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Abstract We show the geometric and analytic consequences of a general es-
timate in the ∂̄-Neumann problem: a “gain” in the estimate yields a bound
in the “type” of the boundary, that is, in its order of contact with an ana-
lytic curve as well as in the rate of the Bergman metric. We also discuss the
potential-theoretical consequence: a gain implies a lower bound for the Levi
form of a bounded weight.

1 Introduction

In a smooth pseudoconvex domain � ⊂ C
n whose boundary b� has finite

type M (in the sense that the order of contact of any complex analytic vari-
ety is at most M , cf. [4, 5]) the ∂̄-Neumann problem shows an ε-subelliptic
estimate for some ε (Folland–Kohn [7] for M = 2, Kohn [12] for general M

and real analytic boundary, Catlin [3] for smooth boundary) and conversely,
an ε-estimate implies M ≤ 1

ε
(Catlin [1]). Thus, index of estimate and or-

der of contact are related as inverse one to another. Contact of infinite order
has also been studied: α-exponential contact implies an 1

α
-logarithmic esti-

mate (cf. e.g. [11]). What is proved here serves to explain the inverse: an 1
α

-
logarithmic estimate, for α < 1, implies exponential contact ≤ α (apart from
an error α2). More generally, the gain in the estimate, which is quantified by

a function f (t), t → ∞, such as tε or (log t)
1
α , is here related to the “type”

of b� described by a function F(δ) (for δ = t), such as δM or exp(− 1
δα ): the

general result is that F is estimated from below by the inverse to f . In similar
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way, the rate of the Bergman metric B� at b� as well as the rate of the Levi
form of a bounded weight are estimated. The latter is related to the celebrated
“P -property” by Catlin [2].

We fix our formalism. � is a bounded pseudoconvex domain of C
n with

smooth boundary b� defined, in a neighborhood of a point zo = 0, by r = 0
with ∂r �= 0 and with r < 0 inside �. We introduce the notion of “type” of
b� along a q-dimensional complex analytic variety Z ⊂ C

n as a quantitative
description of the contact.

Definition 1.1 For a smooth increasing function F vanishing at 0, we say
that the type of b� along Z is ≤ F when

|r(z)| � F(|z − zo|), z ∈ Z, z → zo. (1.1)

Here and in what follows, � or � denote inequality up to a positive con-
stant. We choose local real coordinates (a, r) ∈ R

2n−1 × R � C
n at zo and

denote by ξ the dual variables to the a’s. We denote by �ξ := (1 + |ξ |2) 1
2 the

standard elliptic symbol of order 1 and by f (�ξ ) a general pseudodifferential
symbol obtained by the aid of a smooth increasing function f . We associate to
this symbol a pseudodifferential action defined by f (�)u = F −1(f (�ξ )F u)

for u ∈ C∞
c , where F is the Fourier transform in R

2n−1. In our discussion,
f (�) ranges in the interval log(�) 	 f (�) ≤ �ε (any ε ≤ 1

2 ) where the sym-

bol “	” means that f
log → ∞ at ∞ in a monotonic way. Moreover, we notice

that (
f

log)∗(t) ≥ t since f (t) ≤ t
1
2 , where the superscript ∗ denotes the inverse

function. By means of �ε we can also define the tangential Sobolev ε-norm
as �u�ε := ‖�εu‖. We set ωn = ∂r and complete to an orthonormal basis
of (1,0)-forms ω1, . . . ,ωn; we denote by L1, . . . ,Ln the dual basis of vector
fields. A q-form u is a combination of differentials ω̄J := ω̄j1 ∧· · ·∧ ω̄jq over
ordered indices J = j1 < j2 < · · · < jq with smooth coefficients uJ , that is,
an expression

∑′
|J |=q uJ ω̄J . We decompose a form as u = uτ + uν where

uτ is obtained by collecting all coefficients uJ such that n /∈ J and uν is the
complementary part; we have that u ∈ D∂̄∗ , the domain of ∂̄∗, if and only if
uν |b� ≡ 0.

Definition 1.2 An f -estimate in degree q is said to hold for the ∂̄-Neumann
problem in a neighborhood U of zo when

‖f (�)u‖ � ‖∂̄u‖ + ‖∂̄∗u‖ + ‖u‖ for any u ∈ C∞
c (�̄ ∩ U)q ∩ D∂̄∗ , (1.2)

where the superscript q denotes forms of degree q . Since uν |b� ≡ 0, then uν

enjoys an elliptic estimate (for f (�) = �) on account of Garding Theorem;
thus (1.2) for uτ implies (1.2) for the full u. We will use the notation Q(u,u)

for the sum of the three terms in the right side of (1.2).
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It has been proved by Catlin [1] that an ε-subelliptic estimate of index
q implies that b� has finite type M ≤ 1

ε
along any q-dimensional complex

variety Z, that is, (1.2) holds for F = |z − zo|M when z ∈ Z. Notice that
F = δM is inverse to the reciprocal of f = tε , t = δ−1. In full generality
of f , with the only restraint f � log, we define

G(δ) :=
((

f

log

)∗)−1

(δ−1). (1.3)

Up to a logarithmic loss, we get the generalization of Catlin’s result, that is,
we prove that F � G.

Another goal of this work consists in describing the effect of an f -estimate
on the growth at the boundary of the Bergman metric. The Bergman kernel
K� : � × � → C provides the integral representation of the orthogonal pro-
jection P : L2(�) → hol(�) ∩ L2(�),f �→ P(f ) := ∫

�
f (ζ )K(z, ζ ) dVζ

where dVζ is the element of volume in the ζ -space. On a bounded smooth
pseudoconvex domain, the projection P is related to the ∂̄-Neumann opera-
tor N , the inverse of � = ∂̄ ∂̄∗ + ∂̄∗∂̄ , by Kohn’s formula P = Id − ∂̄∗N∂̄ .

