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COMPACTNESS ESTIMATES FOR �b ON A CR MANIFOLD

TRAN VU KHANH, STEFANO PINTON, AND GIUSEPPE ZAMPIERI

(Communicated by Franc Forstneric)

Abstract. This paper aims to state compactness estimates for the Kohn-
Laplacian on an abstract CR manifold in full generality. The approach consists
of a tangential basic estimate in the formulation given by the first author in
his thesis, which refines former work by Nicoara. It has been proved by Raich
that on a CR manifold of dimension 2n− 1 which is compact pseudoconvex of
hypersurface type embedded in the complex Euclidean space and orientable,
the property named “(CR−Pq)” for 1 ≤ q ≤ n−1

2
, a generalization of the one

introduced by Catlin, implies compactness estimates for the Kohn-Laplacian
�b in any degree k satisfying q ≤ k ≤ n − 1 − q. The same result is stated
by Straube without the assumption of orientability. We regain these results
by a simplified method and extend the conclusions to CR manifolds which are
not necessarily embedded nor orientable. In this general setting, we also prove
compactness estimates in degree k = 0 and k = n − 1 under the assumption

of (CR − P1) and, when n = 2, of closed range for ∂̄b. For n ≥ 3, this refines
former work by Raich and Straube and separately by Straube.

1. Introduction and statements

Let M be a compact pseudoconvex CR manifold of hypersurface type of real
dimension 2n− 1 endowed with the Cauchy-Riemann structure T 1,0M . We choose
a basis L1, ..., Ln−1 of T 1,0M , the conjugated basis L̄1, ..., L̄n−1 of T 0,1M , and a
transversal, purely imaginary, vector field T . We also take a hermitian metric
on the complexified tangent bundle in which we get an orthogonal decomposition
CTM = T 1,0M ⊕ T 0,1M ⊕ CT . We denote by ω1, ..., ωn−1, ω̄1, ..., ω̄n−1, γ the dual
basis of 1-forms. We denote by LM the Levi form defined by LM (L, L̄′) := dγ(L, L̄′)
for L, L′ ∈ T 1,0M . The coefficients of the matrix (cij) of LM in the above basis
are described through the Cartan formula as

cij = 〈γ, [Li, L̄j ]〉.
We denote by Bk the space of (0, k)-forms u with C∞ coefficients. They are ex-
pressed, in the local basis, as u =

∑′

|J|=k

uJ ω̄J for ω̄J = ω̄j1 ∧ ... ∧ ω̄jk . Asso-

ciated to the Riemaniann metric 〈·, ·〉z, z ∈ M , and to the element of volume
dV , there is a L2-inner product (u, v) =

∫
M
〈u, v〉zdV . We denote by (L2)k the

completion of Bk under this norm. We also use the notation (Hs)k for the com-
pletion under the Sobolev norm Hs. The de-Rham exterior derivative induces a
complex ∂̄b : Bk → Bk+1. We denote by ∂̄∗

b : Bk → Bk−1 the adjoint and set
�b = ∂̄b∂̄

∗
b + ∂̄∗

b ∂̄b. Let ϕ be a smooth function, denote by (ϕij) the matrix of the
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3230 T. V. KHANH, S. PINTON, AND G. ZAMPIERI

Levi form Lϕ = 1
2 (∂b∂̄b − ∂̄b∂b)(ϕ) in the basis above, and by λϕε

1 ≤ ... ≤ λϕε

n−1

the ordered eigenvalues of Lϕ. Let L2
ϕ be the L2 space weighted by e−ϕ and, for

ϕj := Lj(ϕ), denote by Lϕ
j = Lj − ϕj the L2

ϕ-adjoint of −L̄j . The following is
the tangential version of the celebrated Hörmander-Kohn-Morrey basic estimate.
Here we present the refinement by Khanh [Kh10] of a former statement by Nicoara
[N06]. Let zo ∈ M . For a suitable neighborhood U of zo and a constant c > 0, we
have

