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1. Introduction

David Ouwehand, Steven Sperber and John Voight communicated me two issues
with the paper mentioned in the title.

First, several results in Section 3 assume that for a smooth quasiprojective variety
X over a finite field and a finite groupG ⊂ Aut(X) we haveHi

rig(X)G = Hi
rig(X/G).

This latter statement does not seem to be part of the literature. We strongly believe
that this conjecture is true, but we will explain how one can prove the main results
of the paper without this result. The main idea is that the corresponding statement
for Hi

rig,c holds true, and that for the calculations of zeta functions one is interested

in the characteristic polynomial of Frobenius acting on Hi
rig,c.

Second, one of the steps in the proof of Corollary 6.10 is incomplete and we
discuss how to repair this. (See Proposition 4.4.)

2. Quotients by automorphisms

Let k be a perfect field.

Proposition 2.1. Let X be a k-scheme of finite type. Let G be a finite étale group
scheme acting on X such that X admits a cover of open affine G-stable subsets.
Then for all i we have

Hi
rig,c(X)G ∼= Hi

rig,c(X/G)

as vector spaces with Frobenius action.

Proof. It suffices to prove that the natural map

Hi
rig,c(X/G)→ Hi

rig,c(X)G

is bijective, since this map respects the Frobenius action. In particular, we may
assume that the base field is algebraically closed and that G is a group.

We prove this by induction on dimX.
Suppose first that dimX = 0 holds. In this case X is proper, hence Hi = Hi

c.
Write X = {p1, . . . , pk} where pi is a geometric point of X. The geometric points of
G permute the pi. The dimension of H0((X/G)red) equals the number of G orbits in
X. A straightforward calculation shows that dimH0(X)G also equals the number of
G orbits and that the natural map H0(X/G)→ H0(X)G is clearly an isomorphism.

In the induction step we make a further induction to the number of irreducible
components of dimension equal to dimX.

The author is very grateful to David Ouwehand, Steven Sperber and John Voight for the
discussions on this.
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If there is precisely one such a component X0 then G maps this component to
itself. Let N be subgroup of G which acts trivially on X0. Let H = G/N . Then
there is a nonempty smooth open subset U of (X0)red such that U → U/H is étale
and U/H is smooth again.

In this case we can apply [2, Théorème 4.2] to U and U/H and we obtain that

H•c (U)G = H•c (U)H ∼= H•c (U/H) = H•c (U/G)

Since Z := X \ U has dimension less than dimX (and can also be covered G-
invariant affine opens) we can use the induction hypothesis on the dimension to get
H•c (Z/G) ∼= H•(Z)Gc . The triple U,X,Z yields a distinguished triangle for Hi

c as
does the triple U/G, X/G, Z/G. Using these triangles we get H•(X)G ∼= H•(X/G).

We prove now the induction step on the number of irreducible components.
Using distinguished triangles as above and the first induction hypothesis we may
assume that every irreducible component of X has dimension dimX.

Let N ⊂ G be the intersection of all stabilisers. Then N is a normal subgroup.
Let H = G/N then (X/G)red = (X/H)red. Hence their rigid cohomology groups
are isomorphic. Similarly, the action of H and G on H•(X) are the same. Hence
we may assume that every element of G different from the identity acts nontrivially
on X.

Hence there is a smooth affine open U in X such that g(U) = U for all g ∈
G, the quotient U/G is smooth and U → U/G is étale. In this case we have
Hi
c(U)G = Hi

c(U/G) by [2, Théorème 4.2]. The number of irreducible components
of Z := X \ U , whose dimension equal dimX, is strictly less than the number
of irreducible components of X of this dimension. Hence using both induction
hypothesis we get Hi

c(Z/G) = Hi
c(Z)G . Using distinguished triangles again we

obtain Hi
c(X)G = Hi

c(X/G). �

3. Changes in Section 3 through 5 of [3]

Suppose now that we are in the situation of [3]. I.e., we have a quasismooth
hypersurface

Xλ :
∑

xdii + λ
∏

xaii

in the weighted projective space P := P(w0, . . . , wn). Denote with Uλ = P \Xλ.
This is a quotient of the hypersurface

Yλ :
∑

xdi + λ
∏

xwiai
i

and from [3, Lemma 3.7] it follows that this latter hypersurface is smooth. Let
Vλ := Pn \ Yλ. Now Uλ is Vλ/G where G =

∏
µwi

In Theorem 3.8 from [3] one has to replace Hi(Uλ0
,Qq) by Hi

rig,c(Uλ,Qq). The
proof for the case P = Pn does not require any changes, the general case now follows
directly from the case P = Pn and Proposition 2.1 from the previous section.