The Bergman metric is defined by B� =
√

∂∂̄(log K�(z, z)). It has been
proved by McNeal in [16] that an ε-subelliptic estimate for q = 1 im-
plies B�(z,X) � δε−η(z)|X|, X ∈ T 1,0

C
n|�, for any fixed η > 0 where

δ(z) denotes the distance of z to b�. We extend this conclusion to a general
f -estimate and get a bound from below with δε−η(z) replaced by
G(δ−1+η(z)). This behavior has relevant potential theoretical consequences.
Historically, the equivalence of a subelliptic estimate with a finite type has
been achieved by triangulating through a quantitative version of Catlin’s “P -
Property”. This consists in the existence of a family of uniformly bounded
weights {ϕδ} on the δ-strips Sδ := {z ∈ � : δ(z) < δ}, whose Levi-form have
a lower bound δ−ε for some ε. We extend this notion for general f .

Definition 1.3 We say that � satisfies Property (f -P) over a neighborhood
U of zo, if there exists a family of weights ϕ = ϕδ which are absolutely
bounded in Sδ ∩ U and satisfy

i∂∂̄ϕδ � f 2(δ−1) Id for any z ∈ Sδ ∩ U. (1.4)

As it has already been recalled from [1], f -estimate (f = tε) implies
F -type (F = δM ). In turn, this implies (f̃ -P)-Property (f̃ = t ε̃ for ε̃ (much)
smaller than 1

M
[3]), and this yields f̃ -estimate [3] (cf. also [8–10]). So the

cycle is closed but in going around, ε has decreased to ε̃. In this process, the
critical point is the rough relation between the type M and the exponent ε̃ and
this cannot be improved significantly: one must expect that ε̃ is much smaller
than 1

M
. The reason is that the type only describes the order of contact of a
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complex variety Z tangent to b�, whereas what really matters is how big is
the diameter of a Zδ that can be inserted inside � at δ-distance from b�. This
can be bigger than δM as in the celebrated example by D’Angelo of the do-
main defined by r = Re z3 + |z2

1 − zl
2z2|2 + |z2

2|2 + |zm
3 z1|2 (cf. [1], p. 149).

However, an estimate has effect over the families Zδ ⊂ � and not only over
Z tangential to b�. So the achievement of a direct proof of the implication
from estimate to generalized P -property, which was envisaged by Straube,
not only offers a shortcut in Catlin’s theory, but also gains a good accuracy
about indices. For a general f � log and for any η we define f̃ = f̃η by

f̃ (t) = f

log
3
2 +η

(t1−η); (1.5)

then we prove the direct implication from f -estimate to (f̃ -P)-Property. In
particular, from an ε-subelliptic estimate, the ε̃ we get is any index slightly
smaller than ε. We collect the discussion in a single statement which is the
main result of this paper.

Theorem 1.4 Let � ⊂ C
n be a bounded pseudoconvex domain with smooth

boundary in which the ∂̄-Neumann problem has an f -estimate in degree q

at zo ∈ b� for f � log. Let G, resp. f̃ = f̃η for any η > 0, be the function
associated to f by (1.3), resp. (1.5), and let δ(z) denote the distance from z

to b�. Then

(i) If b� has type ≤ F along a q-dimensional complex analytic variety Z,
then F � G,

(ii) If q = 1, the Bergman metric satisfies B�(z) � f
log(δ−1+η(z)) Id, z ∈ U ,

for any η and for suitable U = Uη,
(iii) If q = 1, Property (f̃ -P) holds for any η and for suitable U = Uη.

We say a few words about the technique of the proof. The main tool is an
accurate localization estimate. By localization estimate, we mean an estimate
which involves a fundamental system of cut-off functions χ0, χ1, χ2 in a
neighborhood of zo with χ0 ≺ χ1 ≺ χ2 (in the sense that χj+1|suppχj

≡ 1) of
the kind

‖χ0u‖s � ‖χ1�u‖s + cs‖χ2u‖0 for any u ∈ (C∞)q ∩ D�. (1.6)

If (1.6) holds for a fundamental system of cut-off functions as above, then �
is “exactly” Hs -hypoelliptic or, with equivalent terminology, its inverse N is
exactly Hs -regular in degree q . If this holds for any s, then � and N are C∞-
hypoelliptic and regular respectively. To control commutators with the cut-off
functions, Kohn introduced in [13] a pseudodifferential modification Rs of �s
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(cf. Sect. 2 below) which is equivalent to �s over χ0u but has the advantage
that χ̇1R

s is of order 0. This yields quite easily (1.6) for some cs . However,
the precise description of cs is a hard challenge; it is in the achievement of
this task that consists this paper. Now, if the system of cut-off χj , j = 0,1,2
shrinks to 0 depending on a parameter t → ∞ as χt

j (z) := χj (tz), then we
are able to show that

cs =
((

f

log

)∗
(t)

)2s+1

. (1.7)

In particular, when χ1�u = 0, (1.6), with the constant cs specified by (1.7),
yields a constraint to the geometry of b� which produces all the above listed
three consequences about type, lower bound for B� and P -property.

2 Localization estimate with parameter

Let � be a bounded smooth pseudoconvex domain of C
n, zo a boundary

point, χ0 ≺ χ1 ≺ χ2 a triplet of cut-off functions at zo and
χt

0 ≺ χt
1 ≺ χt

2 a fundamental system of cut-off functions defined by
χt

j (z) = χj (tz), j = 0,1,2 for t → ∞. The content of this section is the
following

Theorem 2.1 Assume that an f -estimate holds in degree q at zo with
f � log. Then, for any positive integer s, we have

‖χt
0u‖2

s � t2s‖χt
1�u‖2

s +
((

f

log

)∗
(t)

)2(s+1)

‖χt
2u‖2, (2.1)

for any u ∈ (C∞)q ∩ Dom(�), where “∗” denotes the inverse.

Remark 2.2 In [1], Catlin proves the same statement for the particular choice
f = tε ending up with f itself, instead of f

log . In fact, starting from subelliptic
estimates, (2.1) is obtained by induction over j such that jε ≥ s. For us, who
use Kohn method of [13], a logarithmic loss seems to be unavoidable.

