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Estimates for regularity of the tangential ∂̄-system

Tran Vu Khanh∗ and G. Zampieri∗∗
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We study ellipticity in a weak sense, such as fractional or logarithmic, of the system
(
∂̄b , ∂̄

∗
b

)
tangential to a

hypersurface or a generic higher codimensional submanifold M ⊂ C
n . The geometric setting which assures the

estimates is the q-pseudoconvexity/concavity of M in addition to the existence of a suitable family of weights
in a strip or a tube around M . The basic estimates for the ∂̄-Neumann problem on q-pseudoconvex/concave
domains is related to the classical work by Shaw [17] and more recent by Zampieri [19]. The method of the
weights is due to Catlin [3] and the relation between the tangential and the ambient ∂̄ system on pseudoconvex
domains is inspired to Kohn [14]. Both these techniques are adapted here to a general Levi signature.
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1 Regularity of the ∂̄-system tangential to a hypersurface

Let M be a real smooth hypersurface of C
n defined by r = 0 with ∂r �= 0. We denote by D = D+ and D = D−

the two sides of M in a neighborhood V of a point zo ∈ M ; we assume r < 0 in D+ and r > 0 in D−. Let
ω1 , . . . , ωn be an orthonormal basis of (1, 0) forms in a neighborhood of zo with ωn = ∂r, and let ∂ω1 , . . . , ∂ωn

be the dual basis of (1, 0) vector fields. For 0 ≤ k ≤ n, we write a general k-form u on V as

u =
∑
|J |=k

′
uJ ω̄J ,

where
∑′ denotes summation restricted to ordered multiindices J = {j1 , . . . , jk} and where ω̄J = ω̄j1 ∧ · · · ∧

ω̄jk
. When the multiindex is no more ordered, it is understood that the coefficient uJ is antisymmetric with respect

to J ; in particular, if J decomposes into jK, then ujK = sign
(

J
jK

)
uJ . We define a scalar product and a norm by

〈u, u〉 = |u|2 =
∑′

|J |=k |uJ |2 ; this definition is independent of the choice of the orthonormal basis ω1 , . . . , ωn .

The coefficients of our forms are taken in various spaces such as C∞(D̄ ∩ V ), C∞(D ∩ V ), C∞
c (D̄ ∩ V ),

L2(D ∩ V ) and the corresponding spaces of k-forms are denoted by C∞(D̄ ∩ V )k and so on. All our discussion
is local; sometimes, we omit this specification. Though our a priori estimates are proved over smooth forms, they
are stated in Hilbert norms. Thus, let ‖u‖H 0 or ‖u‖0 be the H0 = L2 norm and, for a real function ϕ, let the
weighted L2-norm be defined by

‖u‖2
H 0

ϕ
:=

∑
|J |=k

′
∫

U

e−ϕ |uJ |2dv

where dv is the element of volume in C
n .

Let ∂̄∗ be the adjoint of ∂̄. The operator ∂̄∗ is still closed, densely defined but it is not necessarily the case
the smooth forms belong to D∂̄∗ . For this, they must satisfy certain boundary conditions. Namely, integration by
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parts shows that a form u of degree k cannot belong to D∂̄∗ unless

n∑
j=1

∫
M

e−ϕ∂ωj
(r)ujK ψ̄K da = 0 for any K and any ψK of degree k − 1,

where da denotes the element of area in M = ∂D. This means that
∑n

j=1∂ωj
(r)ujK |∂D ≡ 0 for any K. Since

we have chosen our basis with the property ∂ωj
(r)|∂D = κjn (the Kronecker’s symbol), we then conclude

u belongs to D∂̄∗ if and only if uJ |∂D = 0 whenever n ∈ J . (1.1)

Let δϕ
ωj

be the formal H0
ϕ -adjoint of −∂ω̄j

; over a form that belongs to D∂̄∗ , the action of the Hilbert adjoint of ∂̄
coincides with that of its “formal adjoint” and is therefore expressed by a “divergence operator”:

∂̄∗
ϕu = −

∑′

|K |=k−1

∑
j

δϕ
ωj

(ujK )ω̄K + · · · for any u ∈ D∂̄∗ , (1.2)

where dots denote an error term in which u is not differentiated and ϕ does not occur. We now recall some
inequalities which are needed for the proof of our estimates. The key technical tools of our discussion are the
Hörmander-Kohn-Morrey estimates.

Proposition 1.1 Fix arbitrarily an index qo with 0 ≤ qo ≤ n − 1. Then for a suitable C > 0 and any
u ∈ C∞

c (D̄ ∩ V )k ∩ D∂̄∗ , we have∥∥∂̄u
∥∥2

H 0
ϕ

+
∥∥∂̄∗

ϕu
∥∥2

H 0
ϕ

+ C‖u‖2
H 0

ϕ

≥
∑

|K |=k−1

′ n∑
i,j=1

∫
D

e−ϕϕijuiK ūjK dv −
∑
|J |=k

′ qo∑
j=1

∫
D

e−ϕϕjj |uJ |2 dv

︸ ︷︷ ︸
(I )D

+
∑

|K |=k−1

′ n−1∑
i,j=1

∫
∂D

e−ϕrδ
ij uiK ūjK da −

∑
|J |=q

′ qo∑
j=1

∫
∂D

e−ϕrδ
jj |uJ |2 da

︸ ︷︷ ︸
(I I )D

+ (1 − α)

(
q0∑

j=1

∥∥δϕ
ωj

u
∥∥2

H 0
ϕ (D ) +

n∑
j=qo +1

∥∥∂ω̄j
u
∥∥2

H 0
ϕ (D )

)
︸ ︷︷ ︸

(I I I )D

. (1.3)

We refer for instance to [20] for the proof of Proposition 1.1; some ideas of the proof can also be found in [17].
We denote by T 1,0M and T 0,1M the holomorphic and antiholomorphic tangent bundles to M respectively;

they are both isomorphic to the complex tangent bundle T CM := TM ∩ iTM . Let {ω} = {ω′, ωn} be a basis of
forms such that ωn = ∂r. Thus for the dual system of vector fields {∂ω} we have that ∂′

ωj
|M and ∂′

ω̄ j
|M are a basis

for the tangential bundles T 1,0M and T 0,1M respectively. Also, T := i√
2

(
∂ωn

−∂ω̄n

)
and N := 1√

2

(
∂ωn

+∂ω̄n

)
are the vector fields totally real tangential and normal to M respectively.

