LP-ESTIMATES FOR THE 0-EQUATION ON A CLASS OF INFINITE
TYPE DOMAINS
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ABSTRACT. We prove LP estimates for solutions to the Cauchy-Riemann equations Ou =
¢ on a class of infinite type domains in C?. The domains under consideration are a class
of convex ellipsoids, and we show that if ¢ is a -closed (0, 1)-form with coefficients in L?
and u is the Henkin kernel solution to du = ¢, then ||ul|, < C||¢||, where the constant

C is independent of ¢. In particular, we prove L! estimates and obtain LP estimates by
interpolation.

1. INTRODUCTION

A fundamental question in several complex variables is to establish LP estimates for

solutions of the Cauchy-Riemann equation
ou=¢

on domains €2 C C”. In this paper, we provide the first examples of infinite type domains
for which LP bounds hold, 1 < p < oo. The domains under consideration are a class
of convex ellipsoids in C?, and we show that if ¢ is a d-closed (0,1)-form and u is the
Henkin solution to du = ¢, then |ul|, < C||¢||, where the constant C'is independent of
¢. Specifically, we prove L' estimates and use the Riesz-Thorin Interpolation Theorem to
obtain L? estimates by interpolating with the L estimates established by Khanh [Khal3]
and (independently) Forngess et. al. [FLZ11].

We investigate domains of the following form: 2 C C? is a smooth, bounded domain
with the origin 0 in the boundary bS2. Moreover, there exists § > 0 so that b2\ B(0,0/2)
is strictly convex and there exists a defining function p so that

QN B(0,6) ={z=(21,22) € C*: p(2) = F(|z1|*) + r(2) < 0} (1.1)

or

QN B(0,0) = {z = (21,2) € C*: p(2) = F(2?) + r(z) < 0} (1.2)
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where z; = x; + iy;, for x;,y; € R, j = 1,2, and 7« = /—1. We also assume that the
functions F': R — R and r : C*> — R satisfy:

i. F(0) = 0;
. / " " F(t) / :
ii. F'(t), F"(t), F"(t), and — ) are nonnegative on (0, §);

iii. 7(0) =0 and g—; # 0;

iv. r is convex and strictly convex away from 0.

This class of domains includes two well-known examples. If F(t) = ™, with m > 1,
then (2 is of finite type 2m. On the other hand, if F'(t) = exp(—1/t*), then  is of infinite
type, and this is our main case of interest. We call our domains 2 ellipsoids because they
are generalizations of real and complex ellipsoids in C2. Classically, a complex ellipsoid in
C" is a domain of the form {z = (z1,...,2,) € C": 37 |2*™ < 1}, and a real ellipsoid
is a domain of the form {z = (z1 +iys, ..., 2, +iy,) € C": 377 (2" +y*™) < 1} where
mj,n; € N, 1 <j5<n.

There is a long history of proving LP estimates for the d-equation, dating back to
the work of Kerzman [Ker71] and OQvrelid [Ovr71]. In [Kra76], Krantz proved essentially
optimal Lipschitz and LP estimates on strongly pseudoconvex domains. In the case that
2 is a real ellipsoid, et. al. obtained sharp Hélder estimates [DEWS86] while Chen et. al.
established optimal L? estimates for complex ellipsoids [CKM93]. See also Range [Ran7§]
and Bruna and del Castillo [BAC84]. Both real and complex ellipsoids are domains of
finite type, and the analysis in the referenced works depends in an essential fashion on
the type. In C?, Chang et. al. [CNS92] proved L? estimates for the d-Neumann operator
on weakly pseudoconvex domains of finite type. See [CKM93| [FLZ11] and the references
within for a more complete history.

More recently, there has been work on supnorm estimates for the Cauchy-Riemann
equations on infinite type domains in C2. Fornaess et. al. provided the first examples in
[FLZ11] and Khanh found the estimates hold when domains are of the type or
[Khal3]. In particular, Khanh proved

Theorem 1.1 (Theorem 1.2, [Khal3]). If
i. Q0 is defined by and there exists § > 0 so that f05 |log F'(t*)| dt < oo, or
ii.  is defined by and there exists § > 0 so that foé | log(t) log F(t?)| dt < oo,

then for any bounded, O-closed (0,1)-form ¢ on Q, the Henkin solution u on Q satisfies
ou = ¢ and

[ul|Loe(0) < Clloll Lo,
where C' > 0 is independent of ¢.

