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A Nonlinear Case of the

1-D Backward Heat Problem:
Regularization and Error Estimate

Dang Duc Trong, Pham Hoang Quan, Tran Vu Khanh
and Nguyen Huy Tuan

Abstract. We consider the problem of finding, from the final data u(x,T) = ¢(z),
the temperature function u(z,t), x € (0,7), t € [0, 7] satisfies the following nonlinear
System

U — Uy = flx,t,u(z,t), (x,t) € (0,m)x(0,T)
u(0,t) = u(m,t) =0, t e (0,7).

The nonlinear problem is severely ill-posed. We shall improve the quasi-boundary
value method to regularize the problem and to get some error estimates. The approx-
imation solution is calculated by the contraction principle. A numerical experiment
is given.
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1. Introduction

Let T be a positive number, we consider the problem of finding the temperature
u(z,t), (z,t) € (0,7) x [0, T] such that

U — Uge = flx,t,u(x,t)), (z,t) € (0,7)x (0,T) (1)
u(0,t) = u(m, t) =0, te(0,7) (2)
u(z, T) = ¢(x), x € (0,m), (3)

where ¢(x), f(z,t, z) are given. The problem is called the backward heat prob-
lem, the backward Cauchy problem or the final value problem.
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As is known, the nonlinear problem is severely ill-posed, i.e., solutions do not
always exist, and in the case of existence, these do not depend continuously on
the given data. In fact, from small noise contaminated physical measurements,
the corresponding solutions have large errors. It makes difficult to numerical
calculations. Hence, a regularization is in order. The linear case was studied
extensively in the last four decades by many methods. The literature related to
the problem is impressive (see, e.g., [3, 4, 7] and the references therein). In the
pioneering work [7] in 1967, the authors presented, in a heuristic way, the quasi-
reversibility method. They approximated the problem by adding a ”corrector”
into the main equation. In fact, they considered the problem

u + Au — eAAu =0, te€[0,T]
u(T) = .
The stability magnitude of the method is of order e . In [1, 12], the problem
is approximated with
u + Au+ eAu, =0, t€0,T]
uw(T) = .
The method is useful if we cannot construct clearly the operator A*. However,
the stability order in the case is quite as large as that in the original quasi-

reversibility methods. In [10], using the method, so-called, of stabilized quasi
reversibility, the author approximated the problem with

u+ f(Au=0, tel0,T]
u(T) = .

He shows that, with appropriate conditions on the ”corrector” f(A), the sta-

bility magnitude of the method is of order ce~!.

Sixteen years after the work by Lattes-Lions, in 1983, Showalter presented
the quasi-boundary value method. He considered the problem

u; — Au(t) = Bu(t), t€[0,T]
u(0) = ¢,
and approximated the problem with
up — Au(t) = Bu(t), t€[0,T]
u(0) + eu(T) = .
According to him, this method gives a better stability estimate than the other

discussed methods. Clark and Oppenheimer, in their paper [4], used the quasi-
boundary value method to regularize the backward problem with

u+ Au(t) =0, te€l0,T]
u(T) + eu(0) = .
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The authors show that the stability estimate of the method is of order e~!. Very
recently, in [6], the quasi-boundary method was used to solve a backward heat
equation with an integral boundary condition.

Although we have many works on the linear case of the backward problem,
the literature of the nonlinear case is quite scarce. Very recently, in [11], the
authors tranform the problem into the one of minimizing an appropriate func-
tional. However, a sharp error estimate and an effective method of calculation
are not given in [11].

