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Abstract. We prove Lp estimates for solutions to the Cauchy-Riemann equations ∂̄u =
φ on a class of infinite type domains in C2. The domains under consideration are a class
of convex ellipsoids, and we show that if φ is a ∂̄-closed (0, 1)-form with coefficients in Lp

and u is the Henkin kernel solution to ∂̄u = φ, then ‖u‖p ≤ C‖φ‖p where the constant
C is independent of φ. In particular, we prove L1 estimates and obtain Lp estimates by
interpolation.

1. Introduction

A fundamental question in several complex variables is to establish Lp estimates for
solutions of the Cauchy-Riemann equation

∂̄u = φ

on domains Ω ⊂ Cn. In this paper, we provide the first examples of infinite type domains
for which Lp bounds hold, 1 ≤ p ≤ ∞. The domains under consideration are a class
of convex ellipsoids in C2, and we show that if φ is a ∂̄-closed (0, 1)-form and u is the
Henkin solution to ∂̄u = φ, then ‖u‖p ≤ C‖φ‖p where the constant C is independent of
φ. Specifically, we prove L1 estimates and use the Riesz-Thorin Interpolation Theorem to
obtain Lp estimates by interpolating with the L∞ estimates established by Khanh [Kha13]
and (independently) Fornæss et. al. [FLZ11].

We investigate domains of the following form: Ω ⊂ C2 is a smooth, bounded domain
with the origin 0 in the boundary bΩ. Moreover, there exists δ > 0 so that bΩ \B(0, δ/2)
is strictly convex and there exists a defining function ρ so that

Ω ∩B(0, δ) = {z = (z1, z2) ∈ C2 : ρ(z) = F (|z1|2) + r(z) < 0} (1.1)

or

Ω ∩B(0, δ) = {z = (z1, z2) ∈ C2 : ρ(z) = F (x2
1) + r(z) < 0} (1.2)
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where zj = xj + iyj, for xj, yj ∈ R, j = 1, 2, and i =
√
−1. We also assume that the

functions F : R → R and r : C2 → R satisfy:

i. F (0) = 0;

ii. F ′(t), F ′′(t), F ′′′(t), and

(
F (t)

t

)′

are nonnegative on (0, δ);

iii. r(0) = 0 and
∂r

∂z2

6= 0;

iv. r is convex and strictly convex away from 0.

This class of domains includes two well-known examples. If F (t) = tm, with m ≥ 1,
then Ω is of finite type 2m. On the other hand, if F (t) = exp(−1/tα), then Ω is of infinite
type, and this is our main case of interest. We call our domains Ω ellipsoids because they
are generalizations of real and complex ellipsoids in C2. Classically, a complex ellipsoid in
Cn is a domain of the form {z = (z1, . . . , zn) ∈ Cn :

∑n
j=1 |zj|2mj < 1}, and a real ellipsoid

is a domain of the form {z = (x1 + iy1, . . . , xn+ iyn) ∈ Cn :
∑n

j=1(x
2nj +y2mj) < 1} where

mj, nj ∈ N, 1 ≤ j ≤ n.
There is a long history of proving Lp estimates for the ∂̄-equation, dating back to

the work of Kerzman [Ker71] and Øvrelid [Øvr71]. In [Kra76], Krantz proved essentially
optimal Lipschitz and Lp estimates on strongly pseudoconvex domains. In the case that
Ω is a real ellipsoid, et. al. obtained sharp Hölder estimates [DFW86] while Chen et. al.
established optimal Lp estimates for complex ellipsoids [CKM93]. See also Range [Ran78]
and Bruna and del Castillo [BdC84]. Both real and complex ellipsoids are domains of
finite type, and the analysis in the referenced works depends in an essential fashion on
the type. In C2, Chang et. al. [CNS92] proved Lp estimates for the ∂̄-Neumann operator
on weakly pseudoconvex domains of finite type. See [CKM93, FLZ11] and the references
within for a more complete history.