In this paper, we will prove the LP-version of Theorem [1.I} Our technique yields LP-
estimates both when in the case that €2 is of finite type as well as of infinite type.



LP-ESTIMATES FOR THE 9-EQUATION 3

Theorem 1.2. If either of the following conditions hold:
i. 2 is defined by and there exists § > 0 so that f06 | log F(t?)] dt < oo,
ii. ) is defined by and there exists § > 0 so that f05 |log(t) log F(t?)| dt < oo,
then for any d-closed (0,1)-form ¢ and in LP(Q) with 1 < p < oo, the Henkin kernel
solution u on § satisfies Ou = ¢ and
[ullze@) < Cllollze @),
where C' > 0 is independent of ¢.

The following examples show that the LP estimates in Theorem are sharp in the
case of infinite type case.

Example 1.1. For 0 < a <1, let Q) be defined by
0= {(21,22) cC?: el mE 4 |22]? < 1}.

Then for any ¢ € LP(Q) with 1 < p < oo, there is a solution u of the equation Ou = ¢
such that uw € LP(Q)). Moreover, if p # oo, there is no solution u € L9(QY) with q¢ > p.

The organization of the paper is as follows: we recall the construction the Henkin
solution via the Henkin kernel in Section [2l We prove Theorem in Section [3] and
discuss Example [1.1] in Section [4

2. HENKIN SOLUTION

~ In this section, we recall the construction of the Henkin kernel and Henkin solution to
0. For complete details, see [Hen70l [Ran86], or for a more modern treatment, see [CS01].

Definition 2.1. A C*valued C' function G((, 2) = (g1(¢, 2), g2(¢, 2)) is called a Leray
map for Q if ¢1(¢, 2)((1 — z1) + 92(C, 2) ({2 — z2) # 0 for every (¢, z) € bQ2 x . A support

function ®((,z) for Q is a smooth function defined near bQ) x Q so that ® admits a
decomposition

(¢, 2) = QZ@J‘(QZ)(CJ - zj)

where ®;((, z) are smooth near bQ2 x Q, holomorphic in 2, and vanish only on the diagonal

{¢=z}

For a convex domain, it is well known that G((,z) = a_g = <c‘?_<pl’ g—é) is a Leray map
[CS01), Lemma 11.2.6], and ® defined by Leray map
9p(¢) .
P, Cv Z) = y J = 17 27

is a support function for 2.
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Taylor’s Theorem and the convexity of F' imply a lower bound for Re ®((, 2) on Sp 5 :=
{z€Q:p(z) > —26}.

Lemma 2.2. Let Q C C? be as in Section with ® as above. Then there exist €,¢ > 0 so
that

o e — P ¢ € o5\ B0,0)
e®(C2) 2 PlO=PEH) by - ) — 2Re {22 =)} Ce SN BO,9).
(2.1)

for all z € Q with |z — (| < e,where P(z1) = F(|z1]?) or P(z1) = F(2?).

Proof. Let h be a R-valued smooth function in C> = R* and z,y € R*. If a(t) = to+ (1 —
t)y, and ¢(t) = h(a(t)), then it follows from Taylor’s Theorem applied to ¢(t) that there
exists ¥ € a([0,1]) so that

'Z' —_—
ayjayk )t

+
QM%
s

- %Y ]k 1

Set z = (21, 22) = (21 +1ix2, x5 +iz4) and ¢ = (G, &) = (y1 + Y2, y3 +iya). Translating the
first order component of the Taylor series expansion to complex coordinates, we compute

2Re {8h_(g‘)(zj - Cj)} = Re { ( ORlc) 8h(<)) ((z2j-1 = y2j1) + (2o, — yzj))}

aCj ay2j 1 8y2]
oh(() oh(¢)
= B2t (9j—1 — Yoj—1) + Dy (w25 — Vo),

j = 1,2. Consequently, if [, 2] is the line segment connecting ¢ and z, then

hie) = 1@ +2 3 Re { s - ) )+ i éz (a3 = ) o — - (22)

Applying (2.2)) to the defining function p yields

p(2) = p(C) — Re®(C, 2) + min = Z *p(7)

g€l 2 6%3%( J— yj)(l"k — yk).