‖∂̄bu‖2ϕ + ‖∂̄∗
b,ϕu‖2ϕ + c‖u‖2ϕ

≥
∑′

|K|=k−1

∑
i,j

(ϕijuiK , ujK)ϕ −
∑′

|J|=k

qo∑
j=1

(ϕjjuJ , uJ )ϕ

+
∑′

|K|=k−1

∑
i,j

(cijTuiK , ujK)ϕ −
∑′

|J|=k

qo∑
j=1

(cjjTuJ , uJ)ϕ

+
1

2

( qo∑
j=1

‖Lϕ
j u‖2ϕ +

n−1∑
j=qo+1

‖L̄ju‖2ϕ
)
,

(1.1)

for any u ∈ Bk
c (U) where qo is any integer with 0 ≤ qo ≤ n− 1. We now introduce

a potential-theoretical condition which is a variant of the “P -property” by Catlin
[C84]. In the present version it has been introduced by Raich [R10].

Definition 1.1. Let zo be a point of M and q an index in the range 1 ≤ q ≤ n−1.
We say that M satisfies property (CR − Pq) at zo if there is a family of weights
{ϕε} in a neighborhood U of zo such that

(1.2)

⎧⎨
⎩
|ϕε(z)| ≤ 1, z ∈ U,
q∑

j=1

λϕε

j (z) ≥ ε−1, z ∈ U and kerLM (z) �= {0}.

It is obvious that (CR− Pq) implies (CR− Pk) for any k ≥ q.

Remark 1.2. Outside a neighborhood Vε of ker dγ, the sum
∑
j≤q

λϕε

j can get negative;

let −bε be a bound from below. Now, if cε is a bound from below for dγ outside Vε,

by setting aε :=
ε−1+bε

qcε
, we have

(1.3)
∑
j≤q

λϕε

j + aεdγ =
∑
j≤q

λϕε

j + qaεcε ≥ ε−1 on the whole U .

Conversely, (1.3) readily yields the second line of (1.2). This equivalence was al-
ready noticed in [S10] and justifies our abuse of notation. In fact, (1.3) is named
(CR − Pq) by [S10] in accordance with [R10], whereas (1.2) is named “property
(Pq) in the nullspace of the Levi form”.

Again, (1.3) for q implies (1.3) for any k ≥ q.

We now state one of the two main results of the paper.
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Theorem 1.3. Let M be a compact pseudoconconvex CR manifold of hypersurface
type of dimension 2n− 1. Assume that (CR− Pq) holds for a fixed q with 1 ≤ q ≤
n−1
2 over a covering {U} of M . Then we have compactness estimates: given ε there

is Cε such that
(1.4)

‖u‖2 ≤ ε(‖∂̄bu‖2+‖∂̄∗
bu‖2)+Cε‖u‖2−1 for any u∈Dk

∂̄∗
b
∩Dk

∂̄b
and k∈ [q, n− 1− q],

where Dk
∂̄∗
b

and Dk
∂̄b

are the domains of ∂̄∗
b and ∂̄b respectively.

By Hodge duality between forms of complementary degree, we need the double
constraint k ≥ q (for the positive microlocalization) and k ≤ n − 1 − q (for the
negative one); this forces q ≤ n−1

2 . For M embedded and orientable, Theorem 1.3
is contained in [R10]. The same is proved in [S10] without the assumption of
orientability. The proof of this, as well as of the theorem which follows, is given
in Section 2. Let Hk = ker ∂̄b ∩ ker ∂̄∗

b be the space of harmonic forms of degree
k. As a consequence of (1.4), we have that for q ≤ k ≤ n− 1 − q, the space Hk is
finite-dimensional, �b is invertible over Hk⊥ (cf. [N06] Lemma 5.3) and its inverse
Gk is a compact operator. When k = 0 and k = n − 1 it is no longer true that it
is finite-dimensional. However, if q = 1, we have a result analogous to (1.4) also in
the critical degrees k = 0 and k = n− 1.