Informally, problem (1)—(3) can be transformed to an integral equation
having the form

0 T
u(z,t) = Z {e(Tt)"zwn - / =07 £ (u)(s) ds | sinna
n=1 t

where p(x) = Y7 ppsinnz, f(u)(z,t) = Y7 fu(u)(t)sinnz are the expan-
sion of ¢ and f(u), respectively. The terms eT=9"" (=07 (n large) are the
unstability cause. Hence, to regularize the problem, we have to replace the
terms by better terms. Naturally, we shall replace two terms by

2 2
e~ tn e

(e, t) + e Tn?’ Bn(e,t,s) + e’

—tn

where «,, (3, are positive functions satisfying
li e, t)=1i e, t,s) =0.
glrgan( 1) Elfloﬂﬁn( 1, 8)

Many versions of a,, 3, are suggested from the quasi-type methods discussed
above.

In the present paper, we shall use an association of the quasi-reversibility
method and the quasi-boundary value method to regularize our problem. In
fact, we approximate problem (1)—(3) by the following problem:

up — Uy, = Z ﬁfn(ue)(t) sinnz, (z,t) € (0,7)x (0,7) (4)
u(0,t) = u(m,t) =0, te[0,T)] (5)

8 2
€T + 57

= p(z) - ool < /0 ) ds) sinnz, xe0,q], ©

where 0 < € < 1, fo(u)(t) = 2(f(z,t,u(z,t)),sinnz) and (-,-) is the inner
product in L?*(0, 7). We shall prove that, the (unique) solution u¢ of (4)—(6)
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satisfies the following equality:

2

o —tn? T —tn
€ € € € .
u(z,t) = E (m@n —/t mfn(u )(s) ds) sinnz,  (7)

n=1

where ¢, = 2(¢(z), sinnz).

The remainder of the paper is divided into three sections. In Section 2,
we shall show that (4)—(6) is well posed and that the solution uf(z,t) satis-
fies (7). Then, in Section 3, we estimate the error between an exact solution ug

of problem (1)—(3) and the approximation solution u¢. In fact, we shall prove
that

b e
—~
oo
N~—

[u (- ) — uo (-, t)|| < Ce

and that there is a t, > 0 such that

IS

ot = ol 0) < VECUT (n (1)) )

€

where || - || is the norm in L?(0,7) and C depends on ug and f. Finally, a
numerical experiment will be given in Section 4.

2. The well-posedness of problem (4)—(6)

In the section, we shall study the existence, the uniqueness and the stability of
a (weak) solution of problem (4)—(6). In fact, one has

Theorem 2.1. Let p € L*(0,7) and let f € L>=([0,7] x [0,T] x R) satisfy

|f(l’,y,’LU) - f(x,y,v)| < k|w - U|

for a k > 0 independent of x,y,w,v. Then problem (4)—(6) has uniquely a
weak solution u¢ € C([0,T]; L*(0,m)) N L*(0,T; H}(0,7)) N CY(0,T; Hy (0, 7))
satisfying (7). The solution depends continuously on ¢ in C([0,T]; L*(0,)).

Proof. The proof is divided into three steps. In Step 1, we shall prove that
problem (4)—(6) is equivalence to problem (7). In Step 2, we prove the existence
and the uniqueness of a solution of (7). Finally in Step 3, the stability of the
solution is given.

Step 1. Prove that (4)-(6) is equivalence (7). We divide this step into two
parts.

Part A. Ifuf e C([0,T7]; L*(0, 7)) satisfies (7), then u¢ is solution of (4)—(6).
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For 0 <t < T, we have

> T 6—tn
n — —— falu’ d i ’ 10
; ( e Tn290 /t P eisnzf (u)(s) S) sin nx (10)

where u¢ € C([0,T]; L*(0,7) N C((0,T); Hi(0,7)) N L3(0,T; H(0,7))) can be
verified directly. In fact, u¢ € C>((0,T7]; Hy(0,))). Moreover, one has

= [ —nZe T _p2e-tn’ .
U;(I,t) = Z (64_@—7%2(‘0" — /t mfn('lf)(S)dS) SN NxT

o0 —tn2
e
+ —— fn(u)(t) sinnx
2 o=
_ 2 (o 1), s .
- nEZIn <u (x, ),s1nnx> sin nx
o0 e_t”2
—i—g ——fa(u)(t) | sinnz
n=1 <€T + e~tn? (W) >>

)+ 3 () ) s (1)
and

eu(z,0) + u(z,T) = ¢ — nf:l ( /0 ' ﬁ fn(u€)(s)ds) sinnz.  (12)

So u€ is the solution of (4)—(6).