More recently, there has been work on supnorm estimates for the Cauchy-Riemann
equations on infinite type domains in C2. Fornæss et. al. provided the first examples in
[FLZ11] and Khanh found the estimates hold when domains are of the type (1.1) or (1.2)
[Kha13]. In particular, Khanh proved

Theorem 1.1 (Theorem 1.2, [Kha13]). If

i. Ω is defined by (1.1) and there exists δ > 0 so that
∫ δ

0
| logF (t2)| dt <∞, or

ii. Ω is defined by (1.2) and there exists δ > 0 so that
∫ δ

0
| log(t) logF (t2)| dt <∞,

then for any bounded, ∂̄-closed (0, 1)-form φ on Ω, the Henkin solution u on Ω satisfies
∂̄u = φ and

‖u‖L∞(Ω) ≤ C‖φ‖L∞(Ω),

where C > 0 is independent of φ.

In this paper, we will prove the Lp-version of Theorem 1.1. Our technique yields Lp-
estimates both when in the case that Ω is of finite type as well as of infinite type.
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Theorem 1.2. If either of the following conditions hold:

i. Ω is defined by (1.1) and there exists δ > 0 so that
∫ δ

0
| logF (t2)| dt <∞,

ii. Ω is defined by (1.2) and there exists δ > 0 so that
∫ δ

0
| log(t) logF (t2)| dt <∞,

then for any ∂̄-closed (0, 1)-form φ and in Lp(Ω) with 1 ≤ p ≤ ∞, the Henkin kernel
solution u on Ω satisfies ∂̄u = φ and

‖u‖Lp(Ω) ≤ C‖φ‖Lp(Ω),

where C > 0 is independent of φ.

The following examples show that the Lp estimates in Theorem 1.2 are sharp in the
case of infinite type case.

Example 1.1. For 0 < α < 1, let Ω be defined by

Ω =
{

(z1, z2) ∈ C2 : e
1− 1

|z1|α + |z2|2 < 1
}
.

Then for any φ ∈ Lp(Ω) with 1 ≤ p ≤ ∞, there is a solution u of the equation ∂̄u = φ
such that u ∈ Lp(Ω). Moreover, if p 6= ∞, there is no solution u ∈ Lq(Ω) with q > p.

The organization of the paper is as follows: we recall the construction the Henkin
solution via the Henkin kernel in Section 2. We prove Theorem 1.2 in Section 3 and
discuss Example 1.1 in Section 4.

2. Henkin Solution

In this section, we recall the construction of the Henkin kernel and Henkin solution to
∂̄. For complete details, see [Hen70, Ran86], or for a more modern treatment, see [CS01].

Definition 2.1. A C2-valued C1 function G(ζ, z) = (g1(ζ, z), g2(ζ, z)) is called a Leray
map for Ω if g1(ζ, z)(ζ1 − z1) + g2(ζ, z)(ζ2 − z2) 6= 0 for every (ζ, z) ∈ bΩ× Ω. A support
function Φ(ζ, z) for Ω is a smooth function defined near bΩ × Ω̄ so that Φ admits a
decomposition

Φ(ζ, z) = 2
2∑
j=1

Φj(ζ, z)(ζj − zj)

where Φj(ζ, z) are smooth near bΩ×Ω̄, holomorphic in z, and vanish only on the diagonal
{ζ = z}.

For a convex domain, it is well known that G(ζ, z) = ∂ρ
∂ζ

= ( ∂ρ
∂ζ1
, ∂ρ
∂ζ2

) is a Leray map

[CS01, Lemma 11.2.6], and Φ defined by Leray map

Φj(ζ, z) =
∂ρ(ζ)

∂ζj
, j = 1, 2,

is a support function for Ω.
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Taylor’s Theorem and the convexity of F imply a lower bound for Re Φ(ζ, z) on S0,2δ :=
{z ∈ Ω̄ : ρ(z) ≥ −2δ}.

Lemma 2.2. Let Ω ⊂ C2 be as in Section 1 with Φ as above. Then there exist ε, c > 0 so
that

Re Φ(ζ, z) ≥ ρ(ζ)−ρ(z)+

{
c|z − ζ|2 ζ ∈ S0,2δ \B(0, δ),

P (z1)− P (ζ1)− 2 Re
{
∂P
∂ζ1

(ζ1)(z1 − ζ1)
}

ζ ∈ S0,2δ ∩B(0, δ).

(2.1)
for all z ∈ Ω̄ with |z − ζ| ≤ ε,where P (z1) = F (|z1|2) or P (z1) = F (x2

1).

