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Abstract. For a pseudoconvex domain D ⊂ Cn, we prove the
equivalence of the local hypoellipticity of the system (∂̄, ∂̄∗) with
the system (∂̄b, ∂̄

∗

b
) induced at the boundary. This develops a for-

mer result of our’s in which the theory of the “harmonic” extension
by Kohn was used. This technique is inadequate for the purpose
of the present paper and must be replaced by that of the “holo-
morphic” extension.

1

Let D be a pseudoconvex domain of Cn defined by r < 0 with C∞

boundary bD. We use the standard notations � = ∂̄∂̄∗ + ∂̄∗∂̄ for the
complex Laplacian and Q(u, u) = ||∂̄u||2 + ||∂̄∗u||2 for the energy form
and some variants as, for an operator Op, QOp(u, u) = ||Op∂̄u||2 +
||Op∂̄∗u||2. Here u is a (0, k) form belonging to D∂̄∗ . We similarly define
the tangential version of these objects, that is, �b, ∂̄b, ∂̄

∗
b , Q

b
Op. We

take local coordinates (x, r) in Cn with x ∈ R2n−1 being the tangential
coordinates and r, the equation of bD, serving as the last coordinate.
We define the tangential s-Sobolev norm by |||u|||s := ||Λsu||0 where
Λs is the standard tangential pseudodifferential operator with symbol
Λs

ξ = (1 + |ξ|2)
s
2 . We note that

(1.1)





||∂̄u||2s + ||∂̄∗u||2s =
∑
j≤s

QΛs−j∂
j
r
(u, u),

|||∂̄u|||2s + |||∂̄∗u|||2s = QΛs(u, u),

||∂̄bub||
2
s + ||∂̄∗

bub||
2
s = Qb

Λs(ub, ub).

We decompose u in tangential and normal component, that is

u = uτ + uν,

and further decompose in microlocal components (cf. [11])

uτ = uτ+ + uτ− + uτ0.
1
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We similarly decompose ub = u+
b + u−b + u0

b . We use the notation L̄n

for the “normal” (0, 1)-vector field and L̄1, ..., L̄n−1 for the tangential
ones. We have therefore the description for the totally real tangential,
resp. normal, vector field T , resp ∂r:{

T = i(Ln − L̄n),

∂r = Ln + L̄n.

From this, we get back L̄n = 1
2
(∂r + iT ). We denote by σ the symbol of

a (pseudo)differential operator and by ũ the partial tangential Fourier
transform of u. We define a “holomorphic” extension (cf. [8]) uτ+(H) of
uτ +|bD by

(1.2) uτ+(H) = (2π)−2n+1

∫

R2n−1

eixξerσ(Ṫ )ψ+(ξ)ũ(ξ, 0)dξ,

where Ṫ := T (x, 0). Note that σ(T ) >
∼

(1 + |ξ|2)
1

2 for ξ in suppψ+ and

(x, r) in a local patch; thus in the integral, the exponential is dominated

by e−|r|(1+|ξ|2)
1
2 for r < 0. Differently from the harmonic extension by

Kohn, the present one is well defined only in positive microlocalization.
We can think of uτ+(H) in two different ways: either as a modification
of uτ+ or as an extension of u+

b . The property which motivates the
terminology of “holomorphic extension” is

(1.3) ||L̄nu
τ+(H)|| ≤ ||uτ +

b ||b
− 1

2

.

This follows from the relation L̄n = 1
2
(∂r + iT ) and T − Ṫ = rTan; thus

||L̄nv|| = ||rTanv|| ≤ ||vb||− 1

2

. We have a first relation ([11] p. 241),

between a trace vb and a general extension v: for any ε and suitable cε

(1.4) ||vb||s <
∼
cε|||v|||s+ 1

2

+ ε|||∂rv|||s− 1

2

.

This can been seen in [11] p. 241 and [8] as for the small/large constant
argument. As a specific property of our extension we have the reciprocal
relation to (1.4), that is

(1.5) ||rkuτ+(H)||s <
∼
||u+

b ||s−k− 1

2

.

