L^{*p*}-ESTIMATES FOR THE $\bar{\partial}$ -EQUATION ON A CLASS OF INFINITE TYPE DOMAINS

LY KIM HA, TRAN VU KHANH, AND ANDREW RAICH

ABSTRACT. We prove L^p estimates for solutions to the Cauchy-Riemann equations $\bar{\partial}u = \phi$ on a class of infinite type domains in \mathbb{C}^2 . The domains under consideration are a class of convex ellipsoids, and we show that if ϕ is a $\bar{\partial}$ -closed (0, 1)-form with coefficients in L^p and u is the Henkin kernel solution to $\bar{\partial}u = \phi$, then $||u||_p \leq C ||\phi||_p$ where the constant C is independent of ϕ . In particular, we prove L^1 estimates and obtain L^p estimates by interpolation.

1. INTRODUCTION

A fundamental question in several complex variables is to establish L^p estimates for solutions of the Cauchy-Riemann equation

$$\bar{\partial}u = \phi$$

on domains $\Omega \subset \mathbb{C}^n$. In this paper, we provide the first examples of infinite type domains for which L^p bounds hold, $1 \leq p \leq \infty$. The domains under consideration are a class of convex ellipsoids in \mathbb{C}^2 , and we show that if ϕ is a $\bar{\partial}$ -closed (0, 1)-form and u is the Henkin solution to $\bar{\partial}u = \phi$, then $\|u\|_p \leq C \|\phi\|_p$ where the constant C is independent of ϕ . Specifically, we prove L^1 estimates and use the Riesz-Thorin Interpolation Theorem to obtain L^p estimates by interpolating with the L^∞ estimates established by Khanh [Kha13] and (independently) Fornæss et. al. [FLZ11].

We investigate domains of the following form: $\Omega \subset \mathbb{C}^2$ is a smooth, bounded domain with the origin 0 in the boundary b Ω . Moreover, there exists $\delta > 0$ so that b $\Omega \setminus B(0, \delta/2)$ is strictly convex and there exists a defining function ρ so that

$$\Omega \cap B(0,\delta) = \{ z = (z_1, z_2) \in \mathbb{C}^2 : \rho(z) = F(|z_1|^2) + r(z) < 0 \}$$
(1.1)

or

$$\Omega \cap B(0,\delta) = \{ z = (z_1, z_2) \in \mathbb{C}^2 : \rho(z) = F(x_1^2) + r(z) < 0 \}$$
(1.2)

¹⁹⁹¹ Mathematics Subject Classification. 32W05, 32F32, 32T25,32T99.

Key words and phrases. $\bar{\partial}$, Henkin solution, Henkin operator, L^p estimates for $\bar{\partial}$, infinite type domains. The second author is partially supported by a grant from the Vietnam National Foundation for Science and Technology Development (#101.01–2012.16 to Tran Vu Khanh). The third author is partially supported by a grant from the Simons Foundation (#280164 to Andrew Raich).

where $z_j = x_j + iy_j$, for $x_j, y_j \in \mathbb{R}$, j = 1, 2, and $i = \sqrt{-1}$. We also assume that the functions $F : \mathbb{R} \to \mathbb{R}$ and $r : \mathbb{C}^2 \to \mathbb{R}$ satisfy:

i.
$$F(0) = 0;$$

ii. $F'(t), F''(t), F'''(t), \text{ and } \left(\frac{F(t)}{t}\right)'$ are nonnegative on $(0, \delta);$
iii. $r(0) = 0$ and $\frac{\partial r}{\partial z_2} \neq 0;$

iv. r is convex and strictly convex away from 0.

This class of domains includes two well-known examples. If $F(t) = t^m$, with $m \ge 1$, then Ω is of finite type 2m. On the other hand, if $F(t) = \exp(-1/t^{\alpha})$, then Ω is of infinite type, and this is our main case of interest. We call our domains Ω ellipsoids because they are generalizations of real and complex ellipsoids in \mathbb{C}^2 . Classically, a complex ellipsoid in \mathbb{C}^n is a domain of the form $\{z = (z_1, \ldots, z_n) \in \mathbb{C}^n : \sum_{j=1}^n |z_j|^{2m_j} < 1\}$, and a real ellipsoid is a domain of the form $\{z = (x_1 + iy_1, \ldots, x_n + iy_n) \in \mathbb{C}^n : \sum_{j=1}^n (x^{2n_j} + y^{2m_j}) < 1\}$ where $m_i, n_i \in \mathbb{N}, 1 \leq j \leq n.$

There is a long history of proving L^p estimates for the $\bar{\partial}$ -equation, dating back to the work of Kerzman [Ker71] and Øvrelid [Øvr71]. In [Kra76], Krantz proved essentially optimal Lipschitz and L^p estimates on strongly pseudoconvex domains. In the case that Ω is a real ellipsoid, et. al. obtained sharp Hölder estimates [DFW86] while Chen et. al. established optimal L^p estimates for complex ellipsoids [CKM93]. See also Range [Ran78] and Bruna and del Castillo [BdC84]. Both real and complex ellipsoids are domains of finite type, and the analysis in the referenced works depends in an essential fashion on the type. In \mathbb{C}^2 , Chang et. al. [CNS92] proved L^p estimates for the $\bar{\partial}$ -Neumann operator on weakly pseudoconvex domains of finite type. See [CKM93, FLZ11] and the references within for a more complete history.

More recently, there has been work on support estimates for the Cauchy-Riemann equations on infinite type domains in \mathbb{C}^2 . Fornæss et. al. provided the first examples in [FLZ11] and Khanh found the estimates hold when domains are of the type (1.1) or (1.2)[Kha13]. In particular, Khanh proved

Theorem 1.1 (Theorem 1.2, [Kha13]). If

i. Ω is defined by (1.1) and there exists $\delta > 0$ so that $\int_0^{\delta} |\log F(t^2)| dt < \infty$, or ii. Ω is defined by (1.2) and there exists $\delta > 0$ so that $\int_0^{\delta} |\log(t) \log F(t^2)| dt < \infty$,

then for any bounded, $\bar{\partial}$ -closed (0,1)-form ϕ on $\overline{\Omega}$, the Henkin solution u on Ω satisfies $\partial u = \phi$ and

$$\|u\|_{L^{\infty}(\Omega)} \le C \|\phi\|_{L^{\infty}(\Omega)},$$

where C > 0 is independent of ϕ .