Proof. Let h be a R-valued smooth function in C2 = R4 and x, y ∈ R4. If α(t) = tx+(1−
t)y, and ϕ(t) = h(α(t)), then it follows from Taylor’s Theorem applied to ϕ(t) that there
exists ỹ ∈ α([0, 1]) so that

h(x) = h(y) +
4∑
j=1

∂h(y)

∂yj
(x− y) +

1

2

4∑
j,k=1

∂2h(ỹ)

∂yj∂yk
(xj − yj)(xk − yk).

Set z = (z1, z2) = (x1 + ix2, x3 + ix4) and ζ = (ζ1, ζ2) = (y1 + iy2, y3 + iy4). Translating the
first order component of the Taylor series expansion to complex coordinates, we compute

2 Re

{
∂h(ζ)

∂ζj
(zj − ζj)

}
= Re

{(
∂h(ζ)

∂y2j−1

− i
∂h(ζ)

∂y2j

) (
(x2j−1 − y2j−1) + i(x2j − y2j)

)}
=

∂h(ζ)

∂y2j−1

(x2j−1 − y2j−1) +
∂h(ζ)

∂y2j

(x2j − y2j),

j = 1, 2. Consequently, if [ζ, z] is the line segment connecting ζ and z, then

h(z) ≥ h(ζ) + 2
2∑
j=1

Re

{
∂h(ζ)

∂ζj
(zj − ζj)

}
+ min

ỹ∈[ζ,z]

1

2

4∑
j,k=1

∂2h(ỹ)

∂yj∂yk
(xj − yj)(xk − yk). (2.2)

Applying (2.2) to the defining function ρ yields

ρ(z) ≥ ρ(ζ)− Re Φ(ζ, z) + min
ỹ∈[ζ,z]

1

2

4∑
j,k=1

∂2ρ(ỹ)

∂yj∂yk
(xj − yj)(xk − yk).

Since ρ is strictly convex on bΩ \B(0, δ), there exists c > 0 so that |
∑4

j,k=1
∂2ρ(ỹ
∂yj∂yk

(xj −
yj)(xk − yk)| ≥ c|x− y|2 if y ∈ S0,2δ \B(0, δ) and ε > 0 is sufficiently small. The first case
of (2.1) now follows.
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For the remaining case, we use (2.2) and the convexity of r to observe that

ρ(ζ)− ρ(z) + P (z1)− P (ζ1)− 2 Re
{∂P
∂ζ1

(ζ1)(z1 − ζ1)
}

= r(ζ)− r(z) + 2 Re
{∂P
∂ζ1

(ζ1)(ζ1 − z1)
}

≤ 2
2∑
j=1

Re
{∂r(ζ)
∂ζj

(ζj − zj)
}

+ 2 Re
{∂P
∂ζ1

(ζ1)(ζ1 − z1)
}

= Re Φ(ζ, z).

This completes the proof. �

We take the ε constructed in Lemma 2.2 to be a global constant in the paper, though
we reserve the right to decrease it.

Let φ =
∑2

j=1 φjdz̄j be a bounded, C1, ∂̄-closed (0, 1)-form on Ω̄. The solution u of the

∂̄-equation, ∂̄u = φ, provided by the Henkin kernel is given by

u = Tφ(z) = Hφ(z) +Kφ(z). (2.3)

where

Hφ(z) =
1

2π2

∫
ζ∈bΩ

∂ρ(ζ)
∂ζ1

(ζ̄2 − z̄2)− ∂ρ(ζ)
∂ζ2

(ζ̄1 − z̄1)

Φ(ζ, z)|ζ − z|2
φ(ζ) ∧ ω(ζ);

Kφ(z) =
1

4π2

∫
Ω

φ1(ζ)(ζ̄1 − z̄1)− φ2(ζ)(ζ̄2 − z̄2)

|ζ − z|4
ω(ζ̄) ∧ ω(ζ)

(2.4)

where ω(ζ) = dζ1 ∧ dζ2. See, for example, [FLZ11, DFW86]. To understand the Lp-norm
of u, it suffices to investigate the Lp mapping properties of integral operators H and K.

3. Proof of the theorem 1.2

As a consequence of the Riesz-Thorin Interpolation Theorem and Theorem 1.1, proving
that T is a bounded, linear operator on L1(Ω) suffices to establish that T is a bounded
linear operator on Lp(Ω), 1 ≤ p ≤ ∞.

