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Introduction

This thesis consists of a study of elliptic curves, and of elliptic surfaces.
An elliptic curve (considered over the complex numbers) is a pair (E,O) where E is a

curve, which topologically is a torus, and O is a point on E. One can prove that E \ {O}
can be mapped isomorphically to a curve in C2 of the form

y2 = x3 + Ax + B,

for some A,B ∈ C, such that 4A3 + 27B2 6= 0. Fix a curve C then an elliptic surface
with base curve C can be represented by an equation of the above form, replacing A,B
by functions C to P1.

1. Elliptic surfaces

The first five chapters deal with the study of elliptic surfaces. We study only projective
surfaces, and this forces the base curve to be a projective curve. In this case either all
members of the family are isomorphic or we have to allow certain other (singular) curves
in our family. Kodaira gave a list of all possible singular fibers in a “minimal” family. The
Kodaira types of the singular fibers give a lot of information about the elliptic surface.

To give an overview of the first five chapters we need to introduce some notions from
algebraic geometry.

Let X be an elliptic surface. One introduces a group NS(X), called the Néron-Severi
group of X.A divisor D of X is a finite formal sum n1D1 + · · · + nkDk, where the Di

are irreducible curves and the ni are integers. On Div(X) one defines the intersection
pairing, denoted by ·. If D and D′ are irreducible curves in X intersecting transversely,
then D · D′ = #D ∩ D′. Using linearity one defines this pairing on a large part on
Div(X)×Div(X). One extends the intersection pairing to Div(X)×Div(X) as explained
in, e.g., [28, Section V.1]. One defines an equivalence relation ≡ on Div(X), called
numerical equivalence, by D ≡ D′ if and only if D · C = D′ · C for all C ∈ Div(X).
The quotient of Div(X) by numerical equivalence is the group denoted by NS(X). In
fact, in a more general situation one uses a different equivalence relation, called algebraic
equivalence, see [7, p. 21]. For the surfaces we study in this thesis, algebraic equivalence
and numerical equivalence coincide. We have that NS(X) is a finitely generated group,
i.e., NS(X)/NS(X)tor

∼= Zρ(X) as groups, for some integer ρ(X), called the Picard number
of X.

We need to introduce two other groups, called H0(X, Ω2
X) and H1(X, Ω1

X), which
are both finitely dimensional C-vector spaces. There exists an injection NS(X) ⊗ C →
H1(X, Ω1

X), which shows that ρ(X) ≤ h1,1 := dim H1(X, Ω1
X).

If X is an elliptic surface with base curve P1, then the dimension of these spaces are
related:

h1,1 = 10(1 + dimH0(X, Ω2
X)) =: 10n.

1



2 INTRODUCTION

One splits NS(X) into two parts: let π : X → P1 be the elliptic family. Then there is
the so-called trivial subgroup T (π) of NS(X) generated by the classes of a smooth fiber of
π, the image of a fixed section σ0 of π and all the components of fibers not intersecting the
image of σ0. The quotient NS(X)/T (π) is generated by the classes of images of sections
other then σ0. This quotient is denoted by MW (π) and called the Mordell-Weil group.

The first two chapters are an attempt to understand the following class of elliptic
surfaces and to embed them in a broader theory: take α, β, γ ∈ C − {0, 1}, pairwise
distinct, and consider

y2 = x3 + t5(t − 1)5(t − α)5(t − β)5(t − γ5).

Then the associated (smooth compact) surface has very remarkable properties. For ex-
ample one can show that h1,1 = ρ(X) for almost all members of this family, and for two
general choices of the parameters α, β, γ the associated surfaces are not isomorphic.

The objects of study in Chapter 1 are the elliptic surfaces such that MW (π) is finite
and h1,1 = ρ(X). We call such surfaces extremal elliptic surfaces. The main result is
a classification of extremal elliptic surfaces: there are a few families of extremal elliptic
surfaces (see the example above) and there are infinitely many isolated examples. We also
prove an technical result concerning the so-called infinitesimal Torelli property of elliptic
surfaces. For details see Corollary 1.4.11 and the Introduction of Chapter 1.

In Chapter 2 we consider the following problem. Fix an integer n ≥ 2. Let Mn be
the space parameterizing all elliptic surfaces π : X → P1 with dim H0(X, Ω2

X) + 1 = n.
Then we define the Noether-Lefschetz locus NLr ⊂ Mn as the subspace

NLr := {π : X → P1 ∈ Mn | ρ(X) ≥ r}.
It is known for a long time that NL2 = Mn and dimMn = 10n − 2. Cox [18] proved
dim NL3 = 10n − 3. We prove that

dim NLr ≥ 10n − r

for 2 ≤ r ≤ 10n, and that equality holds for 2 ≤ r ≤ 4n + 3. For several values of r ≥ 8n
we know that the bound dimNLr ≥ 10n − r is not sharp.

In Chapters 3 and 4 we focus MW (π). In Chapter 3 we study six families of elliptic
surfaces. Kuwata [41] determined for all members of this family the rank of the groups
MW (π).

For several of the six families we manage to write down explicit sections which generate
a subgroup of finite index of MW (π). We use this explicit knowledge to write down elliptic
surfaces with Mordell-Weil rank 8 over Q, and we believe that a more thorough study of
these surfaces may produce examples with higher rank.

In Chapter 4 we present a three-dimensional family of elliptic K3 surfaces such that
a general member of this family has Mordell-Weil rank 15. An elliptic K3 surface is an
elliptic surface for which n = 2, i.e., dim H0(X, Ω2

X) = 1 and C ∼= P1. Such a surface
satisfies 0 ≤ rank MW (π) ≤ 18. Kuwata [41] gave examples of elliptic K3 surfaces of
Mordell-Weil rank 0, . . . , 14 and 16, 17, 18. Hence this chapter completes the program of
explicitly writing down examples of K3 surfaces for every 0 ≤ r ≤ 18.

In most cases the underlying surface X of an elliptic surface π : X → P1 has a unique
structure (up to isomorphism) as an elliptic surface, i.e., there is only one morphism
π : X → P1, such that the fibers of π are elliptic curves. If X is a surface admitting more
structures as a family of elliptic curves, then one can show that X is a K3 surface. In
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Chapter 5 we classify all structures as families of elliptic curves on a class of K3 surfaces.
This class can be described as follows. Fix six lines in P2 in general position. Then one
can make a surface X, such that ψ : X → P2 is two-to-one, except for points in the
inverse image of the six lines, there the map ψ is one-to-one. The surface X is singular.
The class of surfaces in Chapter 5 are the desingularizations of such surfaces X.

2. Tate-Shafarevich groups

In Chapter 6 a topic from the arithmetic of elliptic curves is discussed. To explain
this, we first recall some general results on elliptic curves.

Let K be a number field and E/K an elliptic curve. Then the set of K-valued points
E(K) is a finitely generated abelian group (see [72, Theorem VIII.4.1].) Hence it makes
sense to consider the following problem: given E and K, describe the torsion part E(K)tor

and determine the rank of E(K). Determining the torsion part is relatively easy (compare
[72, Section VII.3]). A strategy to obtain information on the rank is the following. Fix
a prime number p. From the fact that E(K) is a finitely generated group, it follows that
the dimension of the Fp-vector space E(K)/pE(K) has dimension equal to the dimension
of the p-torsion E(K)[p] plus the rank of E(K). In order to determine the rank of E(K)
it suffices to compute dim E(K)/pE(K).

Consider all genus 1 curves C/K, such that over a finite extension of K, the curves C
and E are isomorphic. Consider the set WC (the so-called Weil-Chatêlet group) of pairs
of isomorphism classes (C, µ) such that µ defines a simply transitive group action of E
on C. (This last point is merely technical.)

One can define an injective map E(K)/pE(K) into a certain group H ⊂ WC (for
the specialist H = H1(K,E[p])) and to each element ξ ∈ H, we can associate a genus
1 curve Cξ, which is isomorphic to E over some finite extension of K. The image of
E(K)/pE(K) consist of all (Cξ, µξ) such that Cξ(K) 6= ∅. In general, it is very hard to
determine whether Cξ(K) is empty or not. For a place (prime) p of K denote Kp the
completion with respect to p. Define

Sp(E/K) := {ξ ∈ H : Cξ(Kp) 6= ∅ for all places p of K}.
Obviously, the vector space E(K)/pE(K) can be injected into Sp(E/K), yielding

E(K)/pE(K) →֒ Sp(E/K) ⊂ H ⊂ WC.

(A technical correct definition involves Galois cohomology, which we do not discuss in
this Introduction. For more details see Section 6.3.)

Given E and p, one can easily determine a finite subset H ′ of H with the property
Sp(E/K) is contained in H ′. One can show that for all but finitely many primes p the
set Cξ(Kp) is not empty for all ξ ∈ H ′. To conclude that Cξ(Kp) is not empty for all p,
one needs to check only the primes p such that the reduction Cξ mod p is singular, and
the primes p such that p divides p. Checking whether Cξ(Kp) is empty or not in these
finitely many cases, can be done using Hensel’s Lemma in a finite amount of time.

The above considerations imply that one can find in a finite amount of time the set
Sp(E/K). (We cheated a bit, if p > 5 then the equations for the Cξ are not known, but
for small degrees one can find them for example in [72, Chapter X].)

Consider the quotient of Sp(E/K) by the image of E(K)/pE(K). We call this the p-
part of the Tate-Shafarevich group of E/K, denoted by X(E/K)[p]. This group measures
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how large the defect of Sp(E/K) is, if one wants to compute E(K)/pE(K), i.e., we have
a short exact sequence

0 → E(K)/pE(K) → Sp(E/K) → X(E/K)[p] → 0.

It is conjectured that the rank of E(Q) is arbitrarily large if one considers all elliptic
curves E/Q. If this were true then for all p the number of elements of Sp(E/Q) is
arbitrarily large. This is actually proven for p = 2, 3 (see [11], [13], [33] and [40]),
p = 5, 7 (see [23], [33]) and p = 13 (see [33]) Hence for these prime numbers at least one
of rank E(Q), #X(E/Q)[p] is arbitrarily large. For p = 2, 3 and 5, some of the above
mentioned papers actually prove that X(E/Q)[p] is arbitrarily large.

In the paper [38] it is proven that #Sp(E/K) is unbounded if one considers pairs
(E,K) with K a number field of degree at most (p + 13)/12, and E/K an elliptic curve.

The aim of Chapter 6 is to produce for every prime number p examples of pairs (E,K)
with E an elliptic curve and K a number field of degree bounded polynomially in p such
that X(E/K)[p] is unbounded. (Theorem 6.1.1)

In a certain sense, this is a negative result, it shows that the above mentioned strategy
to determine rankE(K) might fail heavily. One can interpret this result much more
positively. First of all it takes a lot of effort to produce examples of elliptic curves E/K
such that one can prove that X(E/K) is not trivial (here we consider all prime numbers
p). Secondly, it gives a little information in which cases one might except large Tate-
Shafarevich groups.

The strategy of our prove is a bit involved. We start in Section 6.3 by considering how
one proves that Sp(E/K) is very large. Here we assume that there exists a morphism
ϕ : E → E ′ of degree p defined over K. Under this assumption one can give an upper
bound on #Sp(E ′/K) in terms of the geometry of the reduction E mod p, for primes p

such that E mod p is singular. Suppose E admits a second morphism ψ : E → E ′′ with
the property that exists a point Q ∈ E(K)[p] with ϕ(Q) 6= O, with O the neutral element
of E ′′(K). (This condition implies that ψ and ϕ are different morphisms.) One can use
this morphism ψ to bound the number of elements of Sp(E ′′/K) (and hence bound the
rank of E ′′(K)). Since the rank of E(K), E ′(K) and E ′′(K) are the same, we obtain
a lower bound for the number of elements in X(E ′′/K)[p]. (Contrary to the rank, the
number of elements in X(E ′′/K)[p] and X(E/K)[p] might differ a lot.)

To produce examples with large Tate-Shafarevich groups we will combine both assump-
tions. It turns out that this is possible in the case that E/K comes from a K-rational
point of the so-called modular curve X(p). One now translates both assumptions in terms
of the reductions of the point P ∈ X(p)(K). Then it remains to show that there exist
points with the required reduction properties. In Section 6.4 one can find this translation
and the actual construction of these points with the required properties.



CHAPTER 1

Extremal elliptic surfaces & Infinitesimal Torelli

The paper [34] is based on this chapter and appeared in the Michigan Mathematical
Journal.

1. Introduction

An extremal elliptic surface over C is an elliptic surface such that the rank of the
Néron-Severi group equals h1,1 and its associated Jacobian surface admits at most finitely
many sections.

These surfaces are very useful if one wants to classify all configurations of singular
fibers on certain families of elliptic surfaces: given a configuration of singular fibers on an
extremal elliptic surface, using so-called deformations of the j-map and twisting one can
construct other elliptic surfaces with different configurations of singular fibers (terminol-
ogy from [47, VIII.2] and [48]). For these surfaces, the genus of the base curve and the
geometric and arithmetic genus of the surface are the same as for the original surface. In
[66] this is done for the case of K3 surfaces. In [47, VIII.2] this is done for any elliptic
surface.

The classification of singular fibers on a rational elliptic surface has been given more
than 10 years ago (see [48], [53], [54]). Recently there has been given a classification of
all singular fibers of elliptic K3 surfaces with a section (see [66]). From the classification
of configurations of singular fibers on rational (see [48]) and on elliptic K3 surfaces with
a section (see [66]) we know that any configuration can be obtained from an extremal
configuration using deformations of the j-map and twisting. Whether this is true for
arbitrary elliptic surfaces seems to be unknown.

In this chapter we give a complete classification of extremal elliptic surfaces with
constant j-invariant (Theorem 3.7). From this we deduce that if π : X → P1 is extremal
then either pg(X) is at most 1 or the j-invariant is 0 or 1728. There are some examples of
non-trivial families of extremal elliptic surfaces. For example the family of elliptic surfaces
associated to y2 = x3 + t5(t− 1)5(t−α)5(t− β)5(t− γ)5 is such a family. We use this fact
to prove the following:

Theorem 1.1. Let π : X → P1 be an elliptic surface without multiple fibers. Assume
that pg(X) > 1. Then X satisfies infinitesimal Torelli (cf. Definition 4.1) if and only if
j(π) is non-constant or π is not extremal.

Kĭı ([31, Theorem 2]) proved infinitesimal Torelli for elliptic surfaces without multiple
fibers and non-constant j-invariant. Saitō ([58]) proved in a different way infinitesimal
Torelli for elliptic surfaces over P1 without multiple fibers and j-invariant not identical 0
or 1728 (and also for large classes of elliptic surfaces over other base curves). The case
pg(X) = 0 is trivial, since H2(X,C) = H1,1(X,C), the case pg(X) = 1 follows from [55].

5



6 1. EXTREMAL ELLIPTIC SURFACES & INFINITESIMAL TORELLI

For elliptic surfaces with non-constant j-invariant we will give the following structure
theorem:

Theorem 1.2. Suppose π : X → C is an elliptic surface without multiple fibers and
non-constant j-invariant, then the following three statements are equivalent:

(1) π is extremal
(2) • j(π) : C → P1 is unramified outside 0, 1728,∞;

• the only possible ramification indices above 0 are 1, 2, 3 and above 1728 are
1, 2;

• and π has no fibers of type II, III, IV or I∗
0 .

(3) There exists an elliptic surface π′ : X ′ → C, such that j(π′) = j(π), the fibration
π′ has no fibers of type II∗, III∗ or IV ∗, at most one fiber of type I∗

0 , and π′ has
precisely 2pg(X) + 4 − 4g(C) singular fibers.

We will now present a more precise theorem which moreover gives the possible Mordell-
Weil groups for an extremal elliptic surface. Let m,n ∈ Z≥1 be such that m|n and n > 1.
Let X(m,n) be the modular curve parameterizing triples ((E,O), P,Q), such that (E,O)
is an elliptic curve, P ∈ E is a point of order m, the point Q ∈ E a point of order n and
the group generated by P and Q has mn elements.

If
(m,n) 6∈ {(1, 2), (2, 2), (1, 3), (1, 4), (2, 4)}

then there exists a universal family for X(m,n), which we denote by E(m,n). Denote by
jm,n : X(m,n) → P1 the map usually called j.

From the results of [69, Sections 4 and 5] it follows that E(m,n) is an extremal elliptic
surface. The following theorem explains how to construct many examples of extremal
elliptic surfaces with a given torsion group.

Theorem 1.3. Fix m,n ∈ Z≥1 such that m|n and (m,n) is not one of the pairs (1, 1),
(1, 2), (2, 2), (1, 3), (1, 4), (2, 4). Let C be a (projective smooth irreducible) curve, let
j ∈ C(C) be a non-constant function. Then the following are equivalent

• there exists a unique extremal elliptic surface π : X → C, with j(π) = j and the
group of sections has Z/nZ × Z/mZ as a subgroup

• j is unramified outside 0, 1728,∞ and j = jn,m ◦ h for some h : C → Xm(n).

An extremal elliptic surface π : X → C with j(π) = j and Z/nZ × Z/mZ is a subgroup
of the group of section, is one of the 22g(C) surfaces with j(π) = j and all singular fibers
are of type Iν.

If π : X → P1 is an extremal semi-stable rational elliptic surface then X is determined
by the configuration of singular fibers (see [50, Theorem 5.4]). It seems that this quite
special for rational elliptic surfaces. If X is a K3 surface a similar statement does not
hold:

Theorem 1.4. There exists pairs of extremal semi-stable elliptic K3 surfaces, πi :
Xi → P1, (i = 1, 2) such that the groups of section of π1 and π2 are isomorphic, the
configuration of singular fibers of the πi coincide and X1 and X2 are non-isomorphic.

This gives a negative answer to [5, Question 0.2] (for a precise formulation of this
question see Section 8). The essential ingredient for the proof of Theorem 1.4 comes from
[67, Table 2].
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This chapter is organized as follows:
Section 2 contains some definitions and several standard facts. In Section 3 we give a

list of extremal elliptic surfaces with constant j-invariant. They behave differently from
the non-constant ones. There are exactly 5 infinite families of extremal elliptic surfaces
with constant j-invariant (3 of dimension 1, 1 of dimension 2 and 1 of dimension 3). In
Section 4 we explain this different behavior by proving Theorem 1.1. In Section 5 we
explain how twisting can reduce the problem of classification. In Section 6 we link the
ramification of the j-map and the number of singular fibers of a certain elliptic surface.
This combined with the results of Section 5 gives a proof of Theorem 1.2. Section 7
contains a proof of the version with the description of the group of sections (Theorem 1.3).
In Section 8 we prove Theorem 1.4. In Section 9 we give a classification of extremal elliptic
surfaces with g(C) = pg(X) = q(X) = 1. Section 10 contains a proof of the fact that there
exist elliptic surfaces with exactly one singular fiber. It is easy to see that the singular
fiber is of type I12k or I∗

12k−6, for some k > 0. In this section we prove that for every
positive k, both I12k and I∗

12k−6 occur.

2. Definitions and Notation

Assumption 2.1. By a curve we mean a non-singular projective complex connected
curve.

By a surface we mean a non-singular projective complex surface.

Definition 2.2. An elliptic surface is a triple (π,X,C) with X a surface, C a curve,
π is a morphism X → C, such that almost all fibers are irreducible genus 1 curves and
X is relatively minimal, i.e., no fiber of π contains an irreducible rational curve D with
D2 = −1.

We denote by j(π) : C → P1 the rational function such that j(π)(P ) equals the
j-invariant of π−1(P ), whenever π−1(P ) is non-singular.

A Jacobian elliptic surface is an elliptic surface together with a section σ0 : C → X to
π. The set of sections of π is an abelian group, with σ0 as the identity element. Denote
this group by MW (π).

By an elliptic fibration on X we mean that we give a surface X a structure of an
elliptic surface.

Let L be the line bundle [R1π∗OX ]−1. We call L the fundamental line bundle (termi-
nology from [47]). Let ρ(X) denote the rank of the Néron-Severi group of X. We call
ρ(X) the Picard number.

We use the line bundle L only to keep track of some numerical data. Note that
deg(L) = pg(X) + 1 − g(C) = pa(X) + 1. (See [47, Lemma IV.1.1].)

Assumption 2.3. All elliptic surfaces in this thesis are without multiple fibers.

Remark 2.4. To an elliptic surface π : X → C we can associate its Jacobian elliptic
surface Jac(π) : Jac(X) → C. The Hodge numbers hp,q, the Picard number ρ(X), the
type of singular fibers of π and deg(L) are the same for π and its associated Jacobian
surface. We have that Jac(π) ∼= π if and only if π admits a section.

Definition 2.5. An extremal elliptic surface is an elliptic surface such that ρ(X) =
h1,1(X) and MW (Jac(π)) is finite.
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Definition 2.6. Let π : X → C be an elliptic surface. Let P be a point of C. Define
vP (∆P ) as the valuation at P of the minimal discriminant of the Weierstrass model, which
equals the topological Euler characteristic of π−1(P ).

Proposition 2.7. Let π : X → C be an elliptic surface. Then
∑

P∈C

vP (∆P ) = 12 deg(L).

In particular, deg(L) ≥ 0.

Proof. This follows from Noether’s formula (see [7, p. 20]). The precise reasoning
can be found in [47, Section III.4]. ¤

Remark 2.8. If P is a point on C, such that π−1(P ) is singular then j(π)(P ) and
vp(∆p) behave as follows:

Kodaira type of fiber over P j(π)(P ) vp(∆p) number of components
I∗
0 6= ∞ 6 1

Iν (ν > 0) ∞ ν ν + 1
I∗
ν (ν > 0) ∞ 6 + ν ν + 5

II 0 2 1
IV 0 4 3
IV ∗ 0 8 7
II∗ 0 10 9
III 1728 3 2
III∗ 1728 9 8

For proofs of these facts see [7, p. 150], [73, Theorem IV.8.2] or [47, Lecture 1].

Definition 2.9. Let X be a surface, let C and C1 be curves. Let ϕ : X → C and

f : C1 → C be two morphisms. Then we denote by ˜X ×C C1 the smooth, relatively
minimal model of the ordinary fiber product of X and C1.

Definition 2.10. Let π : X → C be an elliptic surface. We say that π : X → C is a
semi-stable elliptic surface, if for all p ∈ C we have that π−1(p) is of type Iν .

Recall the following theorem.

Theorem 2.11 (Shioda-Tate ([70, Theorem 1.3 & Corollary 5.3])). Let π : X → C
be a Jacobian elliptic surface, such that deg(L) > 0. Then the Néron-Severi group of X
is generated by the classes of σ0(C), a non-singular fiber, the components of the singular
fibers not intersecting σ0(C), and the generators of the Mordell-Weil group. Moreover,
let S be the set of points P such that π−1(P ) is singular. Let m(P ) be the number of
irreducible components of π−1(P ), then

ρ(X) = 2 +
∑

P∈S

(m(P ) − 1) + rank(MW (π)).

Definition 2.12. Suppose π : X → C is an elliptic surface. Denote by T (π) the
subgroup of the Néron-Severi group of Jac(π) generated by the classes of the fiber, σ0(C)
and the components of the singular fibers not intersecting σ0(C). Let ρtr(π) := rankT (π).
We call T (π) the trivial part of the Néron-Severi group of Jac(π).
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Remark 2.13. In Section 2.7 we give an alternative description for the trivial part of
the Néron-Severi group.

Remark 2.14. Suppose π : X → P1 has deg(L) = 0, then there are no singular fibers
hence ρtr = 2.

Definition 2.15. Let π : X → C be an elliptic surface, define

• a(π) as the number of fibers of type II∗, III∗, IV ∗.
• b(π) as the number of fibers of type II, III, IV .
• c(π) as the number of fibers of type I∗

0 .
• d(π) as the number of fibers of type I∗

ν , with ν > 0.
• e(π) as the number of fibers of type Iν , ν > 0.

Proposition 2.16. For any elliptic surface π : X → C, not a product, we have

h1,1(X) − ρtr(π) = 2(a(π) + b(π) + c(π) + d(π)) + e(π) − 2 deg(L) − 2 + 2g(C).

Proof. Recall from [47, Lemma IV.1.1] that

h1,1 = 10 deg(L) + 2g(C).

From Kodaira’s classification of singular fibers (see Remark 2.8 and Proposition 2.7) it
follows that

ρtr(π) = 2 + 12 deg(L) − 2(a(π) + b(π) + c(π) + d(π)) − e(π).

Combining these yields the proof. ¤

Corollary 2.17. Let π : X → C be an elliptic surface with constant j-invariant, not
a product. Then π is extremal if and only if π has deg(L) + 1 − g(C) singular fibers.

Proof. If j is constant then e(π) = d(π) = 0, hence a(π) + b(π) + c(π) equals the
number of singular fibers of π. Then apply Proposition 2.16. ¤

3. Constant j-invariant

In this section we give a list of all extremal elliptic surfaces with constant j-invariant.

Lemma 3.1. Suppose π : X → C is an extremal elliptic surface such that j(π) is
constant. Then g(C) ≤ 1.

Proof. If j(π) is constant then vP (∆P ) ≤ 10 (see Remark 2.8), for every point P .
From this, Proposition 2.7 and Corollary 2.17 it follows that

12 deg(L) =
∑

P |π−1(P ) singular

vP (∆p) ≤ 10(deg(L) + 1 − g(C)).

This inequality and the fact that deg(L) ≥ 0 (see Proposition 2.7) imply that g(C) ≤
1. ¤

Definition 3.2. An elliptic surface π : X → C, with C a genus 1 curve, is called a
hyperelliptic surface, if π has no singular fibers, j(π) is constant, and X is not isomorphic
to C × E.
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Remark 3.3. In terms of Section 5, an elliptic surface π : X → C, with j(π) 6= 0, 1728
is called a hyperelliptic surface if and only if the associated elliptic curve E/C(C) is

isomorphic to E
(f)
1 , with E1/C an elliptic curve and f a function such that the valuation

of f at every place of C is even, but there is no function g ∈ C(C) such that f 6= g2. (If
j(π) equals 0 or 1728, then one can give a similar description.)

Remark 3.4. The usual definition of a hyperelliptic surface (e.g. [7, page 148]) is
different, but equivalent (see [47, Lemma III.4.6.b]), to this one.

Remark 3.5. An hyperelliptic surface does not admit a fibration in hyperelliptic
curves. For historical reasons (see [7, page 148]) these surfaces are called hyperelliptic.
Beauville [8] calls these surfaces bi-elliptic, because they admit two elliptic fibrations.

Lemma 3.6. Suppose π : X → C is an extremal elliptic surface such that j(π) is
constant. Then one of the following occurs

(1) g(C) = 1; deg(L) = 0 and π : X → C is a hyperelliptic (or bi-elliptic) surface.
(2) g(C) = 0; j(π) 6= 0, 1728; deg(L) = 1.
(3) g(C) = 0; j(π) = 0; 1 ≤ deg(L) ≤ 5.
(4) g(C) = 0; j(π) = 1728; 1 ≤ deg(L) ≤ 3.

Proof. Suppose g(C) = 1. Then Corollary 2.17 implies that π has deg(L) singular
fibers hence

12 deg(L) =
∑

vP (∆P ) ≤ 10 deg(L)

from which it follows that deg(L) = 0. Hence π has no singular fibers. Since π has finitely
many sections, it follows from the definition that π : X → C is a so-called hyperelliptic
surface.

Suppose g(C) = 0. If deg(L) = 0 then π is a projection from a product, hence there
are infinitely many sections. By definition, π is not extremal.

Suppose deg(L) > 0. Assume j(π) 6= 0, 1728. Then all singular fibers are of type
I∗
0 (see Remark 2.8). Since the Euler characteristic of such a fiber is 6, Proposition 2.7

implies that there are exactly 2 deg(L) singular fibers. Applying Corollary 2.17 gives

2 deg(L) = deg(L) + 1.