In this paper, we will prove the L^p -version of Theorem 1.1. Our technique yields L^p estimates both when in the case that Ω is of finite type as well as of infinite type.

Theorem 1.2. If either of the following conditions hold:

i. Ω is defined by (1.1) and there exists $\delta > 0$ so that $\int_0^{\delta} |\log F(t^2)| dt < \infty$,

ii. Ω is defined by (1.2) and there exists $\delta > 0$ so that $\int_0^{\delta} |\log(t) \log F(t^2)| dt < \infty$,

then for any ∂ -closed (0,1)-form ϕ and in $L^p(\Omega)$ with $1 \leq p \leq \infty$, the Henkin kernel solution u on Ω satisfies $\overline{\partial}u = \phi$ and

 $||u||_{L^p(\Omega)} \le C ||\phi||_{L^p(\Omega)},$

where C > 0 is independent of ϕ .

The following examples show that the L^p estimates in Theorem 1.2 are sharp in the case of infinite type case.

Example 1.1. For $0 < \alpha < 1$, let Ω be defined by

$$\Omega = \left\{ (z_1, z_2) \in \mathbb{C}^2 : e^{1 - \frac{1}{|z_1|^{\alpha}}} + |z_2|^2 < 1 \right\}.$$

Then for any $\phi \in L^p(\Omega)$ with $1 \leq p \leq \infty$, there is a solution u of the equation $\overline{\partial} u = \phi$ such that $u \in L^p(\Omega)$. Moreover, if $p \neq \infty$, there is no solution $u \in L^q(\Omega)$ with q > p.

The organization of the paper is as follows: we recall the construction the Henkin solution via the Henkin kernel in Section 2. We prove Theorem 1.2 in Section 3 and discuss Example 1.1 in Section 4.

2. Henkin Solution

In this section, we recall the construction of the Henkin kernel and Henkin solution to $\bar{\partial}$. For complete details, see [Hen70, Ran86], or for a more modern treatment, see [CS01].

Definition 2.1. A \mathbb{C}^2 -valued C^1 function $G(\zeta, z) = (g_1(\zeta, z), g_2(\zeta, z))$ is called a Leray map for Ω if $g_1(\zeta, z)(\zeta_1 - z_1) + g_2(\zeta, z)(\zeta_2 - z_2) \neq 0$ for every $(\zeta, z) \in b\Omega \times \Omega$. A support function $\Phi(\zeta, z)$ for Ω is a smooth function defined near $b\Omega \times \overline{\Omega}$ so that Φ admits a decomposition

$$\Phi(\zeta, z) = 2\sum_{j=1}^{2} \Phi_j(\zeta, z)(\zeta_j - z_j)$$

where $\Phi_j(\zeta, z)$ are smooth near $b\Omega \times \overline{\Omega}$, holomorphic in z, and vanish only on the diagonal $\{\zeta = z\}$.

For a convex domain, it is well known that $G(\zeta, z) = \frac{\partial \rho}{\partial \zeta} = (\frac{\partial \rho}{\partial \zeta_1}, \frac{\partial \rho}{\partial \zeta_2})$ is a Leray map [CS01, Lemma 11.2.6], and Φ defined by Leray map

$$\Phi_j(\zeta, z) = \frac{\partial \rho(\zeta)}{\partial \zeta_j}, \ j = 1, 2,$$

is a support function for Ω .

Taylor's Theorem and the convexity of F imply a lower bound for $\operatorname{Re} \Phi(\zeta, z)$ on $S_{0,2\delta} := \{z \in \overline{\Omega} : \rho(z) \geq -2\delta\}.$

Lemma 2.2. Let $\Omega \subset \mathbb{C}^2$ be as in Section 1 with Φ as above. Then there exist $\epsilon, c > 0$ so that

$$\operatorname{Re} \Phi(\zeta, z) \ge \rho(\zeta) - \rho(z) + \begin{cases} c|z-\zeta|^2 & \zeta \in S_{0,2\delta} \setminus B(0,\delta), \\ P(z_1) - P(\zeta_1) - 2\operatorname{Re} \left\{ \frac{\partial P}{\partial \zeta_1}(\zeta_1)(z_1-\zeta_1) \right\} & \zeta \in S_{0,2\delta} \cap B(0,\delta). \end{cases}$$

$$(2.1)$$
for all $z \in \overline{\Omega}$ with $|z-\zeta| \le \epsilon$, where $P(z_1) = F(|z_1|^2)$ or $P(z_1) = F(x_1^2)$.

Proof. Let h be a \mathbb{R} -valued smooth function in $\mathbb{C}^2 = \mathbb{R}^4$ and $x, y \in \mathbb{R}^4$. If $\alpha(t) = tx + (1 - t)y$, and $\varphi(t) = h(\alpha(t))$, then it follows from Taylor's Theorem applied to $\varphi(t)$ that there exists $\tilde{y} \in \alpha([0, 1])$ so that

$$h(x) = h(y) + \sum_{j=1}^{4} \frac{\partial h(y)}{\partial y_j} (x - y) + \frac{1}{2} \sum_{j,k=1}^{4} \frac{\partial^2 h(\tilde{y})}{\partial y_j \partial y_k} (x_j - y_j) (x_k - y_k).$$