The L1-estimate of |Kφ(z)| is standard and does not require interpolation. Indeed, since
|ζ − z|−3 ∈ L1(Ω) in both ζ and z (separately), Lp boundedness of K, 1 ≤ p ≤ ∞, follows
from [Fol99, Theorem 6.18].

For the boundedness of H, we first begin the analysis of Hφ(z) by using Stokes’ Theo-
rem. Using the assumption that φ is ∂̄-closed, we observe

Hφ(z) =
1

2π2

∫
Ω

∂̄ζ

( ∂ρ(ζ)
∂ζ1

(ζ̄2 − z̄2)− ∂ρ(ζ)
∂ζ2

(ζ̄1 − z̄1)

(Φ(ζ, z)− ρ(ζ))(|ζ − z|2 + ρ(ζ)ρ(z))

)
∧ φ(ζ) ∧ ω(ζ).
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We abuse notation slightly and letH(ζ, z) be the integral kernel ofH. Direct calculation
shows that we can decompose

|H(ζ, z)| ≤

∣∣∣∣∣∂̄ζ
( ∂ρ(ζ)

∂ζ1
(ζ̄2 − z̄2)− ∂ρ(ζ)

∂ζ2
(ζ̄1 − z̄1)

(Φ(ζ, z)− ρ(ζ))(|ζ − z|2 + ρ(ζ)ρ(z))

)∣∣∣∣∣
.

1

|Φ(ζ, z)− ρ(ζ)|2(|ζ − z|2 + ρ(ζ)ρ(z))1/2
+

1

|Φ(ζ, z)− ρ(ζ)|(|ζ − z|2 + ρ(ζ)ρ(z))
.

(3.1)

Since ρ is smooth, ρ is Lipschitz, so (ρ(ζ)−ρ(z))2 . |ζ−z|2. Therefore, ρ(ζ)2 . |ζ−z|2 +
ρ(ζ)ρ(z), hence |ζ − z|+ |ρ(ζ)| . (|ζ − z|2 + ρ(ζ)ρ(z))1/2. Thus

|Φ(ζ, z)− ρ(ζ)| . |ζ − z|+ |ρ(ζ)| . (|ζ − z|2 + ρ(ζ)ρ(z))1/2. (3.2)

Combining (3.1) and (3.2), we obtain

|H(ζ, z)| . 1

|Φ(ζ, z)− ρ(ζ)|2(|ζ − z|2 + ρ(ζ)ρ(z))1/2

≤ 1

|Φ(ζ, z)− ρ(ζ)|2|ζ − z|

≤ 1

(|Re Φ(ζ, z)− ρ(ζ)|2 + | Im Φ(ζ, z)|2)|ζ1 − z1|
.

(3.3)

We will show that ∫∫
(ζ,z)∈Ω×Ω

∣∣H(ζ, z)φ(ζ)
∣∣ dV (ζ, z) . ‖φ‖L1(Ω) <∞. (3.4)

By Tonelli’s Theorem, it then follows that

‖Hφ‖L1(Ω) =
∣∣∣ ∫

z∈Ω

Hφ(z) dV (z)
∣∣∣

=
∣∣∣ ∫

z∈Ω

∫
ζ∈Ω

H(ζ, z)φ(ζ) dV (ζ) dV (z)
∣∣∣

≤
∫∫

(ζ,z)∈Ω×Ω

∣∣H(ζ, z)φ(ζ)
∣∣ dV (ζ, z) . ‖φ‖L1(Ω).

(3.5)

In order to prove (3.4), we remark that it is enough to assume that z, ζ ∈ Ω ∩ B(0, δ) =
{ρ(z) = P (z1) + r(z) < 0} because if ζ, z ∈ Ω̄ \ B(0, δ/2), then the estimates following
classically using the strict convexity of r. If one of {z, ζ} is in B(0, δ/2) and other is an
element of B(0, δ)c, then the integrand of H is bounded and bounded away from 0, and
the estimate is trivial. We will investigate the complex and real ellipsoid cases separately
to show ∫∫

(ζ,z)∈(Ω∩B(0,δ))2
H(ζ, z)φ(ζ)dV (ζ, z) . ‖φ‖L1(Ω). (3.6)
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First, however, we recall the following facts for a class of real functions F in the first part
with the additional assumption that F ′(0) = 0.