Since p is strictly convex on b§2\ B(0,¢), there exists ¢ > 0 so that | Z] 1 8‘2’2 a(yk (2; —

yi) (e —yr)| > clz —y[* if y € Sp2s \ B(0,6) and € > 0 is sufficiently small. The first case
of (2.1)) now follows.
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For the remaining case, we use ([2.2)) and the convexity of r to observe that

p(0) — p(2) + Plz) - P(G) — 2Re {g‘f (@) - )

:r@y_m@+aRe{ (QXQ—ZQ}

G
2
<231 (GG —=} +2re{FE@0G -}
= Re ®((, 2).
This completes the proof. U

We take the € constructed in Lemma to be a global constant in the paper, though
we reserve the right to decrease it.

Let ¢ = Z?Zl ¢;dz; be a bounded, C*, d-closed (0, 1)-form on . The solution u of the
O-equation, Ou = ¢, provided by the Henkin kernel is given by

u=T¢(z) = Hp(z) + K¢(2). (2.3)

where

He(z) =

9p( 90 (7 _ 5
1 a<1 (C2 —Z) — aCa (G1—21) .
QLm ¢(C) Aw(C);

P1(¢ Cl —Zz1) — $2(0) (G2 — 2o -
37 | T w(0) Nwl0)

where w((¢) = d¢; A d(s. See, for example, [FLZ11, DFWS&6]. To understand the LP-norm
of w, it suffices to investigate the LP” mapping properties of integral operators H and K.

3. PROOF OF THE THEOREM

As a consequence of the Riesz-Thorin Interpolation Theorem and Theorem proving
that T is a bounded, linear operator on L'() suffices to establish that T is a bounded
linear operator on LP(Q2), 1 < p < co.

The L'-estimate of | K¢(z)] is standard and does not require interpolation. Indeed, since
|¢ — 2|72 € LY(Q) in both ¢ and z (separately), L? boundedness of K, 1 < p < oo, follows
from [Fol99, Theorem 6.18].

For the boundedness of H, we first begin the analysis of H¢(z) by using Stokes’ Theo-
rem. Using the assumption that ¢ is O-closed, we observe

9p(¢) ()

G-t (5 Ll = 2) = B (G — =) )
Ho(2) = 5 /ﬂ(@(c,z) — ()= 2P +p<<>p<z>>) A P(C) Aw(C)-
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We abuse notation slightly and let H((, z) be the integral kernel of H. Direct calculation
shows that we can decompose

_ ap—(o(@—g) (C - z1)
¢t 8{2
96,91 <|0 (e — e = ot >p<z>>>‘
1 1
S 2) — POPC — 2P + o OpEN 2 T 1 2) — pQNE — 2P + o)

(3.1)

Since p is smooth, p is Lipschitz, so (p(¢) — p(2))? < |¢ — z|%. Therefore, p(¢)? < ¢ — 2>+
p(C)p(2), hence [¢ — 2|+ [p(Q)] S (I¢ = 2* + p(¢)p(2))"/?. Thus

1B(C,2) — PO S 1 — 2] + 10O S (1€ — 22 + p(Q)pl2) 2. (3.2)
Combining and , we obtain
1
G2 R g = s ORIC = 2P + o Op ()
1
1.2 — pOPK — 7] (3:3)
1

“(Re®(C,2) — pOF + [Imd(C, PN — ]
We will show that

/ / [H(C2)0(0)] V(G 2) < 16]l1e < oo (3.4)
(¢,2)EQxXQ

By Tonelli’s Theorem, it then follows that

1HOl 110y = / Ho(z)dV(2)

= [ [ 00 @ave) (35

—// [H(C,2)6(0] V(G 2) S 9l
(¢,2)ENxXQ

In order to prove , we remark that it is enough to assume that z,{ € QN B(0,0) =
{p(2) = P(21) +r(2) < 0} because if ¢,z € Q\ B(0,5/2), then the estimates following
classically using the strict convexity of r. If one of {z,(} is in B(0,6/2) and other is an
element of B(0,9)¢, then the integrand of H is bounded and bounded away from 0, and
the estimate is trivial. We will investigate the complex and real ellipsoid cases separately
to show

// H(C 20OV (¢, 2) S 6]l o). (3.6)
(€,2)€(2NB(0,6))2
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First, however, we recall the following facts for a class of real functions F' in the first part
with the additional assumption that F’(0) = 0.

