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Abstract

For a domain D of C
n which is weakly q-pseudoconvex or q-pseudoconcave, we give a sufficient condi-

tion for subelliptic estimates for the ∂̄-Neumann problem. This extends to domains which are not necessarily
pseudoconvex, the results and the techniques of Catlin (1987) [3].
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1. Introduction

Let D be a bounded domain of C
n with smooth boundary. For a form f of degree k which

satisfies ∂̄f = 0, to solve the ∂̄-Neumann problem consists in finding a form of degree k −1 such
that {

∂̄u = f,

u is orthogonal to Ker ∂̄ .
(1.1)
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The main interest relies in the regularity at the boundary for this problem, that is, in stating under
which condition u inherits from f the smoothness at the boundary ∂D (it certainly does in the
interior). Let ∂̄∗ be the formal adjoint of ∂̄ under the choice of a smoothly varying hermitian
metric on D̄. Related to (1.1) is the problem⎧⎪⎨⎪⎩

(
∂̄ ∂̄∗ + ∂̄∗∂̄

)
u = f,

u ∈ D∂̄ ∩ D∂̄∗ ,

∂̄u ∈ D∂̄∗ , ∂̄∗u ∈ D∂̄,

(1.2)

where D∂̄∗ and D∂̄ are the domains of ∂̄∗ and ∂̄ respectively. This is a non-elliptic boundary value
problem; in fact, the Kohn Laplacian � = ∂̄ ∂̄∗ + ∂̄∗∂̄ itself is elliptic but the boundary conditions
which are imposed by the membership to D� are not. If (1.1) has a solution for every f , then one
defines the ∂̄-Neumann operator N := �−1; this commutes both to ∂̄ and ∂̄∗. If we then return
back to (1.1) and define u := ∂̄∗Nf we see that

∂̄u = ∂̄ ∂̄∗Nf

= �Nf = f.

Also, ∂̄∗u = ∂̄∗∂̄∗Nf = 0 and therefore u is orthogonal to Ker ∂̄ . One of the main methods used
in investigating the regularity at the boundary of the solutions of (1.1) consists in certain a priori
subelliptic estimates. We recall the tangential Sobolev norm |||u|||2s , s ∈ R, defined in [6, p. 36];

recall that when s is integer, then |||u|||2s + ∑s
j=0 |||∂j

ν u|||2−j+s is the usual norm ‖u‖2
s (where ∂ν is

the normal derivative).

Definition 1.1. The ∂̄-Neumann problem is said to satisfy a subelliptic estimate of order ε > 0 at
zo ∈ D̄ on k-forms if there exist a positive constant c and a neighborhood V � zo such that

|||u|||2ε � c
(‖∂̄u‖2 + ∥∥∂̄∗u

∥∥2 + ‖u‖2
0

)
for any u ∈ C∞

c (D̄ ∩ V )k ∩ D∂̄∗ . (1.3)

By Garding’s inequality, subelliptic estimates of order 1, that is, elliptic estimates hold in the
interior of D. So our interest is confined to the boundary ∂D. When the domain D is pseudo-
convex, a great deal of work has been done about subelliptic estimates (cf. [2–4,8,11–15]). The
most general results concerning this problem have been obtained by Kohn [14] and Catlin [3].

In [14], Kohn gave a sufficient condition for subellipticity over pseudoconvex domains with
real analytic boundary by introducing a sequence of ideals of subelliptic multipliers.

In [3], Catlin proved, regardless whether ∂D is real analytic or not, that subelliptic estimates
hold for k-forms at zo if and only if a certain number Dk(zo) is finite. Note that the definition of
Dk(zo) in [3] is closely related to that of �k(zo) introduced by D’Angelo [5]. In particular, when
k = 1, these numbers do coincide.

However, not much is known in the case when the domain is not necessarily pseudoconvex
except from the results related to the celebrated Z(k) condition which characterizes the existence
of subelliptic estimates for ε = 1

2 according to Hörmander [7] and Folland and Kohn [6]. Some
further results, mainly related to the case of forms of top degree n − 1 have been obtained by
Ho [9].

We exploit here the full strength of Catlin’s method to study subellipticity on domains which
are not pseudoconvex. Let ∂D be defined by r = 0 with r < 0 on the side of D and let T C∂D



1940 T.V. Khanh, G. Zampieri / Advances in Mathematics 228 (2011) 1938–1965
be the complex tangent bundle to ∂D. We use the following notations: L∂D = ∂∂̄r|T C∂D is the
Levi form of the boundary, s+

∂D , s−
∂D , s0

∂D are the numbers of eigenvalues of L∂D which are > 0,
< 0, = 0 respectively and finally λ1 � λ2 � · · · � λn−1 are its ordered eigenvalues. We choose
an orthonormal basis of (1,0)-forms ω1, . . . ,ωn = ∂r , the dual basis L1, . . . ,Ln of (1,0) vector
fields, and denote by (rij )i,j�n−1 the matrix of L∂D in the above basis. We take a pair of indices
1 � q � n − 1 and 0 � qo � n − 1 such that q �= qo. We assume that there is a bundle V qo ⊂
T 1,0∂D of rank qo with smooth coefficients in a neighborhood V of zo, say the bundle spanned
by L1, . . . ,Lqo , such that

q∑
j=1

λj −
qo∑

j=1

rjj � 0 on ∂D ∩ V. (1.4)

Definition 1.2.

(i) If q > qo we say that D is q-pseudoconvex at zo.
(ii) If q < qo we say that D is q-pseudoconcave at zo.

What we first remark is that (1.4) for q > qo implies λq � 0; hence (1.4) is still true if we
replace the first sum

∑q

j=1 · by
∑k

j=1 · for any k such that q � k � n − 1. Similarly, if it holds
for q < qo, then λq+1 � 0 and hence it also holds with q replaced by k � q in the first sum.

Remark 1.3. An “adapted frame” is a basis of (1,0)-forms, not necessarily orthonormal, in
which ωn = ∂r . We remark that q-pseudoconvexity/concavity is invariant under a change of an
orthonormal basis but not of an adapted frame. In fact, not only the number, but also the size of
the eigenvalues comes into play. Likewise, ∂̄∗ and hence also the subelliptic estimates, depend
on the choice of the frame but D∂̄∗ is invariant as far as the frame is “adapted to the boundary”.
Thus, when we say that ∂D is q-pseudoconvex/concave, we mean that there is an adapted frame
in which (1.4) is fulfilled; the same is meant when we deal with (1.2). Sometimes, it is more
convenient to put our calculations in an orthonormal frame. In this case, it is meant that the
metric has been changed so that the adapted frame has become orthonormal.

Example 1.4. It is readily seen that for qo = s− + s0 and for any q > qo (resp. qo = s− and any
q < qo), (1.4) is satisfied in a suitable local boundary frame. Thus any index q /∈ [s−, s− + s0]
satisfies (1.4) for either choice of qo. Note that s− + s0 = n − 1 − s+ and thus q /∈ [s−, n − 1 −
s+] coincides, in the terminology of Folland and Kohn, with condition Z(q). Instead, we use
the terminology of strong q-pseudoconvexity (concavity) when q > n − 1 − s+ (resp. q < s−)
because this is the same as to ask that (1.4) holds with strict inequality.

Example 1.5. The interesting new point about (1.4) is when weak inequality occurs, that is, when
q ∈ [s−, s− + s0]. Thus, for instance, let s−(z) be constant for z ∈ ∂D close to zo; then (1.4)
holds for qo = s− and q = s− + 1. In fact, we have λs− < 0 � λs−+1, and therefore the negative
eigenvectors span a bundle V qo for qo = s− that, identified to the span of L1, . . . ,Lqo , yields∑qo+1

j=1 λj (z) �
∑qo

j=1 rjj (z). Note that a pseudoconvex domain is characterized by s−(z) ≡ 0,
thus, it is 1-pseudoconvex in our terminology.

In the same way, if s+(z) is constant at zo, then λs−+s0 � 0 < λs−+s0+1. Then, the eigenspace
of the eigenvectors � 0 is a bundle which, identified to the span of L1, . . . ,Lqo , yields (1.4) for
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q = qo − 1. In particular a pseudoconcave domain, that is a domain which satisfies s+ ≡ 0, is
(n − 2)-pseudoconcave in our terminology.