Lemma 3.1. Let F be a C2 convex function on [0, δ]. Then

F (p)− F (q)− F ′(q)(p− q) ≥ 0 (3.7)

for any p, q ∈ [0, δ]. If, in addition, F ′(0) = 0 and F ′′ is nondecreasing, then

F (p)− F (q)− F ′(q)(p− q) ≥ F (p− q), (3.8)

for any 0 ≤ q ≤ p ≤ δ.

Proof. The proof of (3.7) is simple and is omitted here (see, e.g., (2.2)). For (3.8), let s :=
p−q ≥ 0 and g(s) := F (s+q)−F (q)−sF ′(q)−F (s). Hence, g′(s) = F ′(s+q)−F ′(q)−F ′(s)
and g′′(s) = F ′′(s + q) − F ′′(s). Using the assumption F ′′(t) is nondecreasing, we have
g′′(s) ≥ 0, thus g′(s) is nondecreasing. This implies g′(s) ≥ g′(0) = 0 (since F ′(0) = 0)
and consequently that g(s) is increasing. We thus obtain g(s) ≥ g(0) = 0 (since F(0)=0).
This completes the proof of (3.8). �

3.1. Complex Ellipsoid Case. In this subsection, Ω is defined by (1.1). Since the argu-

ment of F is |ζ1|2, the chain rule shows that
∂

∂ζ1
F (|ζ1|2) = ζ̄1F

′(|ζ1|2). Similarly to Khanh

[Kha13, (4.1)], Lemma 2.2 shows that

Re
{
Φ(ζ, z)

}
− ρ(ζ) ≥ −ρ(z) + F (|z1|2)− F (|ζ1|2)− 2F ′(|ζ1|2) Re

{
ζ̄1(z1 − ζ1)

}
= −ρ(z) + F ′(|ζ1|2)|z1 − ζ1|2 +

(
F (|z1|2)− F (|ζ1|2)− F ′(|ζ1|2)

(
|z1|2 − |ζ1|2

))
.

(3.9)

The analysis splits into two cases: i) F ′(0) 6= 0 and ii) F ′(0) = 0. In the first case, the
hypotheses on F guarantee the existence of a δ > 0 such that F ′(|ζ1|2) > 0 for any |ζ1| < δ.
Hence,

Re
{
Φ(ζ, z)

}
− ρ(ζ) & −ρ(z) + |z1 − ζ1|2

and

|H(ζ, z)| ≤ 1

(|ρ(z)|2 + | Im Φ(ζ, z)|2 + |ζ1 − z1|4)|ζ1 − z1|
.

The estimate in this case is the estimate for the case of a strongly pseudoconvex domain,
and the result is classical and well-known. Thus, we may assume that F ′(0) = 0.

Lemma 3.2. Let F be defined in Section 1 with the additional assumption F ′(0) = 0.
Then

|H(ζ, z)| .


1

(|ρ(z) + i Im Φ(ζ, z)|2 + F 2(|z1 − ζ1|2))|z1 − ζ1|
if |ζ1| ≥ |z1 − ζ1|,

1

(|ρ(z) + i Im Φ(ζ, z)|2 + F 2(1
2
|z1|2))|z1|

if |ζ1| ≤ |z1 − ζ1|.

(3.10)
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Proof. Applying Lemma 3.1 to (3.9), we obtain

Re
{
Φ(ζ, z)

}
− ρ(ζ) ≥ −ρ(z) +

{
F ′(|ζ1|2)|z1 − ζ1|2 if 0 < |z1|, |ζ1| < δ,

F (|z1|2 − |ζ1|2) if |ζ1| ≤ |z1| ≤ δ.
(3.11)

We compare |ζ1| and |z1 − ζ1|2.

Case 1: |ζ1| ≥ |z1 − ζ1|. Combining the first inequality from (3.11) with the facts that

F ′ is increasing and F ′(t)t ≥ F (t) (since F (t)
t

is nondecreasing), we obtain

Re
{
Φ(ζ, z)

}
− ρ(ζ) ≥ −ρ(z) + F (|z1 − ζ1|2).

The first line of (3.10) follows by this inequality and (3.3).