Theorem 1.4. Let M be a compact, pseudoconvex CR manifold of hypersurface
type of dimension 2n− 1. Assume that property (CR− Pq) holds for q = 1 over a
covering {U} of M and, in case n = 2, make the additional hypothesis that ∂̄b has
closed range. Then for any ε there is Cε such that
(1.5)

‖u‖2 ≤ ε(‖∂̄bu‖2 + ‖∂̄∗
bu‖2) + Cε‖u‖2−1 for any u ∈ Hk⊥, k = 0 and k = n− 1.

In particular, Gk is compact for k = 0 and k = n− 1.

For n ≥ 3 and M a boundary of a domain in Cn, resp. embedded and orientable,
Theorem 1.4 is contained in [RS08] (resp. [S10]).

2. Proofs

Proof of Theorem 1.3. We choose a local patch U where a local frame of vector
fields is found for which (1.1) is fulfilled. The key point is to specify the convenient
choices of qo and ϕ in (1.1). Let 1 = ψ+2+ψ− 2+ψ0 2 be a conic, smooth partition
of the unity in the space R2n−1 dual to the space in which U is identified in local

coordinates. Let Ψ
±
0 be the pseudodifferential operators with symbols ψ

±
0 and let

id = Ψ+Ψ+ ∗ + Ψ−Ψ−∗ + Ψ0Ψ0 ∗ be the corresponding microlocal decomposition
of the identity. For a cut off function ζ1 ∈ C∞

c (U) we decompose a form u as

(2.1) u
±
0 = ζ1Ψ

±
0u u ∈ Bk

c (U), ζ1|supp u ≡ 1.

For u+ we choose qo = 0 and ϕ = ϕε. We also need to go back to Remark 1.2.
Now, if aε has been chosen so that (1.3) is fulfilled, we remove T from our scalar
products observing that, for large ξ, we have ξ2n+1 > aε over suppψ

+. In the same
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way as in Lemma 4.12 of [N06], we conclude that for k ≥ q
∑′

|K|=k−1

∑
i,j=1,...,n−1

((cijT + ϕε
ij)u

+
iK , u+

jK)ϕε

≥
∑′

|K|=k−1

∑
i,j=1,...,n−1

((aεcij + ϕε
ij)u

+
iK , u+

jK)ϕε

− C‖u+‖2ϕε − Cε‖u+‖2−1,ϕε − Cε‖ζ2Ψ̃0u+‖2ϕε

≥ ε−1‖u+‖2ϕε − Cε‖u+‖2−1,ϕε − Cε‖ζ2Ψ̃0u+‖2ϕε ,

where Ψ̃0 � Ψ0 and ζ2 � ζ1 in the sense that ψ̃0|suppψ0 ≡ 1 and ζ2|supp ζ1 ≡ 1
respectively. (Here ‖u+‖−1,ϕε = ‖Λ−1u+‖ϕε , where Λ−1 is the standard tangential
pseudodifferential operator of order −1 in the local patch U .) Note that there is an
additional term −Cε‖u+‖2−1,ϕε with respect to [N06]. The reason is that (cijξ2n−1+

ϕε
ij) can get negative values, even on suppψ+, when ξ2n−1 < aε. Integration in this

compact region produces the above error term. It follows that
(2.2)

‖u+‖2ϕε ≤ε(‖∂̄bu+‖2ϕε+‖∂̄∗
b,ϕεu+‖2ϕε)+Cε‖u+‖2−1,ϕε+Cε‖ζ2Ψ̃0u+‖2ϕε , k=1, ..., n−1.

By taking the composition χ(ϕε) where χ = χ(t) is a smooth function on R+

satisfying χ̇ > 0 and χ̈ > 0, we get

(χ(ϕε))ij = χ̇ϕε
ij + χ̈|ϕε

j |2κij ,

where κij is the Kronecker symbol. We also notice that

|∂̄∗
b,χ(ϕε)u|2 ≤ 2|∂̄∗

bu|2 + 2χ̇2
∑′

|K|=k−1

|
n−1∑
j=1

ϕε
jujK |2.