Theorem 3.10 from [3] is not proven, and remains a conjecture.
Proposition 3.15 is true in the case of P = Pn by the same argument as in the

proof. If π : Pn → P is the quotient map by G then the argument of the proof
shows that

{π∗(ωk) : k an admissible monomial type}
is a basis for Hn(Vλ)G. Using Poincaré dality we get that this latter space is
isomorphic with (Hn

c (Vλ)∗(−n))G ∼= Hn
c (Uλ)∗(−n).
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The results in Section 4 are independent of Section 3. The results in Section
5 hold true in the case of P = Pn. In this case the formula of Proposition 5.3
hold true. If P 6= Pn then using Poincaré duality we find that the formula of
Proposition 5.3 give the deformation matrix of the operator qn Frob−1λ acting on
Hn
c (Uλ)G ∼= Hn

c (Vλ).
Summarizing everything we now find that

Z(Xλ) = Z(P(w0, . . . wn))/Z(Uλ)

and

Z(Uλ) =
∏
i

(det((1− TF ∗)|Hi
c(Vλ)G))(−1)

i+1

By the modified version of Theorem 3.8 and the above remarks we find

Z(Xλ) = det((1− TF ∗)|Hn
c (Vλ)G)(−1)

n
n−1∏
i=0

1

1− qiT

and that the action of F ∗ on Hn
c (Vλ)G equals the action of qnF−1∗ on Hn(Vλ)G.

The latter action can be calculated by the methods of [3, Section 5].

4. Changes in Section 6

A second proof which is incomplete is the proof of Corollary 6.10. This Corollary
gives a factorization of the zeta function. We present a result here which implies
Corollary 6.10. We also (as an addendum) give a strategy to find a finer factor-
ization. This latter factorization, when applied to the case of X5

0 + · · · + X5
4 +

λX0 . . . X5 = 0, is the factorization as found by Candelas et. al in [1].

4.1. Factorization in Qq[T ]. Recall that we have three equivalence relations on
monomial types.

For the notation used in the following we refer to [3, Section 2]

Definition 4.1. We say that two monomial types k,m are strongly equivalent, if
k−m is a multiple of the deformation vector a.

We say that they are weakly equivalent if for some r ∈ Z/dZ∗ we have k− rm
is a multiple of the deformation vector.

We say that they are indistinguishable by automorphisms if the stabilisers of ωk

and of ωm (in ×wiZ/dZ) coincide.

Note that the stabiliser of ωk consists of (w0g0, . . . , wngn) ∈ ×wiZ/dZ such that∑
giaiwi ≡ 0 mod d and

∑
gi(ki + 1)wi ≡ 0 mod d

holds. In particular, strongly equivalent implies weakly equivalent and weakly
equivalent implies indistinguishable by automorphisms.

Lemma 4.2. Two monomial types are weakly equivalent if and only if they are
indistinguishable by automorphisms.

Proof. We have to show that indistinguishable by automorphisms implies weakly
equivalent.

Consider the bilinear form (
∏
wiZ/dZ)× (

∏
wiZ/dZ)→ Z/dZ defined by

(. . . , wici, . . . ), (. . . , widi, . . . )→
∑

wicidi.
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Then the stabiliser of ωk is the orthogonal complement of the Z/dZ-submodule of∏
wiZ/dZ spanned by k and a.
If R is a Z/dZ-submodule of

∏
wiZ/dZ then a straightforward calculation shows

that #R#R⊥ = #
∏
wiZ/dZ. In particular #(R⊥)⊥ = #R. Since R ⊂ (R⊥)⊥ we

find that R = (R⊥)⊥.
Hence if k and m are indistinguishable by automorphisms then {a,k} and {a,m}

generate the same submodule of
∏
wiZ/dZ.