We want to exploit (1.3) when we have a geometric setting which gives a good control from below of the terms
(I)D and (II)D . Let LM := ∂∂̄r|T CM be the Levi form of M (from the side of D = D+ defined by r < 0) and
let λ1 ≤ λ2 < · · · ≤ λn−1 be its ordered eigenvalues and s± the numbers of the λj ’s which are ≷ 0. We assume
that there is a bundle Vqo ⊂ T 1,0M of rank qo with smooth coefficients on V ∩ M for a neighborhood V of zo ,
say the bundle of the first qo coordinate tangential vector fields ∂ω1 , . . . , ∂ωq o

, such that for q > qo or q < qo

q∑
j=1

λj (z) −
qo∑

j=1

rjj (z) ≥ 0 for z ∈ M ∩ V . (1.4)

Definition 1.2 We say that the hypersurface M is q-pseudoconvex (resp. q-pseudoconcave) from the side D
in a neighborhood of zo , when (1.4) holds for q > qo (resp. q < qo).
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Note that the definition differs from [19] and [20] where (1.4) defines (q − 1)-pseudoconvexity ((q − 1)-
pseudoconcavity). There is a basic relation between pseudoconvexity/concavity of the two sides D± of M .

Proposition 1.3 The domain D+ is q-pseudoconvex if and only if D− is (n − 1 − q)-pseudoconcave in a
neighborhood of zo .

P r o o f. We have

q∑
j=1

λj −
qo∑

j=1

rjj =

⎛
⎝n−1∑

j=1

λj −
n−1∑

j=q+1

λj

⎞
⎠ −

⎛
⎝n−1∑

j=1

rjj −
n−1∑

j=qo +1

rjj

⎞
⎠

= −
n−1∑

j=q+1

λj +
n−1∑

j=qo +1

rjj ,

where the second equality follows from the identity
∑n−1

j=1 λj =
∑n−1

j=1 rjj . On the other hand, −r is the defining
function for D− and

−λn−1 ≤ −λn−2 ≤ · · · ≤ −λ1 ,

the ordered eigenvalues of D−.

Remark 1.4 The notion of q-pseudoconvexity and q-pseudoconcavity was used in [19] to prove the existence
of solutions to the equation ∂̄u = f smooth up to the boundary in D̄. Here the problem is different: we search
for estimates which assure local hypoellipticity or compactness, that is, local or global regularity of the canonical
solution.

Remark 1.5 Assume that (1.4) holds for q > qo . Then, λq ≥ 0. Thus (1.4) still holds with q replaced by k for
any k ≥ q. Similarly, if q < qo , then λ−

q ≤ 0. In this case, (1.4) holds with q replaced by k for any k ≤ q.

Remark 1.6 When we have strict inequality “>” in (1.4) for q > qo (resp. q < qo), it means that we have in
fact λ+

q > 0 (resp. λ−
q+1 < 0). It follows

q ≥ n − s+ (resp. q ≤ s− − 1). (1.5)

We refer to these two situations as “strong” q-pseudoconvexity (resp. strong q-pseudoconcavity). Note that this
amounts as to say, in the terminology of Folland-Kohn, that M satisfies Y (k) for any k ≥ q (resp. k ≤ q).

Example 1.7 (1) Let M be pseudoconvex in the usual sense; then D+ is 1-pseudoconvex and D− is (n− 2)-
pseudoconcave.

(2) More generally, let the number of negative eigenvalues s− be constant in a neighborhood of zo ; then D+

is (s− + 1)-pseudoconvex and D− is (n − 1 − s−)-pseudoconcave.

We use the notation QD (u, u) := ‖∂̄u‖2
D + ‖∂̄∗u‖2

D (with ∂̄∗ unweighted); we also write Q instead of QD .
We denote by k the degree of a form u. We make a first crucial remark: if M is q-pseudoconvex, then in the
estimate (1.3) for u we have (II)D+ ≥ 0. By the trivial choice ϕ ≡ 0 (which yields (I)D = 0) we then get for
u ∈ D∂̄∗

qo∑
j=1

∥∥∂ωj
u
∥∥2 +

n∑
j=qo +1

∥∥∂ω̄j
u
∥∥2 � Q(u, u) + ‖u‖2 if k ≥ q (resp. k ≤ q).

We also notice that∥∥∂ωj
u
∥∥2 =

∥∥∂ω̄j
u
∥∥2 + error, j = 1, . . . , n if u|∂D = 0,

where “error” stands for the integral of the product of a first derivative of u by u. Since ∂ωj
and ∂ω̄j

for
j = 1, . . . , n are a full basis of derivatives in R

2n  C
n , then we get in particular, if M is q-pseudoconvex

(resp. -pseudoconcave) and k ≥ q (resp. k ≤ q)

‖u‖2
1 � Q(u, u) + ‖u‖2 if u|∂D = 0. (1.6)
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We deal with forms in M that we denote by ub ; these are related to forms u on D belonging to D∂̄∗ by

u|∂D = ub.

Of course, in the above relation, there is no uniqueness between “extension” u and “trace” ub ; not even if we
reduce a form u of D∂̄∗ to its “tangential component” in which we discard the coefficients uJ with n ∈ J . We
will show a way to take a “distinguished” tangential extension. First, we recall the microlocal decomposition
by Kohn [14]. We introduce special coordinates (a, r) ∈ R

2n−1 × R so that a serves as a local coordinate for
M and, moreover, ∂a2 n −1 = Tzo

for the totally real tangential vector field T . We denote by ξ = (ξa , ξr ) the

dual coordinates and by Fτ the partial Fourier transform with respect to a. We denote by Λξa
=

(
1 + |ξa |2

) 1
2 the

standard elliptic symbol of order 1 and by Fτ the tangential Fourier trnsform. We first introduce the “s-tangential”
derivative Λs