Remark 2.3 A byproduct of Theorem 2.1 is the local Hs regularity of the
Neumann operator N = �−1. For this, the accuracy in the description of the
constant in the last norm in (2.1) is needless and the conclusion is obtained
from (2.1) by the method of the elliptic regularization. This method, which
was first introduced for subelliptic estimates in [15], indeed also works for
superlogarithmic estimates according to [13].
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Proof of Theorem 2.1 Apart from the quantitative description of the constant
in the error term of (2.1), the proof follows [13] Sect. 7. Let U be the neigh-
borhood of zo where the f -estimate holds; the whole discussion takes place
on U . For each integer s ≥ 0, we interpolate two families of cut-off functions
{ζm}sm=0 and {σm}sm=1 with support in U and such that ζj ≺ σj ≺ ζj−1. It is
assumed that ζ0 = χ1 and ζs = χ0. We define two new sequences {ζ t

m} and
{σ t

m} shrinking to zo by ζ t
m(z) = ζm(tz) and σ t

m(z) = σm(tz).
We also need a pseudodifferential partition of the unity. Let λ1(|ξ |) and

λ2(|ξ |) be real valued C∞ functions such that λ1 + λ2 ≡ 1 and

λ1(|ξ |) =
{

1 if |ξ | ≤ 1

0 if |ξ | ≥ 2.

Recall that �m is the tangential pseudodifferential operator of order m.
Denote by �m

t the pseudodifferential operator with symbol λ2(t
−1|ξ |)(1 +

|ξ |2)m
2 and by Et the operator with symbol λ1(t

−1|ξ |). Note that

‖�mζ t
mu‖2 � ‖�m

t ζ t
mu‖2 + t2m‖ζ t

mu‖2. (2.2)

In this estimate, it is understood that t ≤ (
f

log)∗(t). From now on, to simplify

notations, we write g instead of f
log .

Following Kohn [13], we define for m = 1,2, . . . , the pseudodifferential
operator Rm

t by

Rm
t ϕ(a, r)

= (2π)−2(n−1)

∫

R2n−1
eia·ξλ2(t

−1|ξ |)(1 + |ξ |2)mσt
m(a,r)

2 F (ϕ)(ξ, r) dξ

for ϕ ∈ C∞
c (U ∩ �̄). Since ζ t

m ≺ σ t
m, the symbol of (�m

t − Rm
t )ζ t

m is of order
zero and therefore

‖�m
t ζ t

mu‖2 � ‖Rm
t ζ t

mu‖2 + ‖ζ t
mu‖2

� ‖ζ t
mRm

t ζ t
m−1u‖2 + ‖[Rm

t , ζ t
m]ζ t

m−1u‖2 + ‖ζ t
mu‖2

� ‖f (�)ζ t
m−1R

m
t ζ t

m−1u‖2 + ‖[Rm
t , ζ t

m]ζ t
m−1u‖2 + ‖ζ t

mu‖2,

(2.3)

(since ζ t
m ≺ ζ t

m−1 and f ≥ 1). By Proposition 2.4 below, the commutator term
in the last line of (2.3) is dominated by

∑m
j=1 t2j � ζ t

m−ju�2
m−j . From (2.2)
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and (2.3), we get the estimate for the tangential norm

�ζ t
mu�2

m � ‖f (�)ζ t
m−1R

m
t ζ t

m−1u‖2 +
m∑

j=1

t2j �ζ t
m−ju�2

m−j . (2.4)

As for the normal derivative Dr , we have

�Dr�
−1ζ t

mu�2
m � ‖Dr�

−1f (�)ζ t
m−1R

m
t ζ t

m−1u‖2

+
m∑

j=1

t2j �Dr�
−1ζ t

m−ju�2
m−j . (2.5)

We define the operator Am
t := ζ t

m−1R
m
t ζ t

m−1 and remark that Am
t is self-

adjoint; also, we have Am
t u ∈ (C∞

c )q ∩ Dom(∂̄∗) if u ∈ (C∞)q ∩ Dom(∂̄∗).
In particular, the f -estimate can be applied to Am

t u; this can further strength-
ened to

‖f (�)Am
t u‖2 + ‖Dr�

−1f (�)Am
t u‖2 � Q(Am

t u,Am
t u). (2.6)

In fact, without the term Dr , this is precisely the f -estimate. As for the term
involving Dr , we write Dr = L̄n + T for a tangential operator T and remark
that, for ũ = Am

t u, we have

‖Dr�
1f (�)ũ‖2 � ‖L̄nũ‖2 + ‖T �−1f (�)ũ‖2

� ‖L̄nũ‖2 + ‖f (�)ũ‖2 ≤ Q(ũ, ũ).

Next, we estimate Q(Am
t u,Am

t u). We have

‖∂̄Am
t u‖2 = (Am

t ∂̄u, ∂̄Am
t u) + ([∂̄,Am

t ]u, ∂̄Am
t u)

= (
(Am

t ∂̄∗∂̄u,Am
t u) − ([∂̄,Am

t ]∗u, ∂̄∗Am
t u)

− f (�)−1[[Am
t , ∂̄∗], ∂̄]u,f (�)Am

t u)
)

+ ([∂̄,Am
t ]u, ∂̄Am

t u). (2.7)

Similarly,

‖∂̄∗Am
t u‖2 = (

(Am
t ∂̄∂̄∗u,Am

t u) − ([∂̄∗,Am
t ]∗u, ∂̄Am

t u)

− (f (�)−1[[Am
t , ∂̄], ∂̄∗]u,f (�)Am

t u)
)

+ ([∂̄∗,Am
t ]u, ∂̄∗Am

t u) (2.8)

Taking summation of (2.7) and (2.8), we obtain

Q(Am
t u,Am

t u) � (Am
t �u,Am

t u) + error
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� Cε �ζ t
m−1�u�2

m +ε‖Am
t u‖2 + error, (2.9)

where

error = ‖[∂̄,Am
t ]u‖2 + ‖[∂̄∗,Am

t ]u‖2 + ‖[∂̄,Am
t ]∗u‖ + ‖[∂̄∗,Am

t ]∗u‖
+ ‖f (�)−1[Am

t , ∂̄]∗, ∂̄∗]u‖2 + ‖f (�)−1[Am
t , ∂̄∗]∗, ∂̄]u‖2. (2.10)

The error term should also contain εQ where ε comes from the small/large
argument, but this can be absorbed in the left of (2.9). Using Proposition 2.4
below, the error is dominated by