Lemma 3.1. Let F' be a C? convex function on [0,d]. Then

F(p) = F(a) = F'(9)(p—q) 2 0 (3.7)
for any p,q € [0,6]. If, in addition, F'(0) =0 and F" is nondecreasing, then
F(p)— F(q) — F'(a)(p —q) = F(p—q), (3-8)

for any 0 < g <p<é.

Proof. The proof of (3.7 . is simple and is omitted here (see, e.g., ). For (3.8 . let s :

DS G ) T Pl (0 (s Honce 1)~ o) P (o)
and ¢"(s) = F"(s + q) — F"(s). Using the assumption F”(t) is nondecreasing, we have
g"(s) > 0, thus ¢/(s) is nondecreasing. This implies ¢'(s) > ¢'(0) = 0 (since F'(0) = 0)
and consequently that g(s) is increasing. We thus obtain g(s) > ¢(0) = 0 (since F(0)=0).

This completes the proof of @ O
3.1. Complex Ellipsoid Case. In this subsectwn Q is defined by (1.1] . Since the argu-
ment of F' is |(1|?, the chain rule shows that F(|¢1]?) = G F'(1¢1]?). Similarly to Khanh
[Khal3, (4.1)], Lemma - shows that

Re {®(¢,2)} = p(C) = —p(2) + Flz1]*) = F(IG1]*) = 2F'(|G1]*) Re {Gi (21 — G1) } 39)

=—M@+FMJWr£$+QWM)—HmW—FﬂmNMF—mW)

The analysis splits into two cases: i) F'(0) # 0 and ii) F'(0) = 0. In the first case, the
hypotheses on F guarantee the existence of a § > 0 such that F’'(|(;]*) > 0 for any |(;| < 6.
Hence,

Re {®(¢,2)} — p(¢ p(2) + o = Gf?

1
H((, 2)| < .
A P+ T 2P + 16— 2l - =l
The estimate in this case is the estimate for the case of a strongly pseudoconvex domain,
and the result is classical and well-known. Thus, we may assume that F’(0) = 0.

and

Lemma 3.2. Let F' be defined in Section |1 with the additional assumption F'(0) = 0.
Then

1
H(c, »)| < { (PE) + i @C AP+ F (e =GPl =G

if |Gl > 121 =Gl

if 1G] <z =Gl
(3.10)

Y

(Ip(2) +iIm &((, 2)* + F2(5]z1 ) |21
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Proof. Applying Lemma to (3.9), we obtain

L p(O) 2 —p(2) + {F'(|C1|2)|Z1 — G2 i0< |nl,|G] <4,

Re{@((,z) F<|Zl‘2 . |C1’2) if K1| < |21| < 4.

(3.11)

We compare |(;] and |2, — (]2

Case 1: |(;| > |z1 — (1. Combining the first inequality from (3.11]) with the facts that
F' is increasing and F'(t)t > F(t) (since w is nondecreasing), we obtain

Re{fb } p ( )+F(|Z1 | )
The first line of (3.10)) follows by this mequahty and ( .

Case 2: |(1| < |z1 — (1]. In this case, the estimate depends on the relative sizes of |(i|
and \/ii|z1| If |(1] > \/ii|21|, then the argument from Case 1 proves that

Re {®(C.2)} —(Q) = —pl2) + F(5]aaP)

and we obtain the second estimate in (3.10). Otherwise, |(;| < \/ii|z1|, and this implies
both |z1| > |(i] and |z — (1| > (1 — \/ié)]zl] By the second case of (3.11)), we observe that

Re {®(C,2)} — p(Q) > —p(z) + F(l=1 ~ 1) > ~p(2) + F(5lal?),
and
(IRe@(¢, 2) = p(OF + [Tm ®(C, 2)[*)I¢1 = 21| 2 (p(2) +iTm &(C, 2)[* + Fz(%\zl\z))lzll-
This completes the proof. O
Proof of the Theorem (1.2li. By Lemma [3.2] we have

/ / (¢, 2)0(0)] dV (G, 2)

(¢,2)€(QNB(0,5))2

:// -..+// e <3'12)
(¢,2)E(@NB(0,6))2 and [1]>]21—C1] (¢,2)E(QNB(0,8))2 and [1]<|21—¢1|