τ , s ∈ R. This is the pseudodifferential operator of symbol Λs
ξa

whose action on C∞
c forms is defined,

coefficientwise, by Λs
τ u(a, r) := F−1

τ

(
Λs

ξa
Fτ u(ξa , r)

)
. This way of relating operators to symbols will be used

throughout the paper. We also define the tangential Sobolev norm by ‖|u‖|s := ‖Λs
τ u‖2

0 . We now introduce
standard microlocalization operators. We consider a conic partition of the unity in R

2n−1
ξa

1 = ψ+ + ψ− + ψ0 ,

where supp(ψ±) ⊂
{
ξ ∈ R

2n−1 : ±ξa2 n −1 ≥
(∑2n−1

j=1 |ξj |2
) 1

2
}

and supp(ψ0) ⊂
{
ξ ∈ R

2n−1 : |ξa2 n −1 | ≤
2
(∑2n−1

j=1 |ξj |2
) 1

2
}

. We further consider the associated pseudodifferential decomposition of the identity

id = Ψ+ + Ψ− + Ψ0; (1.7)

here Ψ
±
0 are the operators with symbols σ

(
Ψ

±
0
)

= ψ
±
0 . Let U ⊂⊂ U ′ ⊂⊂ M ; we assume that supp u ⊂⊂ U and

take a cut off function ζ ∈ C∞
c (U ′) with ζ|U ≡ 1. Formula (1.7) yields two decompositions

ub = ζΨ+ub + ζΨ−ub + ζΨ0ub = u+
b + u−

b + u0
b ,

and

u = ζΨ+u + ζΨ− + ζΨ0u = u+ + u− + u0 .

We define

ũ+(a, r) = ζ(a)
1

(2π)2n−1

∫
eia·ξa +rσ (T )ψ+(ξa)Fτ u(ξa , 0) dξa . (1.8)

Note that σ(T ) ∼ |ξa | over supp(ψ+) and recall that r < 0 on D; thus the absolute value of the exponential is
≤ e−|r‖ξa |. We point out that we can think of ũ+ in two different ways: either as an extension of u+

b = u+(a, 0)
or as a modification of u+ satisfying ũ+ |∂D = u+ |∂D ; in any case we have on U

ũ+ |∂D = u+ |∂D = u+
b .

There are three basic properties for ũ+ . First, notice that (cf. [14] p. 241 line 8 from the bottom)

∂ω̄n
=

1√
2
(∂r + iT ),

owing to ⎧⎪⎪⎨
⎪⎪⎩

T =
i√
2
(∂ωn

− ∂ω̄n
),

∂r =
1√
2
(∂ωn

+ ∂ω̄n
).

www.mn-journal.com c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



2216 T. V. Khanh and G. Zampieri: Regularity of the tangential ∂̄-system

It follows

∂ω̄n
ũ+ ≡ 0. (1.9)

The second, is a relation between ũ+ and u+
b ; this is not related to the specific choice of the extension ũ+ but just

to the property ũ+ |∂D = u+
b . This is∥∥u+

b

∥∥2 � 1
ε

∥∥∣∣ũ+
∥∥∣∣2

1
2

+ ε
∥∥∣∣∂r ũ

+
∥∥∣∣2

− 1
2
. (1.10)

To prove it, we take a cut-off function χ = χ(r) with χ(0) = 1 and remark that

∣∣u+
b

∣∣2 ≤
∫ 0

−∞
∂r

∣∣χũ+
∣∣2dr � 1

ε

∫ 0

−∞

∣∣χũ+
∣∣2dr + ε

∫ 0

−∞

∣∣∂rχũ+
∣∣2dr, (1.11)

where the second inequality is a consequence of the small/large constant argument. We can also take tangen-

tial Fourier transform of the two sides of (1.11) and replace ε by ε
(
1 + |ξa |2

) 1
2 (and similarly for the inverse)

since this is constant with respect to the integration variable r. Taking inverse Fourier transform we get (1.10).
Variants of (1.10) are obtained by replacing the fractional 1

2 -derivative by a real s-derivative or a more general
pseudodifferential operator.

The third relation between ũ+ and u+
b , which is specific of ũ+ , is∥∥ũ+

∥∥2 �
∥∥u+

b

∥∥2
− 1

2
. (1.12)

To prove (1.12), we notice that by the change r|ξa | = r′, we get∥∥ũ+
∥∥2 �

∫∫
e2r |ξa |

∣∣Fτ u+
b (ξa , r)

∣∣ dξa dr

�
∫∫

e2r ′(
1 + |ξa |2

)− 1
2

∣∣∣∣Fτ u+
b

(
ξa ,

r′

|ξa |

)∣∣∣∣ dξa dr′

�
∫ (

1 + |ξa |2
)− 1

2
∣∣Fτ u+

b (ξa , 0)
∣∣ dξa =

∥∥u+
b

∥∥2
− 1

2
(by Plancherel).

A similar calculation shows that
∣∣∥∥∂r ũ

+
∣∣∥∥

− 1
2

�
∥∥ũ+

b

∥∥2
0 . Thus, for the specific extension ũ+ , (1.10) converts

into the better estimate (1.12). Again, we have several variants of (1.12) with the 1
2 -fractional derivative replaced

by general pseudodifferential operators. We introduce these operators. We consider a real smooth monotonic
increasing function f(t), t ≥ 1; since we wish these operators to be dominated by the 1

2 -fractional derivative, we

take f � t
1
2 . We define f(Λτ ) as the pseudodifferential operator with symbol f(Λξa

); in particular, Λ
1
2
τ and Λs

τ

are the 1
2 -fractional and s-real derivative respectively. With the operator f(Λτ ) in our hands, we pass to consider

the estimate

‖f(Λτ )u‖2 � Q(u, u) + ‖u‖2 for any u ∈ D∂̄∗ ∩ C∞
c (D̄ ∩ V )k

with k ≥ q (or k ≤ q). (1.13)

We are also interested in the tangential version of (1.13), that is,

‖f(Λτ )ub‖2 � Qb(ub, ub) + ‖ub‖2 for ub ∈ C∞
c (M ∩ V )k .