εQ(Am
t u,Am

t u) + Cε(g
∗(t))2(m+1)‖χt

2u‖2 +
m∑

j=1

t2j‖ζ t
m−ju‖2

m−j . (2.11)

Therefore

Q(Am
t u,Am

t u) � Cε �ζ t
m−1�u�2

m +
m∑

j=1

t2j‖ζ t
m−ju‖2

m−j

+ Cε(g
∗(t))2(m+1)‖χt

2u‖2 + ε‖Am
t u‖2. (2.12)

Combining (2.4), (2.5), (2.6) and (2.12), and absorbing ε‖Am
t u‖2 in the

left side of (2.6), we obtain

�ζ t
mu�2

m + �Dr�
−1ζ t

mu�2
m

� �ζ t
m−1�u�2

m +
m∑

j=1

t2j‖ζ t
m−ju‖2

m−j + (g∗(t))2(m+1)‖χt
2u‖2. (2.13)

Since the operator � is elliptic, and therefore non-characteristic with re-
spect to the boundary, we have for m ≥ 2

‖ζ t
mu‖2

m � ‖�ζ t
mu‖2

m−2 + �ζ t
mu�2

m + �Drζ
t
mu�2

m−1 . (2.14)

Replace the first term in the right of (2.14) by ‖ζ t
m�u‖2

m−2 + ‖[�, ζ t
m]u‖2

m−2
and observe that the commutator is estimated by t2‖ζ t

m−1u‖2
m−1 +

t4‖ζ t
m−1u‖2

m−2. Application of (2.13) to the last two terms of (2.14), yields

‖ζ t
mu‖2

m � ‖ζ t
m−1�u‖2

m +
m∑

j=1

t2j‖ζ t
m−ju‖2

m−j

+ (g∗(t))2(m+1)‖χt
2u‖2, m = 1, . . . , s. (2.15)
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Iterated use of (2.15) to estimate the terms of type ζ t
m−ju by those of type

ζ t
m−1�u in the right side yields

‖ζ t
s u‖2

s �
s∑

m=0

t2m‖ζ t
s−m�u‖2

s−m + (g∗(t))2(s+1)‖χt
2u‖2

� t2s‖ζ t
0�u‖2

s + (g∗(t))2(s+1)‖χt
2u‖2. (2.16)

Choose χt
0 = ζ t

s and χt
1 = ζ t

0; we then conclude

‖χt
0u‖2

s � t2s‖χt
1�u‖2

s + (g∗(t))2(s+1)‖χt
2u‖2, (2.17)

for any u ∈ (C∞)q ∩ D�. �

The proof of the theorem is complete but we have skipped a crucial tech-
nical point that we face now.

Proposition 2.4 We have

(i) ‖[Rm
t , ζ t

m]ζ t
m−1u‖2 �

∑m
j=1 t2j �ζ t

m−ju�2
m−j

(ii) Assume that an f -estimate holds with f � log, then for any ε and for
suitable Cε , the error term in (2.9) is dominated by (2.11).

Proof (i) It is well known that the principal symbol σP ([A,B]) of the com-
mutator of two operators A and B is the Poisson bracket {σP (A),σP (B)}.
For the full symbol, and with tangential variables a and dual variables ξ , we
have the formula

σ([A,B]) =
∑

|κ|>0

Dκ
ξ σ(A)Dκ

aσ (B) − Dκ
ξ σ(B)Dκ

aσ (A)

κ! . (2.18)

We apply this formula to [Rm
t , ζ t

m] and obtain

σ([Rm
t , ζ t

m]) =
∑

|κ|>0

1

κ!D
κ
ξ

(
λ2(t

−1|ξ |)(1 + |ξ |2)mσt
m(a,r)

2
)
Dκ

a ζ t
m(a, r)

=
m∑

j=1

αj (a, r, t, |ξ |)tj (1 + |ξ |2)m−j
2 ,

where the αj ’s are functions uniformly bounded with respect to t and |ξ |.
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(ii) First, we show

‖[∂̄,Am
t ]u‖ ≤ εQ(Am

t u,Am
t u) + Cε(g

∗(t))2(m+1)‖χt
2u‖2

+
m∑

j=1

t2j‖ζ t
m−ju‖2

m−j . (2.19)

By Jacobi identity,

[∂̄,Am
t ] = [∂̄, ζ t

m−1R
m
t ζ t

m−1]
= [∂̄, ζ t

m−1]Rm
t ζ t

m−1 + ζ t
m−1[∂̄,Rm

t ]ζ t
m−1

+ ζ t
m−1R

m
t [∂̄, ζ t

m−1]. (2.20)

Since the support of the derivative of ζ t
m−1 is disjoint from the support of σ t

m,
the first and third terms in the second line of (2.20) are bounded by |ζ̇ t

m| ∼ t

in L2. The middle term in (2.20) is treated as follows. Let b be a function
which belongs to the Schwartz space S and D be Daj

or Dr ; we have

[bD,Rm
t ] = [b,Rm

t ]D + b[D,Rm
t ]. (2.21)

As for the second term of (2.21), we note that [D,Rm
t ] = mD(σ t

m) log(�)Rm
t ;

in particular, [D,Rm
t ] is bounded by t log(�)Rm

t . For the same reason, when
D = Daj

, the first term is bounded by t log(�)Rm
t and, when D = Dr and

thus D = L̄n + T , by t log(�)Rm
t + t log(�)�−1L̄nR

m
t . It follows

‖[∂̄,Am
t ]u‖2 � t‖log(�)Am

t u‖2 + ε‖L̄nA
m
t u‖2 + Cε‖χt

2u‖2

+
m∑

j=1

t2j‖ζ t
m−ju‖2

m−j . (2.22)

To estimate the first term in (2.22), we check that

t log�ξ ≤ εf (�ξ ) in the set {ξ : λ1(g
∗−1(ε−1t)�ξ ) �= 1}

and hence

t log�ξ � εf (�ξ ) + tλ1(g
∗−1(ε−1t)�ξ ) log�ξ . (2.23)

It follows

t2‖log�Am
t u‖2 ≤ ε2‖f (�)Am

t u‖2 + t2(g∗(ε−1t))2m log2(g∗(ε−1t))‖χt
2u‖2

≤ ε2‖f (�)Am
t u‖2 + Cε(g

∗(t))2(m+1)‖χt
2u‖2. (2.24)
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Since we are supposing that an f -estimate holds, we get the proof of the
inequality (2.19). By a similar argument, we can estimate all subsequent error
terms in (2.10) and obtain the conclusion of the proof of Theorem 2.1. �

3 From estimate to type—proof of Theorem 1.4(i)

Proof of Theorem 1.4(i) We follow the guidelines of [1] and begin by recall-
ing two results therein. The first is stated in [1] Theorem 2 for domains of
finite type, that is for F = δM , but it holds in full generality of F .