In particular there exists r1, r2, s1, s2 ∈ Z/dZ such that k = r1a + s1m and
m = r2a+s2k. It remains to show that s1, s2 ∈ (Z/dZ)∗. By the Chinese remainder
theorem we may assume that d is a prime power. Moreover we may multiply the
entries of a, k, m by wi and assume that each wi = 1.

If one of the entries of a, say ai, has valuation zero then consider k̃ = k − ki
ai

a

and m̃ = m− mi

ai
m. Now {a, k̃} and {a, m̃} generate the same submodule. Since

ai is invertible, k̃i = 0 = m̃i and m̃ is in the submodule generated by k̃ and a, we
find that k̃ is a multiple of m̃. More precisely, we have that

k̃ = λm̃ and m̃ = νk̃

In particular v(k̃j) = v(m̃j) for every j and therefore v(λ) = v(ν) = 0. Now

k = λm + ((−λmi + ki)/ai)a.

and hence we are done.
If all entries of a,k,m are divisible by ` then we can divide them and d by `.

Hence we may assume in the remaining case that for all i we have v(ai) > 0 and
that for some j we have that v(kj) = 0. Then also v(mj) = 0.

If we now write k = αa + βm and consider this modulo ` then we find β ≡
kj/mj mod `. In particular v(β) = 0 and we find β ∈ (Z/dZ)∗. �

The aim is to describe a factorisation of the zeta function of the hypersurface
Xλ, provided Xλ is quasismooth. In [3, Section 6] we started with a factorisation
in Qq[T ].

Let k be an admissible monomial type. Let e = q mod d. From [3, Lemma 6.1]
it follows that Frobenius at λ = 0 sends ωk to ωek. By the results of [3, Section 5]
we have that the deformation matrix leaves the subspace spanned by

{ωk+ta | k + ta admissible.}

invariant. Combining this we see that Frobenius leaves the space spanned by

{ωesk+ta | esk + ta admissible.}

invariant. In particular, if e ≡ 1 mod d then we find for each strongly equivalence
class (see [3, Section 6]) a factor P[ωk](T ) ∈ Qq[T ], such that the characteristic
polynomial on Hn(Uλ) equals ∏

[k]

P[k](T )

This is not a factorisation in Q[T ]. However, we need this factorisation later on.
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4.2. Factorisation in Q[T ]. Assume that Xλ is quasismooth. Consider now
Hn
c (Uλ,Qq). Then the characteristic polynomial of Frobenius is an element of

Q[T ].
Let K be the subgroup of ×wiZ/dZ consisting of all (w0g0, . . . , wngn) such that∑
giaiwi ≡ 0 mod d. Then K is a subgroupscheme of Aut(Uλ) and of Aut(Xλ).:
For an admissible monomial type k, let Gk ⊂ K the stabilizer of ωk.

Lemma 4.3. The group scheme associated with Gk is defined over Fp. In par-
ticular, the characteristic polynomial of Frobenius on Hn

c (Vλ)Gk is an element of
Q[T ].

Proof. Note that the stabiliser of ωk consists of automorphisms which are defined
over Fq(ζd). However, an element of Gal(Fq(ζd)/Fq) sends ζd → ζed for some e co-
prime to d. Hence it maps (w0g0, . . . , wngn) → (ew0g0, . . . , ewngn). If the former
is in Gk then so is the latter, and we have that the group scheme Gk is defined over
Fq.