From this we know deg(L) = 1.
Suppose j(π) = 1728. In this case all singular fibers are of type III, I∗

0 , III∗ (see Re-
mark 2.8). From this it follows that vP (∆P ) ≤ 9. By Proposition 2.7 and Proposition 2.16
we obtain

12 deg(L) ≤ 9(a(π) + b(π) + c(π)) = 9 deg(L) + 9,

so 1 ≤ deg(L) ≤ 3.
Suppose j(π) = 0. In this case we obtain in a similar way 1 ≤ deg(L) ≤ 5. ¤

Theorem 3.7. Suppose π : X → C is an elliptic surface with j(π) constant.
Then π is extremal if and only if either C is a curve of genus 1 and Jac(X) is a

hyperelliptic surface or C ∼= P1 and Jac(π) has a model isomorphic to one of the following:
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• (j(π) = 0) y2 = x3 +f(t) where f(t) comes from the following table (the left hand
side indicates the positions of the singular fibers)

II IV I∗
0 IV ∗ II∗ pg f(t)

0 ∞ 0 t
0 ∞ 0 t2

0,∞ 0 t3

1 0,∞ 1 t5(t − 1)2

1 0 ∞ 1 t4(t − 1)3

0, 1,∞ 1 t4(t − 1)4

α 0, 1,∞ 2 t5(t − 1)5(t − α)3

α, 1 0,∞ 2 t5(t − 1)4(t − α)4

β α, 0, 1,∞ 3 t5(t − 1)5(t − α)5(t − β)4

0, 1,∞, α, β, γ 4 t5(t − 1)5(t − α)5(t − β)5(t − γ)5

where α, β, γ ∈ C − {0, 1}, pairwise distinct.
• (j(π) = 1728) y2 = x3 + g(t)x where g(t) comes from the following table

III I∗
0 III∗ pg g(t)

0 ∞ 0 t
0,∞ 0 t2

1 0,∞ 1 t3(t − 1)2

0, 1,∞, α 2 t3(t − 1)3(t − α)3

where α 6= 0, 1.
• (j(π) 6= 0, 1728) y2 = x3 + at2x + t3, with singular fibers of type I∗

0 at t = 0 and
t = ∞

Proof. The above list follows directly from Corollary 2.17 and Lemma 3.6. Since all
cases are very similar, we discuss only the case j(π) = 0 and pg = 2. In this case Jac(π)
has a Weierstrass model isomorphic to

y2 = x3 + f(t)

with f a polynomial such that 13 ≤ deg(f) ≤ 18, and vP (f) ≤ 5 for all finite P . At
all zeros of f there is a singular fiber. If deg(f) < 18 then the fiber over t = ∞ is also
singular.

If π is extremal then from Corollary 2.17 it follows that π has exactly 4 singular fibers.
Assume that the fibers with the highest Euler characteristic are over t = ∞, 0, 1. Since
5 + 5 + 5 + 3 = 5 + 5 + 4 + 4 are the only two ways of writing 18 as a sum of four positive
integers smaller then 6, we obtain that after applying an isomorphism, if necessary, f
equals either

t5(t − 1)5(t − α)3 or t5(t − 1)4(t − α)4.

¤

Remark 3.8. Note that all extremal elliptic surfaces with constant j-invariant and
pg(X) > 1 have moduli.
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4. Infinitesimal Torelli

In the previous section we gave examples of families of elliptic surfaces with maximal
Picard number. In this section we prove that these surfaces are counterexamples to
infinitesimal Torelli. Moreover we give a complete solution for infinitesimal Torelli for
Jacobian elliptic surfaces over P1.

Suppose that X is a smooth complex algebraic variety. Then the first order defor-
mations of X are parameterized by H1(X, ΘX), with ΘX the tangent bundle of X. The
isomorphism Hp,q(X,C) = Hq(X, Ωp) and the contraction map ΘX ⊗OX

Ωp
X → Ωp−1

X give
a cup product map:

H1(X, ΘX) ⊗ Hp,q(X,C) → Hp−1,q+1(X,C).

From this one obtains the infinitesimal period map

δk : H1(X, ΘX) → ⊕p+q=k Hom(Hp,q(X,C), Hp−1,q+1(X,C)).

The (holomorphic) map δk is closely related to the period map. Assume that ϕ : X →
B is a proper, smooth, surjective holomorphic map between complex manifolds having
connected fibers, and that for all t ∈ B the vector space Hk(Xt,C) carries a Hodge
structure of weight k, with Xt := ϕ−1(t). Fix a point 0 ∈ B. Let U be a small simply
connected open neighborhood of 0.

Define

Pp,k : U → Grass

(

∑

i≥p

hi,k−i, Hk(X0,C)

)

t 7→ (⊕i≥pH
i,k−i(Xt,C)) ⊂ Hk(X0,C),

via the identification Hk(X0,C) ∼= Hk(Xt,C). (Note that U is simply connected.)
If the Kodaira-Spencer map ρU,0 : TU,0 → H1(X, ΘX) is injective then the differential

at 0 of the period-map ⊕pPp,k is injective if and only if δk is injective. (See [58, Section
2] or [82, Chapter 10].)

Note that if X is an Jacobian elliptic surface with base P1 then δk, for k 6= 2 = dim X
is the zero-map.

Definition 4.1. We say that X satisfies infinitesimal Torelli if and only if δdim(X) is
injective.

If X is a rational surface, then H1,1(X,C) = H2(X,C) hence the image of ⊕pPp,2

is a point, while the moduli space of rational elliptic surfaces has positive dimension, so
infinitesimal Torelli does not hold for rational elliptic surfaces. If X is a K3 surface, then
infinitesimal Torelli follows from [55]. This means that we handled the case pg(X) ≤ 1.
This section will focus on the case pg(X) > 1.

There is an easy sufficient condition of Kĭı([31]), Lieberman, Peters and Wilsker ([42])
for checking infinitesimal Torelli for manifolds with divisible canonical bundle. The fol-
lowing result is a direct consequence of [42, Theorem 1’].

Theorem 4.2. Let X be a compact Kähler n-manifold, with pg(X) > 1. Let L be a
line bundle such that

(1) L⊗k = Ωn
X for some k > 0.

(2) the linear system corresponding to L has no fixed components of codimension 1.
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(3) H0(X, Ωn−1
X ⊗ L) = 0.

Then δn is injective.

We want to apply the above theorem, when X is an elliptic surface. We take L to be
the line bundle OX(F ), where F is the class of a smooth fiber.

Lemma 4.3. Let π : X → P1 be an elliptic surface. Assume that X is not birational
to a product C × P1. Then for n > 0 we have

dim H0(X, Ω1(nF )) =

{

n − 1 if j(π) is not constant
n − 1 + max(0, n + d + 1) if j(π) is constant,

where d = deg(L) − #{P ∈ C(C) | π−1(P ) singular }.
Proof. By [58, Prop. 4.4 (I)] we know that π∗Ω

1
X

∼= Ω1
P1 if j(π) is not constant,

which gives the first case.
If j(π) is constant then we have the following exact sequence (by [58, Prop. 4.4 (II)]):

0 → Ω1
P1 → π∗Ω

1
X → OP1(d) → 0.

Tensoring with OP1(n) gives

dim H0(X, Ω1
X(nF )) = dim H0(P1, Ω1

P1(n)) + dim H0(P1,OP1(n + d))

= n − 1 + max(0, n + d + 1),

using that dim H1(P1, Ω1
P1(n)) = 0. ¤

Corollary 4.4. Suppose π : X → P1 is an elliptic surface (cf. Assumption 2.3),
such that pg(X) > 1. Suppose that j(π) is non-constant or π is not extremal then X
satisfies infinitesimal Torelli.

Proof. Let F be a smooth fiber of π. Note that O(F )⊗(pg(X)−1) = Ω2
X (see [70,

Theorem 2.8]) and the linear system |F | is the elliptic fibration, hence without base-
points.

We claim that dim H0(X, Ω1(F )) = 0. If this is not the case then by Lemma 4.3 j(π)
is constant and π has at most deg(L) + 1 singular fibers. From Lemma 2.17 it follows
that π is extremal. Apply now Theorem 4.2 with L = O(F ). ¤

The following technical result states, more or less, that if we have a family of surfaces
satisfying Infinitesimal Torelli and the generic member has a large Picard number, then
the base of this family has small dimension. The main idea in the proof is that a high
Picard number gives a severe restriction on the image of “δ2 restricted to this family”.
Joseph Steenbrink pointed out to me that the following result is a direct consequence of
[12, Theorem 1.1].

Proposition 4.5. Let ϕ : X → ∆ be a family of smooth surfaces with ∆ a small
polydisc. For any t ∈ ∆ denote by Xt the fiber over t. Assume that for all t, t′ ∈ ∆
such that t 6= t′, we have that Xt 6∼= Xt′. Moreover, assume that the Kodaira-Spencer map
ρ∆,t : T∆,t → H1(Xt, ΘXt

) is injective for all t ∈ ∆.
Let r be the Picard number of a generic member of the family ϕ. Suppose that for

some t we have pg(Xt) > 1 and

dim ∆ >
1

2
pg(Xt)(h

1,1(Xt,C) − r).
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or pg(Xt) = 1 and
dim ∆ > (h1,1(Xt,C) − r).

Then for no t, the surface Xt satisfies infinitesimal Torelli.

Corollary 4.6. Let ϕ : X → ∆ be a non-trivial family of surfaces such that ρ(Xt) =
h1,1(Xt,C) for all t. Then for no t the surface Xt satisfies infinitesimal Torelli.

Corollary 4.7. Let π : X → P1 be an extremal elliptic surface without multiple
fibers, with constant j-invariant and pg(X) > 1. Then X does not satisfy infinitesimal
Torelli.

Proof. From Remark 3.8 it follows that X is a member of positive dimensional family
of surfaces with ρ(X) = h1,1(X,C). The fact that the Kodaira-Spencer map is injective
for these families is well-known. ¤

Proof of Proposition 4.5. We start with some reduction steps. Fix a base point
0 ∈ ∆. Denote X the fiber over 0. It suffices to show that

H1(X, ΘX)
δ2−→ Hom(H2,0(X,C), H1,1(X,C)) ⊕ Hom(H1,1(X,C), H0,2(X,C))

is not injective. Using Serre duality one can show that this is equivalent to show that

H1(X, ΘX)
δ′
2−→ Hom(H2,0(X,C), H1,1(X,C))

is not injective (see [58, Section 3]). Since ρ∆,0 is injective, it suffices to show that the
dimension of the image of δ′2 ◦ ρ∆,0 is less than the dimension of ∆.

Since ∆ is simply connected there is a natural isomorphism

ψt : H2(X,C) ∼= H2(Xt,C),

for all t ∈ C. Let Λ := ∩t∈∆ψ−1
t (NS(Xt)). Then Λ is a rank r lattice.

Let T (Xt) be the orthogonal complement (with respect to the cup-product) of ψt(Λ)
in H2(Xt,Z). Then T (Xt,C) := T (Xt) ⊗ C carries a sub-Hodge structure. From

ψt(Λ) ⊂ NS(Xt) = H1,1(Xt,C) ∩ H2(X,Z)

we obtain that the Hodge structure on H2(Xt,C) is determined by the Hodge structure
on T (Xt,C). We consider the variation of the Hodge structure on T (Xt) (cf. [24, Section
6]).

One easily shows that the composed map δ′2 ◦ ρ∆,0 factors

T∆,0 → Hom(T 2,0(X,C), T 1,1(X,C)) → Hom(H2,0(X,C), H1,1(X,C)).

This follows almost immediately from the fact that Λ has a pure Hodge structure of type
(1, 1), hence the Hodge structure does not vary.

The above factorization implies that for any value of pg(X) > 0

dim Im(δ′2 ◦ ρ∆,0) ≤ dim T 2,0(X,C) · dim T 1,1(X,C)

= pg(X)(h1,1(X,C) − r).

If pg(X) > 1 then by Griffiths’ transversality we obtain that

dim Im(δ′2 ◦ ρ∆,0) ≤ 1

2
dim T 2,0(X,C) · dim T 1,1(X,C)

=
1

2
pg(X)(h1,1(X,C) − r),
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(cf. [24, Section 6]). ¤

Theorem 4.8. Let π : X → P1 be an elliptic surface (cf. Assumption 2.3). Assume
that pg(X) > 1. Then X satisfies infinitesimal Torelli if and only if j(π) is non-constant
or π is not extremal.

Proof. Combine Corollary 4.4 and Corollary 4.7. ¤

Remark 4.9. Note that the hyperelliptic surfaces form a family of elliptic surfaces
with pg(X) = 0, so they do not satisfy infinitesimal Torelli.

Remark 4.10. Chakiris ([15, Section 4]) gave different formulae for the dimension of
H0(X, Ω1(nF )). He used them to deduce a formula for dimH1(X, ΘX), which he used
to prove that generic global Torelli holds. Even with the use of these incorrect formulae
his proof of generic global Torelli seems to remain valid, after a small modification. His
formulae would imply that infinitesimal Torelli holds for any Jacobian elliptic surface
over P1. The same erroneous formulae leads Beauville ([10, p. 13]) to state in a survey
paper on Torelli problems that infinitesimal Torelli holds for an arbitrary Jacobian elliptic
surface. Theorem 4.8 shows instead that this is true only under the condition that j(π)
is not constant or π is not extremal.

The argument used in Corollary 4.4 to prove that several elliptic surfaces satisfy infin-
itesimal Torelli, relies heavily on C = P1. Saitō [58] proved, using other techniques, that
if C is an arbitrary smooth curve and if π : X → C is an elliptic surface with non-constant
j-invariant then X satisfies infinitesimal Torelli.

We give now some example of Jacobian elliptic surfaces over curves of positive genus
for which infinitesimal Torelli does not hold. Hence the j-invariant is constant.

Lemma 4.11. Let ϕ : X → B be a family of elliptic surfaces with pg(X0) > 1, constant
j-invariant and s singular fibers. Let g be the genus of the base curve of a generic member
of this family. Suppose that for all t we have that {t′ | Xt

∼= Xt′} is zero-dimensional and

dimB > (s − deg(L) + g − 1)pg.

Then there is no t such that Xt satisfies infinitesimal Torelli.

Proof. Note that ρ(Xt) ≥ ρtr(π) for all t ∈ B and

h1,1(X) − ρtr(π) = 2s − 2 deg(L) − 2 + 2g.

Apply now Proposition 4.5. ¤

We now give two examples where the conditions of Lemma 4.11 are satisfied. The
first example covers the case where the j-invariant is constant, but arbitrary. The second
example covers the case where j = 0 or j = 1728.

Example 4.12. Let ψ : X → B be a maximal-dimensional family of Jacobian elliptic
surfaces over a base curve of a fixed positive genus g, having 2 deg(L) > 0 singular fibers
of type I∗

0 . Then B has dimension 3g − 3 + 2 deg(L) + 1.
We want to find examples satisfying the conditions of Lemma 4.11. Easy combinatorics

show that if g > 1 then the conditions pg > 1 and

dimB > (s − deg(L) + g − 1)pg
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of Lemma 4.11 hold if and only if (g, pg) is one of (1, 2), (2, 2), (3, 2), (4, 3). In all these
cases any member of the family ψ is a counterexample to Infinitesimal Torelli. It is easy
to construct examples with these invariants. Fix j0 ∈ C. Fix A,B ∈ C such that the
elliptic curve associated to y2 = x3 + Ax + B has j-invariant j0. Fix a curve C of genus
g. Take f ∈ K(C)∗ such that f has an odd valuation at precisely 2 deg(L) places of C.
Then the elliptic surface

y2 = x3 + Af 2x + Bf 3

has the above mentioned invariants.

Example 4.13. Let ψ : X → B be a maximal-dimensional family of Jacobian elliptic
surfaces over a base curve of a fixed positive genus g, such that almost all fibers have
constant j-invariant 0 or 1728 and s singular fibers. Then B has dimension 3g − 3 + s.
Using pg = deg(L) + g − 1 and some easy combinatorics we obtain that the condition
dimB > (s − deg(L) + g − 1)pg of Lemma 4.11 holds if and only if

(1) s <
deg(L)2 − g2 + 5g − 4

deg(L) + g − 2
.

From Noether’s condition, the smallest s that is possible is ⌈6
5
deg L⌉. This implies that

deg(L) < −3g + 6 +
√

4g2 − 11g + 16.

All combinations of g and pg satisfying deg(L) > 0, pg > 1 and (1) are mentioned
in the table below. In this table smax denotes the number of singular fibers such that
an elliptic surface with constant j-invariant and at most smax singular fibers satisfy (1).
In particular, elliptic surfaces with these invariant do not satisfy Infinitesimal Torelli by
Lemma 4.11. One can find examples with these invariants in a similar way as above.
The columns with ⌈6/5 deg(L)⌉ and ⌈4/3 deg(L)⌉ denote the minimal number of singular
fibers for an elliptic surface with j-invariant 0 or 1728, whenever this number is at most
smax.

g(C) pg(X) deg(L) smax ⌈6/5 deg(L)⌉ ⌈4/3 deg(L)⌉
1 2 2 3 3 3
1 3 3 4 4 4
1 4 4 5 5 −
1 5 5 6 6 −
2 2 1 2 2 2

5. Twisting

In this section we study the behavior of h1,1(X) − ρtr(X) under twisting, when π :
X → P1 is a Jacobian elliptic surface. We are mostly interested in the case that j(π) is
not constant.

Given a Jacobian elliptic surface π : X → C, we can associate an elliptic curve in
P2

C(C) corresponding to the generic fiber of π. This induces a bijection on isomorphism

classes of Jacobian elliptic surfaces and elliptic curves over C(C).
Two elliptic curves E1 and E2 are isomorphic over C(C) if and only if j(E1) = j(E2)

and the quotients of the minimal discriminants of E1/C(C) and E2/C(C) is a 12-th power
(in C(C)∗).
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Assume that E1, E2 are elliptic curves over C(C) with j(E1) = j(E2) 6= 0, 1728. Then
one shows easily that ∆(E1)/∆(E2) equals u6, with u ∈ C(C)∗. Hence E1 and E2 are

isomorphic over C(C)(
√

u). We call E2 the twist of E1 by u, denoted by E
(u)
1 . Actually,

we are not interested in the function u, but in the places at which the valuation of u is
odd.

Definition 5.1. Let π : X → C be a Jacobian elliptic surface. Fix 2n points
Pi ∈ C(C). Let E/C(C) be the Weierstrass model of the generic fiber of π.

A Jacobian elliptic surface π′ : X ′ → C is called a (quadratic) twist of π by (P1, . . . , Pn)
if the Weierstrass model of the generic fiber of π′ is isomorphic to E(f), where E(f) denotes
the quadratic twist of E by f in the above mentioned sense and f ∈ C(C) is a function
such that vPi

(f) ≡ 1 mod 2 and vQ(f) ≡ 0 mod 2 for all Q 6∈ {Pi}.
The existence of a twist of π by (P1, . . . , P2n) follows directly from the fact that Pic0(C)

is 2-divisible.
If we fix 2n points P1, . . . P2n then there exist precisely 22g(C) twists by (Pi)

2n
i=1.

If P is one of the 2n distinguished points, then the fiber of P changes in the following
way (see [47, V.4]).

Iν ↔ I∗
ν (ν ≥ 0) II ↔ IV ∗ III ↔ III∗ IV ↔ II∗

The fiber-types with a ∗ have a higher Euler characteristics then the fiber-type one obtains
after twisting that fiber (see Remark 2.8).

After fixing a base curve C, the quantities pg(X) and pa(X) are increasing functions
of the Euler characteristic of X. This motivates us to consider a special class of twists:

Definition 5.2. A ∗-minimal twist of π is a twist π̃ : X̃ → C such that none of the
fibers are of type II∗, III∗, IV ∗ or I∗

ν and at most 1 fiber is of type I∗
0 .

Later on we will introduce another notion of minimality: the twist for which h1,1(X)−
ρtr(π) is minimal. It turns out that this is a twist which might have several ∗-fibers.

A ∗-minimal twist of an elliptic curve need not be unique for two reasons: first of all,
if the ∗-minimal configuration contains a I∗

0 -fiber one might move the I∗
0 -fiber. Secondly,

when fixing the points tot twist with, there are 22g possibilities for the function to twist
with.

One can easily see that the configuration of the singular fibers of any two ∗-minimal
twists of the same surface are equal.

Lemma 5.3. Let π : X → C be a Jacobian elliptic surface. Let Pi, i = 1 . . . 2n be
points of C. Let π′ : X ′ → C be a twist by (Pi). Then

h1,1(X ′) − ρtr(π
′) = h1,1(X) − ρtr(π) +

2n
∑

i=1

cPi

with

cPi
=







1 if π−1(Pi) is of type I0, IV ∗, III∗ or II∗,
0 if π−1(Pi) is of type Iν or I∗

ν , with ν > 0,
−1 if π−1(Pi) is of type II, III, IV, or I∗

0 .

Proof. Suppose π−1(Pi) is of type I0. Then π′−1(Pi) is of type I∗
0 . The Euler char-

acteristic of this fiber is 6, so this point causes h1,1 to increase by 5. An I∗
0 fiber has 4

components not intersecting the zero-section. Hence ρtr increases by 4.
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The other fiber types can be done similarly. ¤

The notation a(π), b(π), . . . , e(π) is introduced in Section 2.

Lemma 5.4. Given a Jacobian elliptic surface π : X → C with non-constant j-inva-
riant. There exist finitely many twists π′ of π such that the non-negative integer h1,1 −ρtr

is minimal under twisting. These twists are characterized by b(π′) = c(π′) = 0, i.e., there
are no fibers of type II, III, IV or I∗

0 .

Proof. It is easy to see that there are at most finitely many twists with c(π′) = 0.
Hence it suffices to show that b(π′) = c(π′) = 0 if h1,1(X ′) − ρtr(π

′) is minimal under
twisting. From Lemma 5.3 it follows that it suffices to show that for any elliptic surface
there exists a twist with b(π′) = c(π′) = 0.

Consider a ∗-minimal twist π̃ : X̃ → C. Note that e(π̃) > 0 (otherwise the j-invariant
would be constant.)

Suppose b(π̃)+ c(π̃) is even. Twist by all points with a fiber of type II, III, IV or I∗
0 .

The new elliptic surface has b = c = 0.
Suppose b(π̃) + c(π̃) is odd. Twist by all points with a fibers of type II, III, IV or I∗

0

and one point with a fiber of type Iν or I∗
ν , with ν > 0 (such a fiber exists because the

j-invariant is not constant). The new elliptic surface has b = c = 0. ¤

Remark 5.5. The classification (in [67]) of extremal (Jacobian) elliptic K3 surfaces
is a classification of the root lattices corresponding to the singular fibers. In general one
cannot decide which singular fibers correspond to these lattices, since each of the pairs
(I1, II), (I2, III) and (I3, IV ) give rise to the same lattice (A0, A1, A2). From the Lemma
above it follows that this problem does not occur when π is extremal.

Proposition 5.6. Let π : X → C be a ∗-minimal twist with non-constant j-invariant
and fundamental line bundle L. Let π̃ : X̃ → C be a twist for which h1,1 − ρtr is minimal.
Then

h1,1(X̃) − ρtr(X̃) = 2g(C) − 2 deg(L) − 2 + #{singular fibers for π}.
Proof. From Proposition 2.16 and the Lemmas 5.4 and 5.3 we have

deg(L̃) = deg(L) + (d(π̃) + a(π̃) − c(π))/2, d(π̃) + e(π̃) = e(π), a(π̃) = b(π).

This yields

h1,1(X̃) − ρtr(X̃) = 2g(C) − 2 deg(L̃) − 2 + 2(a(π̃) + d(π̃)) + e(π̃)

= 2g(C) − 2 deg(L) − 2 + b(π) + c(π) + e(π).

Finally note that a(π) = d(π) = 0. ¤

Corollary 5.7. Let π : X → C be an elliptic surface with j(π) non-constant, then
π is extremal if and only if π has no fibers of type II, III, IV or I∗

0 and the ∗-minimal
twist of its Jacobian π̃ : X̃ → C has 2 deg(L̃) + 2 − 2g(C) singular fibers.

6. Configurations of singular fibers

In order to apply the results of the previous section, we need to know which elliptic
surfaces have a ∗-minimal twist with 2 deg(L) + 2 − 2g(C) singular fibers.

We need the following definition:
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Definition 6.1. A function f : C → P1 is called of (3, 2)-type if the ramification
indices of the points in the fiber of 0 are at most 3, and in the fiber of 1728 are at most 2.

Proposition 6.2. Let π : X → C be a (Jacobian) elliptic surface with j(π) non-
constant, such that π is a ∗-minimal twist. Then j(π) is of (3, 2)-type and unramified
outside 0, 1728,∞ if and only if there are 2 deg(L) + 2 − 2g(C) singular fibers.

Proof. Denote by

• n2 the number of fibers of π of type II.
• n3 the number of fibers of π of type III.
• n4 the number of fibers of π of type IV .
• n6 the number of fibers of π of type I∗

0 .
• mν the number of fibers of π of type Iν . (ν > 0.)

Let r =
∑

νmν . The ramification of j(π) is as follows (using [47, Lemma IV.4.1]).
Above 0 we have n2 points with ramification index 1 modulo 3, we have n4 point with

index 2 modulo 3 and at most (r − n2 − 2n4)/3 points with index 0 modulo 3. In total,
we have at most n2 + n4 + (r − n2 − 2n4)/3 points in j(π)−1(0).

Above 1728 we have n3 points with index 1 modulo 2 and at most (r − n3)/2 points
with index 0 modulo 2. So j(π)−1(1728) has at most n3 + (r − n3)/2 points.

Above ∞ we have
∑

mν points.
Collecting the above gives

#j(π)−1(0) + #j(π)−1(1728) + #j(π)−1(∞) ≤ 2

3
n2 +

1

2
n3 +

1

3
n4 +

5

6
r +

∑

mν

with equality if and only if j(π) is of (3, 2)-type.
Hurwitz’ formula implies that

r + 2 − 2g(C) ≤ #j(π)−1(0) + #j(π)−1(1728) + #j(π)−1(∞)

with equality if and only if there is no ramification outside 0, 1728 and ∞.
So

r ≤ 12g(C) − 12 + 4n2 + 3n3 + 2n4 + 6
∑

mν

holds and Proposition 2.7 implies that
∑

ini + r = 12 deg(L).

Substituting gives

2 deg(L) + 2 − 2g(C) ≤ n2 + n3 + n4 + n6 +
∑

mν = #{p ∈ C | π−1(p) singular}
with equality if and only if j(π) is unramified outside 0, 1728 and ∞ and j(π) is of (3, 2)-
type. ¤

This enables us to prove

Theorem 6.3. Suppose π : X → C is an elliptic surface with non-constant j-
invariant, then the following three are equivalent

(1) π is extremal
(2) j(π) is of (3, 2)-type, unramified outside 0, 1728, ∞ and π has no fibers of type

II, III, IV or I∗
0 .

(3) The minimal twist π′ of Jac(π) has 2 deg(L) + 2 − 2g(C) singular fibers.
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Proof. Apply Proposition 6.2 to Corollary 5.7. ¤

Remark 6.4. Frédéric Mangolte pointed out to me that the equivalence of (1) and
(2) was already proved in [51].

Remark 6.5. Given a function f : C → P1 of (3, 2)-type, unramified outside 0, 1728,
∞, then there exists a Jacobian elliptic surface π : X1 → C, with j(π) = f . This can be
obtained by taking an elliptic surface π1 : X1 → P1 with j(π1) = t.(For example one can
take the elliptic surface associated to y2 +xy = x3 −36/(t−1728)x−1/(t−1728).) After
base changing π1 by f , and then twisting away all the II, III, IV and I∗

0 fibers gives the
desired surface.

Remark 6.6. Consider functions f : C → P1 up to automorphisms of C. If we fix
the ramification indices above 0, 1728,∞ and demand that f is unramified at any other
point, then there are only finitely many f with that property. Any small deformation of
f in Mord(C,P1), the moduli space of morphisms C → P1 of degree d, has more critical
values.

So the j-invariants of extremal elliptic surfaces lie form a discrete set in Mord(C,P1).
From Lemma 5.4 it follows that to any j-invariant there correspond only finitely many
extremal elliptic surfaces. In particular, extremal elliptic surfaces over P1 with geometric
genus n and non-constant j-invariant, form a discrete set in the moduli space of elliptic
surfaces over P1 with geometric genus n.

Suppose that π : X → P1 has 2pg(X) + 4 singular fibers of type Iν and no other
singular fibers. Let f : P1 → P1 be a cyclic morphism ramified at two points P such that
π−1(P ) is singular.

Fastenberg ([21, Theorem 2.1]) proved that then the base changed surface has Mordell-
Weil rank 0. In fact, she proved that the base-changed surface is extremal. The first
surface is also extremal (by Proposition 5.7). A slightly more general variant is the
following.

Example 6.7. Suppose π : X → C is an extremal elliptic surface. Let f : C ′ → C be
a finite morphism.

Then the base-changed elliptic surface π′ : X ′ → C ′ is extremal if f is not ramified
outside the set of points P , such that π−1(P ) is multiplicative or potential multiplicative.

In that case the composition j′ : C ′ → C
j→ P1 is not ramified outside 0, 1728 and ∞

and the ramification indices above 0 and 1728 are at most 3 and 2. Moreover there are
no fibers of type II, III, IV or I∗

0 .

An easy calculation shows that all elliptic surfaces mentioned in [21, Theorem 1] are
either extremal elliptic surfaces or have a twist which is extremal. Moreover these surfaces
have no fibers of type I∗

0 , hence all elliptic surfaces for which her results hold lie discretely
in the moduli spaces mentioned above.

7. Mordell-Weil groups of extremal elliptic surfaces

It remains to classify which Mordell-Weil groups can occur. To this we can give only a
partial answer to this. Note first of all, that a Mordell-Weil group of an extremal elliptic
surface is isomorphic to Z/mZ × Z/nZ with m|n.
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Let m,n ∈ Z≥1 be such that m|n and n > 1. Recall from Section 1 that X(m,n)
is the modular curve parameterizing triples ((E,O), P,Q), such that (E,O) is an elliptic
curve, P ∈ E is a point of order m and Q ∈ E a point of order n.