Case 2: |ζ1| ≤ |z1 − ζ1|. In this case, the estimate depends on the relative sizes of |ζ1|
and 1√

2
|z1|. If |ζ1| ≥ 1√

2
|z1|, then the argument from Case 1 proves that

Re
{
Φ(ζ, z)

}
− ρ(ζ) ≥ −ρ(z) + F (

1

2
|z1|2),

and we obtain the second estimate in (3.10). Otherwise, |ζ1| ≤ 1√
2
|z1|, and this implies

both |z1| ≥ |ζ1| and |z1− ζ1| ≥ (1− 1√
2
)|z1|. By the second case of (3.11), we observe that

Re
{
Φ(ζ, z)

}
− ρ(ζ) ≥ −ρ(z) + F (|z1|2 − |ζ1|2) ≥ −ρ(z) + F (

1

2
|z1|2),

and

(|Re Φ(ζ, z)− ρ(ζ)|2 + | Im Φ(ζ, z)|2)|ζ1 − z1| & (|ρ(z) + i Im Φ(ζ, z)|2 + F 2(
1

2
|z1|2))|z1|.

This completes the proof. �

Proof of the Theorem 1.2.i. By Lemma 3.2, we have∫∫
(ζ,z)∈(Ω∩B(0,δ))2

∣∣H(ζ, z)φ(ζ)
∣∣ dV (ζ, z)

=

∫∫
(ζ,z)∈(Ω∩B(0,δ))2 and |ζ1|≥|z1−ζ1|

· · ·+
∫∫

(ζ,z)∈(Ω∩B(0,δ))2 and |ζ1|≤|z1−ζ1|
· · ·

. (I) + (II),

(3.12)

where

(I) :=

∫∫
(ζ,z)∈(Ω∩B(0,δ))2

|φ(ζ)|dV (ζ, z)

(|ρ(z) + i Im Φ(ζ, z)|2 + F 2(|z1 − ζ1|2))|z1 − ζ1|
;

(II) :=

∫∫
(ζ,z)∈(Ω∩B(0,δ))2

|φ(ζ)|dV (ζ, z)

(|ρ(z) + i Im Φ(ζ, z)|2 + F 2(1
2
|z1|2))|z1|

.

(3.13)
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For the integral (I), we make the change variables (ψ,w) = (ψ1, ψ2, w1, w2) = (ζ1, ζ2, z1−
ζ1, ρ(z) + i Im Φ(ζ, z)). Direct calculus the Jacobian of this transformation is the matrix

J =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0

0 0 0 0 ∂ρ(z)
∂(Re z1)

∂ρ(z)
∂(Im z1)

∂ρ(z)
∂(Re z2)

∂ρ(z)
∂(Im z2)

∂ ImΦ(ζ,z)
∂(Re ζ1)

∂ ImΦ(ζ,z)
∂(Im ζ1)

∂ ImΦ(ζ,z)
∂(Re ζ2)

∂ ImΦ(ζ,z)
∂(Im ζ2)

∂ ImΦ(ζ,z)
∂(Re z1)

∂ ImΦ(ζ,z)
∂(Im z1)

∂ ImΦ(ζ,z)
∂(Re z2)

∂ ImΦ(ζ,z)
∂(Im z2)


.

To justify this coordinate change, we write zj = xj + iyj and compute

det(J) =
∂ Im(Φ(ζ, z))

∂y2

∂ρ(z)

∂x2

− ∂ Im(Φ(ζ, z))

∂x2

∂ρ(z)

∂y2

.

By a possible rotation and dilation of Ω, we can assume that ∇ρ(0) = (0, 0, 0,−1). Direct

calculation then establishes that if δ is chosen sufficiently small (so that ∂ρ(z)
∂y2

dominates

the other partials of ρ and |ζ − z| is small), then det(J) 6= 0. Since Φ is smooth, we can
assume that there exists δ′ > 0 that depends on Ω and ρ so that

(I) .
∫∫

(ψ,w)∈(Ω∩B(0,δ))×B(0,δ′)

|φ(ψ)|
(|w2|2 + F 2(|w1|2)|w1|

dV (ψ,w)

. ‖φ‖L1(Ω)

∫ δ′

0

∫ δ′

0

r1r2
(r2

2 + F 2(r2
1))r1

dr2 dr1

. ‖φ‖L1(Ω)

∫ δ′

0

logF (r2
1) dr1 <∞.

That the integral is finite follows by the hypotheses on φ and F .

Repeating this argument with the change of coordinates (ψ,w) = (ψ1, ψ2, w1, w2) =
(ζ1, ζ2,

1√
2
z1, ρ(z) + i Im Φ(ζ, z)) for the integral (II), we can obtain the same conclusion.