Remark 1.6. The notion of q-pseudoconvexity was introduced in [16] and further refined in [1]
in order to discuss existence of C∞(D̄) solutions to the equation ∂̄u = f . Though the notion
of q-pseudoconcavity is formally symmetric to q-pseudoconvexity, it is useless in the existence
problem. The reason is intrinsic. Existence is a “global” problem but bounded domains are never
globally q-pseudoconcave. Owing to the local nature of subelliptic estimates and the related
hypoellipticity of ∂̄ , here is the first occurrence where q-pseudoconcavity comes successfully
into play.

We define the δ-strip of D along the boundary by Sδ = {z ∈ D: r(z) > −δ}. The main result
in this paper is the following.

Theorem 1.7. Let (1.4) be satisfied in a neighborhood of zo for q > qo (resp. q < qo) and suppose
that for any small δ > 0 there exists a weight φ = φδ in C2(S̄δ ∩ V ) with |φ| � 1, such that, if
λ1(z) � λ2(z) � · · · are the ordered eigenvalues of the Levi form ∂∂̄φ = (φij ), we have

q∑
j=1

λ
φ
j (z) −

qo∑
j=1

φjj (z) � c

(
δ−2ε +

qo∑
j=1

∣∣φj (z)
∣∣2

)
,

for any z ∈ S̄δ ∩ V and for c > 0 independent of δ. (1.5)

Then, ε-subelliptic estimates at zo hold for forms of degree k � q (resp. k � q).

The proof is the content of Section 3.

Remark 1.8. Similarly as observed before Remark 1.3, we notice that if condition (1.5) holds for
forms in some degree q > qo (resp. q < qo), then it also holds in any degree k � q (resp. k � q).
In fact, (1.5) forces λ

φ
q � 0 (resp. λ

φ
q � 0) which implies λ

φ
k � 0 for any k � q (resp. λ

φ
k � 0 for

any k � q).

It is not restrictive to assume, as we will do all throughout the paper, that Lj |zo = ∂zj
for

any j . We have a large class of q-pseudoconvex/concave domains to which Theorem 1.7 applies
and produces subelliptic estimates.

Theorem 1.9. Let D be the “rigid” domain defined, in a neighborhood of zo = 0, by r < 0
with r = 2 Re zn + h(z1, . . . , zqo ) for (hij ) � 0 (resp. r = 2 Re zn + h(zqo+1, . . . , zn−1) for
(hij ) � 0); thus D is q-pseudoconvex in a neighborhood of zo = 0 for any q � qo + 1 (resp. q-
pseudoconcave for any q � qo − 1). (Here, as always, (hij ) is the matrix of ∂∂̄h.) Let hj (zj ) for
j = q, . . . , n− 1 (resp. j = 1, . . . , q + 1) be real positive subharmonic, non-harmonic, functions
of vanishing order 2mj with respect to |zj | that, by reordering, we may assume to be decreasing

. . .mj � mj+1 . . . (resp. increasing . . .mj � mj+1 . . .). Set g := ∑n−1
j=q hj (resp. g := ∑q+1

j=1 hj ),

put r̃ := r + g (resp. r̃ := r − g) and define D̃ by r̃ < 0.
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Then subelliptic estimates hold for D̃ at zo = 0 in degree k � q (resp. k � q) of any order
< εk for εk := 1

2mk
(resp. εk := 1

2mk+1
). In both cases, when εk = 1

2 , we have in fact estimates

including for order 1
2 .

The proof is given in Section 4. When εk = 1
2 it means that Z(k) is satisfied; thus we regain,

for these particular domains, a classical result by Hörmander and Folland and Kohn. We will use
the notation hj ∼= |zj |2mj for a function hj which has exactly vanishing order 2mj in |zj | at 0.

Example 1.10. Let a and b be integers between 1 and n − 1 with a < b and let D be defined by

2 Re zn −
a∑

j=1

|zj |2mj +
n−1∑
j=b

|zj |2mj < 0,

where the two groups of indices {m1, . . . ,ma} and {mb, . . . ,mn−1} have increasing and decreas-
ing order respectively. Then subelliptic estimates hold in degree k < a of order ε < 1

2mk+1
and in

degree k � b of order ε < 1
2mk

.

Corollary 1.11. Let D be a domain in C
n defined by

2 Re zn + g + |zn−1|2m < 0

where g = g(z1, . . . , zn−1) is a real C∞-function such that gn−1n−1 = o(|zn−1|2(m−1)). Then
subelliptic estimates of order ε < 1

2m
hold at zo = 0 for any (n − 1)-form.

Proof. Put r := 2 Re zn + g + 1
2 |zn−1|2m; we claim that r satisfies (1.4) for qo = n − 2 and

q = n − 1. In fact

n−1∑
j=1

λj −
n−2∑
j=1

rjj =
(

1

2
|zn−1|2(m−1) + o

(|zn−1|2(m−1)
))

which is � 0. We are thus in position to apply Theorem 1.9. �
Example 1.12. Let D be defined by

2 Re z3 − ∣∣z2
1 + z3

2

∣∣2 ± |z1|2m + |z2|4 < 0 or 2 Re z3 − ∣∣z2
1z

3
2

∣∣2 ± |z1|2m + |z2|4 < 0;

then subelliptic estimates hold at zo = 0 on 2-forms for any order ε < 1
4 .

Remark. Corollary 1.11 is more general than Corollary 3.4 in [10] where g cannot depend on
zn−1.

We decompose the coordinates as z = (z′, z′′, zn) ∈ C
qo × C

n−qo−1 × C. The conclusion con-
tained in Theorem 1.9 is sharp.
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Theorem 1.13.

(i) Let r = 2 Re zn − Q(z′) for Q � 0 and set r̃ = r + ∑n−1
j=qo+1 |zj |2mj with mj � mj+1 � · · ·

(decreasing) and with Q = O(|z′|2mqo+1). If ε-subelliptic estimates at zo = 0 hold in degree
k � qo + 1 for the standard metric, then we must have ε � 1

2mk
.

(ii) Let r = 2 Re zn +Q(z′′) for Q � 0 and set r̃ = r −∑qo

j=1 |zj |2mj with mj � mj+1 � · · · (in-

creasing). We also assume m1 � mqo−1
2 + 1

4 and Q = O(|z′′|2mqo−1). If ε-subelliptic estimates
hold at zo = 0 in degree k � qo − 1, then ε � 1

2mk
.

The proof is given in Section 5. We point out that the metric has not been changed: the same
conclusion in other metrics would be easier. Necessary conditions for subellipticity in degree
k = n − 1 are also stated, for a modified metric, in [9].

The paper is structured as follows. In Section 2 we derive some basic inequalities which are
useful for the proof of Theorem 1.7. Sections 3, 4 and 5 are devoted to the proof of Theorem 1.7,
Theorem 1.9 and Theorem 1.13 respectively.

2. The basic estimates on q-pseudoconvexity/concavity

In this section we prepare some inequalities which are needed for the subelliptic estimates
of our Theorem 1.7. The key technical tool of our discussion are the so-called Hörmander–
Kohn–Morrey estimates contained in the following proposition. Let D be a domain with smooth
boundary defined by r = 0 in a neighborhood of zo. Let ω1, . . . ,ωn = ∂r be an orthonormal basis
of (1,0)-forms and L1, . . . ,Ln the dual basis of (1,0) vector fields.

For 0 � k � n, we write a general k-form u as

u =
∑′

|J |=k

uJ ω̄J ,

where
∑′ denotes summation restricted to ordered multiindices J = {j1, . . . , jk} and where

ω̄J = ω̄j1 ∧ · · · ∧ ω̄jk
. When the multiindex is no more ordered, it is understood that the co-

efficient uJ is an antisymmetric function of J ; in particular, if J decomposes into jK , then
ujK = sign

(
J

jK

)
uJ . We define 〈u,u〉 by 〈u,u〉 = |u|2 = ∑′

|J |=k|uJ |; this definition is indepen-
dent of the choice of orthonormal basis ω1, . . . ,ωn. The coefficients of our forms are taken in
various spaces Λ such as C∞(D̄),C∞(D),C∞

c (D̄),L2(D) and the corresponding spaces of k-
forms are denoted by Λk . Though our a priori estimates are proved over smooth forms, they are
stated in Hilbert norms. Thus, let ‖u‖ be the H 0 = L2 norm and, for a real function φ, let the
weighted L2-norm be defined by

‖u‖2
H 0

φ

:=
∑′

|J |=k

∫
D

e−φ |uJ |2 dv

where dv is the element of volume in C
n. We begin by noticing that ∂̄ is closed, densely defined.

