (z)|2 in the
right-hand side. As for this term, in the q-pseudoconvex case, it vanishes and so there is nothing
else to prove. Instead, in the q-pseudoconcave case, it is not 0; also, the definition of ϕ needs to
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be modified by multiplying the second term in the right of (2.3) by −1. The proof goes through
with a slight modification such as in [10] formulas (5.9)–(5.13). �
3. Domains which have subelliptic, superlogarithmic and compactness estimates

We introduce fairly general classes of domains D for which we are able to prove the hy-
potheses of Theorem 2.1; this implies (f -P -q) property according to Section 2 and then (f -q)
estimates by Section 1. First, we treat the case q-decoupled-pseudoconvex domains; these are
defined near zo = 0 by r < 0 for r in the form

r = 2Re zn − h(z1, . . . , zqo) +
n−1∑
j=q

hj (zj ) for q � qo + 1, (3.1)

where ∂∂̄h � 0 and the hj ’s are subharmonic, non-harmonic, functions vanishing at zj = 0.
Decoupled domains are treated, among others, by Mc Neal [17]. Similarly, we consider q-
pseudoconcave domains whose defining function r is of the type

r = 2Re zn + h(zqo+1, . . . , zn−1) −
q+1∑
j=1

hj (zj ) for q � qo − 1 (3.2)

with ∂∂̄h � 0 and the hj ’s subharmonic, non-harmonic and vanishing at zj = 0. It is obvious that
a domain D endowed with such a defining function r is q-pseudoconvex or q-pseudoconcave
in the two respective cases of (3.1) and (3.2). When the hj ’s have finite vanishing order
2mj , these domains are treated in [10]. This leads to subelliptic estimates, that is (1.6) for
f satisfying (i) for ε < 1

2 maxj mj
. We recall briefly the argument of the proof. We choose the

weights

ϕ := − log(−r + δ) +
∑
j

log
(|zj |2 + δ

1
mj

)
,

and normalize them by a factor c| log δ|−1. Thus they are absolutely bounded and their Levi form
ϕij satisfies (1.5) for f ( 1

δ
)2 = δ−2ε for any ε < 1

2 maxj mj
. Thus the conclusion is a consequence

of Theorem 1.1.
We introduce two new cases. Before, we notice that it is not restrictive to assume

∣∣log
(
∂2
zj z̄j

hj

)∣∣ ↗ +∞ as |zj | ↘ 0. (3.3)

Otherwise, we would have ∂2
z̄j z̄j

hj (zo) �= 0 for some j and therefore − log(−r + δ) would have

a Levi form that, applied to ujK would be � δ−1|ujK |2. But this is the 1
2 -subelliptic estimate

which is the best we can expect in a neighborhood of the boundary. Thus we assume (3.3) in
what follows.
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Proposition 3.1. Let D be a q-pseudoconvex (resp. q-pseudoconcave) domain defined by (3.1)
(resp. (3.2)) and suppose that

|zj |α
∣∣log

(
∂2
zj z̄j

hj (zj )
)∣∣ ↘ 0 as |zj | ↘ 0. (3.4)

(a) If 0 < α � 1 then we have (1.6) with f satisfying (ii), that is, superlogarithmic estimates for
the ∂̄-Neumann problem over forms of degree k � q (resp. k � q).

(b) If α > 1 then we have (1.6) with f satisfying (iii), that is, compactness of the ∂̄-Neumann
problem for forms of degree k � q (resp. k � q).

Before the proof, an example is in order.

Example 3.2. For the case (a), we can choose hj = e
− 1

|zj |α for α < 1 or else hj = e
− 1

|zj || log |zj || .

For (b) we take hj = e
− 1

|zj |α for α � 1. Now, there is no doubt that the two above choices of hj

fulfill (3.3) for α satisfying (a) and (b) respectively. We then consider the domains defined by

2Re zn − h +
∑
j

hj < 0,

or

2Re zn + h −
∑
j

hj < 0,

A few words are maybe needed to show that the above domains are q-pseudoconvex and q-

pseudoconcave respectively. In fact, if we write the exponentials as e
− 1

g it suffices to prove that
these are subharmonic. Here g = |zj || log |zj || or g = |zj |α ; thus g is subharmonic for zj �= 0.