We wish to compare this estimate with its tangential version for ub . Classically, the main interest in (1.13) is
when f

(
δ−1

)
has a sufficiently high rate to infinity when δ → 0. Thus, if f

(
δ−1

)
= δ−ε then (1.13) are the

celebrated “subelliptic estimates”. As it is classical, they yield the local hypoellipticity of the system
(
∂̄b , ∂̄

∗
b

)
.

The solution u to
(
∂̄u = f, ∂̄∗u = 0

)
or the solution ub to

(
∂̄bub = fb , ∂̄

∗
b ub = 0

)
are smooth exactly where

f or fb are smooth (cf. [7]). Another classical case is f (δ−1 )
log(δ−1 ) → ∞; in this situation (1.13) readily implies the

so-called “superlogarithmic estimates” and they still suffice for hypoellipticity. The last case is when we simply
have f

(
δ−1

)
→ ∞. In this case (1.13) implies the so-called “compactness estimate”; this does not always suffice

for local hypoellipticity (cf. e.g. the discussion in [10] about Christ example [5]).
The following theorem is contained in [14] under the choice f(Λτ ) = Λε

τ and for pseudoconvex domains.
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Theorem 1.8 Let D be q-pseudoconvex (resp. -pseudoconcave). Then, for any pseudodifferential operator
f(Λτ ) associated to a general smooth monotonic increasing function f as described above, we have∥∥f(Λτ )u+

∥∥2 � Q
(
u+ , u+)

+
∥∥u+

∥∥2
for any u ∈ D∂̄∗ ∩ C∞

c (D̄ ∩ V )k

(1.14)
with k ≥ q (resp.k ≤ q),

if and only if ∥∥f(Λτ )u+
b

∥∥2
b

� Qb

(
u+

b , u+
b

)
+

∥∥u+
b

∥∥2
b

for any ub ∈ C∞
c (M ∩ V )k

(1.15)
with k ≥ q (resp.k ≤ q).

P r o o f. We first prove that (1.14) implies (1.15). We recall that ∂r = 2√
2
∂ω̄ − iT and

∥∥∂ω̄n
ũ+

∥∥2 ≤
Q

(
ũ+ , ũ+

)
. It follows

∥∥f(Λτ )u+
b

∥∥2
b

�
∥∥∣∣f(Λτ )χũ+

∥∥∣∣2
1
2

+
∥∥∣∣f(Λτ )χ∂r ũ

+
∥∥∣∣2

− 1
2

� Q
(
χũ+ , χũ+)

+ 2
∥∥∣∣f(Λτ )χũ+

∥∥∣∣2
1
2

� Q
(
χΛ

1
2
τ ũ+ , χΛ

1
2
τ ũ+)

+
∥∥∣∣χũ+

∥∥∣∣2
1
2

� Qb

(
u+

b , u+
b

)
+

∥∥u+
b

∥∥2
,

where the first inequality follows from (1.10), the second and the third from (1.14), and the fourth from (1.9)
combined with (1.12) respectively.

We prove that (1.15) implies (1.14). We denote by {Mj} the system {δωj
}1≤j≤qo

∪{∂ω̄j
}qo +1≤j≤n and denote

by ζ a tangential cut-off with the property ζ ≡ 1 over supp(u). We first point our attention to ũ+ ; we have∥∥f(Λτ )ũ+
∥∥2

D
�

∥∥f(Λτ )u+
b

∥∥2
− 1

2 b

� Qb

(
ζΛ− 1

2
τ u+

b , ζΛ− 1
2

τ u+
b

)
+

∥∥Λ− 1
2

τ u+
b

∥∥2
b

�
n−1∑
j=1

∥∥MjζΛ− 1
2

τ u+
b

∥∥2
b︸ ︷︷ ︸

(I )

+
∥∥Λ− 1

2
τ u+b

∥∥2
b

(1.16)

+
∑
ij

∑′

|K |=k−1

(
cijT ζΛ− 1

2
τ uiK , ζΛ− 1

2
τ ujK

)
b
−

q∑
j=1

(
cjjT ζΛ− 1

2
τ uJ , ζΛ− 1

2
τ uJ

)
b︸ ︷︷ ︸

(I I )

,

where the first inequality follows from (1.12), the second from (1.15) and the third from the basic estimate (1.3)
respectively. Now, to estimate (I), we use

∥∥MjΛ
− 1

2
τ u+

b

∥∥2 �
(
∂rMjΛ

− 1
2

τ u+ ,MjΛ
− 1

2
τ u+)

D

�
(
∂rΛ−1

τ Mju
+ ,Mju

+)
D

+
∥∥u+

∥∥2
D

�
(
Λ−1

τ MjMnu+ ,Mju
+)

D
+

(
Λ−1

τ TMju
+ ,Mju

+)
D

+
∥∥u+

∥∥2
D

�
∥∥Mju

+
∥∥2

D
+

∥∥Mnu+
∥∥2

D
+

∥∥u+
∥∥2

D

≤ Q
(
u+ , u+)

+
∥∥u+

∥∥2
D

.

(1.17)

On the other hand it is evident that

(II) � Q
(
u+ , u+)

+
∥∥u+

∥∥2
. (1.18)
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Finally we have∥∥Λ− 1
2

τ u+
b

∥∥2 ≤
∥∥∣∣∂ru

+
∥∥∣∣

−1 +
∥∥u+

∥∥2

≤
∥∥Mnu+

∥∥2 +
∥∥u+

∥∥2 ≤ Q
(
u+ , u+)

+
∥∥u+

∥∥2
.

(1.19)

This proves that
∥∥f(Λτ )ũ+

∥∥2 � Q
(
u+ , u+

)
+

∥∥u+
∥∥2

. To conclude the proof, we have to estimate
u(0) := u+ − ũ+ . We have∥∥u(0)

∥∥2
1 � Q

(
u(0) , u(0)) +

∥∥u(0)
∥∥2

≤ Q
(
u+ , u+)

+
∥∥u+

∥∥2 + Q
(
ũ+ , ũ+)

+
∥∥ũ+

∥∥2︸ ︷︷ ︸
(I I I )

.