Remember that {ϕε} are uniformly bounded by 1. Thus, if we choose χ = 1
4e

(t−1),

then we have that χ̈ ≥ 2χ̇2 for t = ϕε. For this reason, with this modified weight,
we can replace the weighted adjoint ∂̄∗

b,ϕε by the unweighted ∂̄∗
b in (2.2). By the

uniform boundedness of the weights, we can also remove them from the norms and
end up with the estimate

(2.3) ‖u+‖2 ≤ ε(‖∂̄bu+‖2+‖∂̄∗
bu

+‖2)+Cε‖u+‖2−1+Cε‖ζ2Ψ̃0u‖2, k = q, . . . , n−1.

For u−, we choose qo = n − 1 and ϕ = −ϕε. Observe that for |ξ| large we have
−ξ2n−1 ≥ aε over suppψ− (cf. [N06], Lemma 4.13). Thus, we have in the current
case, for k ≤ n− 1− q,

∑′

|K|=k−1

∑
i,j=1,...,n−1

((cijT − ϕε
ij)u

−
iK , u−

jK)−ϕε −
∑′

|J|=k

n−1∑
j=1

((cjjT − ϕε
jj)u

−
J , u

−
J )−ϕε

≥ −
∑′

|K|=k−1

∑
i,j=1,...,n−1

((aεcij + ϕε
ij)u

−
iK , u−

jK)−ϕε

+
∑′

|J|=k

n−1∑
j=1

((aεcjj + ϕε
jj)u

−
J , u

−
J )−ϕε

− C‖u−‖2ϕε − Cε‖u−‖2−1,ϕε − Cε‖ζ2Ψ̃0u−‖2ϕε

≥ ε−1‖u−‖2ϕε − C‖u−‖2ϕε − Cε‖u−‖2−1,ϕε − Cε‖ζ2Ψ̃0u−‖2ϕε .
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Thus, we get the analogue of (2.2) for u+ replaced by u− and, again removing the
weight from the adjoint ∂̄∗

b,ϕε and from the norms, we conclude that

(2.4)

‖u−‖2 ≤ ε(‖∂̄bu−‖2+‖∂̄∗
bu

−‖2)+Cε‖u−‖2−1,ϕε +Cε‖ζ2Ψ̃0u‖2, k = 0, ..., n−1−q.

In addition to (2.3) and (2.4), we have elliptic estimates for u0:

(2.5) ‖u0‖21 <
∼
‖∂̄u0‖2 + ‖∂̄∗

bu
0‖2 + ‖u‖2−1.

The same estimate also holds for u0 replaced by ζ2Ψ̃0u. We put together (2.3),
(2.4) and (2.5) and notice that

‖∂̄b(ζ1Ψ
±
0u)‖2 ≤ ‖ζ1Ψ

±
0 ∂̄bu‖2 + ‖[∂̄b, ζ1Ψ

±
0 ]u‖2

≤ ‖ζ1Ψ
±
0 ∂̄bu‖2 + ‖ζ2ζ̃Ψ

±
0u‖2 + ‖ζ2Ψ̃0u‖2,

(2.6)

for ζ2 � ζ1 and Ψ̃0 � Ψ0. A similar estimate holds for ∂̄b replaced by ∂̄∗
b . Since

ζ1|suppu ≡ 1, then

‖u‖2 ≤
∑
+,−,0

‖ζ1Ψ
±
0u‖2 +Op−∞(u)

≤ ε
∑
+,−,0

(‖(∂̄bu)
±
0‖2 + ‖(∂̄∗

bu)
±
0‖2) + Cε‖u‖2−1,

and therefore

(2.7) ‖u‖2 ≤ ε(‖∂̄bu‖2 + ‖∂̄∗
bu‖2) + Cε‖u‖2−1, q ≤ k ≤ n− 1− q.