Also, its domain D ¯ certainly contains smooth forms and its action is expressed by
∂
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∂̄u =
∑′

|K|=k−1

∑
ij=1,...,n

i<j

(L̄iujK − L̄j uiK)ω̄i ∧ ω̄j ∧ ω̄K + · · · , (2.1)

where dots denote terms in which no differentiation of u occurs.
Let ∂̄∗ be the adjoint of ∂̄ . The operator ∂̄∗ is still closed, densely defined but it is no more

true that smooth forms belong to D∂̄∗ . For this, they must satisfy certain boundary conditions.
Namely, integration by parts shows that a form u of degree k cannot belong to D∂̄∗ unless

n∑
j=1

∫
∂D

e−φLj (r)ujKψK ds = 0 for any K and any ψK of degree k − 1.

This means that
∑n

j=1 Lj(r)ujK |∂D ≡ 0 for any K . (Here ds is the element of hypersurface
in ∂D.) Since we have chosen our basis with the property Lj (r)|∂D = κjn (the Kronecker’s
symbol), we then conclude

u belongs to D∂̄∗ iff uJ |∂D = 0 whenever n ∈ J. (2.2)

We decompose any form as u = uτ + uν where uτ (resp. uν ) is the “tangential” (resp. “normal”)
component which collects the coefficients uJ such that n /∈ J (resp. n ∈ J ). Thus we have u ∈
D∂̄∗ precisely when uν |∂D ≡ 0; in particular, by Garding’s inequality, uν enjoys elliptic estimates

and is therefore negligible in our discussion. Let Lφ
j be the formal H 0

φ -adjoint of −Lj ; on a

tangential form the action of the Hilbert adjoint of ∂̄ , coincides with that of its “formal adjoint”
and is therefore expressed by a “divergence operator”:

∂̄∗
φu = −

∑′

|K|=k−1

∑
j

Lφ
j (ujK)ω̄K + · · · for any u ∈ D∂̄∗, (2.3)

where dots denote an error term in which u is not differentiated and φ does not occur. By de-
veloping the equalities (2.1) and (2.3) by means of integration by parts, we get the proof of the
following crucial result.

Proposition 2.1. Let D be a smooth domain in a neighborhood of zo and fix an arbitrary index
qo with 0 � qo � n − 1. Then for a suitable C > 0 and any u ∈ C∞

c (D̄ ∩ V )k ∩ D∂̄∗ , we have

‖∂̄u‖2
H 0

φ

+ ∥∥∂̄∗
φu

∥∥2
H 0

φ
+ C‖u‖2

H 0
φ

�
∑′

|K|=k−1

n∑
i,j=1

∫
D

e−φφijuiKūjK dv −
qo∑

j=1

∫
D

e−φφjj |u|2 dv

+
∑′

|K|=k−1

n−1∑
i,j=1

∫
∂D

e−φrij uiKūjK ds −
qo∑

j=1

∫
∂D

e−φrjj |u|2 ds

+ 1

2

(
q0∑

j=1

∥∥Lφ
j u

∥∥2
H 0

φ
+

n∑
j=qo+1

‖L̄ju‖2
H 0

φ

)
. (2.4)
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We refer for instance to [17, Proposition 1.9.1] for the proof of Proposition 2.1. We note that
there is no relation between k and qo in the above inequality and that C and α are independent
of φ (and u). By choosing φ so that e−φ is bounded, we may remove the weight functions in
(2.4) to get some inequalities that are useful for the proof of Theorem 1.7. We use the notation
Q(u,u) = ‖∂̄u‖2 + ‖∂̄∗u‖2. We also use the symbols � and � to denote an estimate up to a
constant which is independent of relevant parameters and ∼= for the combination of � and �.

We have already introduced the notation Sδ for the strip {z ∈ D: r(z) > −δ}.

Theorem 2.2. Assume that the hypotheses of Theorem 1.7 be fulfilled. Then, for a suitable neigh-
borhood V of zo and for δ small, we have

‖u‖2 + δ−2ε

∫
Sδ/2

|u|2 dv +
qo∑

j=1

‖Lju‖2 +
n∑

j=qo+1

‖L̄j u‖2 � Q(u,u) (2.5)

for any u ∈ C∞
c (D̄ ∩ V )k ∩ D∂̄∗ with k � q (resp. k � q) when q > qo (resp. q < qo).

Proof. To begin the proof, we have to rephrase (1.4) and (1.5) in terms of the action of (rij ) and
(φij ) over a form u. Precisely, we have that (1.4) for q > qo (resp. q < qo) is equivalent to

∑′

|K|=k−1

n−1∑
i,j=1

rij u
τ
iK ūτ

jK −
∑′

|K|=k−1

qo∑
i=1

rjj
∣∣uτ

J

∣∣2 � 0

on ∂D ∩ V for any uτ of degree k � q > qo (resp. k � q < qo). (2.6)

This claim is readily proved once one remarks that u having degree k, the first sum in the left
side of (2.6) is �

∑k
j=1 λj |uτ |2 (cf. also [17, formula (1.9.23)]). In the same way we can check

that (1.5) for q > qo (resp. q < qo) is equivalent to

∑′

|K|=k−1

n∑
i,j=1

φij (z)u
τ
iK ūτ

jK −
qo∑

j=1

φjj (z)
∣∣uτ

∣∣2 � δ−2ε
∣∣uτ

∣∣2 +
qo∑

j=1

∣∣φj (z)
∣∣2∣∣uτ

∣∣2
,

for z ∈ S̄δ ∩ V and uτ of degree k � q > qo (resp. k � q < qo). (2.7)

Next, we have to extend φ = φδ from S̄δ ∩V to D̄ ∩V , keeping (1.5) in a half strip S̄δ/2 ∩V and
satisfying, for a suitable c > 0 and for k � q > qo (resp. k � q < qo),

∑′

|K|=k−1

n−1∑
ij=1

φiju
τ
iK ūτ

jK −
qo∑

j=1

φjj

∣∣uτ
∣∣2 �

{
c
∑′

|K|=k−1 |∂φ · uτ·K |2 in D ∩ V ,

cδ−2ε |uτ |2 in S̄δ/2 ∩ V .
(2.8)

For this, we first remark that by an additive constant we can make φ positive and by a multi-
plicative one we can renormalize so that 0 � φ � 1. Next, we take a smooth decreasing cut-off
function θ satisfying θ ≡ 1 on [0, 1

2 ] and θ ≡ 0 on [ 2
3 ,1], and define φ̃ := θ(− r

δ
)φ. Recall that

Ljr = 0 for j � n − 1 and uτ ≡ 0. Then, over such forms we have
nK
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( ∑′

|K|=k−1

n−1∑
i,j=1

φ̃ij u
τ
iK ūτ

jK −
qo∑

j=1

φ̃jj

∣∣uτ
∣∣2

)

� θ ·
( ∑′

|K|=k−1

n∑
i,j=1

φiju
τ
iK ūτ

jK −
qo∑

j=1

φjj

∣∣uτ
∣∣2

)
. (2.9)

In fact, if i and j denote derivation in Li and L̄j respectively, we have(
θ

(
− r

δ

)
φ

)
ij

= θ̈
rirj

δ2
φ − θ̇

φ

δ
rij − θ̇

rj φi

δ
− θ̇

riφj

δ
+ θφij

= −θ̇
φ

δ
rij + θφij on a tangential form uτ . (2.10)

Since −θ̇ � 0, then (2.10) implies (2.9). Note that ∂φ̃ = −θ̇ ∂r
δ

φ+θ∂φ and recall that ∂r ·uτ ≡ 0.
It follows from (1.5) that φ̃ satisfies (2.8) for a suitable c > 0; we keep denoting by φ this
modified weight φ̃.