If

(m,n) 6∈ {(1, 2), (2, 2), (1, 3), (1, 4), (2, 4)}
then there exists a universal family for X(m,n), which we denote by E(m,n). Denote by
jm,n : X(m,n) → P1 the map usually called j.

From the results of [69, Sections 4 and 5] it follows that E(m,n) is an extremal elliptic
surface. The following theorem explains how to construct many examples of extremal
elliptic surfaces with a given torsion group.

Theorem 7.1. Fix m,n ∈ Z≥1 such that m|n and (m,n) is not one of the pairs (1, 1),
(1, 2), (2, 2), (1, 3), (1, 4), (2, 4). Let C be a (projective smooth irreducible) curve, let
j ∈ C(C) be a non-constant function. Then the following are equivalent

• there exists a unique extremal elliptic surface π : X → C, with j(π) = j and the
group of sections has Z/nZ × Z/mZ as a subgroup

• j is unramified outside 0, 1728,∞ and j = jn,m ◦ g for some g : C → Xm(n).

An extremal elliptic surface π : X → C with j(π) = j and Z/nZ × Z/mZ is a subgroup
of the group of section, is one of the 22g elliptic surfaces with j(π) = j and all singular
fibers are of type Iν.

Proof. Let π : X → C be an elliptic surface, such that MW (π) has a subgroup
isomorphic to G := Z/mZ × Z/nZ. Then j : C → P1 can be decomposed in g : C →
X(m,n) and jm,n : X(m,n) → P1, and X is isomorphic to ˜E(m,n) ×X(m,n) C.

Conversely, for any base change π′ of ϕm,n : E(m,n) → X(m,n), the group MW (π′)
has G as a subgroup.

Moreover, since ϕm,n has only singular fibers of type Iν , the same holds for π′. An
application of Theorem 6.3 concludes the proof. ¤

Remark 7.2. Let n = 2 and m ≤ 2. Then any elliptic surface such that j(π) = jm,n◦g,
has Z/nZ × Z/mZ as a subgroup of MW (π).

8. Uniqueness

Artal Bartolo, Tokunaga and Zhang ([5]) expect that an extremal elliptic surface is
determined by the configuration of the singular fibers and the Mordell-Weil group. More
precise, they raise the following question:

Question 8.1. Suppose π1 : X1 → P1 and π2 : X2 → P1 are extremal semi-stable
elliptic surfaces, such that MW (π1) ∼= MW (π2) and the configurations of singular fibers
of π1 and π2 are the same.

Are X1 and X2 isomorphic, and if so, is there then an isomorphism that respects the
fibration and the zero section?

By [50, Theorem 5.4] this is true in the case where X1 and X2 are rational elliptic
surfaces.

In the case where X1 and X2 are K3 surfaces the answer is the following theorem.
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Theorem 8.2. There exists precisely 19 pairs (π1 : X1 → P1, π2 : X2 → P1) of
extremal elliptic K3 surfaces, such that π1 and π2 have the same configuration of singular
fibers, MW (π1) and MW (π2) are trivial, and X1 and X2 are not isomorphic. Of these
pairs 13 are semi-stable. There is an unique pair (π1 : X1 → P1, π2 : X2 → P1) of
extremal elliptic K3 surfaces, such that π1 and π2 have the same configuration of singular
fibers, MW (π1) = MW (π2) = Z/2Z and X1 and X2 are not isomorphic, which is not
semi-stable.

All configurations are listed below in Table 1.

Proof. From [67, Table 2] there exist 19 pairs of surfaces (X1, X2) such that the
transcendental lattices of X1 and X2 lie in distinct SL2(Z)-orbits, they admit elliptic
fibrations πi : Xi → P1 such that MW (π1) = MW (π2) = 0 and the contributions of the
singular fibers as sub-lattices of the Néron-Severi lattice coincide. This is not yet enough to
conclude that the configuration of singular fibers coincides, but from Remark 5.5 we know
that for extremal elliptic surfaces the sub-lattices determine the singular fibers. Since the
transcendental lattices are in different SL2(Z)-orbits, the surfaces are not isomorphic.

The rest of the statement follows from the same Table. ¤

In Table 1 we list 20 (extremal) configurations of singular fibers, such that the config-
uration of singular fibers plus the Mordell-Weil group does not determine the K3 surfaces
up to isomorphism. The list is complete with this property.

The column SZ-number indicates the number in the list of Shimada and Zhang, see
[67, Table 2]. The numbers between square brackets indicate which Iν fibers occur, all
other fiber types are in the usual Kodaira notation.

In Table 2 we list the (extremal) configurations C with the property that there are
at least two extremal elliptic K3 surfaces πi : Xi → P1 such that C(πi) = C and
MW (πi) 6∼= MW (πj) for i 6= j. For any other configuration of singular fibers on a
(Jacobian) extremal elliptic K3 surface the configuration of singular fibers determines the
Mordell-Weil group. In all cases, it turns out that not more than two different (finite)
Mordell-Weil groups occur. The only intersection of both list is the case [1, 1, 1, 2, 5, 14].
There are three surfaces admitting a fibration with this configuration of singular fibers.
Two of these have a trivial Mordell-Weil group, one has Z/2Z as Mordell-Weil group.

Remark 8.3. From these surfaces one should be able to construct other pairs of
extremal elliptic surfaces with isomorphic Mordell Weil groups, and the same configuration
of singular fibers, such that the geometric genus is higher then 1.

Start with two non-isomorphic extremal elliptic K3 surfaces with the same configu-
ration of singular fibers and the same Mordell Weil group. Then the j-invariant of both
surfaces are unequal modulo automorphism of P1.

We can base-change both surfaces in such a way that the base-changed surfaces remain
extremal (cf. Example 6.7), they have the same configuration of singular fibers and their
j-invariants are unequal modulo an automorphism of P1.

The configuration of singular fibers gives restrictions on the possibilities for the torsion
part of the Mordell-Weil group. One can hope that this is sufficient to prove that the
Mordell-Weil groups are isomorphic.

Note that the base-changed surfaces are not isomorphic, since a surface which is not
a K3 surface has at most one elliptic fibration.
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Number SZ-number configuration Mordell-Weil group
1 18 [1, 2, 4, 5, 5, 7] 0
2 23 [1, 2, 3, 5, 6, 7] 0
3 36 [1, 1, 3, 5, 6, 8] 0
4 40 [1, 1, 2, 5, 7, 8] 0
5 71 [1, 1, 3, 3, 5, 11] 0
6 73 [1, 1, 2, 4, 5, 11] 0
7 74 [1, 1, 2, 3, 6, 11] 0
8 75 [1, 1, 1, 4, 6, 11] 0
9 77 [1, 1, 1, 3, 7, 11] 0
10 78 [1, 1, 1, 2, 8, 11] 0
11 92 [1, 1, 2, 2, 5, 13] 0
12 100 [1, 1, 1, 2, 5, 14] 0
13 109 [1, 1, 1, 2, 2, 17] 0
14 120 [1, 2, 6, 7] + I∗

1 0
15 125 [1, 2, 5, 9] + I∗

1 0
16 134 [1, 1, 2, 13] + I∗

1 0
17 148 [1, 2, 3, 10] + I∗

2 Z/2Z
18 227 [2, 3, 4, 7] + IV ∗ 0
19 267 [1, 2, 5, 7] + III∗ 0
20 277 [1, 1, 2, 11] + III∗ 0

Table 1. Configurations of singular fibers not determining the surface.

Number SZ-number configuration Mordell-Weil groups
1 26 [1, 1, 3, 3, 8, 8] 0 Z/2Z
2 42 [1, 1, 2, 2, 9, 9] 0 Z/3Z
3 54 [1, 1, 1, 1, 10, 10] 0 Z/5Z
4 62 [1, 1, 1, 6, 6, 10] 0 Z/2Z
5 83 [1, 1, 3, 3, 4, 12] Z/3Z Z/6Z
6 84 [1, 2, 2, 3, 4, 12] Z/2Z Z/4Z
7 87 [1, 1, 2, 2, 6, 12] Z/2Z Z/6Z
8 96 [1, 1, 2, 3, 3, 14] 0 Z/2Z
9 100 [1, 1, 1, 2, 5, 14] 0 Z/2Z
10 103 [1, 1, 2, 2, 3, 15] 0 Z/3Z
11 107 [1, 1, 1, 2, 3, 16] 0 Z/2Z
12 111 [1, 1, 1, 1, 2, 18] 0 Z/3Z
13 241 [1, 1, 2, 12] + IV ∗ 0 Z/3Z
14 276 [1, 1, 3, 10] + III∗ 0 Z/2Z

Table 2. Configurations of singular fibers not determining the Mordell-
Weil group.
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Remark 8.4. (“[5]-case 49”) In [5] it is proven that there are two non-isomorphic
elliptic surfaces π : Xi → P1 with MW (πi) = Z/5Z and singular fibers 2I1, I2, 2I5, I10,
where isomorphic means that the isomorphism respects the fibration. In [67] it is proven
that X1 and X2 are isomorphic as surfaces.

This case is a bit special: In the same paper it is proven that for any other pair of (semi-
stable) extremal elliptic K3 surfaces with #MW (π) > 4 and the same singular fibers
configuration, there exists an isomorphism which respects the fibration. ([5, Theorem
0.4])

9. Extremal elliptic surfaces with pg = 1, q = 1

A Jacobian elliptic surface, not a product, with q = 1 needs to have a genus 1 base
curve. This implies that for an extremal elliptic surface with pg = 1, q = 1 we have
deg(L) = 1.

The minimal twist of an extremal elliptic surface with pg = 1, q = 1 has two singular
fibers.

All possible pairs of fiber types such that the sum of the Euler characteristics is 12,
are given in the following table.

I11 I10 I9 I8 I7 I6 I10 I9 I8 I6

I1 I2 I3 I4 I5 I6 II III IV I∗
0

[4] [3] [1] [2]

Several of these surfaces are already described in the literature. See the above mentioned
references. We prove in this section that all these possibilities actually occur except for
I7 I5.

Remark 9.1. Note that the 6 configurations with two Iν fibers are already extremal.
The configurations with one additive and one multiplicative fiber are not extremal. In
the case I6 I∗

0 an extremal twist has one singular fiber of type I∗
6 and deg L = 1. All

other combinations of one additive and one multiplicative fiber have as extremal twist an
elliptic surface, such that the degree of L is 2.

Proposition 9.2. All these configurations occur as total configuration of singular
fibers on a Jacobian elliptic surface with genus 1 base curve, except I7 I5.

Proof. This follows from the following lemmas. Note that the existence of elliptic
surfaces over P1 with the below mentioned singular fibers follows from [54].

Lemma 9.3. The configurations with Ik I12−k occur for k = 2, 4, 6.

Proof. Let π : X → P1 be an elliptic surface with two III fibers, a fiber of type Ik/2

and a fiber of type I6−k/2, and no other singular fibers. Let ϕ : C → P1 be a degree two

cover ramified at the four points where the fiber of π is singular. Then π′ : ˜X ×P1 C → C
has two fibers of type I∗

0 , a fiber of type Ik and a fiber of type I12−k. Twisting by the two
points with I∗

0 fibers gives the desired configuration. ¤

Lemma 9.4. The configurations I8 IV and I6 I∗
0 occur.

Proof. For the first, let π : X → P1 be an elliptic surface with two III fibers, a
fiber of type II and a fiber of type I4, and no other singular fibers. Let ϕ : C → P1

be a degree two cover ramified at the four points where the fiber of π is singular. Then
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π′ : ˜X ×P1 C → C has two fibers of type I∗
0 a fiber of type I8 and a fiber of type IV .

Twisting by the two points with a I∗
0 fiber gives the desired configuration.

For the second, let π : X → P1 be an elliptic surface with three III fibers and a fiber
of type I3, and no other singular fibers. Let ϕ : C → P1 be a degree two cover ramified at

the four points where the fiber of π is singular. Then π′ : ˜X ×P1 C → C has three fibers
of type I∗

0 and a fiber of type I6. Twisting by two points with a I∗
0 fiber gives the desired

configuration. ¤

For the other four configurations we have a different strategy. We simply show that the
j-map with the right ramification indices exists. This is equivalent to give the monodromy
representation.

Lemma 9.5. The configurations I11 I1, I9 I3, II I10, III I9 occur.

Proof. For the two configurations of type Iµ Iν we need to find curves C and functions
j : C → P1 of degree 12 such that above ∞ there are two point with ramification indices
µ and ν, all points above 0 have ramification index 3 and all points above 1728 have
ramification index 2. (see [47, Lemma IV.4.1].)

By the Riemann existence theorem it suffices to give two permutations σ0, σ1 in S12,
such that σ0 is the product of 6 disjoint 2-cycles, σ1 the product of 4 disjoint 3-cycles,
and σ0σ1 is a product of a µ-cycle and a ν cycle, and the subgroup generated by σ0 and
σ1 is transitive. (See [49, Corollary 4.10].)

For I1 I11, we use

(1 2 3)(4 5 6)(7 8 9)(10 11 12) ∗ (1 3)(2 4)(5 7)(8 10)(9 11)(6 12) = (3 2 5 8 11 7 6 10 9 12 4)

For I3 I9, we use

(1 2 3)(4 5 6)(7 8 9)(10 11 12) ∗ (1 6)(4 9)(3 7)(2 10)(5 12)(8 11)(1 4 7)(2 11 9 5 10 3 8 12 6)

Similarly, the existence of II I10, follows from

(1 2)(3 4)(5 6)(7 8)(9 10) ∗ (1 4 7)(2 5 8)(3 6 9) = (1 3 5 7 2 6 10 9 4 8)

and the existence of III I9, follows from

(2 3)(4 5)(6 7)(8 9) ∗ (1 4 7)(2 5 8)(3 6 9) = (1 5 9 2 4 6 8 3 7).

¤

Lemma 9.6. The configuration I7 I5 does not occur.

Proof. A computer search learned us that the permutations needed for the existence
of I7 I5 do not exist. ¤

¤

Corollary 9.7. Let ki be positive integers such that
∑

ki = 12, with i ≥ 2, and if
i = 2 then (k1, k2) 6= (7, 5) or (5, 7). Then there exist a curve C of genus 1, and an elliptic
surface π : X → C such that the configuration of singular fibers of π is

∑

Iki
.

Proof. Use the monodromy representation as in [48, Remark after Corollary 3.5]. ¤
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10. Elliptic surfaces with one singular fiber

In the previous section we proved that there exists an elliptic surface with an I6 and
an I∗

0 fiber. Twisting by the points with a singular fiber yields an elliptic surface with
one singular fiber, of type I∗

6 .
In this section we will prove that for fixed deg(L) there are exactly two possible

configurations of one singular fibers that can be realized as an elliptic surface.

Proposition 10.1. Suppose π : X → C is an elliptic surface with one singular fiber.
The fiber is of type I∗

12k−6 or I12k for some k ∈ Z>0, and g(C) ≥ k in the first case
and g(C) ≥ k + 1 in the second. Conversely, for each k > 0 there exists elliptic surface
πk : Xk → C and π′

k : X ′
k → C, such that πk and π′

k have precisely one singular fiber.
Moreover the singular fiber of πk is of type I12k and the singular fiber of π′

k is of type
I∗
12k−6.

Proof. Since the Euler characteristic of the singular fiber is 12 deg(L), the only
possible configurations are I12 deg(L) and I∗

12 deg(L)−6.

Fix a rational elliptic surface π : X → P1 with 3 fibers of type III, and one fiber of
type I3. (The existence follows from [54].)

Fix k a positive integer. Take a curve C such that ϕ : C → P1, has degree 4k − 2,
and is ramified at the four points which have the singular fibers, and above such a point
there is exactly one point.

The base change π′ : ˜X ×P1 C → C has 3 fibers of type I∗
0 and one fiber of type I12k−6.

Twisting by all four points with a singular fiber yields an elliptic surface with one singular
fiber and this fiber is of type I∗

12k−6.
If we replace 4k − 2 by 4k, we obtain an elliptic surface with one fiber of type I12k.
For any elliptic surface with only one singular fiber and that fiber is of type I∗

12k−6,
we have the following: the j-map C → P1 has degree 12k − 6, one point above ∞, at
most 4k − 2 points above 0, and at most 6k − 3 points above 1728. This implies that the
base curve has genus at least k. A similar argument shows that in the case that the only
singular fiber is of type I12k, the base curve has genus at least k + 1. ¤



CHAPTER 2

Higher Noether-Lefschetz loci of elliptic surfaces

1. Introduction

Let Mn be the coarse moduli space of Jacobian elliptic surfaces π : X → P1 over
C, such that the geometric genus of X equals n − 1 and π has at least one singular
fiber. It is known that dimMn = 10n − 2 (see [46]). By ρ(X) we denote the Picard
number of X. It is well known that for an elliptic surface with a section we have that
2 ≤ ρ(X) ≤ h1,1 = 10n.

Fix an integer r ≥ 2, then in Mn one can study the loci

NLr := {[π : X → P1] ∈ Mn | ρ(X) ≥ r}.
We call these loci higher Noether-Lefschetz loci, in analogy with [18]. One can show that
NLr is a countable union of Zariski closed subsets of Mn. This follows from the explicit
description of NS(X) for a Jacobian elliptic surface π : X → P1.

The aim of this chapter is to study the dimension of NLr.

Theorem 1.1. Suppose n ≥ 2. For 2 ≤ r ≤ 10n, we have

dim NLr ≥ 10n − r = dimMn − (r − 2).

Moreover, we have equality when we intersect NLr with the locus of elliptic surfaces with
non-constant j-invariant.

The fact that the locus of elliptic surfaces with constant j-invariant has dimension
6n − 3 implies

Corollary 1.2. Suppose n ≥ 2. For 2 ≤ r ≤ 4n + 3, we have

dim NLr = 10n − r.

Since the classes of the image of the zero-section and of a general fiber give rise to two
independent classes in NS(X) we have that NL2 = Mn, proving Theorem 1.1 for the
case r = 2. For r = 3 the result was proven by Cox ([18]). If n = 2 then we are in the
case of K3 surfaces, and the above results follow from general results on the period map.
In fact, for K3 surfaces we have that dim NLr = 20 − r, for 2 ≤ r ≤ 20.

Suppose π : X → P1 is an elliptic surface with pg(X) > 1, not birational to a product,
then we obtain by the Shioda-Tate formula (see Theorem 1.2.11) that the rank of the
Mordell-Weil group of π, which we denote by MW (π) is at most ρ(X)−2. From this and
Theorem 1.1 we obtain

Corollary 1.3. Suppose n ≥ 2. Let

MWr := {[π : X → P1] ∈ Mn | rank MW (π) ≥ r}.
Let U := {[π : X → P1] | j(π) non-constant }. Then for 0 ≤ r ≤ 10n − 2 we have

dim MWr ∩ U ≤ 10n − r − 2.

27
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Cox [18] proved that dimMW1 = 9n − 1, which is actually a stronger result than
Corollary 1.3 for the special case r = 1.

The proof of Theorem 1.1 consists of two parts. In the first part we construct elliptic
surfaces with high Picard number. This is done by constructing large families of elliptic
surfaces such that the singular fibers have many components. To calculate the dimension
of the locus of this type of families, we study the ramification of the j-map, and calculate
the dimension of several Hurwitz spaces. This yields dim NLr ≥ 10n − r.

The second part consists of proving that dimNLr ∩ U ≤ 10n − r. We choose a
strategy similar to what M.L. Green [25] uses in order to identify the components of
maximal dimension in the Noether-Lefschetz locus in the case of surfaces of degree d in
P3. In order to apply this strategy we consider an elliptic surface over P1 with a section
as a surface Y in the weighted projective space P(1, 1, 2n, 3n) with n = pg(X) + 1. To
obtain Y , we need to contract the zero-section and all fiber components not intersecting
the zero-section. Then we use Griffiths’ and Steenbrink’s identification of the Hodge
filtration on H2(Y,C) with graded pieces of the Jacobi-ring of Y (the coordinate ring of
P modulo the ideal generated by the partials of the defining equation of Y ). Using some
results from commutative algebra we can calculate an upper bound for the dimension of
NLr ∩ U .

We would like to point out an interesting detail: the classical Griffiths-Steenbrink
identification holds under the assumption that Y is smooth outside the singular locus of
the weighted projective space. In our case it might be that Y has finitely many ratio-
nal double points outside the singular locus of the weighted projective space. Recently,
Steenbrink ([75]) obtained a satisfactory identification in the case that Y has “mild”
singularities.

When we consider elliptic surfaces with constant j-invariant 0 or 1728, the theory be-
comes a little more complicated: several families of elliptic surfaces over P1 with a section
and constant j-invariant 0 or 1728 and generically Picard number ρ have a codimension
one subfamily of surfaces with Picard number ρ + 2. It turns out that for certain values
of r ≥ 8n, such families prevent us from proving the equality dimNLr = 10n − r. These
surfaces have other strange properties. For the same reason as above, we can produce
examples not satisfying several Torelli type theorems (see Theorem 1.4.8). These surfaces
are also the elliptic surfaces with larger Kuranishi families than generic elliptic surfaces.
Actually, the difference between the dimension of NLr and 10n − r equals the differ-
ence between the dimension of the Kuranishi family of a generic elliptic surface in NLr

and the dimension of the Kuranishi family of a generic elliptic surface X over P1, with
pg(X) = n − 1 and admitting a section.

The organization of this chapter is as follows. In Section 2 we calculate the dimension
of a Hurwitz space. In Section 3 we study configurations of singular fibers. In Section 4
we use the results of the previous two sections to identify several components in NLr

of dimension 10n − r. In Section 5 we study the locus in Mn of elliptic surfaces with
constant j-invariant. In Section 6 we study elliptic surfaces with j-invariant 0 or 1728.
We use these surfaces to identify components L of NLr such that dim L+ρ(X) > 10n−r.
In Section 7 we prove that the identified components are of maximum dimension in NLr.
This is done by applying a modified version of the Griffiths-Steenbrink identification of
the Hodge structure of hypersurfaces with several graded pieces of the Jacobi-ring. In
Section 8 some remarks are made and some open questions are raised.
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2. Dimension of Hurwitz Spaces

In this section we calculate the dimension of several Hurwitz spaces.

Definition 2.1. Let C1 and C2 be curves. Two morphisms ϕi : Ci → P1 are called
isomorphic, if there exists an isomorphism ψ : C1 → C2 such that ϕ1 = ϕ2 ◦ ψ.

Definition 2.2. Let m > 2 be an integer. Fix m distinct points Pi ∈ P1. Let
H({ei,j}i,j) be the Hurwitz space (coarse moduli space) of isomorphism classes of semi-
stable morphisms P1 → P1 of degree d such that ϕ∗Pi =

∑

j ei,jQj, with Qj′ 6= Qj for

j′ 6= j. (From here on we say that the ramification indices over the Pi are the ei,j.)

Remark 2.3. By a semi-stable function we mean the following. All functions of degree
d can be parameterized by an open set in P2d+1 by sending a point [x0 : x1 : · · · : x2d+1]
to the morphism induced by the function t 7→ (x0 +x1t+ · · ·+xdt

d)/(xd+1 +xd+2t+ · · ·+
x2d+1t

d). It is not hard to write down a finite set of equations and inequalities, such that
every solution corresponds to a function with the required ramification behavior over the
Pi. To obtain H({ei,j}i,j) one needs to divide out by the action of the reductive group
Aut(P1) = PGL2. To obtain a good quotient we might need to restrict ourselves to the
smaller open subset of so-called ‘semi-stable’ elements.

Remark 2.4. Note that morphisms corresponding to points of H might be ramified
outside the Pi.

Remark 2.5. If m > 3 then H({ei,j}i,j) depends on the points Pi. We will prove in
this section that its dimension is independent of the choice of the Pi.

Definition 2.6. Fix m points Pi ∈ P1. Let ϕ : P1 → P1 be a function. Let
n(P ) := deg(ϕ) − #ϕ−1(P ). Let B{Pi},ϕ be the divisor

∑

P 6∈{Pi} n(P )P .

Remark 2.7. One might consider B{Pi},ϕ as the push-forward of the ramification
divisor of ϕ outside the pre-images of the Pi. We have almost by definition that B{Pi},ϕ =
B{Pi},ψ if ψ ∼= ϕ. In Proposition 2.10 we prove that the dimension of H({ei,j}i,j) equals
the degree of B{Pi},ϕ, for any morphism ϕ corresponding to a point in H({ei,j}).

Recall the following special form of the Riemann existence theorem.

Proposition 2.8. Fix m > 2 points Ri ∈ P1. Fix a positive integer d. Fix partitions
of d of the form d =

∑ki

j ei,j, for i = 1, . . . ,m. Let q =
∑

ki. Assume that q = (m−2)d+2.

Then we have a correspondence (the so-called monodromy representation) between

• Isomorphism classes of morphisms ϕ : P1 → P1 such that the ramification indices
over the Ri are the ei,j.

• Congruence classes of transitive subgroups of Sd (the symmetric group on d let-
ters) generated by σi, i = 1, . . . ,m, such that the lengths of the cycles of σi are
the ei,j, j = 1, . . . kj and

∏

σi = 1.

Proof. In [49, Corollary 4.10] the above equivalence is proven, except that they
consider all morphisms C → P1 with given ramification indices, and they do not assume
q = (m−2)d+2. Hence we need to show that g(C) = 0 is equivalent to q = (m−2)d+2.
The condition g(C) = 0 is equivalent by Hurwitz’ formula to

−2 = −2d +
∑

Q∈P1

eQ(ϕ) − 1,
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where eQ(ϕ) is the ramification index of ϕ at Q. The exposed formula is equivalent to
q = (m − 2)d + 2, which yields the claim. ¤

The following Corollary is immediate.

Corollary 2.9. The dimension of H({ei,j}i,j) is independent of the choice of the Pi.

The above results enable us to calculate the dimension of the Hurwitz scheme.

Proposition 2.10. Fix a positive integer d, and m > 2 partitions of d of the form d =
∑ki

j=1 ei,j, i = 1, 2, . . . ,m. Let q =
∑

ki. The dimension of H({ei,j}i,j) is q− (m−2)d−2

provided that H({ei,j}i,j) is not empty.

Proof. Let r : H({ei,j}i,j) → Divq−(m−2)d−2 P1 be the morphism sending an isomor-
phism class [f ] to B{Pi},f . From Proposition 2.8 it follows that r has finite fibers.

Using the relations

(1 2 . . . n) = (1 2 . . . k − 1)(k − 1 k)(k . . . n)

and Proposition 2.8 one can show that there is a function ϕ corresponding to a point of
the Hurwitz’ space H({ei,j}i,j) such that above every critical value, different from the Pi,
there is exactly one ramification point Q, and that eQ ≤ 2. This implies that the image
of r contains a divisor Q1 + Q2 + . . . Qq−(m−2)d−2 with Qi 6= Qj if i 6= j and Qi 6= Pj, for
all i, j. From Proposition 2.8 it follows that every point T1 + T2 + · · ·+ Tq−(m−2)d−2, with
Ti 6= Tj if i 6= j and Ti 6= Pj for all i, j, is in the image of r. Hence the dimension of the
image of r is q − (m − 2)d − 2, which yields the proof. ¤

Remark 2.11. The inequality dimH({ei,j}i,j) ≥ q − (m− 2)d− 2 can also be proven
using a parameter-equation count.

If one works over fields of characteristic p then one can define similarly Hurwitz’ spaces
of separable functions with fixed ramification indices. If one works over algebraically closed
fields of positive characteristic the lower bound dimH({ei,j}i,j) ≥ q − (m− 2)d− 2 holds
by a similar parameter-equation count.

The following corollary tells us that if we know the ramification indices modulo some
integers Ni, and for one choice of the ramification indices, the associated Hurwitz space is
non-empty, then the same holds for the Hurwitz space associated to the minimal choice
of ramification indices, and the Hurwitz space associated to that particular choice is the
largest one.

Corollary 2.12. Let m, d be positive integers. Fix m integers Ni such that Ni ≤ d.
Let ai,j be integers such that 1 ≤ ai,j < Ni, and riNi+

∑si

j=1 ai,j = d, with ri a non-negative

integer. Fix m points Pi on P1.
For all i = 1, . . . m, set

ei,j =

{

ai,j 1 ≤ j ≤ si,
Ni si + 1 ≤ j ≤ si + ri.

Suppose there exist m partitions d =
∑s′i

j e′i,j such that s′i ≤ si and e′i,j ≡ ei,j mod Ni

if 1 ≤ j ≤ s′i. Then dimH({e′i,j}i,j) ≤ dimH({ei,j}i,j) holds.