(a) Let � be a domain in C
n with smooth boundary and assume that there

is a function F and a q-dimensional complex-analytic variety Z passing
through zo such that (1.1) is satisfied for z ∈ Z. Then, in any neighbor-
hood U of zo, there is a family {Zδ} of q-dimensional complex manifolds
Zδ ⊂ � of diameter comparable to δ such that

sup
z∈Zδ

|r(z)| � F(δ).

The proof is just a technicality for passing from variety to manifold. The
second result, consists in exhibiting, as a consequence of pseudoconvexity,
holomorphic functions bounded in L2 norm which blow up approaching the
boundary.

(b) Let � ⊂ C
n be a bounded pseudoconvex domain in a neighborhood of

zo ∈ b�. For any point z ∈ � near zo there is G ∈ hol (�) ∩ L2(�) such
that
(1) ‖G‖2

0 � 1

(2) |∂m
zn

G(z)| � δ−(m+ 1
2 )(z) for all m ≥ 0.

(We always denote by δ(z) the distance of z to b� and assume that ∂
∂zn

is a
normal derivative.) By (a), for any δ there is a point γδ ∈ Zδ , which satisfies
δ(γδ) � F(δ) and by (b) there is a function Gδ ∈ hol(�) ∩ L2(�) such that

‖Gδ‖ ≤ 1

and
∣
∣
∣
∣
∂mGδ

∂zm
n

(γδ)

∣
∣
∣
∣ � F−(m+ 1

2 )(δ(γδ)).

We parametrize Zδ over C
q × {0} by

z′ �→ (z′, hδ(z
′)) for z′ = (z1, . . . , zq).
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We observe that it is not restrictive to assume that γδ is the “center” of Zδ , that
is, the image of z′ = 0 (by the properties of uniformity of the parametrization
with respect to δ). Let ϕ be a cut-off function on R

+ such that ϕ = 1 on [0,1)

and ϕ = 0 on [2,+∞). We use our standard relation t = δ−1 and define, for
some c to be chosen later

ψt(z
′) = ϕ

(
8t |z′|

c

)

.

Choose the datum αt as

αt = ψt(z
′)Gt(z) dz̄1 ∧ · · · ∧ dz̄q .

Clearly the form αt is ∂̄-closed and its coefficient belongs to L2. Let Pt be
the q-polydisc with center z′ = 0 and radius ct−1, let wt be the q-form

wt = ϕ

(
8t |z′|

3c

)

dz̄1 ∧ · · · ∧ dz̄q,

and define

Km
t :=

∫

Pt

〈
∂m

∂zm
n

αt (z
′, ht (z

′)),wt

〉

dV . (3.1)

Using the mean value property for ∂m

∂zm
n
Gt(z

′, ht (z
′)) over the spheres |z′| = s

and integrating over s with 0 ≤ s ≤ t , we get, by Property (2) of G

Km
t � t−2qF (t−1)−(m+ 1

2 ). (3.2)

Let vt be the canonical solution of ∂̄vt = αt , that is, vt = ∂̄∗ut for ut = Nαt

where N = �−1. If ϑ is the adjoint of ∂̄ , then integration by parts yields

Km
t =

∫

Pt

〈

∂̄
∂m

∂zm
n

vt (ht ),wt

〉

dV =
∫

Pt

〈
∂m

∂zm
n

vt (ht ), ϑwt

〉

dV .

We define a set St = {z′ ∈ C
k : 3c

8t
≤ |z′| � 6c

8t
}. Since ϑwt is supported in St

and |ϑwt | � t , then (for δ = t−1)

Km
t � t−2q+1 sup

Zδ

∣
∣
∣
∣
∂m

∂zm
n

vt (ht )

∣
∣
∣
∣ � t−2q+1 sup

Zδ

∣
∣
∣
∣
∂m

∂zm
n

∂̄∗ut

∣
∣
∣
∣

� t−2q+1 sup
Zδ

∣
∣
∣ Dβ

|β|=m+1
ut

∣
∣
∣. (3.3)
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Recall the notation g := f
log ; before completing the proof of Theorem 1.4(i),

we need to state an upper bound for Km
t , which follows from

sup
Zδ

∣
∣
∣ Dβ

|β|=m+1
ut

∣
∣
∣ � g∗(t)m+n+3. (3.4)

To prove (3.4), we start by noticing that, since the set St has diameter 0(t−1)

and the function ht satisfies |dht (z
′)| ≤ C for z′ ∈ Pt , then the set Zδ =

(id × ht )(St ) (for δ = t−1) has diameter of size 0(δ). Moreover, by construc-
tion, there exists a constant d such that

inf{|z1 − z2| : z1 ∈ suppαt , z2 ∈ Zδ} > 2dt−1.

Therefore, we may choose χ0 and χ1 such that if we set χt
k(z) = χk(

tz
d
) for

k = 0,1, we have the properties

(1) χt
0 = 1 on Zδ

(2) αt = 0 on suppχt
1.

Hence

sup
Zδ

∣
∣
∣ Dβ

|β|=m+1
ut

∣
∣
∣ � sup

�∩Zδ

∣
∣
∣ Dβ

|β|=m+1
χt

0ut

∣
∣
∣ � ‖χt

0ut‖m+n+1, (3.5)

where the last inequality follows from Sobolev Lemma since χt
0ut is smooth

by Remark 2.3. We use now Theorem 2.1 and observe that χt
1�ut = 0 (by

Property (2) of χt
1). It follows

‖χt
0ut‖2

m+n+1 � g∗(t)2(m+n+2)‖ut‖2

� g∗(t)2(m+n+2),

where for the last inequality we have to observe that, � being bounded and
pseudoconvex, then ‖ut‖2 � ‖�ut‖2 = ‖αt‖2 � 1. This completes the proof
of (3.4). We return to the proof of Theorem 1.4(i). Combining (3.2) with (3.3)
and (3.4), we get the estimate

t2kF (t)−(m+ 1
2 ) ≤ Ct2k−1g∗(t)m+n+2.

