EXERCISES FOR THE COURSE SUPERFICI DI RIEMANN A.A. 2016/17

- (1) Let \mathbf{T} be complex torus.
 - (a) Fix a point $O \in \mathbf{T}$. Use Riemann-Roch to show that for every two points P, Q on \mathbf{T} there is a unique point R such that P+Q and R+O are linearly equivalent.
 - (b) Consider the map $\mathbf{T} \to \operatorname{Pic}^{0}(\mathbf{T})$ mapping P to P O. Show that this map is bijective.
 - (c) Assume now that O is the origin. Let C be the cubic curve isomorphic with **T**. Recall that O = (0:1:0) and that O is a flex point. Let $\varphi: C \to \operatorname{Pic}^0(C)$ be the map mapping P to P-O. Show that if P, Q, Rare collinear points on C then $\varphi(P) + \varphi(Q) + \varphi(R) = 0$ in $\operatorname{Pic}^0(C)$ and that $\varphi(-P) = -\varphi(P)$. (Here the first minus is with respect to the group law on C, the second minus is with respect to the group law on $\operatorname{Pic}(C)$.)

Use this to show that φ defines an isomorphism of groups.

(2) Let C be a compact Riemann surface of genus g. Fix a base point O. Let P_1, \ldots, P_{g+1} be points on C. Use Riemann-Roch to show that are g points Q_1, \ldots, Q_g on C such that $P_1 + P_2 + \cdots + P_{g+1} \sim Q_1 + \cdots + Q_g + O$. Use this to show that the map

$$C^g \to \operatorname{Pic}^0(C)$$

given by $(P_1, \ldots, P_g) \rightarrow P_1 + P_2 + \ldots P_g - gO$ is surjective.

- (3) Let C be the compact Riemann surface associated with the affine curve $y^2 = x^5 + 1$. Calculate div(y) and div(x).
- (4) Use Riemann-Roch to show that if a divisor D satisfies $\ell(D) = g$ and $\deg(D) = 2g 2$ then $D \sim \operatorname{kdiv}(\omega)$ for some differential form ω .