Proof. Using Proposition 2.8 and the relations of permutations mentioned in the
proof of Proposition 2.10 we obtain that if H({e′i,j}i,j) is non-empty then H({ei,j}i,j) is
non-empty. Now apply Proposition 2.10. ¤
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3. Configuration of singular fibers

Fix some n ≥ 2. In this section we calculate the dimension of the locus in Mn

corresponding to elliptic surfaces with a fixed configuration of singular fibers, containing
a fiber of type Iν or I∗

ν , with ν > 0. For more on this see also [47, Lectures V and X] or
Sections 1.5 and 1.6.

Definition 3.1. A configuration of singular fibers of an elliptic surface is a formal
sum C of Kodaira types of singular fibers, with non-negative integer coefficients.

Let iν(C) denote the coefficient of Iν in C. Define ii(C), iii(C), iv(C), iv∗(C), iii∗(C),
ii∗(C) and i∗ν(C) similarly.

A configuration C satisfies Noether’s condition if
∑

ν>0

νiν +
∑

ν≥0

(ν + 6)i∗ν + 2ii + 3iii + 4iv + 8iv∗ + 9iii∗ + 10ii∗ = 12n(C)

with n(C) a positive integer.

To an elliptic surface π : X → P1 corresponding to a point in Mn we can associate
its (total) configuration of singular fibers C(π). Then C(π) satisfies Noether’s condition,
with n(C(π)) = n.

Assumption 3.2. For the rest of the section, let C be a configuration of singular fibers
satisfying Noether’s condition with n(C) = n and containing at least one fiber of type Iν

or I∗
ν , with ν > 0.

Lemma 3.3. Suppose there exists a morphism ϕ : P1 → P1, such that the ramification
indices are as follows:

• Above 0
– there are precisely ii(C) + iv∗(C) points with ramification indices 1 modulo

3 and
– there are precisely iv(C) + ii∗(C) points with ramification indices 2 modulo

3.
• Above 1728 there are precisely iii(C) + iii∗(C) points with ramification indices 1

modulo 2.
• Above ∞ there are for every ν > 0 precisely iν(C)+i∗ν(C) points with ramification

index ν.

Then there exists an elliptic surface such that C(π) = C.
Conversely, if there exists an elliptic surface with C(π) = C, then j(π) satisfies the

above mentioned conditions.

Proof. The last part of the statement follows from [47, Lemma IV.4.1].
To prove the existence of π: Let π1 : X1 → P1 be an elliptic surface with j(π1) = t.

(For example one can take the elliptic surface associated to y2+xy = x3−36/(t−1728)x−
1/(t − 1728).)

Let X2 be the base-change of X1 and P1 with respect to ϕ and π1. Let π2 be the
induced elliptic fibration on X2. Then iν(C(π2)) + i∗ν(C(π2)) = iν(C) + i∗ν(C), for ν > 0,
and ii(C(π2))+iv∗(C(π2)) = ii(C)+iv∗(C), and similar relations for (iii, iii∗) and (iv, ii∗).

It is easy to see that there exists a twist π3 of π2, changing all ∗-fibers in non-∗-fibers,
such that C(π3) − C = ǫI∗

0 , with ǫ ∈ {0, 1}. Since both configurations satisfy Noether’s
condition, it follows that ǫ = 0. Hence π3 is the desired Jacobian elliptic surface. ¤
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Lemma 3.4. Assume that there exists an elliptic surface π′ : X ′ → P1 with C(π′) = C,
then

dim{[π : X → P1] ∈ Mn(C) | j(π) = j(π′), C(π) = C} = i∗0(C).

Proof. Fix one π0 : X0 → P1, with C(π0) = C and j(π0) = j(π′).
Fix i∗0(C) points Pi ∈ P1, none of them in j(π0)

−1({0, 1728,∞}), such that π−1(Pi) is
smooth for all i. Let Qi be the points over which the fiber of π is of type I∗

0 . Then twisting
π by the points {Pi, Qi} gives an elliptic surface π with j(π) = j(π′) and C(π) = C (see
Section 1.5). If two such twists are isomorphic then the set of points {Pi} are the same.
So

dim{[π : X → P1] ∈ Mn(C)|j(π) = j(π′), C(π) = C} ≥ i∗0(C).

If one fixes the points over which the fibers are of type I∗
0 , then there are only finitely

many twists with the same configuration of singular fibers, proving equality. ¤

Lemma 3.5. Assume that there exists an elliptic surface π′ : X ′ → P1 with C(π′) = C.
Then the constructible locus L(C) in Mn(C) corresponding to all elliptic surfaces with
C(π) = C(π′) has dimension

#singular fibers + #{fibers of type II∗, III∗, IV ∗, I∗
ν} − 2n(C) − 2.

Proof. From the above lemmas it follows that L(C) is a finite union of Zariski
open subsets Ui in line bundles Li of rank i∗0(C) over some H({ei,j}i,j). This proves the
constructibility of L(C).

Combining the above two lemmas with Corollary 2.12 gives that the dimension of the
locus L(C) is

i∗0 + q − d − 2,

where d =
∑

ν ν(iν + i∗ν) is the degree of j(π) and

q = ii+iv∗+iv+ii∗+(d−ii−iv∗−2iv−2ii∗)/3+iii+iii∗+(d−iii−iii∗)/2+
∑

ν>0

(iν +i∗ν).

This yields

q − d − 2 =
1

12

(

8ii + 8iv∗ + 6iii + 6iii∗ + 4iv + 4ii∗ + 12
∑

ν>0

(iν + i∗ν) − 2d − 24

)

=
∑

ν>0

(iν + 2i∗ν) + ii + iii + iv + i∗0 + 2iv∗ + 2iii∗ + 2ii∗ − 2 − 2n,

where we used Noether’s condition. This implies the lemma. ¤

Proposition 3.6. Let C be a configuration of singular fibers, containing at least one
Iν or I∗

ν -fiber (ν > 0) and such that there exists an elliptic surface π′ : X ′ → P1 with
C(π′) = C. Then

dim{[π : X → P1] ∈ Mn(C)|C(π) = C} = h1,1(X ′) − ρtr(π) − #{fibers of type II, III or IV }.

Proof. Apply

h1,1(X ′) − ρtr(π) = 2n(C) − 2 − #{multiplicative fibers} − 2#{additive fibers}
(from e.g. Proposition 1.2.16) to Lemma 3.5. ¤
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4. The lower bound

In this section we prove a lower bound for the dimension of NLr.

Theorem 4.1. Let r be integer such that 2 ≤ r ≤ 10n. Let Lr be the (constructible)
locus of Jacobi elliptic surfaces in Mn such that ρtr ≥ r and the j-invariant is non-
constant. Then

dim Lr = 10n − r.

Proof. It suffices to prove for every 2 ≤ r ≤ 10n that there exists an elliptic surfaces
without II, III and IV fibers, such that ρtr(π) = r. From Proposition 3.6 it follows that
such a surface lies on a component of Lr of dimension 10n− r. We construct some elliptic
surfaces πn′,r′ : Xn′,r′ → P1 such that ρtr(πn′,r′) = r′, pg(Xn′,r′) = n′ − 1 and π′ has no
fibers of type II, III, IV .

Fix a Jacobian rational elliptic surface π1,10 : X1,10 → P1 with four singular fibers
such that all fibers are multiplicative. (See [9] for the existence of such surfaces. Up to
isomorphism there exist six of these surfaces.)

Let πn,10n be a cyclic base change of degree n of π1,10 ramified at two points where the
fibers are singular.

Since π1,10 : X1,10 → P1 satisfies ρtr(π1,10) = h1,1(X1,10), we obtain by Example 1.6.7

ρtr(πn,10n) = h1,1(Xn,10n).

By the deformation of the j-map ([48, Remark after Corollary 3.5]) we can construct
an elliptic surface πn,r : X → P1 with 2n+2+(10n− r) singular fibers, all multiplicative,
where r is an integer between 2 and 10n. Such a surface has ρtr = r. This finishes the
proof. ¤

Corollary 4.2. Let r be an integer such that 2 ≤ r ≤ 10. Then

dim NLr ≥ 10n − r.

Another consequence of Theorem 4.1 is the following:

Corollary 4.3. Let MK3 be the moduli space of algebraic K3 surfaces. Let 2 ≤
r ≤ 20 be an integer. Let Sr be the locus in MK3 corresponding to K3 surfaces with
ρ(X) ≥ r. Then

dim Sr ≥ 20 − r.

Proof. It is well-known that a Jacobian elliptic surface π : X → P1 with pg(X) = 1,
is a K3 surface. Hence there is a morphism M2 → MK3, which forgets the elliptic
fibration. This morphism is finite onto its image (see [76]). Let C be a component of
Lr in M2 of dimension 20 − r. The image of C is contained in Sr and is of dimension
20 − r. ¤

Remark 4.4. Using the surjectivity of the period map for algebraic K3 surfaces one
finds an alternative proof for the above result. Using the global Torelli theorem for K3
surfaces one obtains even equality.

Remark 4.5. Note that one can give a proof of Corollary 4.3 that is completely
algebraic. Our proof is almost completely algebraic, except that in the proof of Proposi-
tion 2.10 a transcendental result (the Riemann existence theorem) is used. To obtain a



34 2. HIGHER NOETHER-LEFSCHETZ LOCI OF ELLIPTIC SURFACES

lower bound for the dimension of Hurwitz spaces one can also do a parameter-equation
count, which is algebraic.

Moreover Corollary 4.3, with this algebraic proof, holds over every field of character-
istic different from 2 and 3.

5. Constant j-invariant

In this section we study the components of NLr corresponding to elliptic surfaces with
constant j-invariant. In this section we assume that π : X → P1 is an elliptic surface
with constant j-invariant different from 0 or 1728, and pg(X) > 0. The case pg(X) = 0 is
rather subtle, for example the surfaces with precisely two I∗

0 fibers do not correspond to
points in M1. The problem is that if one constructs M1 as in [46] (using G.I.T.), there
are unstable points (like our surfaces with two I∗

0 fibers). If n ≥ 2, this problem does not
occur: if n = 2 then all Jacobi elliptic surfaces (over P1) give rise to semi-stable or stable
points, and if n > 2 then all Jacobi elliptic surfaces (over P1) are stable.

A Jacobi elliptic surface with constant j-invariant, different from 0 and 1728, has only
I∗
0 fibers, and their number is exactly 2n. Such a surface is completely determined by

the 2n points with a I∗
0 fiber and the j-invariant. Conversely given a set S of 2n points

on P1 and a number j0 ∈ C − {0, 1728} one can find a unique elliptic surface (up to
isomorphism) with π : X → P1 with j(π) = j0 and Sing(π) = S. Hence the dimension of
the (constructible) locus of all elliptic surface with 2n I∗

0 -fibers in Mn is 2n− 2, if n ≥ 2.

Remark 5.1. Let π : X → P1 be an elliptic surface satisfying our assumptions. Then
to π we associate a hyperelliptic curve ϕ : C → P1 such that the ramification points of ϕ
are the points over which π has a singular fiber. Let E be an elliptic curve with the same
j-invariant as the fibers of π. Then the minimal desingularization of (C × E)/(ι × [−1])
is isomorphic to X.

Remark 5.2. Consider the elliptic surface π : X → P1, with

X =
C̃ × E

〈ι × [−1]〉
and the morphism π is induced by the projection C × E → C. (One easily sees that
C/〈ι〉 = P1.)

A section s : P1 → X is seen to come from a morphism µ : C → E and s maps a
point c mod 〈ι〉 to (c, µ(c)) mod 〈ι × [−1]〉. Conversely a morphism µ defines a section if
and only if µ maps the fixed points of ι to fixed points of [−1]. A constant morphism
µ : C → {P} ⊂ E yields a section if and only if P has order at most 2. This gives
a contribution (Z/2Z)2 to MW (π). Using [47, Corollary VII.3.3] one can show that
MW (π)tor = (Z/2Z)2. If MW (π) 6= (Z/2Z)2 then a non-constant morphism C → E
exists with the above mentioned property.

Lemma 5.3. Let E be a curve of genus 1. Then the locus L(E) corresponding to
hyperelliptic curves C admitting a non-constant morphism C → E in Hg, the moduli
space of hyperelliptic curves of genus g, has dimension g − 1.

Proof. From [62, Lemma 1.1] it follows that for any non-constant morphism ψ :
C → E, there exists an elliptic involution on E induced by the hyperelliptic involution of
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C, i.e., such that the following diagram is commutative

E ← C
↓ ↓
P1 ← P1,

where the vertical arrows are obtained by dividing out the (hyper)elliptic involution.
Fix λ a Legendre parameter for E. Any function f : P1 → P1 gives rise to a hyperel-

liptic curve C = ˜E ×P1 P1. The genus of C is determined by f , i.e., 2g(C) + 2 equals the
number of points with odd ramification index above 0, 1, λ and ∞.

From this we obtain that dimL(E) equals the maximum over all d of the dimension
of the Hurwitz space corresponding to functions of degree d, such that above 0, 1, λ,∞,
there are precisely the 2g + 2 points with odd ramification index. By Corollary 2.12 this
space has dimension 2 · 4 − g − 1 + 2g + 2 − 2 · 4 − 2 = g − 1. ¤

Theorem 5.4. Let n > 1. The locus L in Mn of elliptic surfaces with 2n I∗
0 -fibers

has dimension h1,1−ρtr = 2n−2 = 2pg. The locus L1 of elliptic surfaces with 2n I∗
0 fibers

and positive Mordell-Weil rank has dimension pg. The locus L2 of elliptic surfaces with
2n I∗

0 fibers and Mordell-Weil rank at least 2 has dimension pg or pg − 1.

Proof. A fiber of type I∗
0 has 4 components not intersecting the zero-section, so from

the Shioda-Tate formula 1.2.11 it follows that ρtr = 8n + 2. The first assertion follows
from the correspondence between L and sets of 2n distinct points in P1 together with a
j-invariant j0 ∈ C as mentioned above.

For the second assertion it suffices to prove that the locus of elliptic surfaces with
constant j-invariant and positive rank has dimension at most pg. Then from general
theorems on the period map it follows that the locus corresponding to elliptic surfaces
with positive rank has dimension precisely pg, one need to exploit the following fact: for
a class in ξ ∈ H2(X,Z) to be in H1,1(X) gives pg conditions, namely ξ · ω = 0, for every
ω ∈ H0(X, Ω2

X). Since h0(X, Ω2
X) = pg this gives pg conditions.

If MW (π) is strictly bigger than (Z/2Z)2 then by Remark 5.2 there is a non-constant
morphism C → E, with C and E as in Remark 5.1. Hence for a fixed j0 ∈ C, the locus
of elliptic surfaces with j(π) = j0 and MW (π) infinite has by Lemma 5.3 dimension at
most g(C) − 1. Hence L1 has dimension at most g(C) = pg(X).

If the fixed j0 corresponds to a curve with complex multiplication, then the Mordell-
Weil rank is even, so L2 has dimension at least pg − 1. ¤

6. j-invariant 0 or 1728

In this section we will prove that dim NLr − (10n − r) can be arbitrarily large.

Proposition 6.1. Let n ≥ 2. Fix an integer k such that 6n/5 ≤ k ≤ 6n. Then there
exists an elliptic surface π : X → P1 with j(π) = 0, pg(X) = n − 1 and k singular fibers.
Moreover, the locus of elliptic surfaces with j(π′) = 0 and C(π′) = C(π) has dimension
k − 3 in Mn. If m is an integer such that m > 6n or m < 6n/5 then there exists no
elliptic surface with j(π′) = 0 and m singular fibers.

Proposition 6.2. Let n ≥ 2. Fix an integer k such that 4n/3 ≤ k ≤ 4n. Then there
exists an elliptic surface π : X → P1 with j(π) = 1728, pg(X) = n − 1 and k singular
fibers. Moreover, the locus of elliptic surfaces with j(π′) = 1728 and C(π′) = C(π) has
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dimension k − 3 in Mn. If m is an integer such that m > 4n or m < 4n/3 then there
exists no elliptic surface with j(π′) = 1728 and m singular fibers.

Proof of Propositions 6.1 and 6.2. Without loss of generality we may assume
that all elliptic surfaces under consideration have a smooth fiber over ∞.

There exists an elliptic surface with k singular fibers, pg(X) = n − 1 and j(π) = 0 if
and only if there exists a polynomial f of degree 6n with k distinct zeroes, and every zero
has multiplicity at most 5. To any such a polynomial f(t) we can associate an elliptic
surface with Weierstrass equation y2 = x3 + f(t), and vice-versa, an elliptic surface with
j-invariant 0 gives rise to a Weierstrass equation of the above form.

Hence an elliptic surface with k singular fibers exists if and only if 6n/5 ≤ k ≤ 6n.
Modulo the action of Aut(P1) we obtain a k − 3 dimensional locus in Mn.

The case of j(π) = 1728 is similar except for the fact that the polynomial g is of degree
4n, and the highest possible multiplicity is 3. The associated surfaces is then given by
y2 = x3 + gx. ¤

Proposition 6.3. Let n ≥ 2. Let r ≤ 1 + 24
5
n be a positive integer. Then the locus

of elliptic surfaces with j-invariant 0 and ρtr(X) at least 2r has dimension

6n − r − 2

Proof. If j(π) is constant and π has k singular fibers then the number of components
of singular fibers not intersecting the zero-section equals 12n − 2k. Hence ρtr(π) = 2 +
12n − 2k. From this it follows that ρtr(π) ≥ 2r if and only if k ≤ 6n − r + 1. We want
to apply Proposition 6.1 for k = 6n − r + 1. The condition on k is equivalent to the
above assumption on r. Then Proposition 6.1 implies that the dimension of the locus is
k − 3 = 6n − r − 2. ¤

Remark 6.4. A similar result holds in the case that j(π) = 1728. In that case one
should take r ≤ 14

3
n + 1.

Remark 6.5. All loci L described in the Sections 4 and 5 satisfied dim L+ρ(X) ≤ 10n,
for an X corresponding to a generic point of L. In the above theorem, one can choose
r = 1+4n+⌊4n/5⌋, with ⌊α⌋ denoting the largest integer, not larger then α. One obtains

dim L + ρ(X) = 6n − r − 2 + 2r = 10n +

⌊

4

5
n

⌋

− 1

The excess term ⌊4n/5⌋ − 1 can be arbitrarily large.

Corollary 6.6. Suppose n ∈ {2, 3, 4, 5}. Then dim NL10n = n − 2.

Proof. From Corollary 1.4.4 and Theorem 4.1 it follows that

{[π : X → P1] ∈ NL10n | ρtr(π) < 10n or j(π) not constant}
is a discrete set. If j(π) ∈ C − {0, 1728} then ρtr(π) < 10n, hence we only have to
consider elliptic surfaces with ρtr(π) = 10n and constant j-invariant 0 or 1728. Since
1 + ⌊24n/5⌋ = 5n for the n under consideration, we may apply Proposition 6.3 with
r = 5n. This yields dim NL10n = n − 2. ¤

Remark 6.7. From this Corollary we deduce that for n ∈ {3, 4, 5}, there exist positive
dimensional loci L ⊂ Mn, such that any surface X corresponding to a point in L satisfies
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ρ(X) = h1,1(X). The image of the period map restricted to L has discrete image. This
contradicts several Torelli-type properties. (see also Theorem 1.4.8.)

7. Upper bound

As in [18] we study the Noether-Lefschetz loci using the identification of H1,1, H2,0

and H0,2 with several graded pieces of a Jacobian ring R. We choose to give a more
algebraic presentation than in [18].

To be precise, given a Weierstrass minimal equation F = 0 for π : X → P1 we can
construct a hypersurface Y in the weighted projective space P := P(1, 1, 2n, 3n) (with
projective coordinates x, y, z, w of weight 1, 1, 2n, 3n resp.):

0 = −w2 + z3 + P (x, y)z + Q(x, y) =: F, n = pg(X) + 1, deg(P ) = 4n, deg(Q) = 6n.

Here X and Y are birational; Y is obtained from X by contracting the zero-section and
all fiber components not intersecting the zero-section.

Let A := C[x, y, z, w] with weights 1, 1, 2n, 3n. Let B = C[x, y] ⊂ A. The construction
(π : X → P1, σ0 : P1 → X) 7→ Y gives a nice description of the moduli space Mn. (See
the proof of Theorem 7.7.)

Let J ⊂ A be the ideal generated by the partial derivatives of F . The Jacobi ring R is
the quotient ring A/J . It is well known (see [18], [19], [20], [74]) that if all the fibers of
π are irreducible then Y is quasi-smooth, i.e., the cone (F = 0) ⊂ A4 is smooth outside
the origin.

For graded ring R′ we denote by R′
d all elements of degree d. For a variety Y ′ ⊂ P we

denote by H1,1(Y ′)prim = Im(H2(P,C) → H1,1(Y ′))⊥. We have isomorphisms

H2,0 ∼= Rn−2, H1,1
prim

∼= R7n−2, H0,2 ∼= R13n−2.

In the case that π has reducible fibers the situation is very similar. This follows from
a special case of a recent result of Steenbrink [75].

Theorem 7.1 (Steenbrink [75]). Let Y ′ ⊂ P be a surface of degree 6n, with along Psing

only singularities induced by Psing and outside Psing only isolated rational double points
as singularities. Let R′ be the Jacobi-ring of R. Then there is a natural isomorphism
H2,0(X) ∼= R′

n−2 and an injective map

H1,1(Y ′)prim → R′
7n−2.

Lemma 7.2. We have

H1,1(Y )prim
∼= H1,1(X)/(T (π) ⊗ C).

In particular, dim H1,1(Y )prim = 10n − ρtr.

Proof. The isomorphism follows from the fact that ϕ : X → Y is a resolution of
singularities, ϕ contracts all fiber components not intersecting the zero-section and the
fact that a general hyperplane section H ∩ Y is a fiber of π. ¤

Corollary 7.3. There is a natural isomorphism H2,0(X) ∼= Rn−2 and an injective
map

H1,1(X)/(T (π) ⊗ C) → R7n−2.

Proof. This is a combination of Theorem 7.1 and Lemma 7.2. ¤
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We prove now some elementary technical results. For a polynomial P , we use a
subscript (like Px) to indicate the derivative with respect to the variable in the subscript.

Lemma 7.4. Let π : X → P1 be the elliptic surface associated to w2 = z3 + Pz + Q,
with P ∈ C[x, y]4n, Q ∈ C[x, y]6n. Then PxQy − PyQx = 0 if and only if j(π) is constant.

Proof (see [18]). The partial derivative to X or to Y of j(π) = 1728 · 4P 3/(4P 3 +
27Q2) is identically zero if and only if (PxQy − PyQx)PQ = 0. If PQ = 0 then PxQy −
PyQx = 0, which gives the lemma. ¤

Lemma 7.5. Fix a positive integer n. Let F ∈ A = C[x, y, z, w] be a weighted homoge-
nous polynomial of degree 6n. Suppose that the variety in P(1, 1, 2n, 3n) defined by F = 0
is birational to an elliptic surface π : X → P1, with π induced by [x, y, z, w] 7→ [x, y] and
F = 0 is a Weierstrass minimal equation. Let J be the Jacobi-ideal of F . Let M ⊂ A be
the C[x, y]-module generated by J6n, the degree 6n-part of the Jacobi-ideal. Then

rank(M) =

{

7 in the case j(π) not constant;
6 in the case j(π) constant.

Furthermore, we have dim R7n−2 = 10n − 2.

Proof. After applying an automorphism of P we may assume that F = −w2 + z3 +
Pz + Q, with P ∈ B4n and Q ∈ B6n. Then

J6n = B0w
2 + Bnwz + B3nw + B0(3z3 + Pz) + B2n(3z2 + P ) + B1(Pxz + Qx) + B1(Pyz + Qy).

The first five terms generate a B-module N of rank 5, and the quotient J6n/N is
generated by the classes of Pxz + Qx and Pyz + Qy. This module has rank at least 1. It
suffices to prove that it has rank precisely 1 if and only if j(π) is constant.

Consider the elements α := Qy(Pxz + Qx) − Qx(Pyz + Qy) = (PyQx − PxQy)z and
β := Py(Pxz + Qx) − Px(Pyz + Qy) = PyQx − PxQy.

Suppose j(π) is constant then we obtain by Lemma 7.4 the relation Py(Pxz + Qx) −
Px(Pyz + Qy) = 0, proving that rank(J/N) ≤ 1.

Suppose j(π) is not constant. Then Lemma 7.4 implies that α and β are non-zero,
hence are independent modulo N , proving the assertion for this case.

For the final assertion: An easy calculation shows that dimA7n−2 = 23n − 7. From

J7n−2 = Bn−2w
2 + B2n−2wz + B4n−2w + Bn−2(3z

3 + Pz) + B3n−2(3z
2 + P ) +

+Bn−1(Pxz + Qx) + Bn−1(Pyz + Qy).

it follows that dim J7n−2 ≤ 13n−5. It suffices to prove equality, because then dimR7n−2 =
dim A7n−2 − dim J7n−2 = 10n − 2. Suppose that dim J7n−2 < 13n − 5, then there exist
polynomials F,G ∈ C[x, y]n−1, such that (F,G) 6= (0, 0) and

(2)

(

Px Py

Qx Qy

)(

F
G

)

= 0.

In particular, PxQy − QxPy = 0. From Lemma 7.4 it follows that the j-invariant is
constant. There are three cases to consider, namely P = 0, Q = 0 and P 3 = cQ2, where
c ∈ C∗, PQ 6= 0.
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Suppose first that P = 0. Since F = 0 is a Weierstrass minimal equation if follows
that for all finite places T , we have vT (Q) ≤ 5. From 6nQ = xQx + yQy, we obtain that

deg gcd(Qx, Qy) ≤ 6n − #{ zeroes of Q} ≤ 5n

This implies that there does not exist a non-zero form G of degree n − 1 such that the
rational function −GQy/Qx is a polynomial, which contradicts the fact that this should
equal F . So P 6= 0. The case Q = 0 can be dealt in a similar way.

Suppose that P 3 = cQ2 with c ∈ C∗ and PQ 6= 0. Then one can easily show that
deg gcd(Qx, Qy) = 4n. From this one obtains that the only solution to (2) is F = G = 0.
Hence in all cases we obtain dim R7n−2 = 10n − 2. ¤

Remark 7.6. The B-module generated by A6n has rank 7. So J6n has the same rank
as A6n (considered as B-modules) if and only if j(π) is not constant.

Theorem 7.7 together with the results in the previous sections will provide a proof for
Theorem 1.1.

Theorem 7.7. Let 2 ≤ r ≤ 10n. Let U ⊂ Mn be the locus of elliptic surfaces with
non-constant j-invariant. Then dim NLr ∩ U is at most 10n − r.

Proof. Take t ∈ Z≥0. Let M ⊂ At be a linear subspace. We denote with Mk the
image of the multiplication map M ⊗ Bk → At+k. This makes M• := ⊕k≥0Mk into a
B-module.

We prove the theorem by induction. Assume that it is true for all r′, r < r′ ≤ 10n.
Define C by NLr = NLr+1

∐

C. Let π : X → P1 correspond to a point p in C ∩ U . We
want to calculate the dimension of the tangent space of NLr at p. Let Y ⊂ P be the
corresponding surface in the weighted projective space P. Write s = rank MW (π).

The moduli-space Mn can be obtained in the following way: Let

U := {f ∈ A6n | f = 0 is birational to an elliptic surface and f is Weierstrass minimal. }
then U/ Aut(P) = Mn (see [46]). Let L ⊂ A6n be the pre-image of a component con-
taining π : X → P1 of NLr ⊂ Mn .

Since Aut(P) is a reductive group, we have that the codimension of L/ Aut(P) in Mn

equals codim(L,A6n). From this if follows that it suffices to show that L has codimension
at least r − 2 in A6n. Let T ⊂ A6n be the tangent space of L at Y , considered as a point
in A6n.

Consider the multiplication map

ϕ : T ⊗ An−2 → A7n−2.

Let ψ be the composition of ϕ with the projection onto R7n−2. Using Corollary 7.3 we
obtain that ψ corresponds to the map T ⊗H2,0 → H1,1

prim induced by the Period map. Hence

the image of ϕ is contained in the subspace W ⊂ A7n−2, the pre-image of H1,1
prim →֒ R7n−2

(using Corollary 7.3).
From J7n−2 ⊂ W , the quotient W/J7n−2 has dimension 10n − ρtr and dim R7n−2 =

10n − 2 (see Lemma 7.2), we obtain codim(W,A7n−2) = ρtr − 2.
Let O be a suitable neighborhood of Y in L ⊂ A6n. Since Y ′ 7→ H2(Y ′,Z) is a

constant sheaf on O and Y ′ 7→ H1,1(Y ′,C)prim ⊂ H2(Y ′,Z)prim ⊗ C has a constant
subsheaf of complex dimension at least s, we obtain that codim(Tn−2,W ) ≥ s, hence
codim(Tn−2, A7n−2) ≥ r − 2.
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Hence it suffices to show that every linear subspace V ⊂ A6n containing J6n satisfies
codim(V,A6n) ≥ codim(Vn−2, A7n−2).