Set $z = (z_1, z_2) = (x_1 + ix_2, x_3 + ix_4)$ and $\zeta = (\zeta_1, \zeta_2) = (y_1 + iy_2, y_3 + iy_4)$. Translating the first order component of the Taylor series expansion to complex coordinates, we compute

$$2\operatorname{Re}\left\{\frac{\partial h(\zeta)}{\partial \zeta_{j}}(z_{j}-\zeta_{j})\right\} = \operatorname{Re}\left\{\left(\frac{\partial h(\zeta)}{\partial y_{2j-1}}-i\frac{\partial h(\zeta)}{\partial y_{2j}}\right)\left((x_{2j-1}-y_{2j-1})+i(x_{2j}-y_{2j})\right)\right\}$$
$$=\frac{\partial h(\zeta)}{\partial y_{2j-1}}(x_{2j-1}-y_{2j-1})+\frac{\partial h(\zeta)}{\partial y_{2j}}(x_{2j}-y_{2j}),$$

j = 1, 2. Consequently, if $[\zeta, z]$ is the line segment connecting ζ and z, then

$$h(z) \ge h(\zeta) + 2\sum_{j=1}^{2} \operatorname{Re}\left\{\frac{\partial h(\zeta)}{\partial \zeta_{j}}(z_{j} - \zeta_{j})\right\} + \min_{\tilde{y} \in [\zeta, z]} \frac{1}{2}\sum_{j,k=1}^{4} \frac{\partial^{2} h(\tilde{y})}{\partial y_{j} \partial y_{k}}(x_{j} - y_{j})(x_{k} - y_{k}). \quad (2.2)$$

Applying (2.2) to the defining function ρ yields

$$\rho(z) \ge \rho(\zeta) - \operatorname{Re} \Phi(\zeta, z) + \min_{\tilde{y} \in [\zeta, z]} \frac{1}{2} \sum_{j,k=1}^{4} \frac{\partial^2 \rho(\tilde{y})}{\partial y_j \partial y_k} (x_j - y_j) (x_k - y_k).$$

Since ρ is strictly convex on $b\Omega \setminus B(0, \delta)$, there exists c > 0 so that $|\sum_{j,k=1}^{4} \frac{\partial^2 \rho(\tilde{y})}{\partial y_j \partial y_k} (x_j - y_j)(x_k - y_k)| \ge c|x - y|^2$ if $y \in S_{0,2\delta} \setminus B(0, \delta)$ and $\epsilon > 0$ is sufficiently small. The first case of (2.1) now follows.

For the remaining case, we use (2.2) and the convexity of r to observe that

$$\rho(\zeta) - \rho(z) + P(z_1) - P(\zeta_1) - 2 \operatorname{Re} \left\{ \frac{\partial P}{\partial \zeta_1}(\zeta_1)(z_1 - \zeta_1) \right\}$$

= $r(\zeta) - r(z) + 2 \operatorname{Re} \left\{ \frac{\partial P}{\partial \zeta_1}(\zeta_1)(\zeta_1 - z_1) \right\}$
$$\leq 2 \sum_{j=1}^2 \operatorname{Re} \left\{ \frac{\partial r(\zeta)}{\partial \zeta_j}(\zeta_j - z_j) \right\} + 2 \operatorname{Re} \left\{ \frac{\partial P}{\partial \zeta_1}(\zeta_1)(\zeta_1 - z_1) \right\}$$

= $\operatorname{Re} \Phi(\zeta, z).$

This completes the proof.

We take the ϵ constructed in Lemma 2.2 to be a global constant in the paper, though we reserve the right to decrease it.

Let $\phi = \sum_{j=1}^{2} \phi_j d\bar{z}_j$ be a bounded, C^1 , $\bar{\partial}$ -closed (0, 1)-form on $\bar{\Omega}$. The solution u of the $\bar{\partial}$ -equation, $\bar{\partial}u = \phi$, provided by the Henkin kernel is given by

$$u = T\phi(z) = H\phi(z) + K\phi(z).$$
(2.3)

where

$$H\phi(z) = \frac{1}{2\pi^2} \int_{\zeta \in b\Omega} \frac{\frac{\partial\rho(\zeta)}{\partial\zeta_1} (\bar{\zeta}_2 - \bar{z}_2) - \frac{\partial\rho(\zeta)}{\partial\zeta_2} (\bar{\zeta}_1 - \bar{z}_1)}{\Phi(\zeta, z) |\zeta - z|^2} \phi(\zeta) \wedge \omega(\zeta);$$

$$K\phi(z) = \frac{1}{4\pi^2} \int_{\Omega} \frac{\phi_1(\zeta) (\bar{\zeta}_1 - \bar{z}_1) - \phi_2(\zeta) (\bar{\zeta}_2 - \bar{z}_2)}{|\zeta - z|^4} \omega(\bar{\zeta}) \wedge \omega(\zeta)$$
(2.4)

where $\omega(\zeta) = d\zeta_1 \wedge d\zeta_2$. See, for example, [FLZ11, DFW86]. To understand the L^p -norm of u, it suffices to investigate the L^p mapping properties of integral operators H and K.

3. Proof of the theorem 1.2

As a consequence of the Riesz-Thorin Interpolation Theorem and Theorem 1.1, proving that T is a bounded, linear operator on $L^1(\Omega)$ suffices to establish that T is a bounded linear operator on $L^p(\Omega)$, $1 \le p \le \infty$.

The L^1 -estimate of $|K\phi(z)|$ is standard and does not require interpolation. Indeed, since $|\zeta - z|^{-3} \in L^1(\Omega)$ in both ζ and z (separately), L^p boundedness of K, $1 \le p \le \infty$, follows from [Fol99, Theorem 6.18].