We use now twice Proposition 2.1 and in both cases, owing to the assumption of q-
pseudoconvexity (resp. q-pseudoconcavity) we have the crucial fact that the boundary integrals
are � 0 for any k � q > qo (resp. k � q < qo). We first use Proposition 2.1 under the choice
φ ≡ 0 and get

Q(u,u) + C‖u‖2 �
qo∑

j=1

‖Lju‖2 +
n∑

j=qo+1

‖L̄ju‖2, u ∈ C∞
c (D̄ ∩ V )k ∩ D∂̄∗ . (2.11)

This is immediate for uτ and then also for u ∈ D∂̄∗ because uν = u − uτ is 0 at ∂D and hence
satisfies elliptic estimates. For this reason, we will not distinguish between u ∈ D∂̄∗ and uτ in
what follows. We use again Proposition 2.1, this time for the weight χ(φδ) obtained by compos-
ing φδ satisfying (2.8) with a convex increasing function χ which will be chosen later. In this
case, the second line of (2.4) splits into two terms

∫
D

e−χ(φδ)χ̇

( ∑′

|K|=k−1

n∑
ij=1

φδ
ij uiKūjK −

qo∑
j=1

φδ
jj |u|2

)
dv

+
∫
D

e−χ(φδ)χ̈

( ∑′

|K|=k−1

∣∣∣∣∣
n∑

j=1

φδ
jujK

∣∣∣∣∣
2

−
qo∑

j=1

∣∣φδ
j

∣∣2|u|2
)

dv. (2.12)

We also have

∥∥∂̄∗
χ(φδ)

u
∥∥2

H 0
χ(φδ)

� 2
∥∥∂̄∗u

∥∥2
H 0

χ(φδ)

+ 2
∑′

|K|=k−1

∥∥∥∥∥χ̇

n∑
j

φδ
jujK

∥∥∥∥∥
2

H 0
χ(φδ)

. (2.13)

Remark that |∑qo

j=1(χ(φδ))ju|2 = |χ̇ |2|∑qo

j=1 φδ
j |2|u|2. Thus we get from (2.4), under the

choice of the weight χ(φδ), and taking into account (2.12) and (2.13):
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‖∂̄u‖2
H 0

χ(φδ)

+ 2
∥∥∂̄∗u

∥∥2
H 0

χ(φδ)

+ 2C‖u‖2
H 0

χ(δ)

�
∫
D

χ̇e−χ(φδ)

( ∑′

|K|=k−1

n∑
i,j=1

φδ
ij uiK ūjK dv −

qo∑
j=1

φδ
jj |u|2

)
dv

+
∫
D

(
χ̈ − 2χ̇2)e−χ(φδ)

∑′

|K|=k−1

∣∣∣∣∣
n∑

j=1

φδ
jujK

∣∣∣∣∣
2

dv

−
∫
D

χ̈e−χ(φδ)

qo∑
j=1

∣∣φδ
j

∣∣2|u|2 dv. (2.14)

We now specify our choice of χ . First, we want χ̈ � 2χ̇2 so that the first sum in the third line
can be disregarded. Keeping this condition, we need an opposite estimate which assures that the
absolute value of the last negative term in the fourth line of (2.14) is controlled by one half of
the second line. If c is the constant of (2.8), the above condition is fulfilled as soon as 2χ̈

χ̇
� c. If

we then set χ := 1
2e

c
2 (t−1) then both requests are satisfied (we also notice that χ̇2 � χ̇ because

c � 1). Thus our inequality continues as

� 1

2

∫
D

χ̇e−χ(φδ)

( ∑′

|K|=k−1

n∑
i,j=1

φδ
ij uiKūjK dv −

qo∑
j=1

φδ
jj |u|2

)
dv

� 1

2

∫
Sδ/2

χ̇e−χ(φδ)

( ∑′

|K|=k−1

n∑
i,j=1

φδ
ijuiK ūjK −

qo∑
j=1

φδ
jj |u|2

)
dv

� δ−2ε

∫
Sδ/2

c

2
χ̇e−χ(φδ)|u|2 dv. (2.15)

Here we are using the two main assumptions for our weights φδ , that is, the first inequality
� c

∑′
|K|=k−1 |∂φ · uτ·K |2 in the right of (2.8) to get the second line and the second inequality

� cδ−2ε |uτ |2 to get the third. Thus the first line of (2.12) is bigger or equal to the last of (2.15).
We want to remove the weight from the resulting inequality. The first term can be handled owing
to e−χ(φδ) � 1 on D̄ ∩ V and the second owing to χ̇e−χ(φδ) � c � 0 on Sδ/2 ∩ V which follows
in turn from |φδ| < 1. We end up with the unweighted estimate

‖∂̄u‖2 + ∥∥∂̄∗u
∥∥2 + C‖u‖2 � δ−2ε

∫
Sδ/2

|u|2 dv. (2.16)

Now, for fixed δo and for V contained in the δo-ball centered at zo = 0, the term C‖u‖2 in the
left of (2.16) can be absorbed in the right. Thus we end up with the estimate
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‖∂̄u‖2 + ∥∥∂̄∗u
∥∥2 � δ−2ε

∫
Sδ/2

|u|2 dv + ‖u‖2 (2.17)

for any u ∈ C∞
c (D̄ ∩ V )k ∩ D∂̄∗ and δ � δo.

Combining (2.11) and (2.17), we get (2.5) which concludes the proof of the theorem. �
Theorem 2.2 is the essential tool for the proof of Theorem 1.7. This will be given in the section

below; what we remark here is that the conclusion of Theorem 1.7 is better than it looks. Let ∂ν

be the normal derivative.

Proposition 2.3. Assume that we have the subelliptic estimate (1.4); then we have in fact

|||u|||2ε + |||∂νu|||2−1+ε � c
(‖∂̄u‖2 + ∥∥∂̄∗u

∥∥2) + cε‖u‖2
0. (2.18)

Proof. We remark that ∂ν can be expressed as a linear combination of L̄n and a suitable “totally
real tangential” vector field that we denote by T . We then have{

Q(u,u) � ‖L̄nu‖2,

|||u|||2ε � ‖T u‖2
ε−1.

It follows

‖u‖2
ε := ∥∥Dr(u)

∥∥2
ε−1 + |||u|||2ε

� Q(u,u) + |||u|||2ε ,

which proves the claim. �
3. Proof of Theorem 1.7

Let V be a neighborhood of a given point zo ∈ ∂D, let (t, r) be smooth coordinates in V with
t = (t1, . . . , t2n−1) and let τ be dual coordinates to t . For a function u supported in V , one defines
the tangential Fourier transform by

û(τ, r) =
∫

R2n−1

e−itτ u(t, r) dt,

and the tangential Hs -Sobolev norm by

|||u|||2s = ∥∥Λsu
∥∥2 =

0∫
−∞

∫
R2n−1

(
1 + |τ |2)s∣∣û(τ, r)

∣∣2
dτ dr,

where Λs is the tangential Bessel potential of order s. We note that when s = 0 then |||u|||0 = ‖u‖
is the usual L2-norm. We refer to [6] for further details.
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We remark that if Di is ∂
∂tj

or ∂
∂r

and s is integer, then

‖u‖2
s+1 =

∑
i

‖Diu‖2
s

∼= |||u|||2s+1 + ‖Dru‖2
s .

The next result contains the key estimate in the proof of Theorem 1.7.

Lemma 3.1. Let U be a special boundary chart for D. Then for all zo ∈ ∂D ∩ U there exists a
neighborhood V ⊆ U of zo such that

|||u|||2ε �
∑
j�q0

|||Lju|||2ε−1 +
∑

j�q0+1

|||L̄j u|||2ε−1 + ‖ub‖2
ε− 1

2
for any function u ∈ C∞

c (V ∩ D̄),

where ub := u|∂D and ε � 1
2 .

The above lemma is a variant of Theorem 2.4.5 of [6] to which we refer for the proof. Notice
that on one hand our statement is more general because we choose any ε � 1

2 instead of ε = 1
2 .

On the other, we specialize the choice of a general elliptic system to the case of {Lj }j�qo
∪

{L̄j }qo+1�j�n.
For the proof of Theorem 1.7, we use a method derived from [3]. Let pk(t), k = 0,1, . . . ,

be a sequence of functions with
∑∞

k=0 p2
k(t) = 1, pk(t) ≡ 0 if t /∈ (2k−1,2k+1) with k � 1 and

p0(t) ≡ 0, t � 2. We can also choose pk so that∣∣p′
k(t)

∣∣ � C2−k.

Let Pk denote the operator defined by

(P̂ku)(τ, r) = pk

(|τ |)û(τ, r)

where û is the tangential Fourier transform. Note that, induced by the partition
∑∞

k=0 p2
k(t) =

1, there is a decomposition of the Sobolev norms |||u|||2ε � ∑+∞
k=0 2kε‖Pku‖2

0. Let R
2n− :=

{z: r(z) < 0} and denote by S(R2n− ) the Schwartz space of C∞(R2n− )-functions which are rapidly
decreasing at ∞.

Lemma 3.2. For f,u ∈ S(R2n− ) and σ ∈ R then

∞∑
k=0

22kσ
∥∥[Pk,f ]u∥∥2 � |||u|||2σ−1.