But then e
− 1

g itself is subharmonic, including at zj = 0 because of the identity

∂∂̄
(
e
− 1

g
) = e

− 1
g

(
∂∂̄g

g2
− 2

|∂g|2
g3

+ |∂g|2
g4

)
.

Thus, the above domains have superlogarithmic or compactness estimates according to
the cases (a) and (b) (and in degree k � q and k � q in the case q-pseudoconvex and q-
pseudoconcave respectively).

Proof of Proposition 3.1. We define 2a−1
j (|zj |) = |zj |α| log(∂2

zj z̄j
(hj (zj ))|zj |2)|; we note that

we have a−1
j ↘ 0 as |zj | ↘ 0. Referring to the terminology of Theorem 2.1, we denote by Sj the

origin in the zj -plane; thus dSj
= |zj |. We have

∂2
zj z̄j

hj = e
− 2

|zj |αaj (zj )

2
= Fj (|zj |)

2
,
|zj | |zj |
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for Fj = e
− 1

δαaj (δ) . Setting f −1
j (δ) = c(| log δ|aj (| log δ|− 1

α ))− 1
α and choosing a cut-off χ with

χ ≡ 1 for 0 � t � 1 and χ ≡ 0 for t � 2, we define

ϕδ = − log

(−r

δ
+ 1

)
+

n−1∑
j=q

χ

( |zj |2
2f −2

j (δ)

)
log

( |zj |2
2f −2

j (δ)
+ 1

)
. (3.5)

We also set f := minj fj . When D is q-pseudoconvex, the family of weights ϕ satisfies (1.5) for
the above defined f on S̄δ ∩ V without the term

∑qo

j=1 |ϕj (z)|2 in the right-hand side. However,
this term vanishes and so there is nothing else to prove. The variant for the q-pseudoconcave case
follows the lines of the similar variant in Theorem 2.1 (in particular by inserting a crucial factor
−1 in the second log of (3.5)). �
4. The tangential system

We consider a hypersurface M ⊂ C
n and denote by D± the two sides of M . We suppose

all through this section that D+ is pseudoconvex. We parametrize M over R
2n−1 with variable

a by a diffeomorphism Φ , so that ∂a2n−1 corresponds to the totally real vector field tangential
to M that we also denote by T . We denote by ∂̄b = Φ−1∗ ∂̄ the induced complex, by ∂̄∗

b the
adjoint to ∂̄b , set �b := ∂̄∗

b ∂̄b + ∂̄b∂̄
∗
b and put Qb(ub,ub) = ‖∂̄bub‖2 + ‖∂̄∗

b ub‖2 for any form
ub on M . We denote by ξ the coordinates dual to the a’s. We consider a conic partition of the
unity 1 ≡ ψ+ + ψ− + ψ0 on R

2n−1 for |ξ | � 1 such that ψ+ ≡ 1 for ξa2n−1 > ε|ξ |, ψ− ≡ 1
for ξa2n−1 < −ε|ξ | and ψ0 ≡ 1 in a conic neighborhood of the plane ξa2n−1 = 0. We introduce
briefly the conclusions of the microlocalization method by Kohn. Let ub

+ = ψ+(Λ∂)ub where
ψ+(Λ∂) is the pseudodifferential operator with symbol ψ+(Λξ ) and similarly define u−

b and
u0

b . This yields a microlocal decomposition ub = u+
b + u−

b + u0
b . We then say that ub is C∞ in

direction +da2n−1 (resp. −da2n−1) when u+
b (resp. u−

b ) is C∞. For u ∈ Dom∂̄∗(D±), we set
QD±(u,u) := ‖∂̄u‖2

D± + ‖∂̄∗u‖2
D± . The operation of restriction of forms of Dom∂̄∗ from D± to

M and that of (harmonic) extension from M to D± yields

Theorem 4.1. (See Kohn [16].) We have for forms of degree k with 1 � k � n − 2,

∥∥f (Λ∂)u
∥∥2

D± � QD±(u,u) + ‖u‖2
D± for any u ∈ Dom∂̄∗

(
D±)

,

if and only if

∥∥f (Λ∂)ζu±
b

∥∥2
b
� Qb

(
u±

b , u±
b

) + ∥∥u±
b

∥∥2
D± for any u±

b ,

where ζ denotes a cut-off function.