Taking m-th root and going to the limit for m → ∞, yields

F(t)−1 ≤ g∗(t).

This concludes the proof of Theorem 1.4(i). �
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4 From estimate to lower bound for the Bergman metric B�—proof of
Theorem 1.4(ii)

The Bergman kernel K� has been introduced in Sect. 1: as already re-
called, it provides the integral representation of the orthogonal projection
P : L2(�) → hol(�) ∩ L2(�). From K� one obtains the Bergman metric

B� :=
√

∂∂̄ log(K�(z, z)). Let

bij (z) = ∂2

∂zi∂z̄j

logK(z, z); (4.1)

then the action of B� over a (1,0) vector field X = ∑
j aj ∂zj

is expressed by

B�(z,X) =
(

n∑

ij=1

bij ai āj

) 1
2

. (4.2)

This differential metric is primarily interesting because of its invariance under
a biholomorphic transformation on �.

One can obtain the value of the Bergman kernel on the diagonal of � × �

and the length of a tangent (1,0)-vector X in the Bergman metric by solving
the following extremal problems:

K�(z, z) = inf{‖ϕ‖2 : ϕ ∈ hol(�),ϕ(z) = 1}−1

= sup{|ϕ(z)|2 : ϕ ∈ hol(�),‖ϕ‖ ≤ 1} (4.3)

and

B�(z,X) = inf{‖ϕ‖ : ϕ ∈ hol(�),ϕ(z) = 0, Xϕ(z) = 1}−1

√
K�(z, z)

= sup{|Xϕ(z)| : ϕ ∈ hol(�),ϕ(z) = 0,‖ϕ‖ ≤ 1}√
K�(z, z)

. (4.4)

The purpose of this section is to study the boundary behavior of B�(z,X)

for z near a point zo ∈ b�, when a f -estimate for the ∂̄-Neumann problem
holds. We prove Theorem 1.4(ii) for a general f -estimate; this extends [16]
which deals with subelliptic estimates. For the proof of Theorem 1.4(ii), we
start from a result by [16] about locally comparable properties of the Bergman
kernel and the Bergman metric, that is,

(a) Let �1,�2 be bounded pseudoconvex domains in C
n such that a portion

of b�1 and b�2 coincide. Then
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K�1(z, z)
∼= K�2(z, z);

B�1(z,X) ∼= B�2(z,X), X ∈ T 1,0
z C

n,

for z near the coincidental portion of the two boundaries (cf. [16] or [6]).

We need to modify � to a pseudoconvex domain �̃ ⊂ � which shares a piece
of its boundary with b� near zo over which there is exact, global regularity
of the ∂̄-Neumann operator. For this, we recall another result from [16]:

(b) Let � be a smooth, bounded, pseudoconvex domain in C
n and let

zo ∈ b�. Then, there exist a neighborhood U of zo and a smooth,
bounded, pseudoconvex domain �̃ satisfying the following properties:

• �̃ ⊂ � ∩ U ,
• b�̃ ∩ b� contains a neighborhood of zo in b�,
• all points in b�̃ \ b� are points of strong pseudoconvexity,
• the relative boundary S of b�̃ ∩ b� and b�̃ \ b� is the intersection of

b� with a sphere centered at zo.

Next, we have the result below which is crucial in our application (cf. also
[17] Prop. 4.4).

Proposition 4.1 If � has compactness estimates for the ∂̄-Neumann problem
in a neighborhood of zo, then, for suitable U , the domain �̃ of (b) above has
compactness estimates on the whole boundary. In particular, its Neumann
operator N is globally, exactly, regular.

Proof We show, in fact, a stronger statement. If �̃ is a general domain and
S a piece of its boundary obtained as the intersection of b�̃ with a strongly
pseudoconvex boundary (defined by h = 0 for ∂h �= 0), and if at any point of
b�̃ \ S there are (local) compactness estimates, then there are compactness
estimates on the whole b�̃. Note that our specific �̃ meets these requirements.
To prove our claim, we first deal with the points in a neighborhood of S. We
use the notation Sε = {z ∈ b�̃ : |h| < ε} and define ϕε = h

ε
. We have, over Sε ,

{
|ϕε | < 1,

∂∂̄ϕε � 1
ε
.

(4.5)

Let ζε be a cut-off such that ζε ≡ 1 on Sε
2

and suppζε ⊂ Sε ; we can also

assume that |ζ̇ε | � 1
ε

and ζ̈ε � 1
ε2 . We recall the basic estimate with weight ϕ

∑

ij

∑′

|K|=k−1

∫

�̃

e−ϕϕijuiKūjK dV � ‖∂̄u‖2
ϕ + ‖∂̄∗u‖2

ϕ, (4.6)
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where ‖·‖ϕ is the L2 norm weighted by e−ϕ and ∂̄∗
ϕ is the adjoint of ∂̄ in

this norm. We use an auxiliary function χ : R
+ → R

+, χ = χ(t), increasing,
convex, and such that, for t < 1, we have

⎧
⎪⎨

⎪⎩

χ̈ ≥ 2χ̇2,

χ̇e−χ > C1,

e−χ < C2,

(4.7)

for suitable C1, C2 > 0. For instance, a good choice is χ = 1
2et−1. We apply

(4.6) for ϕ = χ ◦ ϕε and with u replaced by ζεu. Because of (4.7) combined
with the first of (4.5), we can remove ϕ both from the norms and the adjunc-
tion. On the other hand, the second of (4.5) yields a lower bound for the left
side of (4.6). Altogether, we have got

1

ε
‖ζεu‖2 � Q(ζεu, ζεu), for any u. (4.8)