Lemma 3.3. Let T be a tangential vector field with coefficients in C∞
0 (R2n− ). Then

∞∑
k=0

∥∥[Pk,T ]u∥∥2 � C‖u‖2.
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The proof of Lemmas 3.2 and 3.3 can be found in [3, Lemmas 2.4 and 2.5] respectively. We
remark that if we replace u ∈ S(R2n− ) by u ∈ C∞

c (D̄ ∩ V )k ∩ D∂̄∗ , then the two lemmas above
still hold.

Proof of Theorem 1.7. By Lemma 3.1 and Theorem 2.2, we get for any u ∈ C∞
c (D̄ ∩V )k ∩D∂̄∗

with k � q > qo (resp. k � q < qo)

|||u|||2ε �
q∑

j=0

|||Lju|||2ε−1 +
n∑

j=qo+1

|||L̄j u|||2ε−1 + ‖ub‖2
ε−1/2

� Q(u,u) + ‖ub‖2
ε−1/2.

Now, we estimate ‖ub‖2
ε−1/2. We have the elementary inequality

∣∣g(0)
∣∣2 � 2k

η

0∫
−2−k

∣∣g(r)
∣∣2

dr + 2−kη

0∫
−2−k

∣∣g′(r)
∣∣2

dr,

which holds for any g such that g(−2−k) = 0. If we apply it for g(r) = χk(r)Pku(·, r), where
χk ∈ C∞

c (−2−k,0] with 0 � χk � 1 and χk(0) = 1, we get

‖ub‖2
ε−1/2

∼=
∞∑

k=0

22k(ε−1/2)
∥∥χk(0)Pkub

∥∥2

� η−1
∞∑

k=0

22kε

0∫
−2−k

∥∥χkPku(., r)
∥∥2

dr + η

∞∑
k=0

22k(ε−1)

0∫
−2−k

∥∥Dr

(
χkPku(., r)

)∥∥2
dr

= η−1
∞∑

k=0

22kε

0∫
−2−k

∥∥χkPku(., r)
∥∥2

dr

︸ ︷︷ ︸
I

+η

∞∑
k=0

22k(ε−1)

0∫
−2−k

∥∥Dr(χk)Pku(., r)
∥∥2

dr

︸ ︷︷ ︸
II

+ η

∞∑
k=0

22k(ε−1)

0∫
−2−k

∥∥χkDr

(
Pku(., r)

)∥∥2
dr

︸ ︷︷ ︸
III

.

Observe that χk � 1 and recall Theorem 2.2 that we apply for Pku and δ = 2−k . Thus the first
sums above can be estimated by

(I ) � η−1
∞∑

k=0

22kε

0∫
−k

∥∥Pku(., r)
∥∥2

dr � η−1
∞∑

k=0

Q(Pku,Pku).
−2
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We note that Q can be written as a finite sum of terms of the type

Mi = aiTi + biDr + ci,

where Ti are tangential vector fields. Hence

∞∑
k=0

Q(Pku,Pku) �
∞∑

k=0

(‖Pk∂̄u‖2 + ∥∥Pk∂̄
∗u

∥∥2) +
∑

i

∞∑
k=0

∥∥[Mi,Pk]u
∥∥2

� Q(u,u) +
∑

i

∞∑
k=0

∥∥[aiTi,Pk]u
∥∥2 +

∑
i

∞∑
k=0

∥∥[bi,Pk]Dr(u)
∥∥2 + |||u|||2−1

� Q(u,u) + ‖u‖2 + ∣∣∣∣∣∣Dr(u)
∣∣∣∣∣∣2

−1,

where the estimates on the commutator terms follow by Lemmas 3.2 and 3.3. As it has already
been remarked, Dr(u) can be expressed as a linear combination of L̄nu and T u for some tan-
gential vector field T . Then ∣∣∣∣∣∣Dr(u)

∣∣∣∣∣∣2
−1 � |||L̄nu|||2−1 + |||T u|||2−1

� ‖L̄nu‖2 + ‖u‖2

� Q(u,u)

where the last line follows from Theorem 2.2.
We now estimate (II). Since Dr(χk) � 2k , we get

(II) � η

∞∑
k=0

22kε

0∫
−2−k

∥∥Pku(., r)
∥∥2

dr � η

∞∑
k=0

22kε‖Pku‖2 ∼= η|||u|||2ε .

As for the term (III), we have DrPk = PkDr and χk � 1. Also Dr = aL̄n + bT as before. Thus

(III) � η

∞∑
k=0

22k(ε−1)
∥∥PkDr(u)

∥∥ ∼= η
∣∣∣∣∣∣Dr(u)

∣∣∣∣∣∣
ε−1

� η
(|||L̄nu|||2ε−1 + |||T u|||2ε−1

)
� ηQ(u,u) + η|||u|||2ε .

Combining all our estimates of ‖ub‖ε−1/2, we obtain

‖ub‖ε−1/2 � η−1Q(u,u) + η|||u|||ε .

Summarizing up, we have shown that

|||u|||ε � η−1Q(u,u) + η|||u|||2ε .
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Choosing η > 0 sufficiently small, we can move the term η|||u|||2ε into the left-hand side and get

|||u|||2ε � Q(u,u).

The proof is complete. �
4. Proof of Theorem 1.9

We start by pointing out that, in the assumptions of Theorem 1.9 the domain D̃ inherits from
D the property of q-pseudoconvexity or q-pseudoconcavity. In fact, consider the basis of vector
fields

Lj = ∂zj
− rzj

∂zn, j = 1, . . . , n − 1, Ln =
n∑

j=1

rz̄j
∂zj

.

This is a “boundary frame”, that is, it satisfies 〈Lj , ∂r〉 = 0 for any j = 1, . . . , n − 1 and
〈Ln, ∂r〉 = |∂r|2 � 1, but not an orthonormal basis. However, as we have already noticed, for
the solution of the ∂̄-Neumann problem, we can allow non-unitary changes of basis, provided
that they preserve the ∂̄-Neumann conditions as the changes of boundary frames do. In the frame
that we have chosen, it is obvious that both D and D̃ are q-pseudoconvex with respect to the same
bundle V and this suffices for the conclusion. (The same is true for the case q-pseudoconcave.)
Note that we could use as well the basis in which the Lj ’s are unchanged for j � n − 1 and,
instead, Ln = ∂zn . In the sequel, it is understood that the metric has been changed so that the
boundary frame has become orthonormal.

We now construct the weight φ which satisfies the assumptions of Theorem 1.7; we distin-
guish q > qo from q < qo.

The case q-pseudoconvex. We set

ψ = − log(−r̃ + δ) +
n−1∑
j=q

log
(|zj |2 + δ

1
mj

)
, (4.1)

and define φ := c|log δ|−1ψ where c is an irrelevant constant needed to get the bound 1 in (1.5)
or (2.8). We set ψI = − log(−r̃ + δ) and denote by ψ II the remaining term in the right of (4.1);
thus ψ = ψI + ψ II . We have

ψI
ij = (−r̃ + δ)−1r̃ij

= (−r̃ + δ)−1rij + (−r̃ + δ)−1(∂zj
∂z̄j

hj
)
κij + E for i, j � n − 1, (4.2)

where E is an error of type E = O(|z|)(−r̃ + δ)−1 ∑
j (∂zj

∂z̄j
hj ). We also have

ψI
nn = (−r̃ + δ)−2 (4.3)

(where κij continues to denote the Kronecker’s symbol) and
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ψ II
ij =

(
δ

1
mj

(|zj |2 + δ
1

mj )2

)
κij . (4.4)

When taking
∑

ij ·−∑qo

j=1 · of (−r̃ + δ)−1rij from (4.2) and of (−r + δ)−2 from (4.3) the result
is � 0. This is true for the forms (rij (z))ij |T C∂D and (r̃ij (z))ij |T C∂D̃

according to the first part of
the proof. But it remains true also outside the boundaries for (rij (z))ij |∂r⊥(z) and (r̃ij (z))ij |∂r̃⊥(z)

where ∂r⊥ and ∂r̃⊥ denote the bundles orthogonal to ∂r = ωn and ∂r̃⊥ respectively. We prove
it for r . We note that r = 2 Re zn + h is a graphing function and denote by z �→ z∗ the projection
C

n → ∂D in a neighborhood of zo along the xn-axis. We have the evident equalities{(
rij (z)