Let J̃ and Ṽ be the B-modules generated by J6n, respectively, V .
Let dk := dim J̃k+1 − dim J̃k. Then dk is decreasing for k ≥ 0. By Lemma 7.5 we

obtain that J̃ has rank 7, hence dk ≥ 7. This implies that dim Ṽk+1 − dim Ṽk is at least
7. Hence dim Vn−2 ≥ dim V + 7(n− 2). Since dim A7n−2 = dim A6n + 7(n− 2), we obtain
that codim(V,A6n) ≥ codim(Vn−2, A7n), which finishes the proof. ¤

8. Concluding remarks

Remark 8.1. The argument used in the proof of Theorem 7.7 cannot work for elliptic
surfaces with constant j-invariant. First of all, in this case Lemma 7.5 gives that dk ≥ 6,
which only implies codim(V,A6n) ≥ codim(Vn−2, A7n)− (n− 2). Moreover, it is not hard
to give linear subspaces V ⊂ A6n, such that J6n ⊂ V , V 6= J6n and codim(Vn−2, A7n−2) >
codim(V,A6n). One needs to show that such a space V does not occur as the tangent
space to a component of NLr, or V is a tangent space to one of the components described
in Section 6. By the results of Section 5 we know that such a V would have a large
codimension in A6n, but these results are not sufficient to prove the theorem in the case
of constant j-invariant.

Remark 8.2. There is still an interesting issue open. In the theory of Noether-
Lefschetz loci there is the notion of special components and of general components. Special
components are the components of NL3 with codimension in NL2 less then pg. In the case
of elliptic surfaces there is only one special component (see [18]). For higher Noether-
Lefschetz loci, one can define the special components as the components in NLr with
codimension less then (r− 2)pg. Then one finds infinitely many special components. One
can also define special components as the components of NLr such that the maximal
codimension in NLr−1 is less then pg. By base-changing families of elliptic K3 surfaces
we can find again infinitely many special components, even when we fix the component
of NLr−1 in which these components are contained.

Remark 8.3. Suppose M is a moduli space for some class of smooth surfaces. We
would like to obtain codim(NLr,M) ≥ r − ρgen, where ρgen stands for the generic Picard
number and NLr = {X ∈ M | ρ(X) ≥ r}.

To give a proof similar to the proof of Theorem 7.7 it suffices to assume

• Griffiths-Steenbrink holds for the moduli-problem. I.e., there exists a threefold
X, such that for all points p ∈ M there exists a surface Yp ⊂ X, satisfying the

conditions of [75]). Moreover, if Ỹp is the normalization of Y , then [Ỹp] ∈ M is
the point p.

• All surfaces are linearly equivalent (as divisors on X), i.e., fix a point p ∈ M.
Let X and Yp as above, then there is a dense open U ⊂ H0(X,OX(Yp)) and a
surjective morphism U → M, sending a divisor Y ′ to the class of its minimal
desingularization.

• The following multiplication conditions hold. Let K be the kernel of ψ2. Let
K(m) be the image of K⊗m in H0(X,K⊗m

X (2mY )). Then for all m ≥ 2 we have

dimK(m) − dimK(m − 1) ≥ dimH0(X, K⊗m
X (2mY )) − dimH0(X, K

⊗(m−1)
X (2(m − 1)Y )).
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Remark 8.4. In [25] the following statement is proven. Let d > 3 be an integer, let
U ⊂ C[x, y, z, w]d be the set of homogenous polynomials F such that F = 0 defines a
smooth surface. Let NL ⊂ U be the locus of surfaces with Picard number at least 2.
Then codim(NL,U) = d − 3.

The strategy used in the proof is very similar to the strategy used in the proof of
Theorem 7.7. However, in this case this strategy does not seem to work for larger Picard
number. If one applies a reasoning as in the proof of Theorem 7.7 one obtains that
codim(NLr, U) ≥ d − 1 − r. Griffiths and Harris [26, page 208] conjecture that for
3 ≤ r ≤ d we have

codim(NLr, U) = (r − 1)(d − 3) −
(

r − 3
2

)

.

and they claim that it is easy to prove that we can replace the equality sign by a less or
equal sign.

There is still a gap between these two bounds for codim(NLr, U).





CHAPTER 3

Kuwata’s surfaces

1. Introduction

In this chapter we assume that K is a field of characteristic 0.
We introduce elliptic surfaces πn : Xn → P1 defined over K, for every integer n ≥ 1. In

the special case n ≡ 0 mod 2, the function field extension K(Xn)/K(P1) is K(x, z, t)/K(t)
where x3 + ax + b − tn(z3 + cz + d) = 0, for some a, b, c, d ∈ K. For every n ≥ 1 the
surface Xn is birational to a base-change X1 ×P1 P1, where P1 → P1 is an n-cyclic cover.

Kuwata [41] computed the rank of the Mordell-Weil groups MW (πi) := MWK(πi) of
πi, for i = 1, . . . , 6, and he gave a strategy for computing a rank 12 subgroup of the rank 16
group MW (π6). This strategy for finding generators of MW (π6) is already mentioned in
an email correspondence between Jasper Scholten and Masato Kuwata. We describe and
extend their ideas in order to describe generators of the Mordell-Weil groups MW (πi) for
i = 2, 3, 4 and 6. Most of the computations we use, can be found in the Maple worksheet
[32]. We indicate how one can find in special cases generators for the Mordell-Weil group
of π5. Finally, in the case K = Q we discuss how large the part of the Mordell-Weil group
consisting of Q-rational sections can be.

For i ≤ 6 the πi : Xi → P1 are elliptic K3 surfaces. There are very few examples of
such surfaces where generators for the Mordell-Weil group have been found.

2. Notation and results

Fix two elliptic curves E and F , with j(E) 6= j(F ). Let ι : E × F → E × F be the
automorphism sending (P,Q) → (−P,−Q). The minimal desingularization of (E×F )/〈ι〉
is a K3 surface which we denote by Y . It is called the Kummer surface of E × F .

The surface Y possesses several elliptic fibrations. For a generic choice of E and F , all
fibrations on Y are classified by Oguiso ([52]). Following Kuwata [41], we concentrate on
a particular fibration ψ : Y → P1 having two fibers of type IV ∗ and 8 other irreducible
singular fibers. Assume that the fibers of type IV ∗ are over 0 and ∞. Let π6 : X6 → P1

be the cyclic degree 3 base-change of ψ ramified over 0 and ∞. Assume that E is given by
y2 = x3+ax+b and F is given by y2 = x3+cx+d. Set B(t) = ∆(F )t+864bd+∆(E)/t, with
∆(E) the discriminant of E, i.e., ∆(E) = −16(4a3 + 27b2), and ∆(F ) = −16(4c3 + 27d2).
Then a Weierstrass equation for π6 is

y2 = x3 − 48acx + B(t6).

Define πi : Xi → P1 as the elliptic surface associated to the Weierstrass equation

y2 = x3 − 48acx + B(ti).

Clearly, interchanging the role of E and F corresponds to the automorphism t 7→ 1/t on
Xi. One has that j(π2) = j(ψ), but X2 and Y are not isomorphic as fibered surfaces.

43
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By construction, it is clear that MW (πn) can be regarded as a subgroup of MW (πnm)
for m ≥ 1.

We recall the following result from [41], most of which will be reproven in the course
of Section 4.

Theorem 2.1 (Kuwata, [41, Theorem 4.1]). The surface Xi is a K3 surface if and
only if i ≤ 6. Set

h =







0 if E and F are not isogenous,
1 if E and F are isogenous and E does not admit complex multiplication,
2 if E and F are isogenous and E admits complex multiplication.

Suppose j(E) 6= j(F ), then

rank MW (πi) =



























h if i = 1,
4 + h if i = 2,
8 + h if i = 3,
12 + h if i = 4,
16 + h if i = 5,
16 + h if i = 6.

In the case that j(E) = j(F ) then the ranks of MW (πi) tend to be lower (see [41,
Theorem 4.1]). Kuwata in [41] restricts himself to the Xi with i ≤ 6. We observe the
following corollary of his results.

Corollary 2.2. The rank of MW (π60) is at least 40 + h.

Proof. It can be easily seen that the rank 40 + h group

MW (π1) ⊕
MW (π2)

MW (π1)
⊕ MW (π4)

MW (π2)
⊕ MW (π5)

MW (π1)
⊕ MW (π6)

MW (π2)
.

injects into MW (π60). (The summands correspond to different eigenspaces for the induced
action of t 7→ ζ60t on MW (π60).) ¤

Remark 2.3. The highest known Mordell-Weil rank for an elliptic surface π : X → P1,
such that j(π) is non-constant is 56, a result due to Stiller [78]. The geometric genus of
our example is very low compared to for example Stiller’s examples: one can easily show
that pg(X60) = 19, while Stiller’s examples have pg + 1 divisible by 210.

Our aim is to provide explicit equations for generators of MW (πi), for several small
values of i, in terms of the parameters a, b, c, d of the two elliptic curves

E : y2 = x3 + ax + b and F : y2 = x3 + cx + d.

The main idea used in the sequel is the following. Let π : S → P1 be a K3 surface. Let
σ be an automorphism of finite order of S, such that we have a commutative diagram

S
σ→ S

↓ π ↓ π

P1 τ→ P1

and the order of τ equals the order of σ. We obtain an elliptic surface ψ : S ′ := X̃/〈σ〉 →
P1/〈τ〉 ∼= P1. In the case that S ′ is a rational surface, it is in principle possible to find
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explicit equations for generators of MW (ψ). One can pull back sections of ψ to sections of
π, which establishes MW (ψ) as a subgroup of MW (π). In the case that σ is of even order
then there exists a second elliptic surface, ψ′′ : S ′′ → P1, such that MW (ψ) ⊕ MW (ψ′′)
modulo torsion injects into MW (π) modulo torsion. (This process is called twisting and
is discussed in more detail in Section 1.5.)

In [41, Section 5] it is indicated how one can find generators for a rank 12 sub-
group of MW (π6) by using the above strategy for the involutions (x, y, t) 7→ (x, y,−t),
and (x, y, t) 7→ (x, y, α/t), for some α satisfying α3 = ∆(F )/∆(E). Taking a third in-
volution (x, y, t) 7→ (x, y, αζ3/t) yields a rank 16 subgroup of MW (π6), isomorphic to
MW (π6)/MW (π1). (This is discussed in more detail in the Subsections 4.3 and 4.6.) In
Subsection 4.6 we also describe the field of definition of sections generating MW (π6) mod-
ulo MW (π1). It turns out that our description corrects a mistake in Kuwata’s description
of the minimal field of definition.

Results 2.4. On the Kuwata surfaces X1, X2, . . . , X6 one has several automorphisms
such that the obtained quotients are rational surfaces. This is used in Section 4 to give
the following results:

• We give sufficient conditions on E,F and K to have a rank 1 or a rank 2 subgroup
of MWK(π).

• We give an indication how one can find explicit generators of MW (π2)/MW (π1).
The precise generators can be found in [32].

• We give an indication how one obtains a degree 24 polynomial such that its zeroes
determine a set of generators of MW (π3)/MW (π1). The explicit polynomial can
be found in [32].

• We give explicit generators of a subgroup of finite index in MW (π4)/MW (π2).
(See Corollary 4.12.)

• We give an indication how one obtains a degree 240 polynomial such that its
zeroes determine a set of generators of MW (π5)/MW (π1). We did not manage
to write down this polynomial. The degree of this polynomial and the number of
variables is too high to write it down explicitly. For several choices of a, b, c, d it
can be found in [32].

• We give an algorithm for determining a set of generators of MW (π6)/MW (π3).
The explicit generators are given in [32].

If E and F are not isogenous then MW (π1) = 0 (see Theorem 2.1). If E and F are
isogenous then the degree of the x-coordinate of a generator of MW (π1) seems to depend
on the degree of the isogeny between E and F . This seems to give an obstruction for
obtaining explicit formulas for all cases.

Before providing the explicit equations, we mention the following result, which can be
proven without knowing explicitly the generators of MW (πi).

Proposition 2.5. Suppose that E and F are defined over Q. One has that

rank MWQ(πi) ≤



























1 if i = 1,
5 if i = 2,
7 if i = 3,
9 if i = 4,
5 if i = 5,
11 if i = 6.
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The total contribution of π1, π2, π3, π4, π6 to MWQ(π12) is bounded by 15. The maximum
total contribution of π1, . . . , π6 to MWQ(π60) is bounded by 19.

Proof. If rank MWQ(π1) equals 2 then the Shioda-Tate formula 1.2.11 implies that
NS(X) has rank 20 and NS(X) is generated by divisors defined over Q. It is well-known
that this is impossible ([71]).

Suppose that i ≥ 2. Let S be the image of a section of πi, such that S is not the
strict transform of the pull back of a section of πj, for some j dividing i, and j 6= i. It is
easy to check that if we push forward S to X1 and then pull this divisor back to Xi, we
obtain a divisor D consisting of i geometrically irreducible components, and one of these
components is S.

Set Mj := MW (πj). Set M := Mi/
∑

j>0,j|i,j 6=i Mj. Take a minimal set of sections
Sm,m = 1, . . . , ℓ, satisfying the following property: denote Sm,n the components of the
pull back of the push forward of Sm, then the Sm,n, with m = 1, . . . , ℓ and n = 1, . . . , i,
generate M⊗Q. Consider the ℓn-dimensional Q-vector space F of formal linear expression
in the Sm,n. By definition of the Sn it follows that the natural map Ψ : F → M ⊗ Q

is surjective. Fix a generator σ of the (birational) automorphism group of the rational
map Xi → X1. We can split F ⊗ C and Mj ⊗ C into eigenspaces for the action of σ.
Set Eζk

i
⊂ F ⊗ C the eigenspace for the eigenvalue ζk

i . Set V ′ := ⊕j|gcd(i,j)=1Eζj
i
. Since

the Si,j form a minimal set, we have that that Ψ|V ′ is injective. It is easy to see that if
gcd(i, k) 6= 1 then the eigenspace Eζk

i
is contained in the kernel of Ψ, hence we obtain

that Ψ|V ′ is an isomorphism. This implies that dim V ′ = ϕ(i)ℓ, where ϕ is the Euler
ϕ-function.

Fix m such that 1 ≤ m ≤ ℓ. Let G be the subgroup of MW (πi) generated by the
Sm,n for n = 1, . . . i. There is a faithful action of the Galois group Gal(Q(ζi)/Q) on G.
This implies that the sections defined over Q form a rank at most 1 subgroup of G (if i
is odd) or a rank at most two subgroup of G (if i is even). From this one obtains that

MQ := MWQ(πi)/ ⊕j>0,j|i,j 6=i MWQ(πj)

has rank at most ℓ (when i is odd) or 2ℓ (when i is even). This combined with Propo-
sition 2.1 provides the upper bounds for MWQ(πi) for i = 2, 3, 5, 6. The upper bound
for MWQ(π4) follows from the fact that the above mentioned Galois action is non-trivial,
hence for each i there is an element g in G not fixed under the action of Gal(Q(ζi)/Q)
and g is not mapped to 0 in M . One easily obtains from this that MQ has co-rank at
least ℓ in M , which gives the case i = 4.

The final assertions follow from a reasoning as in the proof of Corollary 2.2. ¤

For some of the πi the bounds in Proposition 2.5 are sharp, for some of the others we
do not know:

• We have rank MWQ(π1) = 1 when E and F are isogenous over Q. (see 4.1.)
• We have that rankMWQ(π2) ≥ 4 if and only if E and F have complete two-

torsion over Q, and, moreover, if E and F are isogenous then rankMWQ(π2) = 5.
(see 4.2.)

• There exists E and F such that rank MWQ(π4) ≥ 8. (see 4.4.)
• There exists E and F such that rank MWQ(π6) ≥ 6.
• If one can find a rational solution of uv2(u4 − 1)(v4 − 1)2 = w3, satisfying

– w(u − v) 6= 0 and
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– if p1 = 4u2/(u2 − 1) and p2 = 4v2/(v2 − 1) then p1 6∈ {p2, 1/p2, 1 − p2, 1 −
1/p2, p2/(1 − p2), 1/(1 − p2)}.

then one can make examples with rankMWQ(π12) ≥ 10. (see 4.6.)

Remark 2.6. The highest known rank over Q for an elliptic surface π : X → P1

over Q is 14 [30]. This example is a member of a family of elliptic surface introduced by
Mestre [44].

The actual aim of this chapter is to produce explicit equations for the generators of
MW (πi) modulo MW (π1), for i = 2, . . . , 6. For convenience, we always assume that E
and F have complete 2-torsion over the base field. It is not so hard to deduce from our
results, these equations for the case that E and F have 2-torsion points defined over a
larger field.

The organization of this chapter is as follows. In Section 3 we indicate an algorithm
for finding generators of MW (π) in the case that of a rational elliptic surface π : X → P1

with an additive fiber. In Section 4 we prove the results stated in 2.4. To find generators
for the MW (πi) we often rely on the results of Section 3.

3. Finding sections on a rational elliptic surface with an additive fiber

Fix a field K of characteristic 0 and a rational elliptic surface π : X → P1 over K.
Such a surface can be represented by a Weierstrass equation

(3) y2 = x3 +(α4t
4 +α3t

3 +α2t
2 +α1t+α0)x+β6t

6 +β5t
5 +β4t

4 +β3t
3 +β2t

2 +β1t+β0,

with αi, βj ∈ K. Assume that over t = ∞ the fiber is singular and of additive type. This
happens if and only if α4 = β6 = 0.

From [53, Theorem 2.5] we know that MW (π) is generated by sections of the form

(4) x = b2t
2 + b1t + b0, y = c3t

3 + c2t
2 + c1t + c0.

Substituting (4) in (3) and using α4 = β6 = 0 yields that

c2
3 = b3

2.

Set c3 = p3
1, b2 = p2

1. First we search for solutions with p1 6= 0. The equation for the
coefficient of t5 is an equation of the from p2

1c2 + f with f a polynomial in p1, b1, αi, βj.
Hence we can express c2 in terms of the p1, b1, αi, βj. Similarly, we can express c1 and c0

in terms of p1, bk, αi, βj. One easily shows that if this procedure fails, then p1 = 0.
Unfortunately, the three remaining equations Fm = 0 in b1, b0, p1, αi, βj are not linear

in any of the variables, but the degree of the Fi in b1, b0, p1 is sufficiently low to compute
the resultant

R(p1) := resb1(resb0(F1, F3), resb0(F2, F3))

in concrete examples (i.e., after substituting constants for the αi, βj). Calculating R(p1)
and finding zeroes of it gives all possibilities for p1. Substituting such a value of p1 in
res(F1, F3, b0) and in res(F2, F3, b0) yields two polynomials in b1. Calculating the g.c.d. of
these polynomials gives a list of possible values for b1. Then substituting all possibilities
for (p1, b0) in F1, F2, F3 gives all possibilities for p1, b0, b1.

Consider the case p1 = 0, hence c3 = b2 = 0. The coefficient of t5 is zero if and only if
α5 = 0. If this is the case then the coefficient of t4 is of the form −c2

2 + β3b1 + α4.
If β3 6= 0, then one eliminates b1, b0, c0 as is done above, yielding two polynomial

equation in two unknowns. In this case it suffices to compute only one resultant.
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If β3 = 0 then we can substitute c2 = ±√
α4. The coefficient of t3 is of the form

−2
√

α4c1+f , with f a polynomial in c0, αi, βj,
√

α4. We can solve c1 and obtain −2
√

α4c0+
g as a coefficient for t3, where g is a polynomial in c0, αi, βj,

√
α4.

This fails when α4 = 0. In that case c2 = 0, and one has four polynomial relations
in b0, c0, c1, b1. We can eliminate c1 as above, yielding three polynomial relations in three
unknowns which can be solved as above. In this way we find all possible sections of the
form (4).

Top [80, Section 5] discusses the following elliptic surface:

Theorem 3.1. Let π : X → P1 be the elliptic surface

y2 = x3 + 108(27t4 − 74t3 + 84t2 − 48t + 12).

Then MWQ(π) has rank 3 and is generated by sections σi with x-coordinates

x(σ1) = 6t, x(σ2) = 6t − 8, x(σ3) = −12t + 9.

and fix a primitive cube root of unity ω. Let τi be obtained from σi by multiplying the
x-coordinate with ω. Then the σi and τi generate a subgroup of finite index of MW (π).

Top found the sections ±σ1,±σ2,±τ1 and ±τ2; an explicit description of the third
independent section σ3 seems not to be present in the literature.

Proof. The elliptic surface π : X → P1 has 4 fibers of type II and at t = ∞ a
fiber of type IV . From this it follows that MW (π) has rank 6. Top [80, Section 5]
observes that the Mordell-Weil group is generated by a subset of the 18 sections of the
form (ωxi,±yi), i = 1, 2, 3, with ω3 = 1 and xi is a polynomial of degree 1.

The form of the generators imply that, in terms of the above discussion, we are looking
for sections with p1 = 0. After eliminating all the ci and bj, except for b1, we obtain a
polynomial of degree 27. It can be factored as the product of (b1 − 6)2(b1 + 12) times 12
polynomials of degree 2, where all the degree 2 factors have discriminant −3.

This implies that x = 6t, x = 6t − 8 and x = −12t + 9 are the only x-coordinates of
degree 1 defined over Q. These sections are disjoint from the zero-section, and intersect at
t = ∞ the singular fiber in the non-identity component. One can choose the y-coordinates
of the three sections in such a way that the third sections is disjoint from the first two. This
implies that the height pairing (see [70, Definition 8.5]) yields the following intersection
matrix





4/3 2/3 2/3
2/3 4/3 2/3
2/3 2/3 4/3



 .

The determinant of this matrix is non-zero. This implies that these three sections generate
a rank 3 subgroup G1, and G1 = MWQ(π).

Multiplying the x-coordinates with a cube root of unity will yield another rank 3 sub-
group G2 corresponding to a different eigenspace of the action of complex multiplication
hence G1 ⊕ G2 generate a rank 6 subgroup of the Mordell-Weil group. ¤

4. Explicit formulas

Fix a field K of characteristic 0. Let E : y2 = x3 + ax + b and F : y2 = x3 + cx + d
be elliptic curves, with complete two-torsion over K. Assume that E and F have distinct
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j-invariant. Fix λ, µ, ν and ξ such that E is isomorphic to y2 = x(x − λ)(x − µ) and F
is isomorphic to y2 = x(x − ν)(x − ξ). Then we may assume that

a =
1

3
(λµ − λ2 − µ2), b =

1

27
(3λµ(λ + µ) − 2(λ3 + µ3)),

and similar equations for c and d.
The Kummer surface Y is birational to the surface S ⊂ A3 given by (x3 + ax+ b)t2 =

z3 + cz + d, and the fibration ψ : Y → P1 is corresponds to the map (x, z, t) 7→ t.

Lemma 4.1. The groups MW (πi), i ≥ 1 are torsion-free.

Proof. Kuwata [41, Theorem 4.1] shows that π6 has smooth fibers over t = 0,∞ and
only singular fibers of type I1 or II. Hence the same holds for π6i. This fact together with
[47, Corollary VII.3.1] implies that the group MW (π6i) is torsion-free. Since MW (πi) is
a subgroup of MW (π6i) it is also torsion-free. ¤

We now discuss how to find explicit formulas for generators of MW (πi), i = 1, . . . 6.

4.1. π1 : X1 → P1. It is not easy to find explicit equations for sections on π1, since
there are infinitely many cases, depending on the minimal degree of an isogeny E → F .
Instead we give a sufficient condition to have rank 1 or 2 over K.

Lemma 4.2. The group MWK(π1) has rank at most 2.

• If E and F are isogenous over K then MWK(π1) has positive rank.
• If E and F are isogenous over K and E admit complex multiplication then

MWK(π1) has rank 2.
• If MWK(π1) has positive rank then there exists a degree at most two extension

L/K such that E and F are isogenous.
• if MWK(π1) has rank 2 then there exists a degree at most two extension L′/L

such that E admits complex multiplication over L′.

Proof. Since E and F have complete two torsion it follows that rankMWK(π1) = r
if and only if 18 + r = rank NSK(X2) = rankNSK(Y ), with Y the Kummer surface of E
and F .

It is easy to see that if E and F satisfy the first, resp., second assumption then the
rank of NSK(Y ) is at least 19, resp., 20.

If NSK(Y ) ≥ 19 then E and F are isogenous over some extension of K. Let Γ be
the graph of the isogeny. Then the push-forward of Γ on Y is Galois-invariant. This
implies that ([−1] × [−1])∗Γ + Γ is Galois-invariant. From this it follows that E and F
are isogenous over a degree 2 extension.

If NSK(Y ) = 20 then E and F are isogenous over some extension of K and E has
potential complex multiplication. Let Γ be the graph of an isogeny, let Γ′ be the graph
of the isogeny composed with complex multiplication. Then the push-forward of both Γ
and Γ′ are Galois-invariant. As above, this implies that E admits complex multiplication
over a degree 2 extension of L. ¤

Remark 4.3. Suppose E and F are elliptic curves, not isogenous over K, but isoge-
nous over a degree 2 extension L/K. Suppose that End(E) = Z. Let ϕ : E → F be an
isogeny defined over L. It is an easy exercise to show that the divisor

D := {(P, ϕ(P ))|P ∈ E} ∪ {(P,−ϕ(P )) | P ∈ E} ⊂ E × F
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is invariant under the action of Gal(L/K). Hence the push-forward of D onto the Kummer
is invariant under the action of Gal(K/K). The argument used in the above proof gives
that MWK(π1) has rank at least 1, while E and F are not isogenous over K.

4.2. π2 : X2 → P1. Since MW (π2) is torsion-free, we have that MW (π′
1)⊕MW (π1)

is of finite index in MW (π2), where π′
1 : X ′

1 → P1 is the twist of π1 at 0 and ∞. (For
more on this topic see Section 1.5.)

One can easily show that MW (π′
1) ⊂ MW (π′

3), where π′
3 is the twist of π3 at 0 an ∞.

Since MW (π′
3) can be considered in a natural way as a subgroup of MW (π6), we refer

to that subsection for a discussion of the results. The explicit equations for generators of
MW (π′

2) are given in [32]. If we drop for a moment the condition that E and F have
complete 2-torsion over K, the we can use the result in [32] to prove that MWK(π′

1) has
rank 4 if and only if E and F have complete two-torsion over K.

4.3. π3 : X3 → P1. A Weierstrass equation for π3 is

y2 = x3 − 48acx + (∆(F )t3 + 864bd + ∆(E)t−3).

Setting s = (t + αi/t), with α3
i = ∆(E)/∆(F ) and i = 1, 2, 3, will give an equation for

the rational elliptic surface ψi : Si → P1, given by

y2 = x3 − 48acx − ∆(F )(s3 − 3αis) + 864bd.

This surface has a fiber of type I∗
0 at s = ∞. For each choice of αi we obtain an isomorphic

surface over K(ζ3), but the pullback of the sections to π3 depends on the choice of αi:

Lemma 4.4. For i 6= j we have MW (ψi) ∩ MW (ψj) = {σ0}, where MW (ψi) and
MW (ψj) are considered as subgroups of MW (π3).

Proof. Without loss of generality, we may assume that i = 1 and j = 2. Set
L := K(ζ3, α1). Let G ⊂ Aut(L(t)) be generated by ϕ1 : t 7→ α1/t and ϕ2 : t 7→ α1ζ3/t.
From ϕ1 ◦ ϕ2 : t 7→ tζ3 it follow that #G ≥ 6. Set s′ = t3 + α3

1/t
3. Then s′ is fixed under

G. We have the following inequalities

6 ≤ #G = [L(t)G : L(t)] ≤ [L(s′) : L(t)] = 6.

These inequalities give that L(t)G = L(s′). This implies that a section in MW (ψi) ∩
MW (ψj) is the pull back of a section of the elliptic surface ψ′ with Weierstrass equation

y2 = x3 − 48acx − ∆(F )s′ + 864bd.

This is an equation of rational elliptic surface with a II∗-fiber. In this case the Shioda-
Tate formula 1.2.11 implies that MW (ψ′) has rank 0. Since MW (ψ′) is a subgroup of
the torsion-free group MW (π3) (see Lemma 4.1) it follows that #MW (ψ′) = 1. ¤

Lemma 4.5. We have that rank MW (ψi) = 4.

Proof. From the equation of ψi one easily sees that it a rational elliptic surface,
with a fiber of type I∗

0 over s = ∞, and no other reducible singular fibers. Hence the
Shioda-Tate formula 1.2.11 implies that rankMW (ψi) = 4. ¤

Lemma 4.6. For i 6= j we have (MW (ψi)⊕MW (ψj)) ∩MW (π1) = {σ0}, considered
as subgroups of MW (π3).
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Proof. From Lemma 4.4 and Lemma 4.5 it follows that MW (ψi)⊕MW (ψj) injects
into MW (π3). Consider the vector spaces V = (MW (ψi) ⊕ MW (ψj)) ⊗ C and W =
MW (π1)⊗C. The automorphism σ : (x, y, t) 7→ (x, y, ζ3t) induces a trivial action on W .
We now prove that σ maps V to itself and all eigenvalues of this action are different from
1.