For the boundedness of H, we first begin the analysis of $H\phi(z)$ by using Stokes' Theorem. Using the assumption that ϕ is $\bar{\partial}$ -closed, we observe

$$H\phi(z) = \frac{1}{2\pi^2} \int_{\Omega} \bar{\partial}_{\zeta} \left(\frac{\frac{\partial\rho(\zeta)}{\partial\zeta_1}(\bar{\zeta}_2 - \bar{z}_2) - \frac{\partial\rho(\zeta)}{\partial\zeta_2}(\bar{\zeta}_1 - \bar{z}_1)}{(\Phi(\zeta, z) - \rho(\zeta))(|\zeta - z|^2 + \rho(\zeta)\rho(z))} \right) \wedge \phi(\zeta) \wedge \omega(\zeta).$$

We abuse notation slightly and let $H(\zeta, z)$ be the integral kernel of H. Direct calculation shows that we can decompose

$$\begin{aligned} |H(\zeta,z)| &\leq \left| \bar{\partial}_{\zeta} \bigg(\frac{\frac{\partial \rho(\zeta)}{\partial \zeta_{1}} (\bar{\zeta}_{2} - \bar{z}_{2}) - \frac{\partial \rho(\zeta)}{\partial \zeta_{2}} (\bar{\zeta}_{1} - \bar{z}_{1})}{(\Phi(\zeta,z) - \rho(\zeta))(|\zeta - z|^{2} + \rho(\zeta)\rho(z))} \bigg) \right| \\ &\lesssim \frac{1}{|\Phi(\zeta,z) - \rho(\zeta)|^{2} (|\zeta - z|^{2} + \rho(\zeta)\rho(z))^{1/2}} + \frac{1}{|\Phi(\zeta,z) - \rho(\zeta)|(|\zeta - z|^{2} + \rho(\zeta)\rho(z))}$$
(3.1)

Since ρ is smooth, ρ is Lipschitz, so $(\rho(\zeta) - \rho(z))^2 \lesssim |\zeta - z|^2$. Therefore, $\rho(\zeta)^2 \lesssim |\zeta - z|^2 + \rho(\zeta)\rho(z)$, hence $|\zeta - z| + |\rho(\zeta)| \lesssim (|\zeta - z|^2 + \rho(\zeta)\rho(z))^{1/2}$. Thus

$$|\Phi(\zeta, z) - \rho(\zeta)| \lesssim |\zeta - z| + |\rho(\zeta)| \lesssim (|\zeta - z|^2 + \rho(\zeta)\rho(z))^{1/2}.$$
(3.2)

Combining (3.1) and (3.2), we obtain

$$H(\zeta, z)| \lesssim \frac{1}{|\Phi(\zeta, z) - \rho(\zeta)|^2 (|\zeta - z|^2 + \rho(\zeta)\rho(z))^{1/2}} \\ \leq \frac{1}{|\Phi(\zeta, z) - \rho(\zeta)|^2 |\zeta - z|} \\ \leq \frac{1}{(|\operatorname{Re} \Phi(\zeta, z) - \rho(\zeta)|^2 + |\operatorname{Im} \Phi(\zeta, z)|^2) |\zeta_1 - z_1|}.$$
(3.3)

We will show that

$$\iint_{(\zeta,z)\in\Omega\times\Omega} \left| H(\zeta,z)\phi(\zeta) \right| dV(\zeta,z) \lesssim \|\phi\|_{L^1(\Omega)} < \infty.$$
(3.4)

By Tonelli's Theorem, it then follows that

$$\|H\phi\|_{L^{1}(\Omega)} = \left| \int_{z\in\Omega} H\phi(z) \, dV(z) \right|$$

= $\left| \int_{z\in\Omega} \int_{\zeta\in\Omega} H(\zeta,z)\phi(\zeta) \, dV(\zeta) \, dV(z) \right|$
 $\leq \iint_{(\zeta,z)\in\Omega\times\Omega} \left| H(\zeta,z)\phi(\zeta) \right| \, dV(\zeta,z) \lesssim \|\phi\|_{L^{1}(\Omega)}.$ (3.5)

In order to prove (3.4), we remark that it is enough to assume that $z, \zeta \in \Omega \cap B(0, \delta) = \{\rho(z) = P(z_1) + r(z) < 0\}$ because if $\zeta, z \in \overline{\Omega} \setminus B(0, \delta/2)$, then the estimates following classically using the strict convexity of r. If one of $\{z, \zeta\}$ is in $B(0, \delta/2)$ and other is an element of $B(0, \delta)^c$, then the integrand of H is bounded and bounded away from 0, and the estimate is trivial. We will investigate the complex and real ellipsoid cases separately to show

$$\iint_{(\zeta,z)\in(\Omega\cap B(0,\delta))^2} H(\zeta,z)\phi(\zeta)dV(\zeta,z) \lesssim \|\phi\|_{L^1(\Omega)}.$$
(3.6)

First, however, we recall the following facts for a class of real functions F in the first part with the additional assumption that F'(0) = 0.

Lemma 3.1. Let F be a C^2 convex function on $[0, \delta]$. Then

$$F(p) - F(q) - F'(q)(p-q) \ge 0$$
(3.7)

for any $p,q \in [0,\delta]$. If, in addition, F'(0) = 0 and F'' is nondecreasing, then

$$F(p) - F(q) - F'(q)(p-q) \ge F(p-q),$$
(3.8)

for any $0 \le q \le p \le \delta$.

Proof. The proof of (3.7) is simple and is omitted here (see, e.g., (2.2)). For (3.8), let $s := p-q \ge 0$ and g(s) := F(s+q)-F(q)-sF'(q)-F(s). Hence, g'(s) = F'(s+q)-F'(q)-F'(s) and g''(s) = F''(s+q) - F''(s). Using the assumption F''(t) is nondecreasing, we have $g''(s) \ge 0$, thus g'(s) is nondecreasing. This implies $g'(s) \ge g'(0) = 0$ (since F'(0) = 0) and consequently that g(s) is increasing. We thus obtain $g(s) \ge g(0) = 0$ (since F(0)=0). This completes the proof of (3.8).