)n−1
ij=1 = (

rij
(
z∗))n−1

ij=1,

∂r⊥(z) = ∂r⊥(
z∗). (4.5)

Thus (4.5) relates Lr |T C∂D on ∂D ∩ V to Lr |∂r⊥ on the whole of D̄ ∩ V ; in particular, (1.4)
passes from ∂D ∩ V to the whole of D̄ ∩ V . The same is true for r̃ and so the afore-mentioned
sums for r and r̃ are positive; so we can discard them in (4.2) and (4.3). But what is left is just

(−r̃ + δ)−2|∂r|2 + (−r̃ + δ)−12 Re
n∑

j=1

rnj ∂r ⊗ ω̄j ,

where the first term is positive and the second is 0. We also discard all terms of type (∂zj
∂z̄j

hj )κij

and δ
1

mj κij for i or j � k−1 in addition to E because they can be made positive by adding a small
amount of terms for which i, j � k on account of the estimates (4.7) and (4.8) which follow. For
the remaining terms (∂zj

∂z̄j
hj ), we note that we have (∂zj

∂z̄j
hj ) � |zj |2mj −2. We end up with

the estimate

∑′

|K|=k−1

n∑
ij=1

ψijuiKūjK −
qo∑

j=1

ψjj |u|2

�
n−1∑
j=k

(
(−r̃ + δ)−1|zj |2mj −2 + δ

1
mj

(|zj |2 + δ
1

mj )2

)

·
∑′

|K|=k−1

|ujK |2 + (−r + δ)−2
∑′

|K|=k−1

|unK |2. (4.6)

We now inspect the coefficients in the right of (4.6). First, let z ∈ Sδ , that is, −r > δ. Given a
coefficient uJ of u, the index J contains for sure at least one j such that k � j � n − 1 and thus

uJ = sign
(

J
jK

)
ujK for a suitable K . If, for this j , |zj |2 � δ

1
mj , then

(−r̃ + δ)−1|zj |2mj −2 � δ
− 1

mj . (4.7)

On the contrary, if |zj |2 � δ
1

mj , then
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δ
1

mj

(|zj |2 + δ
1

mj )2
� δ

− 1
mj . (4.8)

In both cases, the terms in the left are � δ−2εk since − 1
mj

� − 1
mk

= −2εk . We are ready to prove

(2.7) (which is equivalent to (1.5)). We split the inequality # � δ−2ε |uτ |2 + ∑qo

j=1 |φj (z)|2|uτ |2
into two inequalities # �

∑qo

j=1 |φj (z)|2|uτ |2 and # � δ−2ε |uτ |2 that we denote by (2.7)(i) and
(2.7)(ii) respectively. Now, by combining (4.7) with (4.8), we get (2.7)(ii) for ε = εk . On the
other hand, for any j � qo, we have

rj
−r+δ

= 0 and we also have
∑

ij · − ∑qo

j=1 · � 0 (all over

D̄ ∩ V ). This proves (2.7)(i).
Finally, a normalization by a factor c|log δ|−1 makes the weight bounded at the expenses of

passing from δ−2εk to δ−2εk

|log δ| in the second of (2.8). Thus the weight ψ satisfies the requirements
of Theorem 1.7 for any ε < εk which implies subelliptic estimates of the corresponding order.
Incidentally, we notice that when εk = 1

2 , the term ψ II is needless and we can take a different
normalization by defining φ = − log(−r+δ

2δ
); thus we get an even δ−1 on the right of (2.8). For

εk = 1
2 , a similar argument applies also to the case q-pseudoconcave which follows and we will

not insist on it.
The case q-pseudoconcave. We now define

ψ = − log(−r̃ + δ) −
k+1∑
j=1

log
(− log

(|zj |2 + δ
1

mj
))

where we point out the attention to the double log. Comparing with the case q-pseudoconvex,
there is now an extra difficulty for the weight to satisfy the first of (2.8) (whereas the second
remains substantially unchanged) because we do not have any longer φj = 0 for j � qo. We
write ψ = ψI + ψ II in the same way as in the previous case and will eventually define φ by a
normalization φ = c|log δ|−1ψ . We have the analogues of (4.2) and (4.4) with the suitable sign.
We apply

∑
ij · − ∑qo

j=1 · to ψI + ψ II . When taking
∑

ij · − ∑qo

j=1 · we discard the contribution

of (−r̃ + δ)−1rij in addition to the normal term (−r̃ + δ)−2 because this contribution is positive
as before. We discard the error term E because it can be made positive by the aid of a small
amount of the remainder. This argument is the same as for the case q-pseudoconvex. What we
are left with is

∑
ij

· −
qo∑

j=1

· �
k+1∑
j=1

(
(−r + δ)−1|zj |2mj −2 + δ

1
mj

(|zj |2 + δ
1

mj )2

1

|log(|zj |2 + δ
1

mj )|

+ |zj |2

(|zj |2 + δ
1

mj )2

1

|log(|zj |2 + δ
1

mj )|2

)(
|u|2 −

∑′

|K|=k−1

|ujK |2
)

. (4.9)

We split (2.7) into (2.7)(i) and (2.7)(ii) as we did in the q-pseudoconvex case and write the coeffi-
cient in the right of (4.9) as (Aj +Bj +Cj ). The two first terms Aj +Bj serve for getting (2.7)(ii),
the third Cj for (2.7)(i). (This latter was discarded as � 0 in the case q-pseudoconvex; here it is
essential because φj �= 0 for j � qo.) Reasoning as in the first half of the proof we get, for any
j � k + 1
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Aj + Bj � δ
− 1

mj � δ−2εk on Sδ ∩ V , (4.10)

because − 1
mj

� − 1
mk+1

= −2εk for any j � k + 1, along with

Aj + Bj � 0 on D̄ ∩ V . (4.11)

We make the crucial remark for the case of concavity. If the degree of u is k, then

k+1∑
j=1

(
|u|2 −

∑′

|K|=k−1

|ujK |2
)

� |u|2. (4.12)

From (4.10) and (4.12) we get the second of (2.8). We now need to prove that on D̄ ∩ V and for
a suitable ε we have

k+1∑
j=1

1

log2

|zj |2

(|zj |2 + δ
1

mj )2

(
|u|2 −

∑′

|K|=k−1

|ujK |2
)

� ε

k+1∑
j=1

1

log2

|zj |2

(|zj |2 + δ
1

mj )2
|u|2

= ε

k+1∑
j=1

|ψj |2|u|2. (4.13)

This would conclude the proof of (1.5). The last sum
∑k+1

j=1 · can be replaced by
∑qo

j=1 · since

ψj = 0 for j = k + 2, . . . , qo. Also, remember here that ψI
j = 0 for any j and ψ II

j = 0 for any
j � k + 2; this justifies the last equality in (4.13) which is true. However, the first inequality is
wrong. To make it true, we need a small perturbation of ψ . We take a vector v in the unit sphere

Sk outside the first quadrant, set ψ IIv := ∑k+1
j=1 log(− log(|zj |2 + δ

1
mj )vj ), leave ψI unchanged

and define a new ψ by

ψ := ψI + 1

2

(
ψ II + ψ IIv).

Inequalities (4.10) and (4.11) are stable under perturbation and thus will remain true for this
new ψ . As for the first of (4.13), we consider the vector field

w(z) :=
(

1

log2

|zj |
(|zj |2 + δ

1
mj )

)
j=1,...,k+1

.

We also define

μ(z) = w(z)

|w(z)| , ν(z) = (νj vj )j=1,...,k+1;

thus |μ| = 1 and |ν| � 1. Finally, we set

u = (ujK)j=1,...,k+1∑ |u |2 .

j jK
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It suffices to prove that

1

2

(〈μ,u〉2 + 〈ν,u〉2) � 1 − ε.

Now, we begin by noticing that

{ 〈μ,u〉 � 1,

〈ν,u〉 � 1,
(4.14)

by Cauchy–Schwartz inequality. Also, if the first of (4.14) happens to be equality, that is, μ is
parallel to u, then

〈ν,u〉 =
∑
j

vjμjuj

=
∑
j

vjμ
2
j .

But for this to be 1 we need both
∑

j μ4
j = 1 and v parallel to (μ2

j )j=1,...,k+1. If the first occurs

then, since
∑

j μ2
j = 1, we have (μ2

j ) = (μj ) (and both coincide with a Cartesian vector): thus

(μ2
j ) is not parallel to v. In conclusion if the first of (4.14) is equality, the second is not. Therefore,

the function (u,μ) �→ 1
2 (〈u,μ〉2 + 〈u, ν〉2) has a minimum < 1, say 1 − ε, for u ∈ Sk (and for

ν = (μjvj )).