Assume for the moment that λ, µ, ν and ξ are algebraically independent over Q. This
defines a Kuwata elliptic surface

Πk : Xk → P1

Q(λ,µ,ν,ξ, 3
√

λ(λ−µ)µ/ν(ν−ξ)ξ)

and, similarly,

Ψk : Sk → P1

Q(λ,µ,ν,ξ, 3
√

λ(λ−µ)µ/ν(ν−ξ)ξ)
.

Since MW (Π1) = 0, and MW (Ψi)⊕MW (Ψj) has rank 8, it follows that a lift σ̃ of σ

acts on Ṽ := MW (Ψi) ⊕ MW (Ψj), hence σ acts on V . If σ̃ would have an eigenvalue 1

on Ṽ , then MW (Π1) would be non-trivial. Hence also σ acts without eigenvalue 1. This
implies that V ∩ W = 0, yielding the lemma. ¤

From the Lemmas 4.4, 4.5 and 4.6 and Theorem 2.1 it follows that for i 6= j we have
that MW (ψi) ⊕ MW (ψj) generates a subgroup of finite index in MW (π3)/MW (π1).
Hence if one wants to describe the Galois representation on MW (π3)/MW (π1) it suffices
to describe the Galois representation on MW (ψi).

Since ψi : Si → P1 are rational elliptic surfaces with an additive fiber at s = ∞ we
can apply Section 3 to calculate expressions for the generators. The relevant formulae for
this may be found in [32].

4.4. π4 : X4 → P1. Let π′
2 : X ′

2 → P1 be the twist of π2 by the points 0 and
∞. (Compare Section 1.5.) The results of Section 1.5 imply that the group MW (π2) ⊕
MW (π′

2) is of finite index in MW (π4). Since the fibers over 0 and ∞ of π2 are of type
IV ∗ and all other fibers are of type I1 or II, it follows from the results mentioned in
Section 1.5 that π′

2 has only fibers of type II or I1. Moreover, π′
2 : X ′

2 → P1 defines a
rational elliptic surface, hence rankMW (π′

2) = 8.

Lemma 4.7. Let π : X → P1 be a Jacobian elliptic surface such that all singular fibers
are irreducible. Let Z := σ0(P

1). Let S be the image of a section σ : P1 → X. Denote
Sn the image of (nσ) : P1 → X.

Then the equality (Sn · Z) = (Sm · Z) holds if and only if n = ±m.

Proof. Let 〈·, ·〉 denote the height paring on MW (π) (see [70, Definition 8.5]). In
this case 〈T, T 〉 = 2(T · Z) − 2χ(X), hence

2(Sn · Z) − 2χ(X) = 〈Sn, Sn〉 = 〈nS1, nS1〉 = n2〈S1, S1〉 = 2n2(S1 · Z) − 2n2χ(X).

It follows that (Sn · Z) = n2((S · Z) − χ(X)) + χ(X), which yields the lemma. ¤

Assume, for the moment, that λ, µ, ν and ξ are algebraically independent over Q(t).
We can consider the elliptic surface π′

2 as an elliptic curve A over K ′ := Q(λ, µ, ν, ξ, t).
Then on A we have that

x =
2(
√

λ +
√

µ)λµ√
ξ +

√
ξ − ν

1

t
+

(

−4

3
(2ξ − ν)(λ + µ) + 4

√

λµξ(ξ − ν)

)

+
2(
√

ξ +
√

ξ − ν)ξ(ξ − ν)√
λ +

√
µ

t
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is a x-coordinate of a point P1, hence giving rise to 2 different points on A (see [32]). If
we plug this x-coordinate in the equation for A, then

y2 = 2(
√

ξ +
√

ξ − ν)(
√

λ +
√

µ)h(t)2

for some h ∈ Q(t,
√

λ,
√

µ,
√

ξ,
√

ν − ξ) (see [32]).
Using P1 we now show how to find points P2, . . . P8, such that if we specialize, the

Pi generate MW (π′
2). Let P2 be a section such that x(P2) is obtained from x(P1) by

replacing
√

µ by −√
µ. (The existence follows from the fact that the map

√
µ 7→ −√

µ
fixes the equation of π′

2.)

Lemma 4.8. The points P1 and P2 are independent in A(K).

Proof. Since x(P1) 6= x(P2) it follows that P1 6= ±P2. Hence the sections S1 and S2

on π′
2 satisfy (S1 ·Z) = (S2 ·Z) and S1 6= ±S2. It follows from Lemma 4.7 that S1 and S2

generate a subgroup of MW (π′
2) of rank 2, hence P1 and P2 are independent. ¤

Note that we have P1 ∈ A(K+) and P2 ∈ A(K−), where

K± := K ′(
√

λ,
√

µ,
√

ξ,
√

ξ − ν,

√

2(
√

ξ +
√

ξ − ν)(
√

µ ±
√

λ)).

The automorphism σ of K ′, fixing Q and further given by

(t, λ, µ, ν, ξ) 7→
(

1

t
, ν, ξ, λ, µ

)

is an automorphism of A, (i.e., swapping E and F , and applying the P1-automorphism
t 7→ 1/t). This yields to different points P3 := σ(P1), P4 := σ(P2) on A.

Lemma 4.9. The points P1, . . . P4 generate a rank 4 subgroup of A(K).

Proof. The points P3 and P4 are not in A(K+K−), but are contained in A(K ′
±),

where

K ′
± = K ′(

√
µ,

√

µ − λ,
√

ν,
√

ξ,

√

2(
√

µ +
√

µ − λ)(
√

ξ ±√
ν)).

Applying [63, Lemma 1.3.2] yields that the Pi generate a rank 4 subgroup. ¤

Let τ ′ automorphism of K ′ fixing Q(t) and mapping (ξ, λ) ↔ (ν, µ) (i.e., we are
interchanging the role of the two-torsion points of both E and F ). Set P ′

i = τ(Pi).

Lemma 4.10. The points P1, . . . , P4, P
′
1, . . . , P

′
4 generate a subgroup of rank 8 of A(K ′).

Proof. The points P ′
1, . . . , P

′
4 are defined over different fields (i.e., they are defined

over K±(i) or K ′
±(i), but not over K± or K ′

±.) From [63, Lemma 1.3.2] it follows then
that the rank of the subgroup generated by the Si, S

′
i is 8. ¤

Proposition 4.11. The sections of π′
2 associated to the points P1, . . . P4, P

′
1, . . . P

′
4 of

A generate a rank 8 subgroup of MW (π′
2).

Proof. Let Π′
2 : X ′

2 → P1
Q(λ,µ,ν,ξ) be the elliptic surface corresponding to A/K ′. The

points Pi, P
′
i define sections Si,S ′

i of Π′
2, which generate a rank 8 subgroup of MW (Π′

2).
This implies that for a general specialization the specialized sections Si, S

′
i generate a rank

8 subgroup of MW (π′
2). Since the intersection numbers are constant under deformation, it

follows that if the Si, S
′
i do not generate MW (π′

2), then π′
2 has at least one reducible fiber.

From [41, Theorem 4.3] it follows that then E and F are isomorphic, which contradicts
our assumption at the beginning of this section. ¤
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Corollary 4.12. The sections of π′
2 associated to the points P1, . . . , P4, P

′
1, . . . , P

′
4

generate a subgroup of finite index in MW (π4)/MW (π2).

Proof. This follows from the above Proposition together with the observation that
the direct sum of MW (π′

2) and MW (π2) generates a subgroup of finite index of MW (π4).
¤

We will now take special values for λ, µ, ν, ξ such that several sections are defined over
Q.

Corollary 4.13. For infinitely many pairs of elliptic curves (E,F ) over Q, the group
MWQ(π4) has rank 8 or 9.

Proof. We have that rankMWQ(π4) = rankMWQ(π2) + rank MWQ(π′
2). From the

results in 4.1 and 4.2 we know that rankMWQ(π2) is either 4 or 5.
As mentioned in Section 2, one can prove that the rank over Q of π′

2 is at most 4. To
obtain rank 4 it suffices to choose λ, µ, ν, ξ such that S1, S2, S3 and S4 are defined over Q.
In order to obtain this set λ = l2, µ = m2, ν = n2, ξ = k2, k2 − n2 = n2

2 and m2 − l2 = l22.
Then

2(k + n2)(m ± l), 2(m + l2)(k ± n)

have to be a non-zero square for all choices of ±. One easily computes that this occurs
precisely when

l2n2 =
u2(ρ − 1)(τ 2 − 1)

4(ρ + 1)τ 2

for some u ∈ Q∗ and

k = n2
τ 2 + 1

τ 2 − 1
, n = n2

2τ

τ 2 − 1
, m = l2

ρ2 + 1

ρ2 − 1
, l = l2

2ρ

ρ2 − 1
.

From these last equations we can obtain our original λ, µ, ν, ξ.
The associated Legendre parameters are

(

2τ

τ 2 + 1

)2

and

(

2ρ

ρ2 + 1

)2

.

One easily finds ρ, τ such that the corresponding j-invariants are different. ¤

For later use, we remark that ∆(E)/∆(F ) is a third power if and only if

τ(τ 4 − 1)

ρ(ρ4 − 1)

is a third power. A necessary condition for obtaining curves with different j-invariant is
ρ 6= τ . The only solution we found with these properties is (ρ, τ) ∈ {(2, 3), (3, 2)}. This
gives rise to two curves having both Legendre parameter 25/9, hence does not give an
interesting solution.



54 3. KUWATA’S SURFACES

4.5. π5 : X5 → P1. An equation for π5 is

y2 = x3 − 48acx + (∆(F )t5 + 864bd + ∆(E)t−5)

Setting s = (t+αi/t), with α5
i = ∆(E)/∆(F ), gives a rational elliptic surface ψi : Si → P1.

We can now copy the strategy used for of π3. We have that MW (π5)/MW (π1) has
rank 16, the MW (ψi) have rank 8, the intersection MW (ψi)∩MW (ψj) = {σ0}, considered
as subgroups of MW (π5) and (MW (ψi) ⊕ MW (ψj)) ∩ MW (π1) = {σ0}. This combined
with the fact that all the ψi are isomorphic over K(ζ5) implies that it suffices to find
sections of only one of the ψi. One can show that ψi is a rational elliptic surface with
an additive fiber at t = ∞. Hence we can apply Section 3 to find an expression for the
sections of MW (π5). In all choices for λ, µ, ν, ξ we tried the final resultant is a product
of two polynomials of degree 120. (See [32])

4.6. π6 : X6 → P1. Since π6 is torsion-free we have that MW (π3) ⊕ MW (π′
3) is of

finite index in MW (π6), where π′
3 : X ′

3 → P1 is the twist of π3 at 0 and ∞.
The group MW (π3) is described above. We discuss here how to find generators for

MW (π′
3). We follow Kuwata [41, Section 5]. Kuwata observes that X ′

3 is birational over
Q to the cubic surface in P3

C : Z3 + cZY 2 + dY 3 = X3 + aXW + bW 3,

and that the strict transforms of the 27 lines of C to X ′
3 generate MW (π′

3).
It has been known for a long time how to find the 27 lines on a cubic surface of

the above form, see for example [61]. Due to our special situation we give a somewhat
different approach to find all 27 lines.

In our case C is isomorphic to

(*) Z(Z − νY )(Z − ξY ) = X(X − λW )(X − µW ).

One finds 9 lines defined over Q, namely the intersections of Z−αY = 0 and X−βW = 0,
with α ∈ {0, ν, ξ} and β ∈ {0, λ, µ}. We give now the equations for the strict transforms
of these lines on X3:

Lemma 4.14. Set

A = (aki) =









ν − ξ ξ − ν ν
−ξ −ν ξ
−µ −λ λ

λ − µ µ − λ µ









.

Then

x = 4a1ia2it
2 +

4

3
(a1i + a2i + a3j + a4j)t + 4a3ja4j

and

y = 4a1ia2i(a1i + a2i)t
3 + 8a1ia2i(a3j + a4j)t

2 + 8a3ja4j(a1i + a2i)t + 4a3ja4j(a3j + a4j)

for 1 ≤ i, j ≤ 3 are sections of π′
3.

Proof. This is a straightforward computation. See [32]. ¤

The usual strategy to find the other 18 lines is to take pencils of planes through the
lines we found above. We choose a different strategy. The image of a section on X ′

3 can
be pulled back to a divisor on X6. We can take the push-forward to Y of this divisor and
then push-forward in a natural way to P1 ×P1. We give 6 divisors on P1 ×P1, such that
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the pull back of such a divisor to X6 consists of three components, and the 18 divisors
obtained in this way correspond to the 18 lines on C. Consider P1 × P1 with projective
coordinates X,W and Y, Z. Set

P1 := [0, 1], P2 := [λ, 1], P3 := [µ, 1], Q1 := [0, 1], Q2 := [ν, 1], Q3 := [ξ, 1].

Fix a permutation σ ∈ S3. Let Cσ ⊂ P1×P1 be the (1, 1)-curve going through (Pi, Qσ(i)).
For example, Cid is given by

G(X,Y, Z,W ) := νξ(λ − µ)XW + µλ(ξ − ν)WZ + (νµ − ξλ)XZ = 0.

We describe what the corresponding divisor on C is. This can be done by dehomog-
enizing first, say, we set W = Y = 1. Then we can express Z in terms of X. Substitute
this expression for Z in (∗). We obtain a rational expression in X (a quotient of a poly-
nomial of degree 6 and a polynomial of degree 3). The numerator is zero if and only if
X = 0, X = λ,X = µ or X satisfies a degree 3 polynomial f . For example if σ = id then

(

µλ(ν − ξ) + 3

√

µλ(µ − λ)ν2ξ2(ν − ξ)2

νµ − ξλ

)

ζk
3 =: γk

are the zeroes of f . Let H be the hyperplane X = γkY . Let H ′ be G(X,Y, γk, 1) = 0.
Then H ∩ H ′ is contained in C and defines a line ℓσ,k. One can easily show that for all
σ ∈ H one obtains three such hyperplanes, and that one obtains 18 lines in total.

Remark 4.15. One can show that 6 of these 18 lines are defined over

K(E[2], F [2], 3

√

∆(E)/∆(F )),

and the 12 others over
K(E[2], F [2], µ3,

3

√

∆(E)/∆(F )).

Moreover, one shows easily that if one of the 18 lines is defined over K(E[2], F [2], µ3),
then ∆(E)/∆(F ) ∈ K(E[2], F [2])∗3. This contradicts the claim in [41, Section 5], which
states that all 27 lines are defined over K(E[2], F [2], µ3).

Remark 4.16. One can easily find elliptic curves E,F over Q with complete two-
torsion defined over Q such that ∆(E)/∆(F ) ∈ Q∗3: one needs to find solutions of

λ(λ − µ)µ = τ 3ν(ν − ξ)ξ.

This defines a conic over Q(τ, µ, ξ) containing the rational point λ = 0 and ν = 0. Hence
one can parameterize this conic and find solution giving rise to elliptic curves. For example
(λ, µ, ν, ξ, τ) = (16, 1, 6, 1, 2) gives an example.

Remark 4.17. Suppose one can find a solution in Q3 of

τ(τ 4 − 1)

ρ(ρ4 − 1)
= σ3

satisfying the conditions mentioned at the end of 4.4. Then we obtain examples such that
rank MWQ(π6) ≥ 6 and rank MWQ(π4) ≥ 8, yielding rank MWQ(π12) ≥ 10.





CHAPTER 4

Elliptic K3 surfaces with Mordell-Weil rank 15

1. Introduction

The Mordell-Weil rank r of a Jacobian elliptic surface π : X → C is defined as the
rank of the group of sections of π. If X is a K3 surface, then it follows easily that C = P1.
If one works over a field of characteristic 0, then it is well known that 0 ≤ r ≤ 18. (In
positive characteristic we know that 0 ≤ r ≤ 20.)

By a result of Cox [17] there exists a Jacobian elliptic K3 surface defined over C with
any given Mordell-Weil rank r, with r an integer, 0 ≤ r ≤ 18. Actually, using a similar
reasoning as in [17] one can show there are infinitely many 18 − r-dimensional families
of Jacobian elliptic K3 surfaces defined over C, with Mordell-Weil rank r. The examples
constructed in the proof of Cox are not explicit: the existence of such examples follows
from properties of a so-called period map.

Kuwata [41] has given a list of explicit Weierstrass equations for elliptic K3 surfaces
defined over Q with Mordell-Weil rank r (over Q) for any r between 0 and 18, except for
the case r = 15.

The aim of this chapter is to produce an explicit three-dimensional family of elliptic
K3 surfaces with Mordell-Weil rank 15.

Theorem 1.1. Let K be an algebraically closed field, with char(K) 6= 2, 3. Let Ea,b,c

be the curve defined over K(s) given by the Weierstrass equation

y2 = x3 + Aa,b,c(s)x + Ba,b,c(s),

with
Aa,b,c(s) = 4a3b3((b − a)cs8 + (2ac + 2bc + 4ab)s4 + (b − a)c

and
Ba,b,c = 16a5b5s2((b − a)s8 + 2(b + a)s4 + (b − a)).

Then for a general (a, b, c) ∈ K3 this defines an elliptic K3 surface with 24 fibers of
type I1 and Mordell-Weil rank at least 15. Moreover if K = C, then a generic member of
this family has Mordell-Weil rank 15.

2. Construction

Let K be an algebraically closed field of characteristic different from 2 and 3.
In this chapter we use very often the notion of twisting an elliptic surface by 2n

points. For more information on this see Section 1.5. We recall that if P is one of the 2n
distinguished points, then the fiber of P changes in the following way:

Iν ↔ I∗
ν (ν ≥ 0) II ↔ IV ∗ III ↔ III∗ IV ↔ II∗

and the type of fiber in any point different from the 2n distinguished point remains the
same.

57
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Y
ϕ→ P1

ւ ↓ ↓ g′
2

P1 π̃2← X̃2 X2
π2→ P1

ւ ↓ ↓ g2

P1 π̃1← X̃1 X1
π1→ P1

ւ ↓ ↓ f

P1 π̃← X̃ X
π→ P1

Table 1. Overview of all maps used in this section (g = g2 ◦ g′
2).

Let π : X → C be a Jacobian elliptic surface, P1, . . . P2n ∈ C points. Let π̃ : X̃ → C
be a twist by the Pi. Let ϕ : C1 → C be a double cover ramified at the Pi, such that the
minimal models of base-changing ϕ and ϕ̃ by π are isomorphic. Denote this model by
π1 : X1 → C1.

Recall that

rank(MW (π1)) = rank(MW (π)) + rank(MW (π̃)).(5)

Moreover, the singular fibers change as follows

Fiber of π at Pi Iν or I∗
ν II or IV ∗ III or III∗ IV or II∗

Fiber of π1 at ϕ−1(Pi) I2ν IV I∗
0 IV ∗

The following result will be used several times. It is a direct consequence of the
Shioda-Tate formula 1.2.11.

Theorem 2.1 ([70, Theorem 10.3]). Let π : X → P1 be a rational Jacobian elliptic
surface, then the rank of the Mordell-Weil group is 8 minus the number of irreducible
components of singular fibers not intersecting the identity component.

Consider the following construction:

Construction 2.2. Let π : X → P1 be a Jacobian elliptic surface whose singular
fibers are three fibers of type I1 and one fiber of type III∗. Let f ∈ K(t) be a function
of degree two, such that the fibers of π over the critical values of f are non-singular.

Let α, β ∈ P1 be the two distinct points such that f(α) = f(β) is the point which fiber
is of type III∗. Let g be a degree 4 cyclic covering, with only ramification over α, β. Let
ϕ : Y → P1 be the non-singular relatively minimal model of the fiber product X ×P1 P1

with respect to π and f ◦ g : P1 → P1.

Proposition 2.3. The Mordell-Weil rank of ϕ (of Construction 2.2) is at least 15,
and is precisely 15 if and only if the rank of the twist of π by the two critical values of f
is 0.

Proof. The assumptions imply that X is a rational surface and hence using Theo-
rem 2.1 we have that rankMW (π) = 1. Let π1 : X1 → P1 be the fiber product X ×P1 P1

with respect to f : P1 → P1 and π. Let π̃ : X̃ → P1 be the twist of π by the two critical
values of f . Then by (5) and Theorem 2.1

rank(MW (π1)) = rank(MW (π)) + rank(MW (π̃)) = 1 + rank(MW (π̃)).
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Note that π1 has two fibers of type III∗ and six fibers of type I1. Let P1 and P2 be the
points with a fiber of type III∗.

Let g2 : P1 → P1 be the degree two function, with critical values P1 and P2. Define
π2 : X2 → P1 to be the non-singular relatively minimal model of the fiber product
X ×P1 P1 with respect to π1 and g2.

Let π̃1 be the twist of π1 by P1 and P2. Then π̃1 has two fibers of type III and
6 fibers of type I1, hence the corresponding surface is rational and by Theorem 2.1 π̃1

has Mordell-Weil rank 6. From this it follows that rank(MW (π2)) = 7 + rank(MW (π̃)).
Furthermore, π2 has two fibers of type I∗

0 , and 12 fibers of type I1.
Let π̃2 be the twist of π2 by the two points with fiber of type I∗

0 . Then π̃2 has 12 fibers
of type I1 and the corresponding surface is rational with Mordell-Weil rank 8. So

rank(MW (ϕ)) = rank(MW (π2)) + rank(MW (π̃2)) = 15 + rank(MW (π̃)).

¤

Remark 2.4. If we suppose that rank(MW (π̃)) = 0, then it is relatively easy to find
explicit generators for MW (ϕ). In that case the pull-backs of the generators of MW (π),
MW (π̃1), MW (π̃2) generate a subgroup of MW (ϕ) of index 2m, for some m ≥ 0. Since
all these three surfaces are rational, we can take a specific Weierstrass model for these
surfaces such that all Mordell-Weil groups are generated by polynomials of degree at most
2. (See [53].)

Remark 2.5. In the case K = C there exists another proof. Since Y and X̃ are
both K3 surfaces, and there exists a finite map between them, the Picard numbers of
both surfaces coincide (see [29, Corollary 1.2]). From an easy exercise using Kodaira’s
classification of singular fibers it follows that the configuration of singular fibers of ϕ is
the one mentioned in the Theorem. By Kodaira’s classification of singular fibers and the
Shioda-Tate formula 1.2.11 we conclude

2 + 15 + rank(MW (π̃)) = ρ(X) = ρ(Y ) = 2 + rank(ϕ).

Proposition 2.3 enables us to prove the main theorem of this chapter.

Proof of Theorem 1.1. Let c ∈ K∗ such that c2 6= −1. Then the rational elliptic
surface E ′

c associated to the Weierstrass equation

y2 = x3 + t3(t − c)x + t5

has a fiber of type III∗ and three fibers of type I1. One easily shows that if E ′
c
∼= E ′

c′

then c′2 = c2. (If E ′
c
∼= E ′

c′ then there exist be an automorphism h : P1 → P1 fixing 0
and ∞, and a constant λ ∈ K, verifying h(t)3(h(t) − c) = λ4t3(t − c′) and h(t)5 = λ6t5.
This implies that λ2 = 1 and c′ = λc.)

Let a 6= b and

fa,b(s) =
4abs

(a − b)s2 − 2(a + b)s + a − b
.

The critical values of fa,b are a and b, and f−1(0) = {0,∞}. Hence by Proposition 2.3
the elliptic surface associated to the Weierstrass equation

y2 = x3 + fa,b(s
4)3(fa,b(s

4) − c)x + fa,b(s
4)5

satisfies the properties stated in the theorem. After a coordinate change, which clears
denominators, we obtain the equation of Ea,b,c.
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This family contains a three-dimensional sub-family of non-isomorphic elliptic surfaces,
because it is a finite base change of a three-dimensional family of non-isomorphic elliptic
surfaces.

Assume now that K = C. Let U ⊂ M2 be the set of elliptic surfaces with non-constant
j-invariant. (Notation from Chapter 2.)

Suppose that a generic twist of E ′
c would have positive Mordell-Weil rank. Then the

constructed family Ea,b,c would map to a 3-dimensional component C of NL18, moreover
the general member of the family Ea,b,c has non-constant j-invariant, hence dim C ∩
U = 3. From Theorem 2.1.1 it follows that dimNL18 ∩ U ≤ 2, a contradiction. From
Proposition 2.3 it follows that the generic member of Ea,b,c has Mordell-Weil rank precisely
15. ¤

Remark 2.6. Kuwata [41] gave explicit examples defined over Q. Theorem 1.1 does
not suffice to conclude that there exist examples of K3 surfaces defined over Q with
Mordell-Weil rank 15. One can show that the elliptic surface

y2 = x3 + 2(t8 + 14t4 + 1)x + 4t2(t8 + 6t4 + 1)

has Mordell-Weil rank 15 over Q.
The methods used to prove this result are completely different from the methods we

use in this chapter. We intend to develop this in a future publication [36].



CHAPTER 5

Classification of all Jacobian elliptic fibrations on certain K3
surfaces

1. Introduction

In this chapter we classify all possible bad fiber configurations on Jacobian elliptic
fibrations on the K3 surface X, which is the minimal model of the double cover of P2

ramified along six lines in ‘general position’. When we say that six lines are in ‘general
position’ we mean that the rank of the Néron-Severi group NS(X) is 16.

The strategy we use is purely geometric, and very similar to Oguiso’s classification of
Jacobian elliptic fibrations on the Kummer surface of the product of two non-isogenous
elliptic curves ([52]). It seems possible to extend this method to the case of K3 surfaces,
which are birational to a double cover of P2 ramified along a sextic curve, such that the
Néron-Severi group of the K3 surface is generated by the (reduced) components of the
pull-back of the branch divisor together with all divisors obtained by resolving singularities
on the double cover and the pull-back of a general line in P2.

Here we give the full list of possibilities.

Theorem 1.1. Let X be as before. Suppose π : X → P1 be an elliptic fibration with
positive Mordell-Weil rank. Then the configuration of singular fibers is contained in the
following list.

Class Configuration of singular fibers MW -rank
1.1 I10 I2 aII bI1 2a + b = 12 4
1.2 I8 I4 aII bI1 2a + b = 12 4
1.3 2I6 aII bI1 2a + b = 12 4
1.4 IV ∗ I4 aII bI1 2a + b = 12 5

Conversely, for each class there exists a, b such that these fibrations occur.

We did not establish the possible values of a and b. By Proposition 5.1 we know that
generically a ≤ 4 in 1.1, 1.2 and 1.3, a ≤ 5 in 1.4. We believe that for each of the classes
1.1 − 1.4 we have that generically a = 0.

Theorem 1.2. Let X be as before. Let π : X → P1 be a Jacobian elliptic fibration
with finite Mordell-Weil group. Then the configuration of singular fibers is contained in
Table 1. (In this table we list all fiber types, different from III, I2, II, I1, the structure
of MW (π) and two quantities, namely iii + i2 and 3iii + 2i2 + 2ii + i1, where iii means
the number of fibers of type III etc.) Conversely, for each class there exists a Jacobian
elliptic fibration π : X → P1 with the given configuration of singular fibers.

Corollary 1.3. Let X be as before, and let π : X → P1 be an elliptic fibration with
finite Mordell-Weil group. If the six lines are sufficiently general then the configuration
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Class Configuration MW (π) iii + i2 3iii + 2i2 + 2ii + i1
2.1 II∗ 1 6 14
2.2 III∗ Z/2Z 7 15
2.3 III∗I∗

0 1 3 9
2.4 I∗

6 1 4 12
2.5 I∗

4 Z/2Z 6 14
2.6 I∗

4I
∗
0 1 2 8

2.7 I∗
2 (Z/2Z)2 8 16

2.8 I∗
2I

∗
0 Z/2Z 4 8

2.9 2I∗
2 1 2 8

2.10 I∗
2 2I∗

0 1 0 8
2.11 2I∗

0 (Z/2Z)2 6 12
2.12 3I∗

0 Z/2Z 2 6

Table 1. List of possible configurations

Class Configuration MW (π) i2 i1
2.1 II∗ 1 6 2
2.2 III∗ Z/2Z 7 1
2.3 III∗I∗

0 1 3 3
2.4 I∗

6 1 4 4
2.5 I∗

4 Z/2Z 6 2
2.6 I∗

4I
∗
0 1 2 4

2.7 I∗
2 (Z/2Z)2 8 0

2.8 I∗
2I

∗
0 Z/2Z 4 0

2.9 2I∗
2 1 2 4

2.10 I∗
2 2I∗

0 1 0 8
2.11 2I∗

0 (Z/2Z)2 6 0
2.12 3I∗

0 Z/2Z 2 2

Table 2. List of possible configurations on a general X

of singular fibers of π is contained in Table 2. Conversely, for each class there exists a
Jacobian elliptic fibration π : X → P1 with the given configuration of singular fibers.

This corollary is an immediate consequence from Theorem 1.2 and Proposition 5.1.

Remark 1.4. Note that in the cases 2.7, 2.8, 2.10 and 2.11, the fiber configuration in
Theorem 1.2 and Corollary 1.3 are the same.