We now consider u globally defined on the whole M instead of a local patch U . To
pass from local to global compactness estimates is immediate (cf. e.g. [S10]). We
cover M by {Uν} so that in each patch there is a basis of forms in which the basic
estimate holds. In the identification of Uν to R

2n−1, we suppose that the microlocal

decomposition by the operators Ψ
±
0 which occur in (2.6) is well defined. We then

get (2.7) and apply it to a decomposition u =
∑

ν ζνu for a partition of the unity∑
ν ζν = 1 on M . We point out that we first take summation over +,−, 0 on each

patch Uν and then summation over ν; this is why orientability of M is needless.
We observe that [∂̄b, ζν ] and [∂̄∗

b , ζν ] are 0-order operators and, since they come
with a factor of ε, they are absorbed in the left side of (2.7); thus (2.7) holds for
any u ∈ Bk. Finally, we use the density of smooth forms Bk into Sobolev forms
(H1)k of Dk

∂̄∗
b

∩Dk
∂̄∗
b

for the graph norm and get (2.7). The proof is complete. �

Proof of Theorem 1.4. We prove estimates in degree 0 (those in degree n− 1 being
similar). We first discuss the case n > 2. We make repeated use of (2.7) in degree
1. This first implies that ∂̄∗

b has closed range on 1-forms, that is,

H0⊥ = (ker ∂̄b)
⊥

= range ∂̄∗
b .

(Thus, if u ∈ H0⊥, then there exists a solution v ∈ (L2)1 to the equation ∂̄∗v = u.
Moreover, we can choose v belonging to (Ker(∂̄∗

b ))
⊥.) This is a consequence of the

following estimate:

(2.8) ‖v‖20 <
∼
‖∂̄∗

b v‖20 for any v ∈ (ker ∂̄∗
b )

⊥.
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This can be proved by contradiction. If (2.8) is violated, there exists a sequence
vν ∈ (ker ∂̄∗

b )
⊥ such that ‖vν‖20 ≡ 1 and ‖∂̄∗

b vν‖0 → 0. Take a subsequential
L2−weak limit v0 of vν ; it satisfies v0 ∈ Ker(∂̄∗

b ) ∩ (Ker(∂̄∗
b ))

⊥ and in particular
‖vν‖−1 → 0. This violates (2.7) and proves (2.8). We also have

(2.9) ‖v‖2−1 ≤ ε‖∂̄∗
b v‖20 + cε‖∂̄∗

b v‖2−1, for any v ∈ (ker ∂̄∗
b )

⊥.

The argument is similar. If (2.9) is violated, then there is a sequence vν ∈ (ker ∂̄∗
b )

⊥

such that ‖vν‖−1 ≡ 1, ‖∂̄∗
b vν‖−1 → 0 and ‖∂̄∗

b vν‖0 ≤ c. By (2.7), ‖vν‖0 ≤ C ′;
hence there is a subsequential L2-weak limit vνk

→ v0 ∈ (Ker(∂̄∗
b ))

⊥ ∩ Ker(∂̄∗
b );

thus v0 = 0 and ‖vνk
‖−1 → 0, a contradiction.

We now point out that (Ker(∂̄∗
b ))

⊥ = range(∂̄b) ⊂ Ker(∂̄); in particular, our
solution v satisfies ∂̄bv = 0. We are ready to conclude the proof for n > 2. We use
the notation lc and sc for a large and small constant respectively. We have for any
function u ∈ H⊥

‖u‖2 = (u, ∂̄∗
b v)

= (∂̄bu, v)

≤ ‖∂̄bu‖‖v‖
≤

(2.7) for v
‖∂̄bu‖(ε‖∂̄∗

b v‖+ cε‖v‖−1)

<
∼

(2.9)

‖∂̄bu‖(ε‖u‖+ cε‖u‖−1)

≤ lc1 ε
2‖∂̄bu‖2 + sc1‖u‖2 + lc2 c

2
ε‖u‖2−1 + sc2‖∂̄bu‖2

≤ ε′‖∂̄bu‖2 + cε′‖u‖2−1 + sc1‖u‖2,

(2.10)

for ε′ = lc1 ε
2+ sc2 and cε′ = lc2 c

2
ε . By choosing sc1 so that sc1‖u‖2 is absorbed in

the left, (2.10) yields (2.7) for u in degree 0. This concludes the proof of the case
n > 2 for functions.