It remains to estimate (III). For this, we use

(III) � Qb

(
ζΛ− 1

2
τ u+

b , ζΛ− 1
2

τ u+b
)

+
∥∥Λ− 1

2
τ u+

b

∥∥2
b
,

and then estimate the right-hand side by Q
(
u+ , u+

)
+

∥∥u+
∥∥2

in the same way as in (1.16)–(1.19).
This concludes the proof.

Remark 1.9 According to the theory by Kohn, we have

‖|u−‖|21 �
n∑

j=1

‖Mju‖2 + ‖u‖2 ≤ Q(u, u) + ‖u‖2 . (1.20)

The same result for u0 is easy; its argument is contained in the proof of Theorem 1.11 below. Since f(Λτ ) is
dominated by Λ1

τ and since Q
(
u+ , u+

)
� Q(u, u) + ‖u‖2

(
because

[
Q,Ψ+

]
is an error term

)
, then (1.14) is

equivalent to

‖f(Λτ )u‖2 � Q(u, u) + ‖u‖2 . (1.21)

In particular, (1.15) implies (1.21).

We introduce now the “Hodge-star” correspondence of forms

∧kT ∗ (0,1)M −→ ∧n−1−kT ∗ (0,1)M∑
uJ ω̄J �−→

∑
εJ J ′

(1,...,n) ūJ ω̄J ′ ,

where J ′ is the index complementary to J . We have

Proposition 1.10 Estimate (1.15) is equivalent to∥∥f(Λτ )ū−
b

∥∥2 � Qb

(
u−

b , u−
b

)
+

∥∥u−
b

∥∥2
for any ub ∈ C∞

c (M ∩ V )k

(1.22)
with k ≤ n − q − 1 (resp. k ≥ n − q − 1).

P r o o f. The proof is a direct consequence of the identity

u+
J = (ūJ )−.

Assume, without loss of generality, that q ≤ n − 1 − q. We have

Theorem 1.11 Let D be q-pseudoconvex or (n − q − 1)-pseudoconcave. Then∥∥f(Λτ )u+
∥∥2 � Q

(
u+ , u+)

+
∥∥u+

∥∥2
, u ∈ C∞

c (D̄ ∩ V )k with q ≤ k ≤ n − 1 − q (1.23)

if and only if

‖f(Λτ )ub‖2 � Q(ub, ub) + ‖ub‖2 , ub ∈ C∞
c (M ∩ V )k with q ≤ k ≤ n − 1 − q. (1.24)
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P r o o f. Estimate (1.23) implies (1.24) for u+
b and, according to (1.22), this implies (1.24) for u−

b (since the
interval [q, n− 1− q] is stable under complementation over n− 1). Thus, it only remains to estimate u0

b . We give
the detail of the proof of this result which was already announced in Remark 1.9 for u0 instead of u0

b . For this,
we remark that

∥∥Tu0
b

∥∥2 ≤
n−1∑
j=1

∥∥∂ω̄j
u0

b

∥∥2 +
n−1∑
j=1

∥∥∂ωj
u0

b

∥∥2
,

which is a consequence of the fact that for the symbols of the operators we have the estimate |σ(T )| �∑n−1
j=1 (|σ(∂ωj

)| + |σ(∂ω̄j
)|) over supp(ψ0). On the other hand, integration by parts yields

∥∥∂ωj
u0

b

∥∥2 ≤
∥∥∂ω̄j

u0
b

∥∥2 + ε
∥∥Tu0

b

∥∥2 + Cε

∥∥u0
b

∥∥2
.

It follows that

∥∥u0
b

∥∥2
1 �

n−1∑
j=1

∥∥∂ω̄j
u0

b

∥∥2 + ‖u0
b‖2

≤ Q
(
u0

b , u
0
b

)
+

∥∥u0
b

∥∥2 ≤ Q(ub, ub) + ‖ub‖2 ,

(1.25)

which follows from the fact that the commutator [Q,Ψ0] only introduces an error term.

As already pointed out in Remark 1.9, (1.24) implies in fact (1.21) for q ≤ k ≤ n − 1 − q.

Definition 1.12 Let D be q-pseudoconvex (-pseudoconcave) in a neighborhood of zo ; it is said to satisfy
(f -P -q) when there is a family of weights ϕ = ϕδ , absolutely bounded on Sδ ∩ V where Sδ is the δ strip
{z ∈ D : dist(z, ∂D) < δ} with the eigenvalues λϕ

j of ∂∂̄ϕ satisfying

q∑
j=1

λϕ
j −

qo∑
j=1

ϕjj ≥ f 2(δ−1) +
qo∑

j=1

|∂ωj
ϕ|2 for q > qo (resp. q < qo). (1.26)

Similarly as for (1.4) we have that if (1.26) holds for q, then it also holds for any k ≥ q. This is obvious
once one notices that (1.26) forces λϕ

q ≥ 0. For this reason, any estimate which comes from the combination
of (1.4) with (1.26) and which is true for q-forms is also true for k-forms for any k ≥ q. We recall now our
result of [10]: if D is q-pseudoconvex (-pseudoconcave) and satisfies (f -P -q) then (1.21) holds for any k ≤ q
(resp. k ≥ q). In particular, (1.23) holds for q ≤ k ≤ n − 1 − q. In combination with Theorem 1.11 this
yields

Theorem 1.13 Let D be q-pseudoconvex (-pseudoconcave) and satisfy (f -P -q); then

‖f(Λτ )ub‖2 � Q(ub, ub) + ‖ub‖2 for any ub ∈ C∞
c (M ∩ V )k

(1.27)
with q ≤ k ≤ n − 1 − q.

(Again, we are supposing q ≤ n − 1 − q; otherwise, we have to take in (1.27) k which satisfies n − 1 − q ≤
k ≤ q.) In the particular case in which (1.4) and (1.26) hold for qo = 0, Theorem 1.13 is contained in [16]
Theorem 1.4. A general condition of regularity without compactness, but still assuming qo = 0 in (1.4), is
discussed in [18].