This is readily checked ( [8] (1.12)).
Combination of (1.3) and (1.4) shows that L̄n acts on uτ+(H)

as an operator of order 0. On the other hand, on the straight-

ening of bΩ in which r = xn, we have that J∂r, i.e. T , coincides

with ∂yn and therefore L̄n is the Cauchy-Riemann operator

∂z̄n. A reference to the related literature is in order. The ex-

tension of generalized functions to half-spaces or wedges of
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Cn using the decomposition of the δ-function in plane waves

as in (1.2), was introduced by Sato, Kashiwara and Kawai in

[15] as a general method of microlocal decomposition of the

singularities. In particular, in the study of the singularities

of the Szegö and Bergman kernels, it has been used among

others by Boutet de Monvel and Sjöstarnd in [1] and by Hsiao

in [4].
We denote by ∂̄τ the extension of ∂̄b from bΩ to Ω which stays tan-

gential to the level surfaces r ≡ const. It acts on tangential forms
uτ and its action is ∂̄τuτ = (∂̄uτ)τ . We denote by ∂̄τ ∗ its adjoint; thus
∂̄τ ∗uτ = ∂̄∗(uτ ). We use the notations �

τ and Qτ for the corresponding
Laplacian and energy form. We notice that

(1.6) Q(uτ+(H), uτ+(H)) = Qτ(uτ+(H), uτ+(H)) + ||L̄nu
τ+(H)||20.

We have to describe how (1.4) and (1.5) are affected by ∂̄ and ∂̄∗.

Proposition 1.1. We have for any extension v of vb

(1.7) Qb(vb, vb) <
∼
Qτ

Λ
1
2
(v, v) +Qτ

∂rΛ
−

1
2
(v, v),

and, specifically for uτ+(H)

(1.8) Qτ(uτ+(H), uτ+(H)) <
∼
Qb

Λ−
1
2
(u+

b , u
+
b ) + ||u+

b ||
2
− 1

2

.

Proof. We have

∂̄τv|bD = ∂̄bvb, ∂̄τ∗v|bD = ∂̄∗
bvb.

Then, (1.7) follows from (1.4).
We pass to prove (1.8). We have ∂̄τ = ∂̄b + rTan, ∂̄τ∗ = ∂̄∗

b + rTan
which yields

(1.9)

{
∂̄τuτ+(H) = (∂̄bub)

τ+(H) + rTan uτ+(H),

∂̄τ∗uτ+(H) = (∂̄∗
bub)

τ+(H) + rTan uτ+(H).

Application of (1.5) yields

||∂̄τuτ+(H)||2 + ||∂̄τ∗uτ+(H)||2 = ||(∂̄bub)
τ+(H)||2 + ||(∂̄∗

bub)
τ+(H)||2 + ||rTan uτ+(H)||2

<
∼
||∂̄bu

+
b ||

2
− 1

2

+ ||∂̄∗
bu

+
b ||

2
− 1

2

+ ||u+
b ||

2
− 1

2

.

�

We decompose uτ+ = uτ+(H)+uτ+(0) which also serves as a definition
of uτ+(0). Let ζ and ζ ′ be a couple of cut-off with ζ ≺ ζ ′ in the sense
that ζ ′|supp ζ ≡ 1.
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Proposition 1.2. Each of the forms u# = uν, uτ −, uτ 0, uτ+(0), u−b , u
0
b

enjoys elliptic estimates, that is

(1.10) ||ζu#||s <
∼
||ζ ′∂̄u#||s−1 + ||ζ ′∂̄∗u#||s−1 + ||u#||0 s ≥ 2.

Proof. Estimate (1.10) follows, by iteration, from

(1.11) ||ζu#||s <
∼
||ζ∂̄u#||s−1 + ||ζ∂̄∗u#||s−1 + ||ζ ′u#||s−1.

As for uν and uτ+(0) this latter follows from uν|bD ≡ 0 and uτ+(0)|bD ≡ 0.
For the terms with − and 0, this follows from the fact that |σ(T )| <

∼

|σ(∂̄)| in the region of 0-micolocalization and from σ[∂̄, ∂̄∗] ≤ 0 and
σ(T ) < 0 in the negative microlocalization. We refer to formula (1) in
the Main Theorem of [3] as a general reference but also give an outline
of the proof. We start from

(1.12) |||ζu#|||21 <
∼
Q(ζu#, ζu#) + ||ζ ′u#||20;

this is the basic estimate for uν and uτ+(0) (which vanish at bD) whereas
it is [11] Lemma 8.6 for uτ −, uτ 0 and u−b , u0

b . Applying (1.12) to
ζΛs−1ζu# one gets the estimate of tangential norms for any s, that
is, (1.11) with the usual norm replaced by the “triplet” norm. Finally,
by non-characteristicity of (∂̄, ∂̄∗) one passes from tangential to full
norms along the guidelines of [16] Theorem 1.9.7. The version of this
argument for � can be found in [11] second part of p. 245.