Combining (4.8) with compactness estimates on supp(1 − ζε) ⊂ b�̃ \ S, we
get

‖u‖2 � ‖ζεu‖2 + ‖(1 − ζε)u‖2

� ε
(
Q(ζεu, ζεu) + Q((1 − ζε)u, (1 − ζε)u)

) + cε‖u‖2−1

� ε
(
Q(u,u) + ‖ζ̇εu‖2) + cε‖u‖2−1. (4.9)

Using compactness estimates on supp ζ̇ε ⊂ b�̃ \ S, we get

‖ζ̇εu‖2 ≤ ε4Q(ζ̇εu, ζ̇εu) + cε‖u‖2−1

� ε4
(

1

ε2
Q(u,u) + ‖ζ̈εu‖2

)

+ cε‖u‖2−1

� ε2Q(u,u) + ‖u‖2 + cε‖u‖2−1. (4.10)

Combining (4.9) and (4.10) and absorbing ‖u‖2 in the last line, we get the
conclusion of the proof. �

Our domain � satisfies the assumptions of Proposition 4.1; in fact, super-
logarithmic estimates imply compactness estimates. It follows that the modi-
fied domain �̃ also has compactness estimates and, in particular, its Neumann
operator N = N�̃ is regular; from now on, we change our notation and write
� instead of �̃.
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Let ψ be a cut-off function such that

ψ(z) =
{

0 if z ∈ B1(zo),

1 if z ∈ C
n \ B2(zo),

where Bc(zo) is the ball in C
n with center zo and radius c; we also set

ψt = ψ(tz).

Proposition 4.2 Let an f -estimate in degree q hold at zo and N be exactly
globally regular on �. Then if α ∈ C∞

c (B 1
8t

(zo) ∩ �̄)q , for any nonnegative

integer s1, s2, we have

‖ψtNα‖2
s1

� g∗(t)2(s1+s2+4)‖α‖2−s2
. (4.11)

Proof We choose a triplet of cut-off functions χt
0, χ

t
1 and χt

2 in Theorem 2.1,
such that χt

0 ≡ 1 on a neighborhood of the support of the derivative of ψt and
supp χt

2 ⊂ B3t−1(zo) \ B 1
2 t−1(zo); hence χt

1α = 0. We notice that for t suffi-

ciently small, suppχt
j � U for j = 0,1,2, so that we can apply Theorem 2.1

to this triplet of cut-off functions. Using the global regularity estimate and
Theorem 2.1 for an arbitrary q-form u ∈ (C∞)q ∩Dom(�), and for t ≤ g∗(t),
we have

‖ψtu‖2
s1

� ‖�ψtu‖2
s1

� ‖ψt�u‖2
s1

+ ‖[�,ψt ]u‖2
s1

� ‖ψt�u‖2
s1

+ t2‖χt
0u‖2

s1+1 + t4‖χt
0u‖2

s1

� ‖ψt�u‖2
s1

+ t2(s1+2)‖χt
1�u‖2

s1+1 + g∗(t)2(s1+3)‖χt
2u‖2.

(4.12)

Recall that we are supposing that the ∂̄-Neumann operator is globally reg-
ular. If α ∈ C∞(�̄)q , then Nα ∈ C∞(�̄)q ∩ Dom(�). Substituting u = Nα

in (4.12) for α ∈ C∞
c (B 1

8t
(zo) ∩ �̄)q , we obtain

‖ψtNα‖2
s1

� g∗(t)2(s1+3)‖χt
2Nα‖2. (4.13)

However,

‖χt
2Nα‖ = sup{|(χt

2Nα,β)| : ‖β‖ ≤ 1},
and the self-adjointness of N and the Cauchy–Schwarz inequality yield
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|(χt
2Nα,β)| = |(α,Nχt

2β)|
= |(α, χ̃ t

0Nχt
2β)|

� ‖α‖−s2‖χ̃ t
0Nχt

2β‖s2, (4.14)

where χ̃ t
0 is a cut-off function such that χ̃ t

0 ≡ 1 on supp α. Let χ̃ t
0 ≺ χ̃ t

1 ≺ χ̃ t
2

with supp χ̃ t
1 � B 1

4t
(zo); in particular, supp χ̃ t

1 ∩ suppχt
2 = ∅. Using again

Theorem 2.1 for the triplet of cut-off functions χ̃ t
0, χ̃

t
1 and χt

2, we obtain

‖χ̃ t
0Nχt

2β‖2
s2

� t2s2‖χ̃ t
1χ

t
2β‖2

s2
+ g∗(t)2(s2+1)‖χ̃ t

2Nχt
2β‖2

� g∗(t)2(s2+1)‖χ̃ t
2Nχt

2β‖2

� g∗(t)2(s2+1)‖β‖2. (4.15)

Taking supremum over ‖β‖ ≤ 1, we get (4.11). �

Proof of Theorem 1.4(ii) We follow the guidelines of [16] and also [14]. Let
(ζ, z) be local complex coordinates in a neighborhood of (zo, zo) in which
X(zo) = ∂ζ1 with the normalization ∂ζnr|zo = 1. If z ∈ U and z �∈ b�, we
define

hz(ζ ) = K�(ζ, z)√
K�(z, z)

so that ‖hz‖ = 1 and |hz(z)|√
K�(z,z)

= 1. We also define

γz(ζ ) = R(z)(ζ1 − z1)hz(ζ ) for R(z) = g(δ−1+η(z)).

It is obvious that γz ∈ hol(�) and γz(z) = 0. We claim that ‖γz‖ ≤ 1; once
this is proved, then (4.4) assures that

B�(z,X) ≥ |Xγz(z)|√
K�(z, z)

= |R(z)hz(z)|√
K�(z, z)

= |R(z)| = g(δ−1+η(z)), (4.16)

and the proof of Theorem 1.4(ii) is complete. We prove the claim. In all what
follows, z is fixed in U ; we set t = g(δ−1+η(z)) and, for ψt as in Proposi-
tion 4.2, put ψt

z(ζ ) = ψt(ζ − z). We decompose

γz(ζ ) = ψt
z(ζ )γz(ζ ) + (1 − ψt

z(ζ ))γz(ζ ). (4.17)

The second term satisfies

‖(1 − ψt
z)γz‖ � |R(z)|t−1 = 1. (4.18)
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As for the first term, multiplying and dividing by Ḡm := ∂m

∂z̄m
n
Ḡ where G is

the function introduced in the beginning of Sect. 3, we get

ψt
z(ζ )γz(ζ ) = R(z)(ζ1 − z1)

1

Ḡm(z)

1√
K�(z, z)

(ψt
z(ζ )K�(ζ, z)Ḡm(z)).