Part B. If u® satisfies (4)—(6), then u€ is a solution of (7).
In fact, taking the inner product of the equation (4) with respect to sinnx
we get in view of (4)

-y, (1) + n*up (1) = ————— fu(u)(1), (13)
where we recall that
2 , 2 :
us (t) = ;<u€(x,t),smnx>, fa(u®)(t) = ;<f(:v,t,u€(x,t)),sm nw).

It follows that

us (1) = e s (0) + /0 e~ =9 £ (u)(s) ds. (14)
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Hence, we have the Fourier expansion

00 t —sn?
€ —tn? e —(t—s)n? € € :
u(z,t) = E (e e (0) —i—/o e (t=9) E%%_an(u )(s) ds) sin nx

—tn?

_ i (e‘t"Qu;(O) + /0 t efiﬁ Fulu)(s) ds) sin na. (15)

Hence

Substituting (16) into (6) gives
N - T eqe T

(e + e ™ )us, (0)) si :_E:/S b () (s) ds ) sinn.
;< e | )> e n—1 < o €T femen Fulu)e) S) e

We obtain

U5(0) = —— o / ) (s)ds. (17)

ete €T 4 e—sn*

Replacing (17) in (15), we receive (7). This completes the proof of Step 1.

Step 2. The existence and the uniqueness of solution of (7).
Put

0o T e_tnz
G(w)(z,t) = p(z,1) — Z/ mfn(w)(s) dssinnx
n=1"1

for w € C([0,T); L*(0, 7)), where o(z,t) = > > e onsinngz. We claim

n=1 €<|,67Tn2 Pn
that, for every w,v € C([0,T]; L*(0,7)), m > 1, we have

e e B e

€

where C' = max{T, 1} and ||| - ||| is the supremum norm in C([0,77; L*(0,7)).
We shall prove the latter inequality by induction.
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For m =1, we have

IGG)(1) = GO
=§Z[[ Ul )()—fn(v)(S))dS]

ng \ <6T+6 sn2> ds/t (fn(w>(5)_fn<v)(8))2ds

|w:ps —v(x, s)|*dx ds

k:2 9
= C5 (T = )[flw = vll]*.

2
Thus (18) holds.

Suppose that (18) holds for m = j. We prove that (18) holds for m = j+ 1.
We have

IG7H (w)( 1) = GTTH) ()|

<3a3 | [ InE e - fE o))

ggé(T—t)/tTiUn(Gj(w))() Fal @ ())(5)]ds
< 3= [ 565,60 - S, GO ) s
<o [ o) - @i

< (T t)k:2<§)2j/tT(T )ds0ﬂ|||w ol

< (5 I

Therefore, by the induction principle, we have

llGm )~ 6wl < (£) TVEm il - ol

for all w,v € C([0,T7]; L*(0,)).
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We consider G : C([0,T); L*(0, 7)) — C([0,T]; L*(0,7)). There exists a pos-

itive integer mg such that G™ is a contraction since lim,, .o (%)™ & i/ﬁvlcm —

0. It follows that the equation G™°(w) = w has a unique solution u. €
C([0,T]; L*(0,7)). In fact, one has G(G™ (u)) = G(uc). Hence G™(G(u)) =
G(uf). By the uniqueness of the fixed point of G™°, one has G(u) = u, i.e.,
the equation G(w) = w has a unique solution u¢ € C([0,T]; L*(0,7)). From
Part A, Step 1, we complete the proof of Step 2.

Step 3. The solution of the problem (4)—(6) depends continuously on ¢ in
L*(0, 7).

Let u and v be two solutions of (4)—(6) corresponding to the final values ¢
and w. From (7) one has in view of the inequality (a + b)? < 2(a® + b?)