�

Let s and l be a pair of indices.

Theorem 1.3. Consider the estimates

||ζub||s <
∼
||ζ ′∂̄bub||s+l + ||ζ ′∂̄∗

bub||s+l + ||ub||0 for any ub ∈ C∞(bΩ),

(1.13)

||ζu||s <
∼
||ζ ′∂̄u||s+l + ||ζ ′∂̄∗u||s+l + ||u||0 for any u ∈ D∂̄∗ ∩ C∞(Ω̄),

(1.14)

||ζu||s ≤ ε(||ζ∂̄u||s + ||ζ∂̄∗u||s) + cε||u|| for any ε, for suitable cε

and for any u ∈ D∂̄∗ ∩ C∞(Ω̄).

(1.15)

Then (1.13) implies (1.14) and (1.15) implies (1.13) for l = 0.

Remark 1.4. (i) The above estimates (1.13) and (1.14) for any s, ζ, ζ ′

and for suitable l, characterize the local hypoellipticity of the system
(∂̄b, ∂̄

∗
b ) and (∂̄, ∂̄∗) respectively (cf. [12]). When l > 0, one says that
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the system has a “loss” of l derivatives; when l < 0, one says that it
has a “gain” of −l derivatives.
(ii) The point in (1.15), differently from (1.13) and (1.14) is that we
have the same cut-off ζ in both sides and also that there is a factor ε
of compactness. Though (1.15) is stronger than (1.14), there are wide
classes of domains Ω for which it holds including all domains of infra-
exponential type, for which a superlogarithmic estimates holds (see

[7]). In fact, let Rs be the pseudodifferential operator defined by R̃su =

Λ
sσ(x)
ξ ũ ( cf. Kohn [11] p. 234). On the one hand have Rs ∼ Λs modulo

operators of order −∞ over u such that σ|suppu ≡ 1. On the other, we
have that [Rs, ζ ′] has order −∞ if ζ ′|suppσ ≡ 1 and hence the supports

of σ and ζ̇ ′ are disjoint. Finally, we have |ζ ′′[∂̄, Rs]ζ ′| <
∼

log ΛRsζ ′ in

the sense of operators, when σ ≺ ζ ′ ≺ ζ ′′. Using Rs as a substitute
of Λs, we can prove (1.15) whenever a superlogarithmic estimate holds
(cf. [11] Section 7).

Proof. First, it is clearly not restrictive that u and ub have compact
support. Because of Proposition 1.2, it suffices to prove (1.13) for u+

b

and (1.14) for uτ +. It is also obviuos that we can consider cut-off func-
tions ζ and ζ ′ in the only tangential coordinates, not in r. We start
by proving that (1.13) implies (1.14). We recall the decomposition
uτ+ = uτ+(H) + uτ+(0) and begin by estimating uτ+(H). We have

|||ζuτ+(H)|||2s <
∼

(1.5)

||ζu+
b ||

2
s− 1

2

<
∼

(1.13)

Qb

Λs+l− 1
2 ζ′

(u+
b , u

+
b ) + ||u+

b ||
2
− 1

2

<
∼

(1.7)

Qτ
Λs+lζ′(u

τ+, uτ+) +Qτ
∂rΛs+l−1ζ′(u

τ+, uτ+) + ||uτ+||20.

(1.16)

It remains to estimate uτ+(0); since uτ+(0)|bD ≡ 0, then by 1-elliptic
estimates

|||ζuτ+(0)|||s <
∼

(1.11)

QΛs−1ζ(u
τ+(0), uτ+(0)) + |||ζ ′uτ+(0)|||2s−1

<
∼
QΛs−1ζ(u

τ+, uτ+) +Qτ
Λs−1ζ(u

τ+(H), uτ+(H)) + |||rζuτ+(H)|||2s + |||ζ ′uτ+(0)|||2s−1

<
∼
QΛs−1ζ(u

τ+, uτ+) + |||ζuτ+(H)|||2s + |||ζ ′uτ+(H)|||2s−1 + |||ζ ′uτ+(0)|||2s−1,

(1.17)
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where we have used that Q = Qτ +O(r)Λ over uτ+(H), that is (1.6) in
addition to the second of (1.8), in the second inequality together with
the estimate Qτ

Λs−1 <
∼

Λs in the third. We estimate terms in the last

line. First, the term |||ζuτ+(H)|||2s is estimated by means of (1.16). Next,
the terms in (s−1)-norm can be brought to 0-norm by combined induc-
tive use of (1.16) and (1.17) and eventually their sum is controlled by
||uτ+||20. We put together (1.16) and (1.17) (with the above further re-
ductions), recall the first of (1.1) in order to estimateQτΛsζ ′+Qτ

∂rΛs−1ζ′

in the right of (1.16) and end up with

(1.18) |||ζuτ+|||s <
∼
||ζ ′∂̄uτ+||s + ||ζ ′∂̄∗uτ+||s + ||uτ+||0.