3.1. Complex Ellipsoid Case. In this subsection, Ω is defined by (1.1). Since the argument of F is $|\zeta_1|^2$, the chain rule shows that $\frac{\partial}{\partial \zeta_1} F(|\zeta_1|^2) = \overline{\zeta_1} F'(|\zeta_1|^2)$. Similarly to Khanh [Kha13, (4.1)], Lemma 2.2 shows that

$$\operatorname{Re}\left\{\Phi(\zeta,z)\right\} - \rho(\zeta) \ge -\rho(z) + F(|z_1|^2) - F(|\zeta_1|^2) - 2F'(|\zeta_1|^2) \operatorname{Re}\left\{\bar{\zeta}_1(z_1 - \zeta_1)\right\} \\ = -\rho(z) + F'(|\zeta_1|^2)|z_1 - \zeta_1|^2 + \left(F(|z_1|^2) - F(|\zeta_1|^2) - F'(|\zeta_1|^2)(|z_1|^2 - |\zeta_1|^2)\right).$$
(3.9)

The analysis splits into two cases: i) $F'(0) \neq 0$ and ii) F'(0) = 0. In the first case, the hypotheses on F guarantee the existence of a $\delta > 0$ such that $F'(|\zeta_1|^2) > 0$ for any $|\zeta_1| < \delta$. Hence,

$$\operatorname{Re}\left\{\Phi(\zeta, z)\right\} - \rho(\zeta) \gtrsim -\rho(z) + |z_1 - \zeta_1|^2$$

$$|H(\zeta, z)| \le \frac{1}{(|\rho(z)|^2 + |\operatorname{Im} \Phi(\zeta, z)|^2 + |\zeta_1 - z_1|^4)|\zeta_1 - z_1|}.$$

The estimate in this case is the estimate for the case of a strongly pseudoconvex domain, and the result is classical and well-known. Thus, we may assume that F'(0) = 0.

Lemma 3.2. Let F be defined in Section 1 with the additional assumption F'(0) = 0. Then

$$|H(\zeta, z)| \lesssim \begin{cases} \frac{1}{(|\rho(z) + i \operatorname{Im} \Phi(\zeta, z)|^2 + F^2(|z_1 - \zeta_1|^2))|z_1 - \zeta_1|} & \text{if } |\zeta_1| \ge |z_1 - \zeta_1|, \\ \frac{1}{(|\rho(z) + i \operatorname{Im} \Phi(\zeta, z)|^2 + F^2(\frac{1}{2}|z_1|^2))|z_1|} & \text{if } |\zeta_1| \le |z_1 - \zeta_1|. \end{cases}$$

$$(3.10)$$

Proof. Applying Lemma 3.1 to (3.9), we obtain

$$\operatorname{Re}\left\{\Phi(\zeta, z)\right\} - \rho(\zeta) \ge -\rho(z) + \begin{cases} F'(|\zeta_1|^2)|z_1 - \zeta_1|^2 & \text{if } 0 < |z_1|, |\zeta_1| < \delta, \\ F(|z_1|^2 - |\zeta_1|^2) & \text{if } |\zeta_1| \le |z_1| \le \delta. \end{cases}$$
(3.11)

We compare $|\zeta_1|$ and $|z_1 - \zeta_1|^2$.

Case 1: $|\zeta_1| \ge |z_1 - \zeta_1|$. Combining the first inequality from (3.11) with the facts that F' is increasing and $F'(t)t \ge F(t)$ (since $\frac{F(t)}{t}$ is nondecreasing), we obtain

Re {
$$\Phi(\zeta, z)$$
} - $\rho(\zeta) \ge -\rho(z) + F(|z_1 - \zeta_1|^2).$

The first line of (3.10) follows by this inequality and (3.3).

Case 2: $|\zeta_1| \leq |z_1 - \zeta_1|$. In this case, the estimate depends on the relative sizes of $|\zeta_1|$ and $\frac{1}{\sqrt{2}}|z_1|$. If $|\zeta_1| \geq \frac{1}{\sqrt{2}}|z_1|$, then the argument from Case 1 proves that

Re
$$\{\Phi(\zeta, z)\} - \rho(\zeta) \ge -\rho(z) + F(\frac{1}{2}|z_1|^2),$$

and we obtain the second estimate in (3.10). Otherwise, $|\zeta_1| \leq \frac{1}{\sqrt{2}}|z_1|$, and this implies both $|z_1| \ge |\zeta_1|$ and $|z_1 - \zeta_1| \ge (1 - \frac{1}{\sqrt{2}})|z_1|$. By the second case of (3.11), we observe that

Re {
$$\Phi(\zeta, z)$$
 } - $\rho(\zeta) \ge -\rho(z) + F(|z_1|^2 - |\zeta_1|^2) \ge -\rho(z) + F(\frac{1}{2}|z_1|^2),$

and

$$(|\operatorname{Re} \Phi(\zeta, z) - \rho(\zeta)|^2 + |\operatorname{Im} \Phi(\zeta, z)|^2)|\zeta_1 - z_1| \gtrsim (|\rho(z) + i\operatorname{Im} \Phi(\zeta, z)|^2 + F^2(\frac{1}{2}|z_1|^2))|z_1|.$$

This completes the proof.

This completes the proof.

Proof of the Theorem 1.2.i. By Lemma 3.2, we have

$$\iint_{(\zeta,z)\in(\Omega\cap B(0,\delta))^2} |H(\zeta,z)\phi(\zeta)| \, dV(\zeta,z)
= \iint_{(\zeta,z)\in(\Omega\cap B(0,\delta))^2 \text{ and } |\zeta_1|\ge |z_1-\zeta_1|} \dots + \iint_{(\zeta,z)\in(\Omega\cap B(0,\delta))^2 \text{ and } |\zeta_1|\le |z_1-\zeta_1|} \dots \qquad (3.12)
\lesssim (I) + (II),$$

where

$$(I) := \iint_{(\zeta,z)\in(\Omega\cap B(0,\delta))^2} \frac{|\phi(\zeta)|dV(\zeta,z)}{(|\rho(z)+i\operatorname{Im}\Phi(\zeta,z)|^2 + F^2(|z_1-\zeta_1|^2))|z_1-\zeta_1|};$$

$$(II) := \iint_{(\zeta,z)\in(\Omega\cap B(0,\delta))^2} \frac{|\phi(\zeta)|dV(\zeta,z)}{(|\rho(z)+i\operatorname{Im}\Phi(\zeta,z)|^2 + F^2(\frac{1}{2}|z_1|^2))|z_1|}.$$
(3.13)