5. Proof of Theorem 1.13

Let ε � infj�p
1

2mj
.

Lemma 5.1. We have for large t

δ∫
0

. . .

δ∫
0

dx1 dy1 . . . dxp dyp

(t
∑p

j=1 |t−εzj |2mj + 1)s
∼= t

−∑p
1

1
mj

+2pε
, (5.1)

provided that s > 1
m1

+ · · · + 1
mp

+ 1.

Proof. We can assume that m1 � m2 � · · · � mp . Put a(t) = t
∑p

j=2 |t−εzj |2mj + 1. First, we
perform integration

M(z2, . . . , zp) =
δ∫ δ∫

dx1 dy1

(t |t−εz1|2m1 + a(t))s
.

0 0
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We also make a change of variables z′
1 = t

1
2m1

−ε
a(t)

− 1
2m1 z1 and get

M(z2, . . . , zp) = a(t)
−s+ 1

m1 t
− 1

m1
+2ε

t
1

2m1
−ε

a(t)
− 1

2m1 δ∫
0

t
1

2m1
−ε

a(t)
− 1

2m1 δ∫
0

dx′
1 dy′

1

(|z′
1|2m1 + 1)s

.

Since

t
1

2m1
−ε

a(t)
− 1

2m1 δ =
(

t1−2εm1δ2m1∑p

j=2 t1−2εmj |zj |2mj + 1

) 1
2m1 � C > 0,

then

M(z2, . . . , zp) ∼= a(t)
−s+ 1

m1 t
− 1

m1
+2ε

.

In conclusion, the left-hand side of (5.1) is equivalent to

t
− 1

m1
+2ε

δ∫
0

. . .

δ∫
0

dx2 dy2 . . . dxp dyp

(t
∑p

j=2 |t−εzj |2mj + 1)
s− 1

m1

.

Repetition of this argument for z2, . . . , zp yields the proof of the lemma. �
Proof of Theorem 1.13(i). As in the proof of Theorem 1.9, we start from⎧⎪⎪⎨⎪⎪⎩

Lj = ∂zj
− rzj

∂zn,

Ln =
n∑

j=1

rz̄j
∂zj

as an adapted basis of (1,0) vector fields. It is not yet an orthonormal system but it has the
property that 〈Lj ,Ln〉 = 0; by a perturbation within the plane of L1, . . . ,Ln−1 we can make it
orthogonal. Our calculations will be performed in this orthonormal system. Since the standard
metric is preserved, the hypothesis of existence of subelliptic estimates is kept. Note that much
simpler calculations could be performed, instead, in the system{

Lj = ∂zj
− rzj

∂zn,

Ln = ∂zn

(5.2)

(cf. e.g. Ho [9]). This is still a basis adapted to the boundary but does not enjoy any orthogonality
relation. Since we are assuming subelliptic estimates in the standard basis, we do not use the
system (5.2).

We remark that for a k-form u we have u ∈ D∂̄∗ if and only if its coefficients satisfy unK |∂D ≡
0 for any |K| = k − 1. Let Lj be the dual basis of (1,0) vector fields; these are a perturbation of
∂z − rz ∂zn , j = 1, . . . , n − 1, and

∑n
rz ∂z . We have
j j j=1 j j



1958 T.V. Khanh, G. Zampieri / Advances in Mathematics 228 (2011) 1938–1965
• (ωiK,ωjK) = κij + rzi
rz̄j

for any i, j � n − 1,
• (ωjK,ωnK) = 0 for any j � n − 1,
• (ωI ,ωJ ) = 0 if |I ∩ J | � k − 2,
• (∂̄∗u)K = ∑n

j=1
∑

{J : |J∩jK|=k} Lj(uJ ) + ∑n−1
j=1

∑
{J : |J∩jK|=k−1} Lj (uJ )(O(rzj

) +∑
i∈J O(rzi

)) + error,

where “error” denotes a term where no derivatives of u occur. We will deal with the form

ut = Utω̄1 ∧ · · · ∧ ω̄k,

where Ut is a function which will be specified later. We have for this form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂̄u �
n∑

j=k+1

L̄j (Ut )ω̄j ∧ ω̄1 ∧ · · · ∧ ω̄k + error,

∂̄∗u =
k∑

j=1

Lj (Ut )ω̄1 ∧ · · · ∧ ω̄j−1 ∧ ω̄j+1 ∧ · · · ∧ ω̄k

+
n−1∑
j=1

∑
H∩{1,...,k,j}�=∅

Lj (Ut )

(
O(rzj

) +
∑
i�k

O(rzi
)

)
ω̄H + error.

In particular

‖∂̄u‖2 + ∥∥∂̄∗u
∥∥2 �

n∑
j=k+1

‖L̄jUt‖2 +
k∑

j=1

‖LjUt‖2

+
∑

i=k+1,...,n−1

∥∥∥∥(
O

(|rzi
|) +

∑
i�k

O
(|rzj

|))LiUt

∥∥∥∥2

+ ‖Ut‖2. (5.3)

Let εk = 1
2mk

and define Ut = ft (z
′, zn)Φt (z) by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ft

(
z′, zn

) =
(

zn − Q
(
z′) − 1

t

)−p

,

Φt (z) =
(

n−1∏
j=1

φ
(
tεk xj

)
φ
(
tεk yj

))
λ(xn)φ(yn).

Here φ ∈ C∞
0 (R) satisfies

φ(x) =
{

1, x � δ,

0, x � 2δ,

where δ is a small parameter, and λ ∈ C∞(R) will be chosen later.
0
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Since ⎧⎨⎩
Lj(ft ) = 0 for any j � qo,

L̄j (ft ) = 0 for qo + 1 � j � n − 1,

∂zj
(ft ) = ∂z̄j

(ft ) = 0 for j = qo + 1, . . . , n − 1,

we can restrict the first sum in (5.3) to j = n and the second to j = qo + 1, . . . , k; thus we get

Q(ut , ut ) �
qo∑

ij=1

∥∥rzi
∂z̄j

(ft )Φt

∥∥2 +
k∑

j=qo+1

∥∥rzj
∂zn(ft )Φt

∥∥2

+
∑

i=k+1,...,n−1
j=1,...,k,i

∥∥|rzj
||rzi

|∂zn(ft )Φt

∥∥2

+
n−1∑
ij=1

∥∥O2(|rzi
|)∂zj

ftΦt

∥∥2 +
n∑

j=1

‖ft∂zj
Φt‖2 + ‖Ut‖2. (5.4)

To estimate the first three sums in (5.4) we need to evaluate rzi
for i = 1, . . . , qo, next rzj

for
j = qo + 1, . . . , k and finally rz̄i

rzj
rzi

for i = k + 1, . . . , n − 1, j = 1, . . . , k. We perform the
change of variables {

z̃j = tεk zj , j � n − 1,

z̃n = tzn.

For |z̃| � 1 we have for the first terms

∣∣rzj
(z)

∣∣ = |zj |4mj −2

= t−εk(4mj −2) � t−2+2εk , j = qo + 1, . . . , k, (5.5)

where the last inequality follows from mj � mk . For the second terms we have

∣∣rzi

(
z′)∣∣2 �

∣∣z′∣∣4m−2

= t−εk(4m−2) � t−2+2εk , i = 1, . . . , qo, (5.6)

where the last estimate follows from m � mqo+1 � mk . For the third terms we extend the defini-
tion of mj to j � qo by putting mj = m. We have, for i � k + 1, j � k or j = i

∣∣rzj
(z)

∣∣2∣∣rzi
(z)

∣∣2 � t−εk(4mi+4mj −4)

� t−2−εk(4mj −4) � t−2, (5.7)

where the second inequality follows from mi � mk . If we pass to estimate the terms in the second
sum of (5.4), we then have
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∥∥∥∥rzj

∂ft

∂zn

Φt

∥∥∥∥2 ∼=
∫

|rzj
|2

∣∣∣∣zn − Q
(
z′) − 1

t

∣∣∣∣−2p−2

Φ2
t (z) dx1 dy1 . . . dxn dyn

�
∫ |zj |4mj −2

(( 1
t
+ Q(z′) − xn)2 + y2

n)p+1
Φ2

t (z) dx1 dy1 . . . dxn dyn

� t2p−2+2εk−2(n−1)εk It ,

where

It =
∫

(
∏n−1

j=1 φ(x̃j )φ(ỹj ))
2λ(t−1x̃n)

2φ(t−1ỹn)
2

((1 + tQ(t−εk z̃′) − x̃n)2 + ỹ2
n)p+1

dx̃1 dỹ1 . . . dx̃n dỹn.