Moreover, we have that Hi
c(Uλ/Gk) = Hi

c(Uλ)Gk = Hi
c(Vλ)Gk is zero for i 6=

n, 2n, one-dimensional for i = 2n. Hence the zeta function is either the quotient
of the characteristic polynomial of Frobenius on Hn divided by (1 − qnT ) or it is
the reciprocal of (1− qnT ) times the the characteristic polynomial of Frobenius on
Hn. Since the zeta function is in Q(T ) we have that the characteristic polynomial
is in Q[T ]. �

We can now fill the gap in the proof of [3, Corollary 6.10] (with the modification
indicated in the previous section):

Proposition 4.4. Let λ ∈ Fq be such that Xλ is quasismooth. Let P (t) be the
characteristic polynomial of Frobenius acting on Hn

c (Uλ). Then

P (t) =
∏
[k]

P[k](t)

where the product is taken over all weakly equivalence classes of admissible mono-
mial types, such that each P[k](t) is in Q[t] and the degree of P[k](t) equals the
number of admissible monomial types in the equivalence class of k.

Proof. Let V = Hn
c (Uλ,Qq). Fix an admissible monomial type k. Since every ωm

is an eigenvector for every element of K we can write

V Gk = Vk ⊕ V ′

where V ′ is spanned by all ωm such that Gk is a proper subgroup of Gm. The
characteristic polynomial of Frobenius acting on Vk is then in Q[T ], since the char-
acteristic polynomials on V ′ and V Gk are.

Consider now the equivalence relation indistinguishable by automorphisms and
denote with [k] the equivalence classes then

V = ⊕[k]Vk

Hence we have that the characteristic polynomial is a product∏
[k]

Pk

and each Pk ∈ Q[T ]. The statement about the degree is immediate. �



6 REMKE KLOOSTERMAN

We give now an example where we combine both factorisations to obtain a finer
factorisation. This example supplies some details to the claims made in [3, Example
6.11]

Example 4.5. Consider

x50 + · · ·+ x54 + λx0x1x2x3x4.

Up to permutation of the coordinates we have that the admissible monomial types
are of the shape (a, a, a, a, a), (a, a, a, b, c) and (a, a, b, b, c).

Two weakly equivalent monomial types have the same shape. The weakly equiv-
alence class of (1, 1, 1, 1, 1) consists of (a, a, a, a, a) with a ∈ {1, 2, 3, 4}.

The weakly equivalent class of (1, 1, 1, 3, 4) consists further of

(2, 2, 2, 1, 3), (3, 3, 3, 4, 2), (4, 4, 4, 2, 1), (4, 4, 4, 1, 2), (3, 3, 3, 2, 4), (1, 1, 1, 4, 3).

The weakly equivalent class of (1, 1, 2, 2, 4) consists further of

(2, 2, 4, 4, 3), (3, 3, 1, 1, 2), (4, 4, 3, 3, 1), (3, 3, 4, 4, 1),
(1, 1, 3, 3, 2), (4, 4, 2, 2, 3), (2, 2, 1, 1, 4).

Hence we find that the characteristic polynomial of Frobenius acting on H4(Uλ)
is the product of a degree 4 polynomial and polynomials of degree 8. Using the
S5 symmetry we find that many of these polynomials coincide, i.e., there exist a
polynomial Q1 ∈ Q[T ] of degree 4 and two polynomials Q2, Q3 ∈ Q[T ] of degree 8
such that the characteristic polynomial of Frobenius is Q1Q

10
2 Q

15
3 .

We can factor Q2 and Q3 further. Take the involution σ swapping x3 and
x4. Consider the subgroup K of the automorphism group generated by σ and the
stabiliser of ω(1,1,1,3,4). Then Hn

c (Vλ)K is a four-dimensional subspace of

Hn(Vλ)G(1,1,1,3,4) .

Hence the degree eight polynomial Q2 factors as a product of two degree 4 polyno-
mials.

Moreover if q ≡ 1 mod 5 then we can also consider the factorization in Qq[T ]
and we find that Q2 is a square in Qq[T ] and we may deduce from this that it is
also a square in Q[T ].

Similarly, we find that Q3 factors as two polynomials of degree 4 in Q[T ], which
coincide if q ≡ 1 mod 5. Hence if q ≡ 1 mod 5 then we find three quartic polyno-
mials R1, R2, R3 such that the characteristic polynomial of Frobenius is

R1R
20
2 R

30
3 .
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