For the integral (I), we make the change variables $(\psi, w) = (\psi_1, \psi_2, w_1, w_2) = (\zeta_1, \zeta_2, z_1 - \zeta_1, \rho(z) + i \operatorname{Im} \Phi(\zeta, z))$. Direct calculus the Jacobian of this transformation is the matrix

$$J = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ \frac{\partial Im \Phi(\zeta,z)}{\partial (Re \zeta_1)} & \frac{\partial Im \Phi(\zeta,z)}{\partial (Im \zeta_2)} & \frac{\partial Im \Phi(\zeta,z)}{\partial (Im \zeta_2)} & \frac{\partial Im \Phi(\zeta,z)}{\partial (Re z_1)} & \frac{\partial Im \Phi(\zeta,z)}{\partial (Im z_1)} & \frac{\partial Im \Phi(\zeta,z)}{\partial (Re z_2)} & \frac{\partial Im \Phi(\zeta,z)}{\partial (Im z_2)} \end{pmatrix}$$

To justify this coordinate change, we write $z_j = x_j + iy_j$ and compute

$$\det(J) = \frac{\partial \operatorname{Im}(\Phi(\zeta, z))}{\partial y_2} \frac{\partial \rho(z)}{\partial x_2} - \frac{\partial \operatorname{Im}(\Phi(\zeta, z))}{\partial x_2} \frac{\partial \rho(z)}{\partial y_2}.$$

By a possible rotation and dilation of Ω , we can assume that $\nabla \rho(0) = (0, 0, 0, -1)$. Direct calculation then establishes that if δ is chosen sufficiently small (so that $\frac{\partial \rho(z)}{\partial y_2}$ dominates the other partials of ρ and $|\zeta - z|$ is small), then $\det(J) \neq 0$. Since Φ is smooth, we can assume that there exists $\delta' > 0$ that depends on Ω and ρ so that

$$(I) \lesssim \iint_{(\psi,w)\in(\Omega\cap B(0,\delta))\times B(0,\delta')} \frac{|\phi(\psi)|}{(|w_2|^2 + F^2(|w_1|^2)|w_1|} \, dV(\psi,w)$$

$$\lesssim \|\phi\|_{L^1(\Omega)} \int_0^{\delta'} \int_0^{\delta'} \frac{r_1 r_2}{(r_2^2 + F^2(r_1^2))r_1} \, dr_2 \, dr_1$$

$$\lesssim \|\phi\|_{L^1(\Omega)} \int_0^{\delta'} \log F(r_1^2) \, dr_1 < \infty.$$

That the integral is finite follows by the hypotheses on ϕ and F.

Repeating this argument with the change of coordinates $(\psi, w) = (\psi_1, \psi_2, w_1, w_2) = (\zeta_1, \zeta_2, \frac{1}{\sqrt{2}}z_1, \rho(z) + i \operatorname{Im} \Phi(\zeta, z))$ for the integral (II), we can obtain the same conclusion. Therefore, the estimate in complex case is complete.

3.2. Real Ellipsoid Case. In this subsection, Ω is defined by (1.2). The analogous argument from (3.9) case yields

$$\operatorname{Re}\{\Phi(\zeta,z)\} - \rho(\zeta) \ge -\rho(z) + F'(\xi_1^2)(x_1 - \xi_1)^2 + \left(F(x_1^2) - F(\xi_1^2) - F'(\xi_1^2)(x_1^2 - \xi_1^2)\right),\$$

where $z_1 = x_1 + iy_1$, $\zeta_1 = \xi_1 + i\eta_1$. Following the setup in the complex case, with the same proof, one also have

Lemma 3.3. Let F be defined in Section 1 with the extra assumption F'(0) = 0. Then

$$|H(\zeta,z)| \lesssim \begin{cases} \frac{1}{(|\rho(z)+i\operatorname{Im}\Phi(\zeta,z)|^2 + F^2((x_1-\xi_1)^2))(|x_1-\xi_1|+|y_1-\eta_1|)} & \text{if } |\xi_1| \ge |x_1-\xi_1|, \\ \frac{1}{(|\rho(z)+i\operatorname{Im}\Phi(\zeta,z)|^2 + F^2(\frac{1}{2}x_1^2))(\frac{1}{\sqrt{2}}|x_1|+|y_1-\eta_1|)} & \text{if } |\xi_1| \le |x_1-\xi_1|. \end{cases}$$

Proof of Theorem 1.2.ii. Using Lemma 3.3, we have

$$\iint_{(\zeta,z)\in(\Omega\cap B(0,\delta))^2} \left| H(\zeta,z)\phi(\zeta) \right| dV(\zeta,z) \lesssim (I) + (II)$$
(3.15)

where

$$(I) := \iint_{(\zeta,z)\in(\Omega\cap B(0,\delta))^2} \frac{|\phi(\zeta)| \, dV(\zeta,z)}{(|\rho(z)+i\operatorname{Im}\Phi(\zeta,z)|^2 + F^2((x_1-\xi_1)^2))(|x_1-\xi_1|+|y_1-\eta_1|)};$$

$$(II) := \iint_{(\zeta,z)\in(\Omega\cap B(0,\delta))^2} \frac{|\phi(\zeta)| \, dV(\zeta,z)}{(|\rho(z)+i\operatorname{Im}\Phi(\zeta,z)|^2 + F^2(\frac{1}{2}x_1^2))(\frac{1}{\sqrt{2}}|x_1|+|y_1-\eta_1|)}.$$
(3.16)