S )+ (1),
where

// [2(O]dV (¢, 2) :
¢e@nBos? (1(2) +ilm (¢, 2)[ + F*(|21 — Gf*))|z1 — Gl

6(Q)laV (¢, 2)
D // coe@nsoay? (p(2) +im(C, )P + F2(3 )z

(1) =

(3.13)
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For the integral (I), we make the change variables (1, w) = (11, V2, w1, we) = ({1, (2, 21—
G, p(2) +iIm (¢, 2)). Direct calculus the Jacobian of this transformation is the matrix

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
J = ~1 0 0 0 1 0 0 0
0 —1 0 0 0 1 0 0
0 0 0 0 o Y sy e
OIm®(¢,z) O0Im®P(¢,z) OImP(¢,z) IOImP(¢,z) IImP(¢,z) IImP((,2) IImP((,z2) IImP((,2)

O(Re(1) O(Im¢q) O(Re(2) O(Im ¢2) O(Re z1) O(Im z1) O(Re z2) O(Im z2)
To justify this coordinate change, we write z; = x; + iy; and compute
OIm(®(¢, 2)) 9p(z) _ 9Im(®(C, 2)) Ip(=)
8y2 (91‘2 8x2 (‘9yg '

By a possible rotation and dilation of €2, we can assume that Vp(0) = (0, 0,0, —1). Direct
calculation then establishes that if § is chosen sufficiently small (so that 15

the other partials of p and | — z| is small), then det(J) # 0. Since ® is smooth, we can
assume that there exists ¢ > 0 that depends on 2 and p so that

[¢(¥)]
I < dV (1,
)= //ww)e ©nB(0.6))x B.57) ([w2]* + F2(|wi[?)]w:] )

S [ AL
[l CEEOL T2 dry
2

< ol / log F(r2) dry < oo,

det(J) =

dominates

That the integral is finite follows by the hypotheses on ¢ and F.

Repeating this argument with the change of coordinates (v, w) = (¢, g, wr,wy) =
(1, Coy = 7571, p(2 ) +iIm®((, 2)) for the integral (II), we can obtain the same conclusion.
Therefore the estimate in complex case is complete.

O

3.2. Real Ellipsoid Case. In this subsection, () is defined by (1.2]). The analogous ar-
gument from (3.9)) case yields

Re{®(¢, 2)} = p(¢) = —p(2) + F'(&1) (21 — &)* + (F(ai) = F(&§) = F'(€)(27 — &) ,
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where z; = 1 +1y1, (1 = & + 1. Following the setup in the complex case, with the same
proof, one also have

Lemma 3.3. Let F' be defined in Section 1 with the extra assumption F'(0) = 0. Then

1
. ol
H(C, o) < 4 WP+ T2+ F2 (e = €)5) (e = &1+ T = ) if 16l 2 | =&
. P
(|p(z) +iIm &(C, )|2—|—F2( ))(\/Li|x1|+|yl_7h|) if &) <
Proof of Theorem [1.2}ii. Using Lemma [3.3] we have
// |H(¢, 2)¢(¢)|dV (¢, 2) S (1) + (I1) (3.15)
(¢,2)€(QNB(0,5))2

where

_ // ()] AV (S, 2) |
se@nsosn (Ip(2) +ilm ®((, 2)[2 + F2((x1 — §1)?))(ler — & + [yr — ml)’

9(Q1aV (G, 2)
i) // corpoay (P(2) +im (G, )P + F2(ad))(Ller] + [y — )

(3.16)

We make the change of variables (¢, w) = (11, ¥9, w1, ws) = ((1,(, 21 — &1, p(2) +
iIm ®(C, 2)) for (I) and (¢, w) = (1,92, w1, wa) = (C1,Coy 521 — ilyr — m), p(2) +
iIm ®((, z)) for (II). Similarly to the argument above, we can check that det( ) # 0.
Therefore

()
)+ D //M)emmm (sl T+ F2((Rowy)?)(| Rewa] 1 | T

<|16l /5//5/ /5/ ro dry d(Imwy) d(Rewy)
e (r2 + F2((Rew;)?))(| Rew; | + | Imwy|)

< " log(F((Rew;)?) d(Imwy) d(Re wy)
Slollze i

| Rew;| + | Im w; |

dV (¢, w)

