EXERCISES FOR THE COURSE SUPERFICI DI RIEMANN A.A. 2016/17

(1) Let

$$0 \to V_0 \xrightarrow{f_0} V_1 \xrightarrow{f_i} \cdots \xrightarrow{f_{n-1}} V_n \to 0$$

be an exact sequence of finite dimensional vector spaces, i.e we have that $\ker(f_i) = \operatorname{Im}(f_{i-1})$. Show that $\sum (-1)^i \dim V_i = 0$.

- (2) Finitely generated groups
 - (a) Let G and H be finitely generated free abelian groups, i.e. $G \cong \mathbf{Z}^r$ and $H \cong \mathbf{Z}^s$ Let g_1, \ldots, g_r be a set of generators of G and h_1, \ldots, h_s be a set of generators. Let $\varphi : G \to H$ be a group homomorphism. Let M be the matrix of φ with respect to these basis.

Show that φ is injective if and only if the **Q**-rank of the matrix M is r and show that if φ is surjective then the **Q**-rank of M equals s. In particular if G and H are isomorphic then r = s.

(b) Let G and H be as above, but suppose now that r = s. Show that φ is an isomorphism if and only if the determinant of M is either 1 or -1.

Let G be a finitely generated abelian group let G_{fin} be the elements of finite order. Then G/G_{fin} is a free abelian group, i.e., isomorphic to \mathbf{Z}^r for some r, and by the above exercises this r depends only on G. We call r the rank of G.

- (3) Let $0 \to G_0 \to \ldots G_n \to 0$ be an exact sequence of finitely generated groups. Show that $\sum (-1)^i \operatorname{rank}(G_i) = 0$.
- (4) Let C be a Riemann surfae of genus g. Let P be a point on C. A gap number n is a positive integer such that $\ell(nP) = \ell((n-1)P)$. We know that 1 is a gap number, that the largest gap number is at most 2g - 1, and that there are precisely g gap numbers. Similarly we can define nongap numbers $\alpha_1 < \alpha_2 < \cdots < \alpha_g = 2g$ to be those numbers such that $\ell(\alpha_i P) = \ell((\alpha_i - 1)P) + 1$. Show that the sum of two non-gap numbers is again a non-gap number. Use this to show $\alpha_j + \alpha_{g-j} \ge 2g$. Moreover, show that if $\alpha_1 = 2$ then $\alpha_k = 2k$ for $k = 1, \ldots, g$.