Let n = 2. We have only estimates for positively microlocalized 1-forms and
for negatively microlocalized functions. We have to show how to get estimates
for positively microlocalized functions (the argument for negative 1-forms being
similar). We use our extra assumption of closed range for ∂̄b; thus for any u ∈
(ker ∂̄b)

⊥ there is v ∈ (ker ∂̄∗
b )

⊥ such that ∂̄∗
b v = u. On each Uν we consider the

positive microlocalization Ψ+, take a pair of cut-off functions ζν , ζ
1
ν ∈ C∞

c (Uν) with
ζ1ν |supp ζν ≡ 1, and define Ψ+

ν := ζ1νΨ
+ζν . Note that the commutators [∂̄∗

b ,Ψ
+
ν ] and

[∂̄b,Ψ
+
ν ] are operators with symbols of types ζ̇1νψ

+ζν , ζ1ν ψ̇
+ζν and ζ1νψ

+ζ̇ν . All
these symbols have support contained in the positive half-space ξ2n−1 > 0, and
hence we have compactness estimates for 1-forms if their coefficients are subjected
to the action of the corresponding pseudodifferential operators. We denote by a
common symbol Φ+

ν all these operators coming from commutators. We have

‖Ψ+
ν v‖ ≤ ε‖∂̄∗

bΨ
+
ν v‖+ cε‖Ψ+

ν v‖−1 + cε‖ζ2ν Ψ̃0ζνv‖
≤ ε‖Ψ+

ν ∂̄
∗
b v‖+ ε‖Φ+

ν v‖+ cε‖Ψ+
ν v‖−1 + cε‖ζ2ν Ψ̃0ζνv‖

≤
(2.8) and (2.9) for +

ε‖u‖+ cε‖u‖−1.

(2.11)
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The same estimate also holds for ‖Φ+
ν v‖. It follows that

‖Ψ+
ν u‖2 = (Ψ+

ν u,Ψ
+
ν ∂̄

∗
b v)

= (Ψ+
ν ∂̄bu,Ψ

+
ν v) + (Φ+

ν u,Ψ
+
ν v) + (Ψ+

ν u,Φ
+
ν v)

≤ (‖Ψ+
ν ∂̄bu‖+ ‖Φ+

ν u‖+ ‖Ψ+
ν u‖)(‖Φ+

ν v‖+ ‖Ψ+
ν v‖)

≤
(2.11)

(‖Ψ+
ν ∂̄bu‖+ ‖u‖)(ε‖u‖+ cε‖u‖−1)

<
∼
ε‖Ψ+

ν ∂̄bu‖‖u‖+ cε‖Ψ+
ν ∂̄bu‖‖u‖−1 + ε‖u‖2 + cε‖u‖−1‖u‖

≤ lc1 ε
2‖Ψ+

ν ∂̄bu‖2 + sc1‖u‖2 + sc2‖Ψ+
ν ∂̄bu‖2 + lc2 c

2
ε‖u‖2−1

+ ε‖u‖2 + sc3‖u‖2 + lc3 c
2
ε‖u‖2−1

≤ ε′‖Ψ+
ν ∂̄bu‖2 + sc4‖u‖2 + cε′‖u‖2−1,

(2.12)

where ε′ = lc1 ε
2+sc2, cε′ = lc2 c

2
ε+ lc3 c

2
ε and sc4 = sc1+ε+sc3. We have to recall

now that the same estimate as (2.12) also holds for ‖Ψ−
ν u‖2 (the one for ‖Ψ0

νu‖2
being trivial by ellipticity). Taking summation over +, − and 0 on each Uν , we get

‖ζνu‖2 ≤ ε‖ζ1ν ∂̄bu‖2 + cε‖u‖2−1 + sc‖u‖2.

We now take summation over ν and choose sc so that the related term is absorbed
by

∑
ν ‖ζνu‖2 ∼ ‖u‖2 and end up with

‖u‖2 ≤ ε‖∂̄bu‖2 + cε‖u‖2−1 for any function u. �
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