(4.19)
We denote by cz the term, constant in ζ , before parentheses; since K�(z, z) ≥
|G(z)|2 � δ−1(z), then |cz| � g(δ−1+η(z))δm+1(z). On the other hand, if ϕt

z

is a cut-off with support in B 1
10t

(0) with unit mass, then

K�(ζ, z)Ḡm(z) =
∫

K(ζ,w)Ḡm(w)ϕt
z(w)dVw

= P(Ḡm(ζ )ϕt
z(ζ ))

= Ḡm(ζ )ϕt
z(ζ ) − ∂̄∗N∂̄(Ḡm(ζ )ϕt

z(ζ )), (4.20)

where the first equality follows from the mean value theorem for antiholo-
morphic functions, the second from the definition of P and the third from the
relation of P with N . Notice that the supports of ψt

z and ϕt
z are disjoint, and

that supp ∂̄(Ḡmϕt
z) is contained in B 1

8t
for all z ∈ U . We call the attention of

the reader to the fact that in Theorem 1.4(ii) and (iii), it is assumed that an
f -estimate holds in degree q = 1. We may therefore apply Proposition 4.2 to
the 1-form ∂̄(Ḡmϕt

z) for zo replaced by z and for s1 = 1, and obtain

‖ψt
zK�(·, z)Ḡm(z)‖2 = ‖ψt

z∂̄
∗N∂̄(Ḡmϕt

z)‖2

� ‖ψt
zN∂̄(Ḡmϕt

z)‖2
1 + ‖[ψt

z, ∂̄
∗]N∂̄(Ḡmϕt

z)‖2

� g∗(t)2(s2+5)‖∂̄(Ḡmϕt
z)‖2−s2

� g∗(t)2(s2+5)t2‖Ḡmϕt
z‖2−s2+1

� g∗(t)2(s2+6)‖Ḡm‖−m‖ϕt
z‖−s2+m+1, (4.21)

where the last inequality follows from the Cauchy–Schwartz inequality and
from g(t) � t . We notice that ‖Ḡm‖−m � ‖Ḡ‖ ≤ 1 (because Ḡm = ∂m

∂m
zn

Ḡ);

besides, for s2 − m − 1 > n we have by Sobolev’s Lemma

‖ϕt
z‖2−s2+m+1 = sup{(|(ϕt

z, h)| : h ∈ C∞
c ,‖h‖s2−m−1 ≤ 1}

� ‖ϕt
z‖ = 1. (4.22)

Therefore, remembering that t = g(δ−1+η(z)),

‖ψt
zK�(·, z)Ḡm(z)‖2 � δ(z)(−1+η)2(m+n+8). (4.23)
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We go back to (4.19); combining (4.23) with the estimate for cz and with
R = g(δ−1+η(z)) ≤ δ−1(z), we obtain

‖ψt
zγz‖ � δ(z)−1+(m+1)+(−1+η)(m+n+8)

� 1, (4.24)

for m → ∞. We thus conclude that ‖γz‖ � 1, and then from (4.16) we
get B�(z,X) � |R(z)| = g(δ−1+η) which concludes the proof of Theo-
rem 1.4(ii). �

5 From estimate to P -property—proof of Theorem 1.4(iii)

Proof of Theorem 1.4(iii) The notations K�(z, z), δ(z), η and Uη are the
same as in the section above. Again, the hypothesis is that an f -estimate holds
in degree q = 1. Recall from the introduction that uτ denotes a “tangential”
form. Define

ϕ(z) = logK�(z, z)

(log(δ−1(z)))1+2η
− 1

(log(δ−1(z)))η
(5.1)

for z ∈ U . Recall that K�(z, z) � δ−1(z) whereas K�(z, z) � δ−(n+1)(z) is
obvious because � contains an osculating ball at any boundary point. Thus
ϕ(z) → 0 as δ(z) → 0 (and in particular, ϕ is bounded). We wish to prove
Property (f̃ − P). We begin by noticing that it suffices to check it over tan-
gential forms, that is, ∂∂̄ϕ(z)(uτ ) � f̃ (δ−1(z))|uτ |2 for any uτ in degree 1.
(In fact, if this holds for uτ , then the same holds for the full u once one adds
the additional term − log(−r

δ
+ 1) to the weight ϕ.)

Now,

∂∂̄ϕ(z)(uτ ) = ∂∂̄ logK�(z, z)(uτ )

(log(δ−1(z)))1+2η
+ (1 + 2η)

logK�(z, z) · ∂∂̄δ(z)(uτ )

δ(z)(log(δ−1(z)))2+2η

− η
∂∂̄δ(z)(uτ )

δ(z)(log(δ−1(z)))1+η

= ∂∂̄ logK�(z, z)(uτ )

(log(δ−1(z)))1+2η
+ ∂∂̄δ(z)(uτ )

δ(z)(log(δ−1(z)))1+2η

×
(

(1 + 2η)
logK�(z, z)

log δ−1(z)
− η

(
log δ−1(z)

)η
)

. (5.2)

Here, the last line between brackets is negative when z approaches b� be-
cause its first term stays bounded whereas the second diverges to −∞.
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Since � is pseudoconvex at zo, then ∂∂̄δ(z)(uτ ) ≤ 0. Combining with Theo-
rem 1.4(ii), we obtain

∂∂̄ϕ(z)(uτ ) ≥ B�(z,uτ )2

log(δ−1(z))1+2η

� (f (δ−1+η(z)))2

(log δ−1+η(z))2(log(δ−1(z)))1+2η
|uτ |2

∼
(

f

log
3
2 +η

(δ−1+η(z))

)2

|uτ |2, z near b�. (5.3)

The inequality (5.3) implies the proof of the theorem. �

Acknowledgements The authors are grateful to the referee for improving the expository
quality of the paper and for pointing out the problem which lead to Proposition 4.1 below.
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