Therefore, the estimate in complex case is complete.

�

3.2. Real Ellipsoid Case. In this subsection, Ω is defined by (1.2). The analogous ar-
gument from (3.9) case yields

Re{Φ(ζ, z)} − ρ(ζ) ≥ −ρ(z) + F ′(ξ2
1)(x1 − ξ1)

2 +
(
F (x2

1)− F (ξ2
1)− F ′(ξ2

1)(x
2
1 − ξ2

1)
)
,
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where z1 = x1 + iy1, ζ1 = ξ1 + iη1. Following the setup in the complex case, with the same
proof, one also have

Lemma 3.3. Let F be defined in Section 1 with the extra assumption F ′(0) = 0. Then

|H(ζ, z)| .


1

(|ρ(z) + i Im Φ(ζ, z)|2 + F 2((x1 − ξ1)2))(|x1 − ξ1|+ |y1 − η1|)
if |ξ1| ≥ |x1 − ξ1|,

1

(|ρ(z) + i Im Φ(ζ, z)|2 + F 2(1
2
x2

1))(
1√
2
|x1|+ |y1 − η1|)

if |ξ1| ≤ |x1 − ξ1|.
(3.14)

Proof of Theorem 1.2.ii. Using Lemma 3.3, we have∫∫
(ζ,z)∈(Ω∩B(0,δ))2

∣∣H(ζ, z)φ(ζ)
∣∣ dV (ζ, z) . (I) + (II) (3.15)

where

(I) :=

∫∫
(ζ,z)∈(Ω∩B(0,δ))2

|φ(ζ)| dV (ζ, z)

(|ρ(z) + i Im Φ(ζ, z)|2 + F 2((x1 − ξ1)2))(|x1 − ξ1|+ |y1 − η1|)
;

(II) :=

∫∫
(ζ,z)∈(Ω∩B(0,δ))2

|φ(ζ)| dV (ζ, z)

(|ρ(z) + i Im Φ(ζ, z)|2 + F 2(1
2
x2

1))(
1√
2
|x1|+ |y1 − η1|)

.

(3.16)

We make the change of variables (ψ,w) = (ψ1, ψ2, w1, w2) = (ζ1, ζ2, z1 − ξ1, ρ(z) +
i Im Φ(ζ, z)) for (I) and (ψ,w) = (ψ1, ψ2, w1, w2) = (ζ1, ζ2,

1√
2
x1 − i(y1 − η1), ρ(z) +

i Im Φ(ζ, z)) for (II). Similarly to the argument above, we can check that det(J) 6= 0.
Therefore

(I) + (II) .
∫∫

(ψ,w)∈(Ω∩B(0,δ))×B(0,δ′)

|φ(ψ)|
(|w2|2 + F 2((Rew1)2)(|Rew1|+ | Imw1|)

dV (ψ,w)

.‖φ‖L1(Ω)

∫ δ′

0

∫ δ′

0

∫ δ′

0

r2 dr2 d(Imw1) d(Rew1)

(r2
2 + F 2((Rew1)2))(|Rew1|+ | Imw1|)

.‖φ‖L1(Ω)

∫ δ′

0

∫ δ′

0

log(F ((Rew1)
2) d(Imw1) d(Rew1)

|Rew1|+ | Imw1|

.‖φ‖L1(Ω)

∫ δ′

0

log(|Rew1|) log(F ((Rew1)
2) d(Rew1) <∞.

That the integral is finite follows by the hypotheses on φ and F . This completes the proof
of Theorem 1.2.

�
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4. Examples

In this section, we present an example to show that our estimates are optimal in the
sense that the inequality ‖u‖Lq(Ω) . ‖φ‖Lp(Ω) cannot hold if 1 ≤ p < q ≤ ∞. Specifically,
let 0 < α < 1, fix 1 ≤ p < q ≤ ∞, and set

Ω = {(z1, z2) ∈ C2 : e
1− 1

|z1|α + |z2|2 < 1}. (4.1)