The generality condition is very essential in our strategy: one of the key tools in this
chapter uses the fact that the involution σ on X induced by the double-cover involution
acts trivially on the Néron-Severi group NS(X). Our definition of general position implies
that σ acts trivial on NS(X).

The organization of this chapter is as follows: In Section 2 we start with recalling
some facts about curves on K3 surfaces. In Section 3 we recall some standard facts
concerning singular fibers of elliptic fibrations and some special results on elliptic surfaces.
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In Section 4 we study the Néron-Severi group of a double cover of P2, ramified along six
lines in general position. In Section 5 we give a variant of Proposition 2.3.6, which implies
that Corollary 1.3 follows from Theorem 1.2. In Section 6 we list all types of possible
singular fibers for an elliptic fibration on X and we count the number of pre-images of
the six lines contained in each fiber type. In Section 7 we classify all fibrations in which
all special rational curves (the pre-images of the six branch lines) are contained in the
singular fibers, thereby proving Theorem 1.1. In Section 8 we prove Theorem 1.2.

Every proof of the actual existence of a fibration presented in this chapter runs as
follows: First we give an effective divisor D, with D2 = 0 and such that there exists an
irreducible curve C ⊂ X with D.C = 1. It is easy to see that then |D| defines an elliptic
fibration π : X → P1 (see Lemma 2.2), that C ∼= P1, and that (π|C)−1 : P1 → X is a
section.

In this chapter all fibrations, sections and components of singular fibers are defined
over the field of definition of the six lines.

2. Curves on K3 surfaces

In this section we give some elementary results on curves on K3 surfaces.

Lemma 2.1. Suppose D be a smooth curve on a K3 surface X. Then

g(D) = 1 +
D2

2

Proof. Since the canonical bundle KX is trivial, the adjunction formula for a divisor
on a K3 surface is 2pa(D) − 2 = D2 (see [28, Proposition V.1.5]). Since pa(D) = g(D)
for a smooth curve, this implies the result. ¤

Lemma 2.2. Suppose D is an effective divisor on a K3 surface X with pa(D) = 1.
Then |D| defines an elliptic fibration π : X → P1. Every effective connected divisor D′

such that D · D′ = D′2 = 0 is a fiber of π.

Proof. From the the adjunction formula [28, Proposition V.1.5] it follows that D2 =
0.

Applying Riemann-Roch [28, Theorem V.1.6] yields

dim H0(X,OX(D)) + dim H0(X,OX(−D)) ≥ 2.

Since dim H0(X,OX(−D)) = 0 (D is effective), we obtain that dim H0(X,OX(D)) > 1.
This, combined with the fact that D2 = 0, implies that |D| is base-point-free. So we
can apply Bertini’s theorem [28, Theorem II.8.18 & Remark III.7.91], hence there is an
irreducible curve F linearly equivalent to D. By Lemma 2.1 this curve has genus 1.

The exact sequence
0 → OX → OX(F ) → OF → 0,

together with the facts H1(X,OX) = H2(X,OX(F )) = 0 and dim H2(X,OX) = 1, gives
that H1(X,OX(F )) = 0, whence by Riemann-Roch [28, Theorem V.1.6] we obtain that
the dimension of H0(X,OX(F )) equals 2, so “the” morphism associated to |D|, π : X →
P1 is an elliptic fibration.

Since D′ is effective and D′ ·D = 0, we obtain that no irreducible component of D′ is
intersecting D. Since D′ is connected we obtain that π(D′) is a point. From D′2 = 0 it
follows that pa(D

′) = pa(D), hence D′ is a fiber. ¤
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3. Kodaira’s classification of singular fibers

In this section we describe the possible fibers for a minimal elliptic surface π : X → P1.
The dual graph associated to a (singular, reducible) curve has a vertex for each irreducible
component of the curve and has an edge between two vertices if and only if the two
corresponding components intersect.

Theorem 3.1 (Kodaira). Let π : X → P1 be an elliptic surface. Then the following
types of fibers are possible:

• I0: A smooth elliptic curve.
• I1: A nodal rational curve. (The dual graph is Ã0.)
• Iν , ν ≥ 2: A ν-gon of smooth rational curves. (The dual graph is Ãν−1.)
• II: A cuspidal rational curve. (The dual graph is Ã0.)
• III: Two rational curves, intersecting in exactly one point with multiplicity 2.

(The dual graph is Ã1.)
• IV : Three concurrent lines. (The dual graph is Ã2.)
• I∗

ν , ν ≥ 0: The dual graph is of type D̃4+ν.
• IV ∗, III∗, II∗: The dual graph is of type Ẽ6, Ẽ7, Ẽ8.

For more on this see for example [47, Lecture I], [72, Appendix C, Theorem 15.2] or
[73, Theorem IV.8.2].

In Figure 1 we give the dual graph for some of the fiber types. For a resolution X → Y
of a fixed double covering ϕ′ : Y → P2 ramified along R we define we define “special”
curve as the strict transform of a component of ϕ′−1(R), and a curve is called “ordinary”
otherwise. This notion depends heavily on our situation: it gives information on the
behavior of the double cover involution on the fiber components.

Using our classification of elliptic fibrations one can actually show that X can be
obtained in an unique way as a double cover of P2 ramified along six lines up to auto-
morphism, i.e., given two morphisms πi : X → P2 of degree 2, ramified along six lines

ℓ
(i)
j , with j = 1 . . . 6, there exist an automorphism of P2, mapping {ℓ(1)

j } to {ℓ(2)
j }.

Moreover, for all fiber types, except III and I2, one knows which components are
special rational curves. In the dual graphs given here a vertex is drawn as a circle if the
component is a ordinary rational curve; a vertex is drawn as a square then the corre-
sponding component is a special rational curve.

4. Divisors on double covers of P2 ramified along six lines

In this section we study the Néron-Severi group of a double cover of P2 ramified along
six lines. Most of the results are probably well known to the experts and are likely to be
found somewhere in the literature.

Notation 4.1. Fix six distinct lines Li ⊂ P2, such that no three of them are concur-
rent. Denote by Pi,j the point of intersection of Li and Lj.

Let ϕ′ : Y → P2 be the double cover ramified along the six lines Li. Then Y has 15
double points of type A1. Resolving these points gives a surface X, with fifteen exceptional
divisors and a rational map ϕ : X → P2. Denote by σ the involution on X induced by
the double-cover involution on Y associated to ϕ′.
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I4

I∗
2

IV ∗

III∗

II∗

Figure 1. Examples of dual graphs of singular fibers

Let P̃ be the blow-up of P2 at the points Pi,j. Then X/〈σ〉 = P̃, and ϕ : X → P2

factors through ψ : X → P̃. Then ψ is a degree 2 cover with branch locus B̃, the strict
transform of the six lines Li.

Denote by ℓi,j ⊂ X the divisor obtained by blowing up the point of Y above Pi,j (i < j).
Let ℓi be such that 2ℓi is the strict transform of ϕ′∗(Li).

Let M i,j
k,m be the line connecting Pi,j and Pk,m (i < j, k < m, i < k and i, j, k,m

pairwise distinct). Let µi,j
k,m ⊂ X be the strict transform of ϕ′∗M i,j

k,m.

With these notations we have the following intersection results.

Lemma 4.2. We have ℓi · ℓj = −2δi,j, ℓi,jℓk,m = −2δi,kδj,m and ℓi · ℓk,m = δi,k + δi,m.

Lemma 4.3. The curve µi,j
k,m is irreducible if and only if M i,j

k,m does not intersect any
of the 13 points Pi′,j′ with (i′, j′) 6= (i, j), (k,m).

Proof. The curve µi,j
k,m is reducible if and only if the strict transform M̃ of M i,j

k,m on

P̃ intersects the branch locus B̃ of ψ : X → P̃ at every point of intersection with even
multiplicity.

Let n, n′ ∈ {1, . . . , 6} \ {i, j, k,m} such that n′ 6= n. Let P be the intersection point of
M i,j

k,m and Ln. Since the intersection multiplicity of M i,j
k,m and B at P is even this implies

that P is also on Ln′ , hence P = Pn,n′ . Conversely, if M i,j
k,m passes through Pn,n′ then M̃

and B̃ are disjoint, hence the degree morphism from µi,j
k,m to the rational curve ϕ′∗(M i,j

k,m)

is unramified, hence µi,j
k,m is reducible. ¤
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Lemma 4.4. Let N be the subgroup of NS(X) generated by the ℓi’s, the ℓi,j’s and the

µi,j
k,m’s. Then N ∼= Z16 as abelian groups. Moreover ℓ1 and the ℓi,j’s form a basis for

N ⊗ Q.

Proof. First we show that rank N ≤ 16. Since 2ℓi +
∑

j ℓi,j is linearly equivalent

to the pull-back of a general line L ⊂ P2, we obtain that ϕ∗L ∈ N . Since ϕ∗L is linear
equivalent to µi,j

k,m +
∑

ak,mℓk,m for some choice of ak,m, we obtain that the ℓ2, . . . ℓ6, µ
i,j
k,m

are contained in
(Z[ℓ1] ⊕ 〈[ℓi,j]〉) ⊗ Q,

hence rank(N) ≤ 16.
Since all ℓi,j are disjoint and ℓ2

i,j = −2, they form a subgroup N ′ of rank 15 of the
Néron-Severi group. An easy computation shows that ℓ1 is not linearly equivalent to a
divisor contained in N ′ ⊗ Q, proving that rankN = 16. Since the intersection pairing is
non-degenerate we have that N is torsion-free. ¤

Lemma 4.5. The action of σ on N is trivial.

Proof. This follows from the fact that for all i, j the automorphism σ|ℓi
is the identity

and σ fixes the curves ℓi,j. ¤

Lemma 4.6. Let L ⊂ P2 be a rational curve, L 6= Li. Suppose ϕ′−1(L) has two
components. Then ρ(X) ≥ 17.

Proof. Let ri, i = 1, 2 be the strict transforms on X of the components of ϕ′−1(L). It
suffices to show that r1 6∈ N ⊗Q. Since σ(r1) = r2 and σ acts trivial on N , we obtain that
r1 is linearly equivalent to r2. From Lemma 2.1 it follows that r2

1 = −2. We have that
any irreducible effective divisor r 6= r1 linear equivalent to r1 satisfies #r∩r1 = r.r1 = −2
, hence the only effective irreducible divisor linearly equivalent to r1 is r1 itself. From this
it follows that r1 = r2, contradicting our assumption. ¤

Lemma 4.7. Suppose that there exists a permutation τ ∈ S6 such that Pτ(1),τ(2),
Pτ(3),τ(4), Pτ(5),τ(6) are collinear. Then NS(X) has rank at least 17.

Proof. Using Lemma 4.3 the assumption implies that at least one of the µi,j
k,m is

reducible. Hence by Lemma 4.6 we have that rankNS(X) ≥ 17. ¤

Assumption 4.8. For the rest of this chapter assume that the six lines in P2 are
chosen in such a way that rank NS(X) = 16. (Hence the µi,j

k,m are reduced and irreducible).

Remark 4.9. Choosing 6 distinct lines in P2 gives 4 moduli. Hence the family G of
K3 surfaces that can be obtained as a double cover of six lines in P2 is 4-dimensional.
From the Torelli theorem for K3 surfaces ([55]) it follows that a general element X ∈ G
satisfies ρ(X) ≤ 16. By Lemma 4.4 any X ∈ G has Picard number at least 16. Hence a
general X ∈ G satisfies ρ(X) = 16. Therefore the above assumption makes sense.

Definition 4.10. Let C be an irreducible curve on X different from the ℓi’s, with
C2 = −2. Then C is a called an ordinary rational curve. If C is one of the ℓi’s then C is
called a special rational curve.

A smooth rational curve C satisfies pa(C) = 0. From Lemma 2.1 it follows that
C2 = −2, which explains one of the conditions in the above definition.
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Let B = ℓ1 + ℓ2 + · · ·+ ℓ6. Since ψ : X → P̃ is ramified along the strict transforms of
the Li, we obtain that the fixed locus Xσ of σ equals B.

Lemma 4.11. Let D be an ordinary rational curve. Then D · B = 2.

Proof. Assumption 4.8 and Lemma 4.4 imply that the involution σ maps D to a
linear equivalent divisor. Since D2 = −2 the only effective irreducible divisor linear
equivalent to D, it D itself. Hence σ acts non-trivially on D ∼= P1, from which it follows
that there are two fixed points. ¤

Lemma 4.12. Let D1 and D2 be two ordinary rational curves. Then D1 ·D2 ≡ 0 mod 2.

Proof. The proof of [52, Lemma 1.6] carries over in this case. ¤

5. A special result

Proposition 5.1. Suppose X is a double cover of P2 ramified along six lines. If the
position of the six lines is sufficiently general then for every elliptic fibration π : X → P1

the total number of fibers of π of type II, III or IV is at most rank(MW (π)).

Proof. As explained in Remark 4.9 the general member of the family of all double
covers of P2 ramified along 6 lines has Picard number 16, hence

20 = h1,1(X) = 4 + ρtr(π) + rank MW (π).

Using Proposition 2.3.6 we obtain that

4 ≤ dim{[ψ : X → P1] ∈ M2|C(ψ) = C(π)}
= h1,1 − ρtr(π) − #{fibers of type II, III, IV }
≤ 4 + rank MW (π) − #{fibers of type II, III, IV },

which gives the desired inequality. ¤

Remark 5.2. This proposition can be used to determine the number of fibers of type
I1 and I2 in several cases of Oguiso’s classification [52]. However, Oguiso classified all
Jacobian elliptic fibrations on the Kummer surface of the product of two non-isogenous
elliptic curves, while if one wants to apply Proposition 5.1 one obtains only the classi-
fication of Jacobian elliptic fibrations on a Kummer surface of a product of two general
elliptic curves.

6. Possible singular fibers

In this section we classify all elliptic fibrations on the double cover of P2 ramified
along six fixed lines ℓi in general position, where general position means that ρ(X) = 16.

Definition 6.1. By a simple component D of a fiber F we mean an irreducible
component D of F such that D occurs with multiplicity one in F .

Proposition 6.2. Let X be as before. Let π : X → P1 be an elliptic fibration with a
section. Then the Kodaira type of the singular fiber is contained in the following list. For
each Kodaira type we list the number of components which are special rational curves, the
number of simple components which are special rational curves, and the number of simple
components which are ordinary rational curves, are contained in Table 3.
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Type #Cmp. special #Simple cmp. special #Simple cmp. ordinary
rational curves rational curves rational curves

I1 0 0 0
I2 0 or 1 0 or 1 2 or 1
I4 2 2 2
I6 3 3 3
I8 4 4 4
I10 5 5 5
I∗
0 1 0 4

I∗
2 2 0 4

I∗
4 3 0 4

I∗
6 4 0 4

II 0 0 0
III 0 or 1 0 or 1 2 or 1
IV ∗ 4 3 0
III∗ 3 0 2
II∗ 4 0 1.

Table 3. Number of special and ordinary components in singular fibers.

Sketch of proof. First of all we prove that no fiber F of type I2k+1, k > 0 exists.
Such a fiber F is a 2k + 1-gon of rational curves. Since two special rational curves do not
intersect, and two ordinary rational curves have even intersection number (Lemma 4.12),
it follows that every ordinary rational curve intersects two special rational curves, and
each special rational curve intersects two ordinary rational curves. This forces the number
of components in an n-gon to be even. Hence I2k+1 does not occur. For the same reasons
no fiber of type IV or type I∗

2k+1 occurs. Since there at most 6 special nodal curves, no
fiber of type I2k, k > 6 or of type I∗

2k, k > 5 occurs.
We prove now that no fiber F of type I12 exists. If it would exists, then this fiber

would contain all special rational curves. Hence the zero section is an ordinary rational
curve Z. From Lemma 4.11 it follows that then 1 = Z · F ≥ Z · B = 2, a contradiction.
The non-existence of I∗

10 follows similarly. A fiber of type I∗
8 has four ordinary rational

curves Ri with the property that Ri intersects only one other fiber component. Moreover,
the Ri are the only simple components. Hence the zero-section Z intersects one of the
Ri, say R1, and Z has to be a special rational curve, by Lemma 4.12. The curve Ri, i 6= 1
intersect a special rational curve not contained in the fiber and different from Z, hence
there are at most 4 special rational curves contained in F . Using Lemma 4.12 one obtains
easily that F contains at least 5 special nodal curves, a contradiction.

Let D be a rational curve intersecting three other disjoint rational curves Di, i =
1, . . . , 3. If D were ordinary, then by Lemma 4.12 the curves Di would be special. This
would imply that D · B ≥ 3, contradicting Lemma 4.11. Hence D is a special rational
curve. This observation determines in many cases the number of special components in a
singular fiber. ¤
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7. Possible configurations I

In this section we study all Jacobian elliptic fibrations π : X → P1 having the property
that all special rational curves are fiber components. This section yields the proof of
Theorem 1.1.

Proposition 7.1. Let X be as before, in particular rank NS(X) = 16. Let π : X →
P1 be a Jacobian elliptic fibration. Suppose all special rational curves are contained in
the fibers of π. Then one of the following occurs:

Singular fibers Mordell-Weil rank
I10 I2 aII bI1 2a + b = 12 4
I8 I4 aII bI1 2a + b = 12 4
2I6 aII bI1 2a + b = 12 4
IV ∗ I4 aII bI1 2a + b = 12 5

Conversely, for each case there exist a, b such that these fibration do occur.

Proof. Since the zero section is a rational curve and all special rational curves are
contained in some fibers, we have that the zero section Z is an ordinary rational curve.
From Lemma 4.12 it follows that if Z intersects a reducible fiber, then it intersects in a
simple component, which is an special nodal curve. From Lemma 4.11 and the fact that
special nodal curves are smooth, it follows that there are precisely two reducible fibers.
Using Proposition 6.2 we obtain that the possible reducible fibers are III, IV ∗ and I2k,
with 1 ≤ k ≤ 5.

Since there are six special rational curves, the above possibilities are the only ones,
except that the case I10 III aII bI1 with 2a+b = 11 might occur. We prove that this one
cannot exist: A fiber of type I10 contains precisely five special rational curves, say ℓ1, . . . ℓ5.
Then ℓ6 is a component of the III-fiber. The other component of this fiber is an ordinary
rational curve D tangent to ℓ6, not intersecting ℓi, i = 1, . . . , 5. Consider ψ : X → P̃.
Then ψ(D) is a reduced curve tangent to ψ(ℓ6) and not intersecting ψ(ℓi), i ≤ 5, hence
intersects the branch locus with even multiplicity in each intersection point. Since ψ(D) is
a rational curve, this implies that ψ−1(ψ(D)) has two components. Hence ϕ−1(ϕ(D)) has
two components. This contradicts Lemma 4.6 (note that we assumed that ρ(X) = 16).

The quantity 2a + b can be determined using Noether’s formula (Theorem 1.2.7), the
Mordell-Weil rank can be obtained using the Shioda-Tate formula (Theorem 1.2.11).

It remains to prove the existence of the remaining four cases.
Let k ∈ {3, 4, 5}. To prove the existence of I2kI12−2kaIIbI1, take D = ℓ1 + ℓ1,2 +

ℓ2 + ℓ2,3 + · · · + ℓk + ℓ1,k. If k = 3, 4 then D1 = ℓk+1 + ℓk+1,k+2 + · · · + ℓ6 + ℓk+1,6 is an
effective divisor with D2

1 = 0 and D.D1 = 0. From Lemma 2.2 it follows that the fibration
associated to |D| has D and D1 as fibers. They are of type I2k and I12−2k.

If k = 5, then from Lemma 2.2 it follows that |D| defines a fibration with a I10 fiber,
which proves the existence of the first case.

To prove the existence of the fibration with the IV ∗ and I4 fiber, take D = ℓ1 +2ℓ1,2 +
3ℓ2 + 2ℓ2,3 + ℓ3 + 2ℓ2,4 + ℓ4. Then the fibration associated to |D| has a fiber of type IV ∗.
Yielding the final case.

It remains to prove that the above fibrations are Jacobian. In all cases one easily
shows that D.ℓ1,6 = 1, hence ℓ1,6 is a section. ¤
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8. Possible configurations II

In this section we consider fibrations on X such that at least one of the special rational
curves is not a component of a singular fiber. This section yields the proof of Theorem 1.2.

Let π : X → P1 be a Jacobian elliptic fibration, such that at least one of the special
rational curves is not contained in a fiber.

Lemma 8.1. The group MW (π) is finite.

Proof. The proof of [52, Lemma 2.4] carries over. ¤

Lemma 8.2. Suppose one of the singular fibers of π is of type I∗
2k, III∗ or II∗. Then

all sections are special rational curves.

Proof. A section intersects a reducible fiber in a simple component with multiplicity
one. By Proposition 6.2 we know that all simple components in the above mentioned
singular fibers are ordinary rational curves. From Lemma 4.12 we know that two ordinary
rational curves intersect with even multiplicity, hence every section is a special rational
curve. ¤

Lemma 8.3. Let π : X → P1 be as above. Then the only fibers of type Iν are of
type I1 and I2, and no fiber of type I2 or type III contains a special rational curve as a
component.

Proof. From Proposition 6.2 we know that every fiber of type Iν , ν > 1 is of type
I2k, k ≥ 1

Without loss of generality we may assume that ℓ1 is not contained in a fiber of π,
hence intersects every fiber. Let F be a singular fiber of type I2k, k ≥ 1 or of type III,
containing a special rational curve.

Then ℓ1 intersects a reducible fiber in an ordinary rational curve, say D. If F is of type
I2k, k > 1 then D intersects two other components, and by Lemma 4.12 these components
are special rational curves. Let B =

∑

ℓi. Then D · B ≥ 3, contradicting Lemma 4.11.
Hence it is not possible to have a fiber of type I2k, k > 1 containing a special rational
curve. By Proposition 6.2 every singular fiber of type I2k, k > 1 contains a special nodal
curve, hence such a fiber does not occur.

If k = 1 or the fiber is of type III, then D intersects the other component twice, and,
by assumption, this component is special. Hence D·B ≥ 3, contradicting Lemma 4.11. ¤

From now on we study the possibilities for the fibration π. We distinguish eight
cases. In each case we suppose that π has a fiber F of a certain given Kodaira type. In
each case we study which other singular fibers can occur. Then we prove the existence
of the configuration by giving a divisor D such that the linear system |D| gives the
desired fibration. First, we determine the fiber types of fibers containing a special rational
curve. Observe that by Proposition 6.2 all singular fibers, not containing special rational
curves, are of type III, I2, II or I1. Using the Shioda-Tate formula (Theorem 1.2.11)
and Noether’s formula (Theorem 1.2.7) we can determine the quantities iii + i2 and
3iii + 2i2 + 2ii + i1.

For existence proofs we use Proposition 6.2.

Definition 8.4. An end-component C of a fiber F is a component C intersecting the
support of F \ C transversally in one point.
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In the sequel we use that if an end-component of a fiber is a ordinary rational curve,
then this component has to intersect a special rational curve, not contained in the fiber.
This follows immediately from Lemma 4.11.

In order to determine the Mordell-Weil group, we use Lemma 8.2.

8.1. II∗. In this case four special rational curves are contained in F . Using Propo-
sition 6.2 it follows that there are three end-components E1, E2, E3, of which E1 and
E2 are ordinary rational curves, and E1 is a simple component. This means that the
zero-section is a special nodal curve, say D1, and E2 intersects a special nodal curve, not
contained in F and different from D1, say D2. This yields that F · D1 = 1, F · D2 = 3.
All other fibers are of type II, III, I1, I2, yielding case 2.1. For example take D =
ℓ1,5 + 2ℓ1 + 3ℓ1,2 + 4ℓ2 + 5ℓ2,3 + 6ℓ3 + 4ℓ3,4 + 2ℓ4 + 3ℓ3,6. Then ℓ5 is a section and ℓ6

is a trisection.

8.2. III∗. In this case three special rational curves are contained in F . At least two
special rational curves have positive intersection number with F .

Suppose that two special rational curves are sections, then the third special rational
curve is a multisection and all other fibers are of type II, III, I1, I2. For example, take
D = ℓ3,4 + 2ℓ3 + 3ℓ1,3 + 4ℓ1 + 2ℓ1,5 + 3ℓ1,2 + 2ℓ2 + ℓ2,6. Then ℓ4 and ℓ6 are sections. This
gives the case 2.2.

If precisely one special rational curve is a section, then there is a special rational which
is a multisection, and one special rational curve which is contained in some singular fiber.
Since the multisection and the section intersect the fiber four times, this fiber cannot be
of type III or I2, so it is of type I∗

0 . All other fibers are of type II, III, I1, I2. For example
take D = ℓ3,4 + 2ℓ3 + 3ℓ1,3 + 4ℓ1 + 2ℓ1,5 + 3ℓ1,2 + 2ℓ2 + ℓ2,5. This gives case 2.3. In this
case ℓ4 is a section.

8.3. IV ∗. In this case F contains four special rational curves. The other two special
rational curves do not intersect this fiber, so they are components of other singular fibers,
hence all special rational curves are components, contradicting our assumptions.

8.4. I∗
6 . In this case F has four special rational curves as components. One special

rational curve is a section and one a multisection. All other fibers are of type III, I2, II
and I1. For example take D = ℓ1,5+ℓ1,6+2ℓ1+2ℓ1,2+2ℓ2+2ℓ2,3+2ℓ3+2ℓ3,4+2ℓ4+ℓ4,5+µ1,3

2,6.
The curve ℓ6 is a section. This gives case 2.4.

8.5. I∗
4 . In this case F has three special rational curves as components. Either three

or two of the other special curves intersect any fiber.
If all three special curves intersect any fiber then all other singular fibers are of type

III, I2, II, I1. For example take D = ℓ1,5 + ℓ1,4 +2ℓ1 +2ℓ1,2 +2ℓ2 +2ℓ2,3 +2ℓ3 + ℓ3,5 + ℓ3,6.
In this case ℓ4 and ℓ6 are sections. This gives case 2.5.

If two special curves intersect any fiber, then one of the special curves is again a
component of a singular fiber. Since the two other special rational curves intersect any
fiber four times, this fiber cannot be of type I2 or III, so it is a fiber of type I∗

0 . For
example take D = ℓ1,5 + ℓ1,4 + 2ℓ1 + 2ℓ1,2 + 2ℓ2 + 2ℓ2,3 + 2ℓ3 + ℓ3,5 + µ1,6

2,4. In this case, ℓ4

is a section. This gives case 2.6.
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8.6. I∗
2 . In this case F fiber has 2 special curves as components.

If 4 special curves intersect any fiber then all other singular fibers are of type III, I2,
II, I1. For example take

D = ℓ1,3 + ℓ1,4 + 2ℓ1 + 2ℓ1,2 + 2ℓ2 + ℓ2,5 + ℓ2,6.

Then ℓi, i = 3, . . . , 6 are sections. From [47, Corollary VII.3.3] it follows that MW (π) 6∼=
Z/4Z. This gives case 2.7.

If 3 special curves intersect any fiber then there is one special rational curve D1 not
intersecting the fiber and not contained in the F . From this it follows that D1 is a
component of a fiber of type I∗

0 . All other fibers are of type II, III, I1, I2. For example
take D = ℓ1,3 + ℓ1,4 + 2ℓ1 + 2ℓ1,2 + 2ℓ2 + ℓ2,4 + ℓ2,5. Then ℓ3 and ℓ5 are sections, This gives
case 2.8.

If 2 special curves intersect any fiber then there are two remaining special rational
curves D1, D2, with F ·D1 = F ·D2 = 0. If D1 and D2 are components of the same fiber,
then this fiber is of type I∗

2 . For example take D = ℓ1,3 +ℓ1,4 +2ℓ1 +2ℓ1,2 +2ℓ2 +ℓ2,4 +µ1,5
3,6.

Then ℓ5, ℓ6 and ℓ5,6 are components of another singular fiber, which has to be of type I∗
2 .

Then ℓ3 is a section. This gives case 2.9.
If D1 and D2 are in different fibers then they are both components of fibers of type I∗

0 .
For example take D = ℓ1,3 + ℓ1,4 +2ℓ1 +2ℓ1,2 +2ℓ2 + ℓ2,4 +C ′, with C ′ the strict transform
of ϕ′−1(C), with C the the conic through P1,3P1,5P2,3P4,6P5,6. The curves ℓ3,5, ℓ3,6, ℓ5, ℓ6

are components of some singular fibers. Since F · ℓ3 = 1, they are components of two
distinct fibers. This gives case 2.10.

8.7. I∗
0 . In this case F contains only one special rational curve. Each ordinary com-

ponent intersects only one special rational curve not contained in F . Hence there are at
most 4 special curves intersecting F .