Remark 1.14 Recall that according to Proposition 1.3, q-pseudoconvexity of D+ implies (n − 1 − q)-
pseudoconcavity of D−. However, (f -P -q) of D+ does not imply (f -P -(n − 1 − q)) for D−. This is why
(1.27) makes a full use of Theorem 1.11 and could not be obtained as a combination of Theorem 1.8 from the two
sides D+ and D− (

in addition to the estimate (1.25) for ‖u0
b‖2

1
)
. Instead, f(Λτ )-estimates are in correspondence

from D+ to D− (in complementary degrees). This follows from Theorem 1.8 and the equivalence of (1.15) with
(1.22).
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Example 1.15 We regain many results of the literature about subelliptic, superlogarithmic and compactness
estimates in CR manifolds. Here are a few new examples.

(i) Let D+ be “q-decoupled-pseudoconvex of finite type 2m”. The model is the domain defined by
2Re zn > h(z1 , . . . , zqo

) +
∑n−1

j=qo +1 |zj |2mj for ∂∂̄h ≤ 0; in this case the type is 2m = 2maxj mj . It
satisfies (f -P -q) for f = tε with ε = 1

m . The complement D− is (n− q− 1)-pseudoconcave and satisfies
(f -P -(n − 1 − q)). Thus (1.27) holds with f(Λτ ) = Λε in degree q ≤ k ≤ (n − q − 1).

(ii) Let D+ be defined by Re zn =
∑n−1

j=1 e
− 1

|z j |α or Re zn =
∑n−1

j=1 e
− 1

|x j |α . The domain D+ is pseudo-

convex and satisfies (f -P -1) for f = log t
1
α . The domain D− is (n − 2)-pseudoconcave and satisfies

(f -P -(n − 1 − q)). Thus (1.24) holds with f = log t
1
α for 1 ≤ k ≤ n − 1 − q. In particular, we have

superlogarithmic estimates when α < 1 and compactness when α ≥ 1. Note that in [14] the boundary is

less flat: it is defined by Re zn = e
1∑

j |z j |α with
∑

j at exponent.

All discussion we did has local character. In particular, Theorem 1.11 relates local estimates from D̄ to ∂D
and vice-versa. On the other hand, local estimates over a covering {Vj} of ∂D ⊂⊂ C

n yield global estimates.
For the tangential estimates this is obvious: one decomposes u =

∑
j ζju where

∑
j ζj ≡ 1 is a partition of the

unity associated to the covering, and applies the local estimates to each ζju. As for the estimates over D̄, one
supplements the ζj ’s by an additional ζo ∈ C∞

c (D) such that ζo +
∑

j ζj ≡ 1 on a neighborhood of D̄. Each
ζju is estimated by local estimates. On the other hand, ζou|∂D ≡ 0 and thus it enjoys elliptic estimates which are
stronger than f -estimates.

2 Regularity of the tangential ∂̄ system to a higher codimensional
generic submanifold

We consider a generic smooth submanifold M ⊂ C
n of codim(M) = l > 1; our discussion is here totally

different from Section 1. We denote by r = 0 for r = (r1 , . . . , rl) a system of independent defining functions
in a neighborhood V of a point zo ∈ M and by D = Dδ the “tube”

{
z ∈ C

n : r2 − δ2 < 0
}

and also
set rδ := r2 − δ2 . Our spaces of forms have now coefficients in D̄δ ∩ V . We choose a local basis {ωj} of
(1, 0)-forms such that ωn−l+k = ∂rk , k = 1, . . . , l; we also use the notation ω′

j when j < n − l + 1 and ω′′
j

when j ≥ n− l + 1. We use the similar notation ∂ω ′
j
, j < n− l + 1, and ∂ω ′′

j
, j ≥ n− l + 1, for the dual basis

of (1, 0) vector fields. This decomposition induces an obvious decomposition of the operators ∂̄ = (∂̄′, ∂̄′′) and
∂̄∗ = (∂̄′∗, ∂̄′′∗). We denote by Tj := i√

2

(
∂′′

ωj
− ∂′′

ω̄ j

)
and ∂rj

= 1√
2

(
∂′′

ωj
+ ∂′′

ω̄ j

)
the real tangential and normal

vector fields respectively. Similarly as in Section 1, we have that u ∈ D∂̄∗ if and only if uJ |∂Dδ
≡ 0 whenever

j ∈ J for j ≥ n− l+1; also, the basic estimate (1.3) applies without modification to ∂Dδ . We wish to relate now
forms on M to restrictions to M of forms on C

n in a neighborhood V of zo . Starting from a form ub in M which

belongs to
k
∧T 1,0M∗, we complete the set of its coefficients by putting (ub)jK = 0 for any j = n − l + 1, . . . n

and take an extension u that we call “tangential”, that is, with the property

ujK = 0 on V for any j = n − l + 1, . . . , n.

In particular,
∑

j ∂ωj
(rδ )ujK |∂Dδ

≡ 0; thus, if ∂̄∗ is the adjoint of ∂̄ over Dδ , we have u ∈ D∂̄∗ .We also suppose
that M is without boundary or that ub has compact support; by the above choice of vector fields we get

∂̄∗u = ∂̄′∗ub + O(|r|). (2.1)

We note that we have⎧⎪⎨
⎪⎩

u = ub + O(|r|),
∂′

ωj
u = ∂′

ωj
ub + O(|r|),

Tju = Tjub + O(|r|).

Among these extensions u, we have a choice of some distinguished ones with the property

∂′′
ω̄ i

u = O(|r|) i = n − l + 1, . . . , n. (2.2)
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This is a result of Whitney type whose proof can be found in [1]. Under this choice we have

∂̄u = ∂̄′ub + O(|r|). (2.3)

Recall again that, since ujK = 0 for any j ≥ n − l + 1, we have (2.1). We now denote by ∂̄b the system induced
by ∂̄ over forms tangential to M and by ∂̄∗

b its adjoint. We wish to translate an estimate for the system (∂̄, ∂̄∗) over
forms tangential to ∂Dδ into an estimate for the induced system on M . Here there are the key relations which are
a consequence of (2.1) and (2.3):⎧⎪⎪⎨

⎪⎪⎩
‖u‖2

Dδ
= δl‖ub‖2

M + O
(
δl+1

)
,∥∥∂̄u

∥∥2
Dδ

= δl
∥∥∂̄bub

∥∥2
M

+ O
(
δl+1

)
,∥∥∂̄∗u

∥∥2
Dδ

= δl
∥∥∂̄∗

b ub

∥∥2
M

+ O
(
δl+1

)
.