—tn

oo 2 2
(&
) =0 < 73 (b )

—tn? 9 (19)
+7TZ(/t €T+€ Snz‘fn _fn(U)(S)|d$> )
n2 t |
One has, for s >t and a > 0, aieisng = (aemgﬂ)%(l%w#)li% <t~ Letting
OZZE,S:T’ we get
efth -
o = 20
€+ e Tn? — (20)
Lettlng o = 6%’ we get
e—tn2 L
S E— < €T T, (21>
€T —|— 6*871

Hence, from (19) it follows that
u(-,t) —o(-, 8)]|* < 237 V]|p — w]?

T
+ 2k2(T — t)eQ% / ¢ 2T u(-,s) —v(-, s)||2ds.
t

So, we have
D u(-,t) = ol 1)) < 2672l —
AT — 1) /T 2 ([u(-, 5) — v(-, )||2ds.
t
Using Gronwall’s inequality we have

[u(-t) —v(- )| < 27 exp (BT = )*) |l — w]|-
This completes the proof of Step 3 and the proof of our theorem. O
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3. Regularization of problem (1)—(3)

We first have a uniqueness result

Theorem 3.1. Let ¢, f be as in Theorem 2.1. Then problem (1)—(3) has at
most one (weak) solution u € W, where

W = C([0,T]; L*(0, 7)) N L*(0, T; Hy (0, 7)) N CH((0,T); L*(0,7)).

Proof. Let M > 0 be such that |g—£(x,t, 2)] < M for all (z,t,2) € (0,7) X
(0,7) x R. Let uy(x,t) and uy(z,t) be two solutions of problem (1)—(3) such
that uy,us € W.
Put w(x,t) = uy(x,t) — ug(x,t). Then w satisfies the equation
wi(z,t) — Wep(z,t) = f(o,t,ur(z,t)) — fx, t,us(x, t)).

Since f is Lipschizian, we have (w; — w,,)? < M?w?. Now w(0,t) = w(m,t) =0
and w(z,T) = 0. Hence by the Lees—Protter theorem ([8, p. 373]), w = 0 which
gives uy(x,t) = ug(z,t) for all t € [0,T]. The proof is completed. O

Despite the uniqueness, problem (1)—(3) is still ill-posed. Hence, a regular-
ization has to resort. We have the following result.

Theorem 3.2. Let ¢, f,u® be as in Theorem 2.1.
a) If we can find a u and a subsequence (u¥) in (C[0,T]; L*(0,)) such that

u¥ — u in C([0,T]; L*(0, 7)),

then w is the unique solution of Problem (1)—(3).
b) If problem (1)—(3) has a weak solution

u € W (defined in Theorem 3.1)
which satisfies fOT S e f2(u)(s)ds < oo. Then

3k2T(2T — t))6

Sl

lu(t) — (1)) < VM exp (

for every t € [0,T], where M = 3|ju(0)||* + 67 fOT S e f2(u)(s)ds
and u® is the unique solution of problem (4)—(6).

Proof. a) We present an outline of the proof.

The function u® satisfies (4), (5) (with e replaced by ¢;) subject to the
initial condition u®(z,0) = Y 07, I sinnz and u(x,0) = 7 u,(0)sinna.
One gets (see [5])

2

oo t —tn
u®l (IL‘, t) = Z |:€_tn2g0£l + / hfn(uaf)ds sin nzx.
—1 0 & +e
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Letting ¢ | 0, we shall get

[e.e]

u(z,t) = Z (et”QUH(O) + /t e~ (=9 £ (u) ds> sin nx.
0

n=1

On the other hand, letting € | 0 in (6), we get u(x,T) = ¢(z). Hence w is the
solution of problem (1)—(3) as desired.

b) The exact solution u satisfies

u(z,t) = i (e(tT)"Q@n —/Te(t‘s)”an(u)(s) ds) sin nx (22)

n=1

00 T 00
u(z,T) = Z (e_Tngun(O) —I—/ e_(T_S)”an(u)(s)d3> sin na :Z ©n sinn,

n=1 0 n=1
where we recall u,(0) = 2(u(z,0), sinnz) (see [5]). Hence

2 T 2
e 1", (0) +/ e~ T=In" £ (u)(s) ds = . (23)
0

From (7), (22) and (23), we get

—tn?