The result of Kohn is stated only for f (Λ∂) = Λε
τ ; but the extension to general f is straightfor-

ward. We observe now that ‖T u0
b‖2

b �
∑n−1

j=1(‖∂ωj
u0

b‖2
b + ‖∂ω̄j

u0
b‖2

b) because the characteristic

variety of T is transversal to supp(ψ0). We also have

n−1∑∥∥∂ωj
u0

b

∥∥2
b
�

n−1∑∥∥∂ω̄j
u0

b

∥∥2
b
+ ε

∥∥T u0
b

∥∥2
b
+ Cε

∥∥u0
b

∥∥2
b
,

j=1 j=1



2774 T.V. Khanh, G. Zampieri / Journal of Functional Analysis 259 (2010) 2760–2775
which is readily proved by integration by parts. It follows

∥∥u0
b

∥∥2
H 1(M)

�
n−1∑
j=1

∥∥∂ω̄j
u0

b

∥∥2
b
+ ∥∥u0

b

∥∥2
b

� Qb

(
u0

b, u
0
b

) + ∥∥u0
b

∥∥2
b
. (4.1)

By combining (4.1) with Theorem 4.1 we get

Corollary 4.2. We have for forms of degree k with 1 � k � n − 2,

∥∥f (Λ∂)u
∥∥2

D
� QD(u,u) + ‖u‖2

D for both D = D+ and D = D− (4.2)

if and only if

∥∥f (Λ∂)ub

∥∥2
b
� Qb(ub,ub) + ‖ub‖2. (4.3)

Corollary 4.2 provides a tool for transferring estimates from D+ and D− to ∂D and con-
versely; in this way, when f (t) � k log t for any k, for a suitable ck and for any t � ck , then the
related hypoellipticity, is also transferred. In particular, let M be graphed as xn = g where

g =
n−1∑
j=1

e
− 1

|zj |α or g =
n−1∑
j=1

e
− 1

|xj |α ; (4.4)

note that D+ is pseudoconvex (and D− is (n − 1)-pseudoconcave). If α < 1 or, for α = 1, if we
replace |zj | by aj (zj )|zj | for aj ↗ +∞ when zj ↘ 0, then we have superlogarithmic estimates
in D±; in particular � is hypoelliptic. Using Corollary 4.2 we have, for forms in degree k with
1 � k � n − 2,

Proposition 4.3.

(i) If α < 1, then �b has superlogarithmic estimates; in particular, it is hypoelliptic.
(ii) Is α = 1 and we replace |zj | by aj (zj )|zj | (or |xj | by aj (xj )|xj |) for aj ↗ +∞, then the

same conclusion as in (i) holds.

If ∂̄b has closed range over functions (resp. ∂̄∗
b has closed range over (n−1)-forms), Kohn has

a result also in the critical degree k = 0 (resp. k = n − 1) [16], Theorem 1.6. There are superlog-
arithmic estimates which imply that ∂̄b (resp. ∂̄∗

b ) is hypoelliptic on the orthogonal complement
of Ker ∂̄b over functions (resp. Ker ∂̄∗

b over (n − 1)-forms).
We still keep the structure (4.4) for the equation of the domain but restrict to dimension n = 2.

We also point our attention to the action of ∂̄b over functions and disregard ∂̄∗
b over (n−1)-forms.