(2.4)

In particular, with the notation QDδ
(u, u) =

∥∥∂̄u
∥∥2

Dδ
+

∥∥∂̄∗u
∥∥2

Dδ
and Qb(ub, ub) =

∥∥∂̄bub

∥∥2
b

+
∥∥∂̄∗

b ub

∥∥2
b
, the

estimate

‖f(Λτ )u‖2
Dδ

� QDδ
(u, u) + ‖u‖2

Dδ
,

implies

‖f(Λτ )ub‖2
b � Qb(ub, ub) + ‖ub‖2

b .

We now make the geometric assumtion on M which makes the boundary integrals positive.
For zo ∈ M we identify Ṙ

l := R
n \ {0} with the conormal space

(
Ṫ ∗

M C
n
)
zo

by

η �−→ ∂rη |zo
:=

l∑
j=1

ηj∂rj |zo
.

We denote by Lη
M the Levi form ∂∂̄rη (z)|T C

z M , by λη
1 ≤ λη

2 ≤ · · · its ordered eigenvalues and by sη
+ , sη

− and
sη

0 the numbers of those which are > 0, < 0 and = 0 respectively.

Definition 2.1 We say that the higher codimensional submanifold M is q-pseudoconvex (resp.
-pseudoconcave) at zo when there is a bundle Vqo

(z ,η ) ⊂ T 1,0
z M of rank qo < q (resp. qo > q) homogeneous in η,

say the bundle of the first qo coordinate tangential vector fields ∂ω1 , . . . ∂ωq o
, such that

q∑
j=1

λη
j (z) −

qo∑
j=1

rη
jj (z) ≥ 0 for (z, η) ∈ (M ∩ V ) × Ṙ

l , (2.5)

where V is a neighborhood of zo .

Remark 2.2 The coefficients of the ωj , j ≤ n − l, may be singular at η = 0 but they are assumed to be
“tangentially regular” in the sense that their derivatives ∂ωj

, ∂ω̄j
, j ≤ n− l, and ∂ωj

− ∂ω̄j
, j = n− l + 1, . . . , n

are bounded and, instead, only their normal derivatives ∂ωj
+ ∂ω̄j

, j = n − l + 1, . . . , n, may be unbounded. As
for the coefficients of the ωj , j ≥ n − l − 1, they are assumed to be regular.

The boundary of the tube ∂Dδ keeps track of the assumption of q-pseudoconvexity (resp. q-pseudoconcavity)
of M . Similarly as in the case of codimension l = 1, it is easy to check that we have now (II)Dδ

≥ −O(δ)|u|2 .
As before, the crucial point has become to make the right choice of the ϕ in order to take advantage of (I)Dδ

.

Definition 2.3 Let the higher codimensional submanifold M be q-pseudoconvex (resp. -pseudoconcave) and
suppose that there is a family of weights ϕ = ϕδ for δ → 0 which fulfill (1.26) for any z ∈ Dδ ∩ V . We then say
that M satisfies (f -P -q) (resp. (f -P -q)) in a neighborhood of zo .

We discuss an example. We divide coordinates in C
n as z = (z′, z′′, z′′′, ziv , zn−1 , zn ), suppose that each

group z′, z′′, z′′′ and ziv has a number a of components and consider the 2-codimensional manifold M defined
by {

2Re zn−1 = |z′|2m − |z′′|2m − |z′′′|2m + |ziv |2m ,

2Re zn = |z′|2m − |z′′|2m + |z′′′|2m − |ziv |2m .
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One readily checks that M is q-pseudoconvex for q = n−a and q-pseudoconcave for q = a−1 in a neighborhood
of zo = 0. We write a point z ∈ Dδ as z = s + t∂rη (s) for (s, η, t) ∈ M × Sl−1 × (0, δ) and use this triplet as
new system of coordinates. We denote z±j = zη ±

j the directions in which ∂∂̄rη is ≷ 0. We choose our family of
weights as

ϕδ = − log
(
− |r|2 + 2δ2) +

∑
j

log
(
|z±j |2 + δ

1
m

)
.

We omit the normalization which makes the weights bounded. We have the estimate

∂z+
j
∂z̄+

j
ϕδ ≥

|z+
j |2m−2

(−|r|2 + 2δ2)
+

δ
1
m(

|z+
j |2 + δ

1
m

)2

=: A + B,

where the second line serves as a definition of A and B.
Observe that in Dδ we have 2δ2 ≤ |r|2 + 2δ2 < 3δ2 . Now, if

∣∣z+
j

∣∣2 < δ
1
m , then

B � δ−
1
m .

If, instead,
∣∣z+

j

∣∣2 ≥ δ
1
m , then

A � δ−1− 1
m .

Thus (f -P -q) is satisfied for f
(
δ−1

)
= δ−ε with ε = 1

2m (more precisely with any ε < 1
2m because of the

normalization which is omitted). Then ε-subelliptic estimates hold by Theorem 2.6 below.
We first see what the basic estimates produce.

Theorem 2.4 Let M be q-pseudoconvex (-pseudoconcave) and satisfy (f -P -q) at zo . Let q ≤ k (k ≤ q); then
for the extensions u of the forms ub in degree k with support in a neighborhood V of zo in C

n , we have

f 2(δ−1)‖u‖2
Dδ

� QDδ
(u, u) + ‖u‖2

Dδ
. (2.6)

P r o o f. By looking at the terms in the right of (1.3) and using (1.26) for ϕ̃δ
ij in the first term and the

q-pseudoconvexity or -pseudoconcavity for rij in the second, we get

f 2(δ−1)‖u‖2
H 0

ϕ (Dδ ) � (I)Dδ
+ (II)Dδ

. (2.7)

At this point, we need to modify our weights by taking the composition θ ◦ ϕ̃δ for θ = 1
2 ec(t−1) for a suitable c

so that we can replace ∂̄∗
ϕ by ∂̄∗ (and H0

ϕ - by H0-norms). By following word by word the argument of Theorem
3.2 of [9] we can see that (2.7) implies (2.6).