Finally, by non-characteristicity of (∂̄, ∂̄∗) one passes from tangential
to full norms in the left side of (1.18) along the guidelines of [16] The-
orem 1.9.7. The version of this argument for � can be found in [11]
second part of p. 245. Thus we get (1.14).

We prove that (1.15) implies (1.13) for l = 0. Thanks to ∂r = L̄n +
Tan and to the second of (1.8), we have ∂ru

τ+(H) = Tan uτ+(H) and
L̄nu

τ+(H) = rTanuτ+(H). It follows

||ζu+
b ||

2
s <

∼
(1.4)

|||ζuτ+(H)|||2
s+ 1

2

+ |||∂rζu
τ+(H)|||2

s− 1

2

<
∼
|||ζuτ+(H)|||2

s+ 1

2

+ ||L̄nζu
τ+(H)||2

s− 1

2

<
∼

(1.15)

ε
(
Qτ

Λs+1
2 ζ

(uτ+(H), uτ+(H)) + |||ζL̄nu
τ+(H)|||2

s+ 1

2

)

+ cε

(
|||ζ ′uτ+(H)|||2

s− 1

2

+ |||uτ+(H)|||20

)

<
∼

(1.8)

ε(Qb
Λsζ(u

+
b , u

+
b ) + ||ζu+

b ||
2
s) + (Qb

Λs−1ζ′(u
+
b , u

+
b ) + ||ζ ′u+

b ||
2
s−1) + ||uτ +||b b

− 1

2

<
∼
Qb

Λsζ′(u
+
b , u

+
b ) + ε||ζu+

b ||
2
s + ||ζ ′u+

b ||
2
s−1 + ||uτ +

b ||− 1

2
,

(1.19)

where in the second line from the bottom we have calculated [ζ,#(H)]
which yields |||ζuτ+(H)|||s+ 1

2

≤ ||ζu+
b ||s + ||ζ ′u+

b ||s−1 (and similarly as

for [ζ, Q(H)]. We absorb the term with ε and get (1.13).
�

Since on a pseudoconvex domain the H0-ranges of � and

�b are closed by basic estimate and by [9] respectively, then

there are well defined the H0-inverses denoted by N and G

and named the Neumann and Green operator respectively.
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Remark 1.5. (1.13) and (1.14) imply local regularity in degree ≥ 2 of
G and N respectively. We first prove for N . We start from remarking
that

(1.20)

{
∂̄∗Nq is regular over Ker∂̄ q ≥ 2,

∂̄Nq is regular over Ker∂̄∗ q ≥ 0.

As for the first, we put u = ∂̄∗Nf for f ∈ Ker ∂̄. We have (∂̄u =
f, ∂̄∗u = 0) and hence by (1.14) ||ζu||s <

∼
||ζ ′f ||s+l + ||u||0. To prove the

second, we have just to put u = ∂̄Nf for f ∈ Ker ∂̄∗ and reason likewise.
It follows from (1.20), that the Bergman projection Bq is regular in any
degree q ≥ 0. (Notice that even if one started from exact regularity by
assuming (1.15), this is perhaps lost by taking the additional ∂̄ in B :=
Id − ∂̄∗N∂̄.) Finally, we exploit formula (5.36) in [14] in unweighted
norms, that is, for t = 0:

Nq = Bq(Nq∂̄)(Id− Bq−1)(∂̄
∗Nq)Bq

+ (Id− Bq)(∂̄
∗Nq+1)Bq+1(Nq+1∂̄)(Id− Bq).

(1.21)

Now, in the right side, the ∂̄N ’s and ∂̄∗N ’s are evaluated over Ker∂̄∗

and Ker ∂̄ respectively; thus they are regular for q ≥ 2. The B’s are
also regular and therefore such is N . This concludes the proof of the
regularity of N . The proof of the regularity of G is similar, apart from
replacing (1.21) by its version for the Green operator G stated in Sec-
tion 5 of [6].

�
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