We will show that there is a ∂̄-closed (0, 1)-form φ ∈ Lp0,1(Ω) for which there does not

exist a function u ∈ Lq(Ω) so that ∂̄u = φ in Ω. Indeed, let

φ(z) =
(1− log(1− z2))

k

(1− z2)2/q
dz̄1 and v(z) =

(1− log(1− z2))
k

(1− z2)2/q
z̄1 (4.2)

where k := b q+2
qα
c+1 ∈ N. The function (1−log(1−z2))k

(1−z2)1/q is holomorphic on Ω with the principle

branch of the logarithm 0 < arg(1 − z2) < 2π. The form φ is a ∂̄-closed (0, 1)-form on
Ω and function v is a solution of the equation ∂̄v = φ. Moreover, we observe that v is
L2-orthogonal to all holomorphic functions on Ω (by Mean Value Theorem). By direct
calculation (Lemma 4.1 below), we obtain φ ∈ Lp0,1(Ω), v ∈ Lp(Ω), and v 6∈ Lq(Ω). Let P
be the Bergman projection on Ω, i.e., the L2-orthogonal projection onto all holomorphic
functions on Ω. Recently, Khanh and Thu [KT] have proven that P is a bounded operator
form Lq

′
(Ω) to Lq

′
(Ω) for any q′ > 1. Therefore if u ∈ Lq(Ω) is a solution to ∂̄u = φ, then

v = u− P (u) is in Lq(Ω). This is impossible. Therefore, there is no solution u ∈ Lq(Ω).

Lemma 4.1. Let φ and v be defined in (4.2). Then, φ ∈ Lp1,0(Ω), v ∈ Lp(Ω) and v 6∈
Lq(Ω).

Proof. We now show that φ ∈ Lp0,1(Ω). We have∫
Ω

|φ(z)|pdV (v) =

∫
Ω

|1− log |1− z2|+ i arg(1− z2)|kp

|1− z2|2p/q
dV (z)

≤
∫
|z2|<1

((1− log |1− z2|)2 + 4π2)
kp/2

|1− z2|2p/q

∫
|z1|<(1−log(1−|z2|2))−1/α

1 dV (z1) dV (z2)

.
∫
|z2|<1

((1− log |1− z2|)2 + 4π2)
kp/2

|1− z2|2p/q((1− log(1− |z2|2))2/α
dV (z2)

.
∫
|z2|<1

((1− log |1− z2|)2 + 4π2)
kp/2

|1− z2|2p/q
dV (z2)

.
∫
|z2|<1,|z2−1|≥1

· · ·+
∫
|z2|<1,|z2−1|<1

· · · .
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Since the function
((1−log |1−z2|)2+4π2)

kp/2

|1−z2|2p/q is bounded on {|z2| < 1, |z2 − 1| ≥ 1}, the first

integral
∫
|z2|<1,|z2−1|≥1

· · · is bounded. For the second integral, we have∫
|z2|<1,|z2−1|<1

· · · ≤
∫
|z2−1|<1

· · ·

=

∫ 1

0

((1− log t)2 + 4π2)kp/2

t2p/q−1
dt <∞,

since 2p/q−1 < 1. The proof that v ∈ Lp(Ω) follows by our computation that φ ∈ Lp0,1(Ω)
since |z1| is bounded. Now, we prove that v 6∈ Lq(Ω). We have∫

Ω

|v(z)|qdV (z) =

∫
Ω

|1− log(1− z2)|kq |z1|q

|1− z2|2
dV (z)

=

∫
|z2|<1

|1− log |1− z2|+ i arg(1− z2)|kq

|1− z2|2

∫
|z1|<(1−log(1−|z2|2))−1/α

|z1|q dV (z1) dV (z2)

≥ 2πα

q + 2

∫
|z2|<1

|1− log |1− z2||kq

|1− z2|2(1− log(1− |z2|2))
q+2

α

dV (z2)

&
∫
z2∈D

|1− log |1− z2||kq

|1− z2|2(1− log(1− |z2|2))
q+2

α

dV (z2),

where

D = {z2 = 1+reiθ ∈ C : 0 < r <
1

3
,
3π

4
< θ <

5π

4
} ⊂ {|z2| < 1, |z2−1| < 1

3
} ⊂ {|z2| < 1}.

The domain of the integral forces 1− log(1− |z2|2) ∼ 1− log |1− z2|, and we obtain∫
Ω

|v(z)|qdV (z) &
∫ 1

3

0

(1− log r)kq−
q+2

α

r
dr ≥

∫ 1
3

0

dr

r
(diverges).

Here, the last inequality holds because we chose k so that kq − q+2
α
> 0 by the choice of

k. �
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