We make the change of variables $(\psi, w) = (\psi_1, \psi_2, w_1, w_2) = (\zeta_1, \zeta_2, z_1 - \xi_1, \rho(z) + i \operatorname{Im} \Phi(\zeta, z))$ for (I) and $(\psi, w) = (\psi_1, \psi_2, w_1, w_2) = (\zeta_1, \zeta_2, \frac{1}{\sqrt{2}}x_1 - i(y_1 - \eta_1), \rho(z) + i \operatorname{Im} \Phi(\zeta, z))$ for (II). Similarly to the argument above, we can check that $\det(J) \neq 0$. Therefore

$$\begin{split} (I) + (II) &\lesssim \iint_{(\psi,w)\in(\Omega\cap B(0,\delta))\times B(0,\delta')} \frac{|\phi(\psi)|}{(|w_2|^2 + F^2((\operatorname{Re} w_1)^2)(|\operatorname{Re} w_1| + |\operatorname{Im} w_1|)} \, dV(\psi,w) \\ &\lesssim \|\phi\|_{L^1(\Omega)} \int_0^{\delta'} \int_0^{\delta'} \int_0^{\delta'} \frac{r_2 \, dr_2 \, d(\operatorname{Im} w_1) \, d(\operatorname{Re} w_1)}{(r_2^2 + F^2((\operatorname{Re} w_1)^2))(|\operatorname{Re} w_1| + |\operatorname{Im} w_1|)} \\ &\lesssim \|\phi\|_{L^1(\Omega)} \int_0^{\delta'} \int_0^{\delta'} \frac{\log(F((\operatorname{Re} w_1)^2) \, d(\operatorname{Im} w_1) \, d(\operatorname{Re} w_1)}{|\operatorname{Re} w_1| + |\operatorname{Im} w_1|} \\ &\lesssim \|\phi\|_{L^1(\Omega)} \int_0^{\delta'} \log(|\operatorname{Re} w_1|) \log(F((\operatorname{Re} w_1)^2) \, d(\operatorname{Re} w_1) < \infty. \end{split}$$

That the integral is finite follows by the hypotheses on ϕ and F. This completes the proof of Theorem 1.2.

4. Examples

In this section, we present an example to show that our estimates are optimal in the sense that the inequality $||u||_{L^q(\Omega)} \leq ||\phi||_{L^p(\Omega)}$ cannot hold if $1 \leq p < q \leq \infty$. Specifically, let $0 < \alpha < 1$, fix $1 \leq p < q \leq \infty$, and set

$$\Omega = \{ (z_1, z_2) \in \mathbb{C}^2 : e^{1 - \frac{1}{|z_1|^{\alpha}}} + |z_2|^2 < 1 \}.$$
(4.1)

We will show that there is a $\bar{\partial}$ -closed (0,1)-form $\phi \in L^p_{0,1}(\Omega)$ for which there does not exist a function $u \in L^q(\Omega)$ so that $\bar{\partial}u = \phi$ in Ω . Indeed, let

$$\phi(z) = \frac{(1 - \log(1 - z_2))^k}{(1 - z_2)^{2/q}} d\bar{z}_1 \quad \text{and} \quad v(z) = \frac{(1 - \log(1 - z_2))^k}{(1 - z_2)^{2/q}} \bar{z}_1 \tag{4.2}$$

where $k := \lfloor \frac{q+2}{q\alpha} \rfloor + 1 \in \mathbb{N}$. The function $\frac{(1-\log(1-z_2))^k}{(1-z_2)^{1/q}}$ is holomorphic on Ω with the principle branch of the logarithm $0 < \arg(1-z_2) < 2\pi$. The form ϕ is a $\bar{\partial}$ -closed (0,1)-form on Ω and function v is a solution of the equation $\bar{\partial}v = \phi$. Moreover, we observe that v is L^2 -orthogonal to all holomorphic functions on Ω (by Mean Value Theorem). By direct calculation (Lemma 4.1 below), we obtain $\phi \in L^p_{0,1}(\Omega)$, $v \in L^p(\Omega)$, and $v \notin L^q(\Omega)$. Let Pbe the Bergman projection on Ω , i.e., the L^2 -orthogonal projection onto all holomorphic functions on Ω . Recently, Khanh and Thu [KT] have proven that P is a bounded operator form $L^{q'}(\Omega)$ to $L^{q'}(\Omega)$ for any q' > 1. Therefore if $u \in L^q(\Omega)$ is a solution to $\bar{\partial}u = \phi$, then v = u - P(u) is in $L^q(\Omega)$. This is impossible. Therefore, there is no solution $u \in L^q(\Omega)$.

Lemma 4.1. Let ϕ and v be defined in (4.2). Then, $\phi \in L^p_{1,0}(\Omega)$, $v \in L^p(\Omega)$ and $v \notin L^q(\Omega)$.

Proof. We now show that $\phi \in L^p_{0,1}(\Omega)$. We have

$$\begin{split} \int_{\Omega} |\phi(z)|^{p} dV(v) &= \int_{\Omega} \frac{|1 - \log|1 - z_{2}| + i \arg(1 - z_{2})|^{kp}}{|1 - z_{2}|^{2p/q}} dV(z) \\ &\leq \int_{|z_{2}|<1} \frac{((1 - \log|1 - z_{2}|)^{2} + 4\pi^{2})^{kp/2}}{|1 - z_{2}|^{2p/q}} \int_{|z_{1}|<(1 - \log(1 - |z_{2}|^{2}))^{-1/\alpha}} 1 \, dV(z_{1}) \, dV(z_{2}) \\ &\lesssim \int_{|z_{2}|<1} \frac{((1 - \log|1 - z_{2}|)^{2} + 4\pi^{2})^{kp/2}}{|1 - z_{2}|^{2p/q}((1 - \log(1 - |z_{2}|^{2}))^{2/\alpha}} \, dV(z_{2}) \\ &\lesssim \int_{|z_{2}|<1} \frac{((1 - \log|1 - z_{2}|)^{2} + 4\pi^{2})^{kp/2}}{|1 - z_{2}|^{2p/q}} \, dV(z_{2}) \\ &\lesssim \int_{|z_{2}|<1, |z_{2} - 1| \ge 1} \dots + \int_{|z_{2}|<1, |z_{2} - 1|<1} \dots \end{split}$$