6/
5”¢\|L1(m/0 log(| Re wy|) log(F((Rewr)?) d(Re w;) < 0o,

That the integral is finite follows by the hypotheses on ¢ and F'. This completes the proof
of Theorem [L.2l

O

B

3.14)
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4. EXAMPLES

In this section, we present an example to show that our estimates are optimal in the
sense that the inequality ||u||za) < ||#]lr(o) cannot hold if 1 < p < ¢ < co. Specifically,
let 0 <a<1, fixl<p<qg<oo, and set

QO ={(21,20) €C2: e Al 4 |5 < 1} (4.1)

We will show that there is a d-closed (0,1)-form ¢ € L () for which there does not
exist a function u € L(Q) so that du = ¢ in €. Indeed, let

~ (1 —log(1 — 29)) (1 —log(1 — )k _
#z) = (1 — z9)%/ Az

k
dz; and w(z) =

(4.2)

where k := L%J +1 € N. The function W is holomorphic on €2 with the principle
branch of the logarithm 0 < arg(1 — z») < 27. The form ¢ is a d-closed (0, 1)-form on
Q) and function v is a solution of the equation Jv = ¢. Moreover, we observe that v is
L*-orthogonal to all holomorphic functions on €2 (by Mean Value Theorem). By direct
calculation (Lemma 4.1| below), we obtain ¢ € L ,(€2), v € LP(Q2), and v & L(S2). Let P
be the Bergman projection on €2, i.e., the L?-orthogonal projection onto all holomorphic
functions on Q. Recently, Khanh and Thu [KT] have proven that P is a bounded operator
form L4 (Q) to LY () for any ¢’ > 1. Therefore if u € L(f) is a solution to du = ¢, then
v=u— P(u) is in L9(2). This is impossible. Therefore, there is no solution u € L%(f2).

Lemma 4.1. Let ¢ and v be defined in (4.2)). Then, ¢ € L7 ((Q), v € LP(Q) and v ¢
L(9).

Proof. We now show that ¢ € Lg,(€2). We have
11— log |1 — zo| + iarg(l — 2o)|*
p —
| poraw- [ T av(z)

kp/2
(1~ log |1 — z|)? + 47
</ i V() dV ()
|z2|<1 2 |z1]<(1—log(1—|z2|2))~ 1/«

</ ((1—1og|1—22|)2+47r2)kp/2
™ Jizaj<r 11— 22%/4((1 = log(1 — | 22/?))%/«

1—1 1 — 2 4 Ar2 kp/2
</| 1 (( Og| ZQD + ﬂ-) dV(ZQ)
z2|<

~ 11— z2|2p/q

|z2|<1,|2z2—1|>1 |z2|<1,|2z2—1|<1

dV(ZQ)
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_ 2 2\kp/2
(o ||11_i22‘|)2;/rq47T ) is bounded on {|z| < 1,[22 — 1| > 1}, the first

is bounded. For the second integral, we have

Since the function

integral f oy o151

[ e
‘Z2|<1,|2271|<1 |2271|<1

[t arye
0

t2r/q—1

dt < oo,

since 2p/q—1 < 1. The proof that v € LP(12) follows by our computation that ¢ € Lg (£2)
since |z1| is bounded. Now, we prove that v & L?(£2). We have

1 —log(1 — 25)[" |
/ "U IQdV / | Og 22>| |Zl‘ dV(Z)

1 —22’2
1—log|l — jarg(1 — 2y) |4
:/ | og | 2| —i—@&;rg( z))| / 1217 dV (21) AV (22)
|2al<1 11— 2 21| <(1-log(1~|2s[2))~1/a
2 1 —log |1 — 2"
. T / | og | 2| V(=)
q+2 z2<1 |1 — 22]2(1 — log(1 — |22]?)) =
1 —log |1 — 2|
Z/ |1 —log |1 — 2| AV (z),
zeD |1 — 23]2(1 —log(1 — |22|?)) o
where
13 5 1
D={zn=14re" €C:0<r <, f<9<f}c{|z2|<1,|22—1|<§}c{|z2|<1}.

The domain of the integral forces 1 —log(1 — |2]?) ~ 1 —log |1 — 23|, and we obtain

5 (1 — log r)he— 5d
/|U<Z)|qu(Z) Z /3 (1~ log7) dr > /3 = (diverges).
Q 0 T 0 r

Here, the last inequality holds because we chose k so that kg — % > 0 by the choice of
k. O
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