We now perform integration in ỹn from −∞ to +∞ and get

It �
∫

(
∏n−1

j=1 φ(x̃j )φ(ỹj ))
2λ(t−1x̃n)

2

(1 + tQ(t−εk z̃′) − x̃n)2p+1
dx̃1 dỹ1 . . . dx̃n−1 dỹn−1 dx̃n.

Next, we integrate in x̃n from

−∞ to

(
tQ

(
t−εk z̃′) − t

n−1∑
j=q0+1

∣∣t−εk z̃j

∣∣2mj

)/
2,

and get

It �
∫

(
∏n−1

j=1 φ(x̃j )φ(ỹj ))
2

(tQ(t−εk z̃′) + t
∑n−1

j=q0+1 |t−εk z̃j |2mj + 2)2p
dx̃1 dỹ1 . . . dx̃n−1 dỹn−1

�
2δ∫

0

. . .

2δ∫
0

dx̃k+1 dỹk+1 . . . dx̃n−1 dỹn−1

(t
∑n−1

j=k+1 |t−εk zj |2mj + 1)2p

� t
−∑n−1

j=k+1
1

mj
+2(n−k−1)εk

where the last inequality follows by Lemma 5.1.
In conclusion we have obtained

∥∥∥∥rzj

∂ft

∂zn

Φt

∥∥∥∥2

� t
2p−2+2εk−2kεk−∑n−1

j=k+1
1

mj . (5.8)

The same integration combined with (5.7) yields the same estimate as (5.8) also for the terms
‖|rzj

||rzi
|∂zn(ft )Φt‖2 for i � k + 1 and j � k. As for the terms in the first sum in (5.4) with

i, j = 1, . . . , q0, we have
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∥∥∥∥rzj

∂ft

∂z̄j

∥∥∥∥2 ∼=
∫

|rzj
|4

∣∣∣∣zn − Q
(
z′) − 1

t

∣∣∣∣−2p−2

Φ2
t (z) dx1 dy1 . . . dxn dyn

�
∫ |z′|4mk−2

(( 1
t
+ Q(z′) − xn)2 + y2

n)p+1
Φ2

t (z) dx1 dy1 . . . dxn dyn

� t
2p−2+2εk−2kεk−∑n−1

j=k+1
1

mj

where the last inequality follows by the same technique as above.
By the same argument all the sums

∑n−1
ij=1 ‖O2(|rzi

|)∂zj
ftΦt‖2, the terms ‖ft

∂Φt

∂zj
‖2, j =

1, . . . , n, and ‖Ut‖2 have the same estimate in terms of t . Combining all these estimates, we get
the basic estimate from above for Q(ut , ut )

Q(ut , ut ) � t
2p−2+2εk−2kεk−∑n−1

j=k+1
1

mj . (5.9)

To calculate |||u|||ε we use the boundary coordinates (x1, . . . , xn−1, y1, . . . , yn, r) and dual coor-
dinates (ξ, r) = (ξ1, . . . , ξ2n−1, r). We have

|||ut |||ε = |||Ut |||2ε +
k∑

j=1

|||riUt |||2ε � |||Ut |||2ε

�
∫ (

1 + |ξ |2)ε∣∣Ût (x1, . . . , xn−1, y1, . . . , yn, r)
∣∣2

dξ dr

�
∫ ∣∣ξ2ε

2n−1

∣∣∣∣∣∣ ∫ φ(yn)λ(xn)e
−iξ2n−1yn dyn

(xn − Q(z′) − 1/t + iyn)p

∣∣∣∣2

·
(

n−1∏
j=1

φ
(
tεk xj

)
φ
(
tεk yj

))2

dx1 dy1 . . . dxn−1 dyn−1 dξ2n−1 dr,

where we use Plancherel’s theorem on ξ1, . . . , ξ2n−2 in the second line. Similarly as before, we
use transformations {

x̃j = tεk xj , ỹj = tεk yj , j = 1, . . . , n − 1,

ỹn = tyn, ξ̃2n−1 = 1/tξ2n−1, r̃ = tr,

and obtain

|||ut |||2ε � t2p−2+2ε−2(n−1)εk Jt ,

where

Jt =
∫

|ξ̃2n−1|2ε

∣∣∣∣ ∫ φ(t−1ỹn)λ(xn(t
−εk x̃1, . . . , t

−1r̃))e−iξ̃2n−1ỹn dỹn

(−g + iỹn)p

∣∣∣∣2

·
(

n−1∏
φ(x̃j )φ(ỹj )

)2

dx̃1 dỹ1 . . . dx̃n−1 dỹn−1 dξ̃2n−1 dr̃.
j=1
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Here

g = −
(

r̃ − tQ(t−εk z̃′) − t
∑j=n−1

j=q0+1 |t−εk z̃j |2mj

2
− 1

)
.

Since tQ(t−εk z̃′) + t
∑k

j=q0+1 |t−εk z̃j |2mj �
∑q0

j=1 |z̃j |2m + ∑k
j=q0+1 |z̃j |2mj , then if the sup-

port of φ is small enough we can assume

tQ
(
t−εk z̃′) + t

n−1∑
j=n−k+q0

∣∣t−εk z̃j

∣∣2mj � 1.

This implies 0 < g � −r̃+t
∑n−1

j=k+1 |t−εk z̃j |2mj +3
2 . Using a further substitution

y′
n = gỹn, ξ ′

2n−1 = 1

g
ξ̃2n−1,

we get

Jt =
∫ |ξ ′

2n−1|2ε

g2p+1−2ε

∣∣∣∣ ∫ φ(
y′
n

tg
)λ(xn)e

−iξ ′
2n−1y

′
n dy′

n

(−1 + iỹn)p

∣∣∣∣2

·
(

n−1∏
j=1

φ(x̃j )φ(ỹj )

)2

dx̃1 dỹ1 . . . dx̃n−1 dỹn−1 dξ̃2n−1 dr̃

= J1 + J2

where J1 is the integration from −∞ to −tK , J2 from −tK to 0 and where K is suitably chosen.
Note that J1 � 0. Now, we consider J2.

For r̃ ∈ [−tK,0], we see that

|xn| =
∣∣∣∣ r̃/t + Q(t−εk z̃′) − ∑n−1

j=q0+1 |t−εk z̃j |2
2mj

∣∣∣∣ � C.

We may choose λ ∈ C0(R) such that λ(x) = 1 for |x| � C. Then

∫ ∣∣ξ ′
2n−1

∣∣2ε

∣∣∣∣ ∫ φ(
y′
n

tg
)λ(xn)e

−iξ ′
2n−1y

′
n dy′

n

(−1 + iỹn)p

∣∣∣∣2

dξ ′
2n−1 � const > 0.

It follows

J2 �
∫ 0∫

(
∏n−1

j=1 φ(x̃j )φ(ỹj ))
2 dx̃1 dỹ1 . . . dx̃n−1 dỹn−1

(−r̃ + t
∑n−1

j=k+1 |t−εk z̃j |2mj + 3)2p+1−2ε
dr̃
r̃=−tK
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�
∫

(
∏n−1

j=1 φ(x̃j )φ(ỹj ))
2 dx̃1 dỹ1 . . . dx̃n−1 dỹn−1

(t
∑n−1
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The last inequality follows from the fact that we can choose K and t such that
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where the last inequality follows by Lemma 5.1. So we have

|||ut |||2ε � t
2p−2+2ε−2kεk−∑n−1

j=k+1
1

mj . (5.10)

Since subelliptic estimates hold with order ε for any k-form (q0 + 1 � k � n − 1), then

|||ut |||2ε � Q(ut , ut ). (5.11)

Combining (5.9), (5.10) and (5.11), we get ε � εk .
The proof of Theorem 1.13(i) is complete. �

Proof of Theorem 1.13(ii). We proceed in similar way as in the proof of Theorem 1.13(i) and
choose the coefficient of our form by setting
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Then
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We can show that Q(ut , ut ) � t2p−2+2εk−2(n−1)εk It where
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Owing to Lemma 5.1 we have It � t
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which yields
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Similarly, we have

|||ut |||2ε � t
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1

mj ,

which yields the conclusion of the proof of Theorem 1.13(ii). �
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