Since the function $\frac{((1-\log|1-z_2|)^2+4\pi^2)^{kp/2}}{|1-z_2|^{2p/q}}$ is bounded on $\{|z_2| < 1, |z_2-1| \ge 1\}$, the first integral $\int_{|z_2|<1, |z_2-1|\ge 1} \cdots$ is bounded. For the second integral, we have

$$\int_{|z_2|<1,|z_2-1|<1} \dots \leq \int_{|z_2-1|<1} \dots$$
$$= \int_0^1 \frac{((1-\log t)^2 + 4\pi^2)^{kp/2}}{t^{2p/q-1}} dt < \infty,$$

since 2p/q-1 < 1. The proof that $v \in L^p(\Omega)$ follows by our computation that $\phi \in L^p_{0,1}(\Omega)$ since $|z_1|$ is bounded. Now, we prove that $v \notin L^q(\Omega)$. We have

$$\begin{split} \int_{\Omega} |v(z)|^{q} dV(z) &= \int_{\Omega} \frac{|1 - \log(1 - z_{2})|^{kq} |z_{1}|^{q}}{|1 - z_{2}|^{2}} dV(z) \\ &= \int_{|z_{2}|<1} \frac{|1 - \log|1 - z_{2}| + i \arg(1 - z_{2})|^{kq}}{|1 - z_{2}|^{2}} \int_{|z_{1}|<(1 - \log(1 - |z_{2}|^{2}))^{-1/\alpha}} |z_{1}|^{q} dV(z_{1}) dV(z_{2}) \\ &\geq \frac{2\pi\alpha}{q+2} \int_{|z_{2}|<1} \frac{|1 - \log|1 - z_{2}||^{kq}}{|1 - z_{2}|^{2}(1 - \log(1 - |z_{2}|^{2}))^{\frac{q+2}{\alpha}}} dV(z_{2}) \\ &\gtrsim \int_{z_{2}\in D} \frac{|1 - \log|1 - z_{2}||^{kq}}{|1 - z_{2}|^{2}(1 - \log(1 - |z_{2}|^{2}))^{\frac{q+2}{\alpha}}} dV(z_{2}), \end{split}$$

where

$$D = \{z_2 = 1 + re^{i\theta} \in \mathbb{C} : 0 < r < \frac{1}{3}, \frac{3\pi}{4} < \theta < \frac{5\pi}{4}\} \subset \{|z_2| < 1, |z_2 - 1| < \frac{1}{3}\} \subset \{|z_2| < 1\}$$

The domain of the integral forces $1 - \log(1 - |z_2|^2) \sim 1 - \log|1 - z_2|$, and we obtain

$$\int_{\Omega} |v(z)|^q dV(z) \gtrsim \int_0^{\frac{1}{3}} \frac{(1 - \log r)^{kq - \frac{q+2}{\alpha}}}{r} dr \ge \int_0^{\frac{1}{3}} \frac{dr}{r} \quad \text{(diverges)}$$

Here, the last inequality holds because we chose k so that $kq - \frac{q+2}{\alpha} > 0$ by the choice of k.

References

- [BdC84] J. Bruna and J. del Castillo. Hölder and L^p -estimates for the ∂ equation in some convex domains with real-analytic boundary. *Math. Ann.*, 269(4):527–539, 1984.
- [CKM93] Z. Chen, S. Krantz, and D. Ma. Optimal L^p estimates for the $\overline{\partial}$ -equation on complex ellipsoids in \mathbb{C}^n . Manuscripta Math., 80(2):131–149, 1993.
- [CNS92] D.-C. Chang, A. Nagel, and E.M. Stein. Estimates for the ∂̄-Neumann problem in pseudoconvex domains of finite type in C². Acta Math., 169:153–228, 1992.
- [CS01] S.-C. Chen and M.-C. Shaw. Partial Differential Equations in Several Complex Variables, volume 19 of Studies in Advanced Mathematics. American Mathematical Society, 2001.

- [DFW86] K. Diederich, J. E. Fornæss, and J. Wiegerinck. Sharp Hölder estimates for $\overline{\partial}$ on ellipsoids. Manuscripta Math., 56(4):399–417, 1986.
- [FLZ11] J.E. Fornæss, L. Lee, and Y. Zhang. On supnorm estimates for ∂ on infinite type convex domains in C². J. Geom. Anal., 21(3):495–512, 2011.
- [Fol99] G. B. Folland. Real Analysis : modern techniques and their applications. Pure and Applied Mathematics (New York). John Wiley & Sons Inc., New York, Second edition, 1999.
- [Hen70] G.M. Henkin. Integral representation of functions in strongly pseudoconvex regions, and applications to the $\bar{\partial}$ -problem. *Math. USSR-Sb.*, 11:273–281, 1970.
- [Ker71] N. Kerzman. Hölder and L^p estimates for solutions of $\partial u = f$ in strongly pseudoconvex domains. Comm. Pure Appl. Math., 24:301–379, 1971.
- [Kha13] T. V. Khanh. Supnorm and f-Hölder estimates for $\bar{\partial}$ on convex domains of general type in \mathbb{C}^2 . J. Math. Anal. Appl., 403(2):522–531, 2013.
- [Kra76] S.G. Krantz. Optimal Lipschitz and L^p estimates on strongly pseudo-convex domains. Math. Ann., 219:233–260, 1976.
- [KT] T. V. Khanh and N. V. Thu. The Bergman kernel function of a complex ellipsoid of general type. *in preparation*.
- [Øvr71] N. Øvrelid. Integral representation formulas and L^p -estimates for the $\bar{\partial}$ -equation. Math. Scand., 29:137–160, 1971.
- [Ran78] M. Range. On Hölder estimates for $\bar{\partial}u = f$ on weakly pseudoconvex domains. In Several complex variables (Cortona, 1976/1977), pages 247–267. Scuola Norm. Sup. Pisa, Pisa, 1978.
- [Ran86] M. Range. Holomorphic functions and integral representations in several complex variables, volume 108 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1986.

L. K. HA

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI PADOVA, VIA TRIESTE 63, 35121 PADOVA, ITALY *E-mail address*: lykimha@math.unipd.it

T. V. KHANH

TAN TAO UNIVERSITY, TAN TAO AVENUE, TAN DUC E-CITY, LONG AN PROVINCE, VIETNAM *E-mail address*: khanh.tran@ttu.edu.vn

A. RAICH

DEPARTMENT OF MATHEMATICAL SCIENCES, SCEN 327, 1 UNIVERSITY OF ARKANSAS, FAYET-TEVILLE, AR 72701

E-mail address: araich@uark.edu