@)
Sl
Q

€e T
e—Tn2 (6 + e—Tnz)SOn o . e—sn2 (6% + e—sn2)

2

- /t 6%+W(fn(w(8) — fu(u)(s))ds

|un(t) = up, (8)] =

(24)

From (20), (21) and (24), we have
[un (t) = uy, (1)]

T
<e- et Hu,(0)] + / ¢ er !
0

T
t s
t

T
< € |u, (0)] + 26%/
0

6—5712

t_s
€T T

fa(u)(s) ds

6—8712

Sl

T
ds—l—/e
t

Falw)(s) = Fulu)(s)|ds
fa(u)(s)

e—sn2

ds + e%/ €T | fulu)(s) — falu)(s)|ds.

t
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We have in view of the inequality (a + b+ ¢)? < 3(a® + b* + ?)

o0

) = 7 = 5 o) =0
< 37%:0162%|un(0)|2+67rnz:€2%(/0T‘ — fn(u)( )‘ds)2
P ([t e - i)

T o0
< 3 [u(0)|? + 67T / S e £2(u) (s) ds
0 n=1
t T s
+3(T—t)62T/ 2
t
<e %(3Hu( |]2+67rT/ Z 2§ (y
T S
—|—3k2T/ €27 |Ju(-, s) —u€(~,s)|]2ds).
t

(e, s,u(-,8)) — f(-,5,u(-, 8))|*ds

Hence
T
2T ul-, t) — u (-, t)]? < M+3k2T/ e T (-, s) — u(-, s)||°ds,
t

where M = 3||u(0)||*+67T fOT S e f2(u)(s)ds. Using Gronwall’s inequal-
ity, we get

E_Q%HU(-,t) —uf (-, 1)]]* < M3 TT=1),
This completes the proof of Theorem 3.2. 0

Remark 3.3.
1. From Part a), we conclude that if problem (1)—(3) does not have any
exact solution v € W, then one has
lim inf { max u(-.¢) = (-, 0)] | >0
for every v € C([0,T7]; L*(0,)).
2. If f(z,t,u) = 0, we have the linear homogeneous problem, the error

estimate is as in [2].
3. From (23), one has

u,(0) = goneT"Q - /0 eS”an(u)(s)ds
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If 3% 2™ < oo, then Y200, (fOT eS”an(u)(s)als)2 < oo. Hence the as-
sumptions of f in Theorem 3.2 are reasonable.

One has
Theorem 3.4. Let ¢, f be as in Theorem 2.1 and let w € W be a solution of
problem (1)—(3) such that ¢ € L*((0,T);L*(0, 7)) and fOTZlee%"?g(u)(s)ds <

00. Then for all € > 0 there exists a t. such that

1
1

lu(-,0) — u (- t,)|| < VEONT <ln (%))_ |

where

C' = max { exp (%ZTZ)(SHUO(-, 0)[2+ 67T /0 Tg eQS”foL(u)(s)ds)%, N} (25)

T
0

Proof. We have u(z,t) —u(z,0) = fg g—z(m, s)ds. It follows that

ou

E(-,s) ds) : (26)

@(- )Qd = Nt
o ,S s = .

-, 0) — u(-, )2 < ¢ / ]

Using Theorem 3.2 and (25)—(26), we have

lu(-,0) = u () < [l 0) = ul )] + [Ju(- £) = u(-,0)]| < C(VE+eT).

