EXERCISES FOR THE COURSE SUPERFICI DI RIEMANN A.A. 2016/17

- (1) Let C be the curve $y^2 x^r = 0$ in \mathbb{C}^2 , (with $r \ge 2$). Let \tilde{C} be the strict transform of C under the blow-up of (0,0). Show that the strict transform has at most one singular point. Determine the number blow-ups needed to obtain a smooth strict transform.
- (2) Let C be the curve $y^m x^m = 0$ in \mathbb{C}^2 , with $m \ge 2$. Let \tilde{C} be the strict transform of C under the blow-up of (0,0). Show that the strict transform is smooth.
- (3) Let $z \in \mathbf{C}$ be a complex number $\operatorname{Im}(z) > 0$. Consider the $\operatorname{SL}_2(\mathbf{Z})$ orbit of z. Let $\mathcal{F} = \{z \in \mathbf{C} : |\operatorname{Re}(z)| \le 1/2, |z| \ge 1/2\}$.

In the lecture we showed that for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbf{Z})$ we have $\mathrm{Im}(\gamma(z)) = \frac{\mathrm{Im}(z)}{|cz+d|^2}$. Moreover we showed that $\mathrm{Im}(\gamma(z))$ is bounded from above for fixed z and that there is $z_0 := \gamma_0(z) \in \mathcal{F}$ such that $\mathrm{Im}(\gamma z)$ attains its maximum at $\gamma = \gamma_0$.

- (a) Let $z = x + iy \in \mathbf{C}, x, y \in \mathbf{R}$. Show that if $|z| \ge 1$ and $|x| \le 1/2$ then $|cz+d|^2 \ge c^2(|z|^2 \frac{1}{4})$ for all $c, d \in \mathbf{Z}$. Deduce from this that for $|c| \ge 2$ we have |cz+d| > 1.
- (b) Show that if (c, d) is the lower row of a matrix in $SL_2(\mathbf{Z})$ and c = 0then $d = \pm 1$. Deduce from this that the matrices with c = 0 yield translations $z \to z + n$ for some $n \in \mathbf{Z}$. Find all $(z, \gamma) \in \mathcal{F} \times SL_2(\mathbf{Z})$ such that c = 0 and such that both $\gamma(z)$ and z are in \mathcal{F} .
- (c) Show that if $c = \pm 1$, $|\operatorname{Re}(z)| \leq 1/2$ and $|cz + d| \leq 1$ hold then $d \in \{-1, 0, 1\}$ and $|\operatorname{Re}(z)| = 1/2$. Use this to show that $|cz + d| \geq 1$ for all $(c, d) \in \mathbb{Z}^2$ with $(c, d) \neq (0, 0)$ and $z \in \mathcal{F}$. (And hence for all $z \in \mathcal{F}$ we have either $\gamma(z) \notin \mathcal{F}$ or $\operatorname{Im}(z) = \operatorname{Im}(\gamma(z))$.)
- (d) Find now all $x + iy \in \mathcal{F}$, $c, d \in \mathbb{Z}$ such that $(c, d) \neq (0, 0)$ and |cz+d| = 1. Use this to find all $z \in \mathcal{F}$ such that there is a $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ with $\gamma(z) \neq z$ and $\gamma(z) \in \mathcal{F}$.
- (4) Let $h(x) \in \mathbf{C}[x]$ be a polynomial of degree 2g + 1 with distinct roots. Let C be the affine complex curve $y^2 = h(x)$. Show that there is a number R > 0 such that the map $\varphi(x, y) = y/x^{g+1}$ defines a hole chart on $\{(x, y) \in \mathbf{C}^2 : |x| > R\}$.
- (5) Let \mathbf{C}/Λ be a complex torus. Show that this group is divisible, i.e., for every $p \in \mathbf{C}/\Lambda$, $n \in \mathbb{C}$ there exists a $q \in \mathbf{C}/\Lambda$ with nq = p. Moreover, show that for fixed p, n the equation nq = p has n^2 solutions.