Now, when α � 1 the domain defined by the first occurrence of (4.4), in which g depends on |z1|,
stays hypoelliptic. Instead, in the “tube domain”, in which g depends on the only |x1|, is not. The
first follows from Kohn [15] combined with the argument of Kohn [14] Theorem 2.6, whereas
the second is proved by Christ in [3]. Here is the geometric explanation. In the first case, the
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set of the points where the system of complex tangential vector fields fails to have finite type
is confined to the real curve {0} × Ry2 transversal to T CM . Instead, for the tube, the points of
non-finite type are the two-dimensional plane R

2
y .

References

[1] D. Catlin, Global regularity of the ∂̄-Neumann problem, in: Complex Analysis of Several Variables, Madison, Wis.,
1982, in: Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984.

[2] D. Catlin, Subelliptic estimates for the ∂̄-Neumann problem on pseudoconvex domains, Ann. of Math. 126 (1987)
131–191.

[3] M. Christ, Hypoellipticity of the Kohn Laplacian for three-dimensional tubular Cauchy–Riemann structures, J. Inst.
Math. Jussieu 1 (2002) 279–291.

[4] J. D’Angelo, Real hypersurfaces, order of contact, and applications, Ann. of Math. 115 (1982) 615–637.
[5] G.B. Folland, J.J. Kohn, The Neumann Problem for the Cauchy–Riemann Complex, Ann. of Math. Stud., vol. 75,

Princeton Univ. Press, Princeton, NJ, 1972.
[6] P.S. Harrington, A quantitative analysis of Oka’s lemma, Math. Z. 256 (1) (2007) 113–138.
[7] L.H. Ho, Subellipticity of the ∂̄-Neumman problem for n − 1 forms, Trans. Amer. Math. Soc. 325 (1991) 171–185.
[8] L. Hormander, L2 estimates and existence theorems for the ∂̄ operator, Acta Math. 113 (1965) 89–152.
[9] L. Hörmander, An Intoduction to Complex Analysis in Several Complex Variables, Van Nostrand, Princeton, NJ,

1973.
[10] T.V. Khanh, G. Zampieri, Subellipticity of the ∂̄-Neumann problem on a weakly q-pseudoconvex/concave domain,

arXiv:0804.3112v1, 2008.
[11] T.V. Khanh, G. Zampieri, Compactness of the ∂̄-Neumann operator on a q-pseudoconvex domain, Complex Var.

Elliptic Equ. (2009).
[12] T.V. Khanh, G. Zampieri, Pseudodifferential gain of regularity for solutions of the tangential ∂̄-system, 2009.
[13] J.J. Kohn, Subellipticity of the ∂̄-Neumann problem on pseudoconvex domains: sufficient conditions, Acta

Math. 142 (1979) 79–122.
[14] J.J. Kohn, Estimates for ∂b on pseudoconvex CR manifolds, in: Proc. Sympos. Pure Math., vol. 43, 1985, pp. 207–

217.
[15] J.J. Kohn, Hypoellipticity at points of infinite type, in: Contemp. Math., vol. 251, 2000, pp. 393–398.
[16] J.J. Kohn, Superlogarithmic estimates on pseudoconvex domains and CR manifolds, Ann. of Math. 156 (2002)

213–248.
[17] J.D. Mc Neal, Estimates of the Bergman kernels of convex domains, Adv. Math. 109 (1994) 108–139.
[18] A. Raich, Compactness of the complex Green operator on CR-manifolds of hypersurface type, arXiv:0810.2553v2,

2008.
[19] E. Straube, A sufficient condition for global regularity of the ∂̄-Neumann operator, Adv. Math. 217 (2008) 1072–

1095.
[20] G. Zampieri, q-Pseudoconvexity and regularity at the boundary for solutions of the ∂̄-problem, Compos.

Math. 121 (2) (2000) 155–162.
[21] G. Zampieri, Complex Analysis and CR Geometry, Univ. Lecture Ser., vol. 43, Amer. Math. Soc., 2008.


	Regularity of the ̄-Neumann problem at point of inﬁnite type
	Introduction
	A geometric criterion for (f-P-q) property
	Domains which have subelliptic, superlogarithmic and compactness estimates
	The tangential system
	References