For every ¢, there exists . such that \/f, = etTE, ie., Wt — 21;6. Using inequality

te
Int > —% for every t > 0, we get

N

u(-,0) = u(-, 1) || < VBCVT <ln (%»_ |

This completes the proof of Theorem 3.4. O

Remark 3.5. Using the Galerkin method (see, e.g., [9]), we can show that the
assumption on u; holds if u(-,0) € Hg (0, ).

In the case of nonexact data, one has
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Theorem 3.6. Let ¢, f be as in Theorem 2.1. Assume that the exact solution
u of (1)—(3) corresponding to ¢ satisfies

wew, e (0,1 17(0.)

and fOT S22 €25 f2(y)(s)ds < oo. Let p. € L*(0,7) be a measured data such

n=1

that ||@e — @|| < €. Then there exists a function u® satisfying
3K2T(T — 1)

o) = 0] < 2+ VAT exp (P

)e%, for every t € (0,T)

IS

14(-,0) — (-, 0)]| < VBYT (ln (%)) (exp(K2T2) + C),

where M = 3|u(-,0)||* + 67T fOT S e f2(u)(s)ds, and C is defined in
(25)-(26).
Proof. Let v¢ be the solution of problem (4)—(6) corresponding to ¢ and let w*
be the solution of problem (4)—(6) corresponding to ¢., where @, ¢, are in right
hand side of (6).

Using Theorem 3.4, there exists a ¢, such that

t

Vie=ef (27)

and
[0°(-, te) — (-, 0)|| < V8CVT (m (%)) . (28)

Put

(-t 0<t<T
u(-,t) = we(, ) _< <
we(-,t), t=0.

Using Theorem 3.2 and Step 3 in Theorem 2.1, we get
Ju(,8) —ul, )| < [lw(-8) = v (Ol + lo°( 8) — ul D))

< (24 V) exp (%) e+

for every t € (0,7"). From (27)—(28) and Step 3 in Theorem 2.1, we have
[u (-, 0) = u(, O < [l (s te) = (s t) || 4 [ te) — ul-, 0)]

< 27 exp(K*T?) + V3C VT (ln (l>> '

€

=

< V8VT (m G) )_ (exp(K*T?) + C)

where C'is defined in (25)—(26). This completes the proof of Theorem 3.6. [J
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4. A numerical experiment

We consider the equation
—Ugy + Uy ::(f(u)-+—g(x,t),

where g(x,t) = 2etsinaz — e sin* 2, u(z, 1) = @o(x) = esinz and

s u € [—el0, ]
30 41
fluy = ottt wE el
Su+ S, uwe (—ett =€l
0, lu| > et

The exact solution of the equation is u(x,t) = e’sinx. Especially, u (;1: ﬂ) =

» 100
u(z) = exp (4) sinz. Let o (2) = ¢(z) = (e + 1)esinz. We have

1
g 2 1
||soe—go||2=(/ 6262511129;@) —e(3)
0

9) = y.(x) having the following

We find the regularized solution wu, (:v, 1—00) =

form:

Ue(T) = vy (x) = Wy SIN T + Wo py, 8IN 22 + W3 4, Sin 32,

where v1(x) = (e + 1)esinz,wy; = (e+ 1)e,wy; = 0, w31 = 0 and

—t i2 ot i2
e mt 2 e tm41?” .
Wimt1 = = 7 Wim tmﬂ JE=— > (f5 (v (2) + g(x, 5)) siniz dz) ds
tm =1—am, a:# m=1,2,...,4000, i=1,2,3.

400007

Put a, = |Juc —u|| the error between the regularization solution u, and the exact
solution u. Letting € = ¢; = 107, ¢ = €5 = 107", ¢ = ¢35 = 107!}, numerical
results are given as follows.

€ Ue Qe

€, = 107° | 2.430605996 sin z — 0.000171846090 sin 3z | 0.32664942510
€ = 1077 | 2.646937077 sin z — 0.002178680692 sin 3z | 0.05558566020
€5 = 107 | 2.649052245 sin z — 0.004495263004 sin 3z | 0.05316693437
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