We choose now a partition of the unity
∑

k p2
k = 1 where the pk ’s are a sequence of functions with pk ≡ 0 in

R
+ \

(
2k−1 , 2k+1

)
for k ≥ 1 and p0 ≡ 0 in [2,+∞). We can also choose pk so that

|p′k | ≤ C2−k .

Associated to these functions there are the pseudodifferential operators

Pku = (Fτ )−1(pk (|ξa |)Fτ u);

this definition does not differ from that of f(Λτ ). We remark that the action of f(Λτ ) and Pk is obviously defined
not only over u but also over ub . We have the following result which is a slight generalization of the corresponding
statement of Catlin [3].

Proposition 2.5 We have

‖f(Λτ )ub‖2
b �

∑
k

f
(
2k

)2‖Pkub‖2
b . (2.8)
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We refer to [3] for the proof. In particular, by the choice f = 1, we have ‖ub‖2
b =

∑
k ‖Pkub‖2

b ; in the same
way, ‖u‖2

Dδ
=

∑
k ‖Pku‖2

Dδ
.

We have also to recall the estimates for commutators which are the same as in [3]. Let T be a vector field
tangential to M and g a function in C∞

c (M); then, for any ub ∈ C∞
c (M):∑

k

‖[T, Pk ]ub‖2
H 0 (M ) � ‖ub‖2

H 0 (M ) , (2.9)

∑
k

‖[g, Pk ]ub‖2
H 0 (M ) ≤ ‖ub‖2

H −1 (M ) . (2.10)

We are ready for the main theorem of this section.

Theorem 2.6 Let l > 1 and assume that M is q-pseudoconvex (resp. -pseudoconcave) and satisfies (f -P -q)
in a neighborhood of zo . Then for any k such that q ≤ k (resp. k ≥ q), we have

‖f(Λτ )ub‖2
b � Qb(ub, ub) + ‖ub‖2

b , for ub ∈ C∞
c (M ∩ V )k . (2.11)

As already noticed in Section 1, the main interest in (2.11) is when f
(
δ−1

)
has a sufficiently high rate to

infinity when δ → 0 such as f = tε or f > k log t for t > ck which yield subelliptic and superlogarithmic
estimates respectively.

P r o o f. We decompose norms according to Proposition 2.5

‖f(Λτ )ub‖2
b �

∑
k

f
(
2k

)2‖Pkub‖2
b

�
∑

2−k ≥δ 1−ε

(
f
(
2k

)2
δ−l‖Pku‖2

Dδ
+ O(δ)f

(
2k

)2)
(2.12)

+
∑

2−k <δ 1−ε

(
f
(
2k

)23kl‖Pku‖2
D3−k

+ O(3−k )f
(
2k

)2
)
.

Since f(t) � t
1
2 , then∑

2−k ≥δ 1−ε

O
(
δ1−ε

)
f
(
2k

)2 +
∑

2−k <δ 1−ε

O
(
3−k

)
f
(
2k

)2 = μ(δ),

where the notation μ is used to denote terms which are infinitesimal. In the first sum of the second line, owing to
2−k ≥ δ, we use the estimate f

(
2k

)2 ≤ f
(
δ−1

)2
. Next, using the (f -P -q) property and Theorem 2.4, we get the

estimate ⎧⎨
⎩f

(
δ−1

)2‖Pku‖2
Dδ

≤ QDδ
(Pku, Pku) + ‖Pku‖2

Dδ
,

f
(
2k

)2‖Pku‖2
D2−k

≤ QD2−k
(Pku, Pku) + ‖Pku‖2

D2−k
.

(2.13)

We wish to replace QDδ
(Pku, Pku) with

∥∥Pk ∂̄u
∥∥2

Dδ
+

∥∥Pk ∂̄∗u
∥∥2

Dδ
taking into account the errors which come

from the commutators that we denote by dots. Now, for the two sums in the second line of (2.12), we have∑
2−k ≥δ

· +
∑

2−k <δ

· �
∑

2−k ≥δ

δ−l
(∥∥Pk ∂̄u

∥∥2
Dδ

+
∥∥Pk ∂̄∗u

∥∥2
Dδ

)
(2.14)

+
∑

2−k <δ

2kl
(∥∥Pk ∂̄u

∥∥2
D2−k

+
∥∥Pk ∂̄∗u

∥∥2
D2−k

)
+ μ(δ) + · · ·

Also, the analogous of (2.12) for f ≡ 1 with a quick sight to (1.6), shows that the two sums in the right of (2.14)
equal

∥∥∂̄′ub

∥∥2
H 0 (M ) +

∥∥∂̄′∗u
∥∥2

H 0 (M ) + μ(δ). This yields

∑
2−k ≥δ

· +
∑

2−k <δ

· � Qb(ub, ub) + ‖ub‖2
b + μ(δ) + · · · (2.15)
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We come now to estimate the errors from commutators which are denoted by dots. Now, [∂̄, Pk ] and [∂̄∗, Pk ] can
be represented as expressions of the type

[aN + bT + c, Pk ] for suitable functions a, b and c.

The commutation by the c’s are 0-order operators. As for bT , we have

[bT, Pk ] = [b, Pk ]T + b[T, Pk ]

and use the commutation relations (2.9) and (2.10). When taking summation over k, the contribution of these
terms is estimated by

‖Tub‖2
H −1 (M ) + ‖ub‖2

H 0 (M ) + O(δ).

As for aN , we notice that N = ∂′′
ω̄o

+ T , where ∂′′
ω̄o

is a suitable combination of the ∂′′
ω̄ j

’s and that T and the
Pk ’s commute. Also, ∂′′

ω̄o
u = O(δ) by our choice of u. Thus, [N,Pk ] = O(δ) and therefore

[aN,Pk ] = [a, Pk ]N + O(δ) = [a, Pk ](∂′
ω̄o

+ T ) + O(δ).

Hence the error from the first commutator is estimated up to a constant by∥∥∂′
ω̄o

ub

∥∥2
H −1 (M ) + ‖Tub‖2

H −1 (M ) + O(δ),

which is in turn estimated by ‖ub‖2
H 0 (M ) + O(δ). By combining (2.12) with (2.15) and by using the above

estimates of the commutator error terms, we get (2.11). This concludes the proof of the theorem.
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