If there are four special rational curves Di, with F ·Di > 0, then the remaining special
rational curve is a component of a fiber, which has to be of type I∗

0 . There are still six
components of fibers left. The only way to arrange them is with 6 I2 fibers. For example
take D = 2ℓ1 +

∑5
k=2 ℓ1,k, then D′ = 2ℓ6 +

∑5
k=2 ℓk,6 is another singular fiber. The

rational curves ℓk, k = 2, . . . , 5 are sections. From [47, Corollary VII.3.3] it follows that
MW (π) 6∼= Z/4Z. This gives case 2.11.

If there are three special rational curves Di, with F ·Di > 0, then the two other special
rational curves are components of some singular fiber. If both components are in the same
fiber then that fiber is of type I∗

2 (which is handled above), otherwise the fibers containing
the special rational curves are of type I∗

0 . So we have in total 3 fibers of type I∗
0 . All

other fibers are of type II, III, I1, I2. For example take D = µ2,3
5,6 + ℓ1,4 + ℓ1,5 + ℓ1,6 + 2ℓ1.

Then none of ℓ2, ℓ2,4, ℓ2,5, ℓ2,6, ℓ3, ℓ3,4, ℓ3,5, ℓ3,6 intersect a fiber. Hence they are components
of two I∗

0 fibers. The curves ℓ5 and ℓ6 are sections. This gives case 2.12.
If there are two special rational curves Di, with F ·Di > 0, then the three other special

curves D′
i are components of some singular fibers.

If all D′
i’s are contained in the same fiber, then that fiber is either of type III∗ (which

we already handled) or of type I∗
4 (which we also handled above).

If all D′
i’s are contained in two singular fibers then we obtain one fiber of type I∗

2 and
one of I∗

0 . This case we handled above.
If all D′

i’s are contained in three singular fibers then all three fibers are of type I∗
0 ,

which is impossible, since then the Picard number of X would be at least 18.
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8.8. Only I2 and III. From the Shioda-Tate formula (Theorem 1.2.11) it follows
that there are ρ(X) − 2 − rank MW (π) = 14 singular fibers of type I2 or III. From
Noether’s formula 1.2.7 it follows that then 24 = 12pg(X) + 12 =

∑

vp(∆p) ≥ 2 · 14 = 28.
A contradiction. Hence this does not occur.





CHAPTER 6

The p-part of Tate-Shafarevich groups of elliptic curves can be

arbitrarily large

A paper based on this chapter will appear in the Journal de théorie des nombres de
Bordeaux [35].

1. Introduction

For the notations used in this introduction we refer to Section 3. Some of the general
ideas behind this chapter are mentioned in the Introduction of this Thesis.

The aim of this chapter is to give a proof of

Theorem 1.1. There is a function g from the prime numbers to the positive integers,
such that for every prime number p the dimension dimFp

X(E/K)[p], taken over number
fields K of degree at most g(p) and elliptic curves E/K, is unbounded.

The proof of this theorem starts on page 85. Using Weil restriction of scalars, we
obtain as an easy consequence (see page 87).

Corollary 1.2. For every prime number p there exist abelian varieties A/Q, with
dim A ≤ g(p) and A is simple over Q, such that dimFp

X(A/Q)[p] is arbitrarily large.

In fact, a rough estimate using the present proof reveals that g(p) = O(p4). It is
an old open question whether g(p) can be taken 1, i.e., for any p, the p-torsion of the
Tate-Shafarevich groups of elliptic curves over Q are unbounded.

For p ∈ {2, 3, 5}, it is known that the group X(E/Q)[p] can be arbitrarily large.
(See [11], [13], [23] and [40].) So we may assume that p > 5, in fact, our proof only
uses p > 3. The above mentioned papers (except [23]) use heavily the fact that one can
find explicit equations for the homogeneous spaces associated to elements in the p-part
Tate-Shafarevich group, if p ∈ {2, 3, 5}. We use a different strategy, which we mention
below.

P.L. Clark communicated to the author that, after seeing an earlier version of this
chapter, he proved by different methods that for every elliptic curve E/K, such that
E(K)[p] ∼= (Z/pZ)2 we have that X(E/L)[p] is arbitrarily large if L runs over all extension
of K of degree p, but E remains fixed (see [16]). This gives a sharper bound in the case
that E has potential complex multiplication. The elliptic curves we describe in the proof
of theorem 1.1 all have several primes p of K for which the reduction at p is split-
multiplicative, namely a certain multiple of the k in the estimate of Theorem 1.1. Hence
these curves do not have potential complex multiplication. Another difference is explained
in Remark 4.6.

The proof of Theorem 1.1 is based on combining the strategy used in [23] to prove
that the dimension (over F5) of X(E/Q)[5] can be arbitrarily large and the strategy used

75
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in [38] to prove that dimFp
Sp(E/K) can be arbitrarily large, where E and K vary, but

[K : Q] is bounded by a function depending on p of type O(p).
In [38] the strategy was to find a field K, such that [K : Q] is small and a point

P ∈ X0(p)(K) such that P reduces to one cusp for many primes p and reduces to the
other cusp for very few primes p. Then to P we can associate an elliptic curve E/K such
that an application of a Theorem of Cassels [14] shows that Sp(E/K) gets large.

The strategy of [23] can be described as follows. Suppose K is a field with class
number 1. Suppose E/K has a K-rational point of order p, with p > 3 a prime number.
Let ϕ : E → E ′ be the isogeny obtained by dividing out the group generated by a point
of order p. Then one can define a Fp-linear transformation T from some subgroup of
K∗/K∗p to another subgroup of K∗/K∗p, such that the ϕ-Selmer group is isomorphic to
the kernel of T , while the ϕ̂-Selmer group is isomorphic to the kernel of an adjoint of T .
One can then show that the rank of E(K) and of E ′(K) is bounded by the number of
split multiplicative primes minus twice the rank of T minus 1.

Moreover, one can prove that if the difference between the dimension of the domain of
T and the domain of the adjoint of T is large, then the dimension of the p-Selmer group
of one of E,E ′ is large. If one has an elliptic curve with two rational torsion points of
prime order p and q respectively (or full p-torsion, if one wants to take p = q), one can
hope that for one isogeny the associated transformation has high rank, while for the other
isogeny the difference between the dimension of the domain of T and its adjoint is large.
Fisher uses points on X(5) to find elliptic curves E/Q with two isogenies, one such that
the associated matrix has large rank, and the other such that the 5-Selmer group is large.

We generalize this idea to number fields, without the class number 1 condition. We
can still express the Selmer group attached to the isogeny as the kernel of a linear trans-
formation T . In general, the transformation for the dual isogeny turns out to be different
from any adjoint of T . This is in contrast to the case where the class number of K is one.
(As mentioned above, see also [23].)

Remark 1.3. Fix an element ξ of Sp(E/K). Set K ′ := K(E[p]). Restrict ξ to to
H1(K ′, E[p]), the latter group is isomorphic to Hom(GK′ , (Z/pZ)2). Then ξ gives a Galois
extension L of K(E[p]) of degree p or p2, satisfying certain local conditions. (For the case
of a cyclic isogeny, these conditions are made more precise in Proposition 3.5.) To check
whether a given class in H1(K ′, E[p]) comes from an element in Sp(E/K) we need to
check whether the Galois group of L/K ′ interacts in some prescribed way with the Galois
group of K ′/K.

The examples of elliptic curves with large Selmer and large Tate-Shafarevich groups in
[23], [38] and in this chapter have one thing in common, namely that the representation
of the absolute Galois group of K on E[p] is reducible. In this case the conditions on the
interaction of the Galois group of K ′/K with the Galois group of L/K ′ almost disappear.

The level of difficulty to construct large p-Selmer groups (and large p-parts in the Tate-
Shafarevich groups) seems to depend on the size of the image of the Galois representation
on the full p-torsion of E.

To support this idea, we note that the above mentioned constructions give examples
where the image of this representation is very small. Elliptic curves E/K with complex
multiplication over a proper extension L/K have an irreducible Galois-representation on
E[p] for all but finitely many p, but the image of the representation is strictly smaller
than GL2(Fp).
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In view of the above remarks it seems that if one would like to produce examples of
elliptic curves with large p-Selmer groups, and an irreducible representation of the Galois
group on E[p], one could start with the case of elliptic curves with complex multiplication
over some proper extension. Unfortunately, we do not have a strategy to produce such
examples.

The organization of this chapter is as follows: In Section 2 we discuss some properties
of Tamagawa numbers. In Section 3 we prove several lower and upper bounds for the size
of ϕ-Selmer groups, where ϕ is an isogeny with kernel generated by a rational point of
prime order at least 5. In Section 4 we use the modular curve X(p) and the estimates
from Section 3 to prove Theorem 1.1.

2. Tamagawa numbers

In this section we study the behavior of Tamagawa numbers under isogeny. Let K be
a number field. Let p be a prime of K. Let Kp be the completion of K with respect to p.
Let E/Kp be an elliptic curve.

Notation 2.1. Let E0(Kp) denote the group of Kp-rational points with non-singular
reduction with respect to a minimal Weierstrass equation for E over Kp (see [72, Ch.
VII]). Define the Tamagawa number cE,p to be #E(Kp)/E0(Kp).

We denote the discriminant of a given Weierstrass equation of the elliptic curve E by
∆(E). We denote the minimal discriminant of E at the prime p by ∆p(E).

Definition 2.2. Let Ẽ be the irreducible curve obtained by reducing a Weierstrass
minimal equation for E modulo p.

We say that

• E has good reduction if Ẽ is smooth,
• E has additive reduction if Ẽ is a cuspidal curve,
• E has split multiplicative reduction if Ẽ is a nodal curve and the generalized

tangents are defined over the residue field,
• E has non-split multiplicative reduction if Ẽ is a nodal curve and the generalized

tangents at the node are not defined over the residue field.

We assume that all valuations in this chapter are normalized, i.e., all valuations have
Z as their image.

Proposition 2.3. The Tamagawa number cE,p equals 1 when E has good reduction
at p. If the reduction is additive or non-split multiplicative then cE,p ≤ 4. If the reduction
at p is split multiplicative then cE,p = vp(∆p(E)) = −vp(j(E)).

Suppose ϕ : E → E ′ is an isogeny defined over Kp, Then
cE,p

cE′,p

=
∏

pni

i

with pi prime, pi divides deg(ϕ) and the ni are integers.

Proof. All statements except the last one can be found in [79, p. 46]. For the last
statement it suffices to show the statement for an isogeny ϕ of prime degree p. Then ϕ
induces a homomorphism of groups ϕ : E(Kq)/E0(Kq) → E ′(Kq)/E

′
0(Kq). Composing

this homomorphism with the homomorphism induced by the dual isogeny gives us that
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ker(ϕ) ⊂ [p]−1(E0(Kq)) mod E0(Kq). This implies that the # ker ϕ ∈ {1, p, p2}, and
similarly for the dual isogeny. Since the co-kernel of multiplication by p has at most 1, p
or p2 elements, we obtain that the number of elements of the co-kernel of ϕ̂ is also a p-th
power. Hence the quotient of the numbers of elements is a p-th power. ¤

Remark 2.4. If ϕ : E → E ′ is an isogeny of degree pn (with p prime) and p is bigger
than 3, then cE,p = cE′,p unless E has split multiplicative reduction at p.

Proposition 2.5. Let ϕ : E → E ′ be an isogeny of degree p > 2 over K. Suppose the
reduction at p is multiplicative. Then vp(∆p(E))/vp(∆p(E

′)) equals p or 1/p. The second
case occurs if and only if E(Kp)[ϕ] is contained in E0(Kp).

Proof. Suppose the reduction at p is non-split multiplicative. Then there exists a
degree 2 unramified extension L/Kp, such that E/L has split multiplicative reduction,
and the minimal discriminant of E/L is the same as the minimal discriminant of E/Kp.
So we may assume that the reduction is split multiplicative. Hence E is isomorphic to a
Tate curve Eq (see [73, Section V.3]).

Let q ∈ Kp be the Tate parameter for E/Kp, i.e., E(Kp) is isomorphic to Kp

∗
/〈q〉 and

E0(Kp) is isomorphic to O∗
Kp

mod 〈q〉 as Gal(Kp/Kp)-modules.

Over Kp( p
√

q, ζp) we have that Eq is isogenous to Eqp and E p
√

qζk
p
, with k = 0, . . . , p− 1

and ζp is a fixed primitive p-th root of unity. In the case Eq → Eqp the isogeny is induced
by the map on K∗

p given by x 7→ xp, in the other cases it is induced by projection. Hence

the kernel is generated by ζp, respectively, p
√

qζk
p and these isogenies are of degree p. From

this it follows that in the case Eq → Eqp , the kernel is contained in E0(Kp), and in all
other cases the kernel of the isogeny is not contained in E0(Kp).

Since there are at most p + 1 curves isogenous of degree p to E, we covered all possi-
bilities.

The statement follows from vp(∆p(Eq)) = vp(q). ¤

3. Selmer groups

In this section we give several upper and lower bounds for the p-Selmer group of an
elliptic curve E/K with a K-rational point of order p, and ζp ∈ K. We combine two
of these bounds to obtain a lower bound for dimFp

X(E/K)[p] (see Lemma 3.15). This
result is used in the next section.

Suppose K is a number field, E/K is an elliptic curve and ϕ : E → E ′ is an isogeny
defined over K. Let E[ϕ] denote the kernel of ϕ. Let H1(K,E[ϕ]) be the first cohomology
group of the Galois module E[ϕ].

Definition 3.1. The ϕ-Selmer group of E/K is

Sϕ(E/K) := ker H1(K,E[ϕ]) →
∏

pprime

H1(Kp, E).

and the Tate-Shafarevich group of E/K is

X(E/K) := ker H1(K,E) →
∏

pprime

H1(Kp, E).
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In this definition a prime means a finite or an archimedean prime. In the sequel
we consider only isogenies of odd prime degree. In that case H1(Kp, E[ϕ]) = 0 for all
archimedean primes p, so we may exclude the archimedean primes.

Notation 3.2. For the rest of this section fix a prime number p > 3, a number field
K such that ζp ∈ K and an elliptic curve E/K such that there is a non-trivial point
P ∈ E(K) of order p. Let ϕ : E → E ′ be the isogeny obtained by dividing out 〈P 〉. Let
ϕ̂ : E ′ → E be the dual isogeny.

To ϕ we associate three sets of primes. Let S1(ϕ) be the set of primes p ⊂ OK , such
that p does not divide p, the reduction of E is split multiplicative at p, and P ∈ E0(Kp).
Let S2(ϕ) be the set of primes p ⊂ OK , such that p does not divide p, the reduction of E
is split multiplicative at p, and P 6∈ E0(Kp). Let S3(ϕ) be the set of all primes above p.

From Proposition 2.5 if follows that we a split multiplicative prime p, not dividing p,
is in S1(ϕ) if and only if vp(∆p(E)) < vp(∆p(E

′)). (Notation as in the previous section.)
From this it follows that S1(ϕ̂) = S2(ϕ) and S2(ϕ̂) = S1(ϕ). (To define Si(ϕ̂) we need to
start with a K-rational point P of order p. Since ζp ∈ K, we have that #E ′(K)[ϕ̂] = p,
so we can take any generator P ′ of the kernel of ϕ̂.) If no confusion arises we write S1

and S2 for S1(ϕ) and S2(ϕ).

Notation 3.3. Suppose S is a finite sets of finite primes. Let

K(S, p) := {x ∈ K∗/K∗p : ∀p 6∈ S, p non-archimedean , vp(x) ≡ 0 mod p}.
Let CK denote the class group of K. Denote GK the absolute Galois group of K.

Let M be a GK-module. Let H1(K,M ;S) be the subgroup of H1(K,M) of all classes of
cocycles not ramified outside S, i.e., all cocycles such that the restriction to H1(Ip,M) is
trivial for all archimedean primes p 6∈ S, where Ip ⊂ Gal(K/K) is the inertia subgroup.

For any cocycle ξ ∈ H1(K,M) denote ξp := resp(ξ) ∈ H1(Kp,M). Let δp be the map

E ′(Kp)/ϕ(E(Kp)) → H1(Kp, E[ϕ])

induced by the boundary map, coming from the short exact sequence

0 → E[ϕ] → E → E ′ → 0.

Recall the following proposition of Schaefer and Stoll:

Proposition 3.4 ([60, Proposition 4.6]). Let ψ : E → E ′ be an isogeny of degree
pt defined over K, for some t ∈ Z>0. Let S be the set of primes p such that p divides
cE,pcE′,p or p divides (p). Then

Sψ(E/K) = ker H1(K,E[ψ]; S) → ⊕p∈S(H1(Kp, E[ψ])/ Im(δp)).

Sketch of the proof. Consider the factorization

H1(K,E[ψ]) → H1(Kp, E[ψ])
ι∗p→ H1(Kp, E).

From the long exact sequence in Galois cohomology it follows that the kernel of ι∗p is
isomorphic to E ′(Kp)/ψ(E(Kp)).

Then one shows the followings results.

• The unramified subgroup of H1(Kp, E[ψ]) has the same number of elements as
the number of Kp-rational points in the kernel ψ.
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• If P is a point of E ′
0(Kp) and (p) does not divide p then δp(P mod ψ(E(Kp)) is

in the unramified subgroup.
• # Im(δp) = #E(Kp)[ψ]

cE′,p

cE,p
.

A short argument suffices to show that if p ∤ (p) and p ∤ cE′,pcE,p (i.e., p 6∈ S) then Im(δp)
is the unramified subgroup of H1(Kp, E[ψ]) which yields the proof. ¤

In the case of an isogeny of prime degree one obtains a stronger corollary, where S1, S2

and S3 are as defined above:

Proposition 3.5. Let ψ : E → E ′ be a cyclic isogeny then Sψ(E/K) is the kernel of

H1(K,E[ψ]; S1 ∪ S3) → ⊕p∈S2
H1(Kp, E[ψ]) ⊕p∈S3

(H1(Kp, E[ψ])/ Im(δp)).

Proof. Suppose p is a prime such that p divides the Tamagawa number cE,pcE′,p. By
assumption we have p ≤ max{cE,p, cE′,p} and p > 4, hence Proposition 2.4 implies that
the reduction at p is split multiplicative. Conversely, Proposition 2.5 shows that for all
primes p such that E has split multiplicative reduction we have that p divides cE,pcE′,p.
Combining these two facts, we obtain that the set S of Proposition 3.4 equals the union
S1 ∪ S2 ∪ S3.

By Proposition 3.4 it suffices to show that if p ∈ S1 then Im(δp) = H1(K,E[ψ])
and if p ∈ S2 then Im(δp) = 0. (The latter statement implies in particular that every
ξ ∈ Sψ(E/K) is unramified at every prime p ∈ S2: since Im(δp) = 0, we have by
Proposition 3.4 that resp(ξ) = 0, hence the restriction to the inertia subgroup is 0, so ξ is
unramified at p.)

If p ∈ S1 ∪ S2 then p ∤ (p). From [83, Proposition 3] it follows that

dimFp
H1(Kp, E[ψ]) ≤ 2.

Using [59, Lemma 3.8] one obtains

# Im(δp) = #E(Kp)[ψ]
cE′,p

cE,p

= p
cE′,p

cE,p

.

If p ∈ S1 then Proposition 2.5 implies that cE′,p = pcE,p, hence

p2 = # Im(δp) ≤ #H1(K,E[ψ]) ≤ p2

from which we deduce that Im(δp) = H1(K,E[ψ]).
If p ∈ S2 then Proposition 2.5 implies that pcE′,p = cE,p, hence Im(δp) = 0. ¤

Remark 3.6. Proposition 3.5 is false when the degree of the isogeny is 2 or 3. For
degree 3 Proposition 3.4 is valid.

We will indicate why Proposition 3.5 is false for degree 2 and 3. First of all, if the degree
is 2, one needs to include conditions for the archimedean primes. Moreover, one needs to
give conditions for non-split multiplicative primes (if the degree is 2) and conditions for
the additive primes (if the degree is either 2 or 3).

Consider for example the curve y2 = x(x2 + ax + a), for some square-free odd integer
a. Let ψ be the isogeny obtained by dividing out {O, (0, 0)}. Then S2 is an empty set,
and S1 consists of a subset of all primes dividing a − 4. We can twist this curve such
that S2 remains empty and all multiplicative primes are split. If the above proposition
were true for degree 2, then the size of the ψ-Selmer group would depend on the number
of prime factors of a − 4. Using [72, Proposition X.4.9] one can produce a such that the
ψ-Selmer group is much smaller than the kernel given in Proposition 3.5.
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Definition 3.7. Let S1 and S2 be two disjoint finite sets of finite primes of K, such
that none of the primes in these sets divides (p).

Let

T = T (S1,S2) : K(S1, p) → ⊕p∈S2
O∗

p/O∗p
p

be the Fp-linear map induced by inclusion. Let m(S1,S2) be the rank of T . In the special
case of an isogeny ϕ : E → E ′ with associated sets S1(ϕ) and S2(ϕ) as above we write
m(ϕ) := m(S1(ϕ), S2(ϕ)).

Lemma 3.8. We have

dimFp
K(S, p) =

1

2
[K : Q] + #S + dimFp

CK [p]

Hence the domain of T is finite-dimensional.

Proof. Since ζp ∈ K we have that K does not admit any real embedding. The above
formula is a special case of [56, Proposition 12.6]. ¤

Proposition 3.9. We have

Sϕ(E/K) ⊂ {x ∈ K(S1 ∪ S3, p) : x = [1 mod K∗p
p ] for all p ∈ S2} = ker T (S1 ∪ S3, S2)

and

Sϕ(E/K) ⊃ {x ∈ K(S1, p) : x = [1 mod K∗p
p ] for all p ∈ S2 ∪ S3} = ker T (S1, S2 ∪ S3).

Proof. This follows from the identification E[ϕ] ∼= Z/pZ ∼= µp, the fact H1(L, µp) ∼=
L∗/L∗p for any field L of characteristic different from p (see [64, X.3.b]), and Proposi-
tion 3.5. ¤

Proposition 3.10. We have

#S1 − #S2 + dimFp
CK [p] − 3

2
[K : Q] ≤ dimFp

Sϕ(E/K)

≤ #S1 + dimFp
CK [p] − m(ϕ) +

3

2
[K : Q].

Proof. Using Hilbert 90 [64, Proposition X.2] we have that

dimO∗
p/O∗p

p = dim H1(Kp, µp) − 1.

Using [83, Proposition 3] we obtain that dimH1(Kp, µp) = 2 + e(p/p), where e(p/p) is
the ramification index of p/p if p divides p and zero otherwise. This yields

dim⊕p∈S3
O∗

p/O∗p
p =

∑

p∈S3

1 + e(p/p) ≤ 2[K : Q].

The above bounds combined with Lemma 3.8 and Proposition 3.9 give us

dimFp
Sϕ(E/K) ≥ dimFp

K(S1, p) − #S2 − #S3 ≥ −3

2
[K : Q] +

+#S1 + dimFp
CK [p] − #S2

For the other inequality, we obtain using Proposition 3.9

dimFp
Sϕ(E/K) ≤ dimFp

ker T (S1 ∪ S3, S2) ≤ dimFp
K(S1 ∪ S3, p) − m(ϕ).
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Since #S3 ≤ [K : Q], another application of Lemma 3.8 to the right hand side of this
inequality yields

dimFp
Sϕ(E/K) ≤ #S1 + dimFp

CK [p] − m(ϕ) +
3

2
[K : Q].

¤

Lemma 3.11. We have

rank E(K) ≤ #S1(ϕ) + #S2(ϕ) + 2 dimFp
CK [p] + 3[K : Q] − m(ϕ) − m(ϕ̂) − 1.

Proof. Consider the following sequences of inequalities

1 + rank E(K) ≤ dimFp
E(K)/pE(K)

≤ dimFp
Sp(E/K)

≤ dimFp
Sϕ(E/K) + dimFp

Sϕ̂(E ′/K).

The first inequality follows from the fact that E(K) has p-torsion, the second one follows
from the long exact sequence in cohomology associated to 0 → E[p] → E → E → 0 and
the third one follows from the exact sequence

0 → E ′(K)[ϕ̂]/ϕ(E(K)[p]) → Sϕ(E/K) → Sp(E/K) → Sϕ̂(E ′/K).

(See [60, Lemma 9.1].)
Applying Proposition 3.10 gives

dimFp
Sϕ(E/K) + dimFp

Sϕ̂(E ′/K) ≤
≤ #S1(ϕ) + #S1(ϕ̂) + 2 dimFp

CK [p] + 3[K : Q] − m(ϕ) − m(ϕ̂).

¤

By a theorem of Cassels we can compute the difference of the dimension of Sϕ(E/K)
and Sϕ̂(E ′/K). We do not need the precise difference, but only an estimate, namely

Lemma 3.12. There is an integer t, with |t| ≤ 2[K : Q] + 1 such that

dimFp
Sϕ̂(E ′/K) = dimFp

Sϕ(E/K) − #S1(ϕ) + #S2(ϕ) + t.

Proof. This follows from [14] combined with Proposition 2.5. ¤

Lemma 3.13.

dimFp
Sϕ(E/K) + dimFp

Sϕ̂(E ′/K) ≥ |#S1 − #S2| + 2 dimFp
CK [p] − 5[K : Q] − 1.

Proof. After possibly interchanging E and E ′ we may assume that #S1 ≥ #S2.
From Proposition 3.10 we know

dimFp
Sϕ(E/K) ≥ #S1 − #S2 + dimFp

CK [p] − 3

2
[K : Q].

From this inequality and Lemma 3.12 we obtain that

dimFp
Sϕ̂(E ′/K) ≥ dimFp

Sϕ(E/K) − 2[K : Q] − 1 − #S1 + #S2

≥ dimFp
CK [p] − 7

2
[K : Q] − 1.

Summing both inequalities gives the Lemma. ¤
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Lemma 3.14. Let s := dimFp
Sϕ(E/K) + dimFp

Sϕ̂(E ′/K) − 1 and r := rank E(K),
then

max(dimFp
X(E/K)[p], dimFp

X(E ′/K)[p]) ≥ (s − r)

2
.

Proof. The exact sequence

0 → E ′(K)[ϕ̂]/ϕ(E(K)[p]) → Sϕ(E/K) → Sp(E/K) →
→ Sϕ̂(E ′/K) → X(E ′/K)[ϕ̂]/ϕ(X(E/K)[p])

(See [60, Lemma 9.1]) implies

dimFp
X(E ′/K)[ϕ̂] + dimFp

Sp(E/K) ≥ s − 1 + dimFp
E(K)[p].

The lemma follows now from the following inequality coming from the long exact sequence
in Galois cohomology

dimFp
X(E ′/K)[p] + dimFp

X(E/K)[p] ≥
≥ dimFp

X(E ′/K)[ϕ̂] + dimFp
Sp(E/K) − r − dimFp

E(K)[p].

¤

Lemma 3.15. Let ψ : E1 → E2 be some isogeny obtained by dividing out the group
generated by a K-rational point of order p, with E1 is K-isogenous to E. Then

max(dimFp
X(E/K)[p], dimFp

X(E ′/K)[p]) ≥

≥ −min(#S1(ϕ), #S2(ϕ)) − 5[K : Q] − 1 +
1

2
(m(ψ) + m(ψ̂)).

Proof. Use Lemma 3.11 for the isogeny ψ to obtain the bound for the rank of E(K).
Then combine this with Lemma 3.13 and Lemma 3.14 and use that

#S1(ϕ) + #S2(ϕ) = #S1(ψ) + #S2(ψ).

¤

4. Modular curves

In this section we prove Theorem 1.1. We construct certain fields K/Q such that
X(p)(K) contains points with certain reduction properties. These reduction properties
translate into certain properties of elliptic curves E/K admitting two cyclic isogenies
ϕ, ψ such that m(ψ) is much larger then min(#S1(ϕ), #S2(ϕ)) (notation from the pre-
vious section). Then applying the results of the previous section one obtains a proof of
Theorem 1.1.

The following result will be used in the proof of Theorem 1.1.

Theorem 4.1 ([27, Theorem 10.4]). Let f ∈ Z[X] be a polynomial of degree at least
1. Let d be the number of irreducible factors of f . Suppose that for every prime ℓ, there
exists a y ∈ Z/ℓZ such that f(y) 6≡ 0 mod ℓ. Then there exists a constant n depending on
the degree of f such that there exist infinitely many primes ℓ, such that f(ℓ) has at most
n prime factors. Moreover, let

h(x) := #{y ∈ Z : 0 ≤ y ≤ x and the number of prime factors of f(y) is at most n}
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then there exist δ > 0, such that

h(x) ≥ δ
x

logd x

(

1 + O

(

1
√

log(x)

))

as x → ∞.

Any improvement on the constant n in the Theorem will give a better function g(p)
(notation from Theorem 1.1), but the new g(p) will still be of type O(p4).

The proofs for most of the below mentioned properties of X0(p) and X(p) can be
found in [68] or [81]. See also [22, Chapter 4].

Notation 4.2. Denote by X(p)/Q the compactification of the curve parameterizing
pairs ((E,O), f) where (E,O) is an elliptic curve and f is an isomorphism of group
schemes f : Z/pZ×µp → E[p] with the property that ζax−by = e(f(x, ζa), f(y, ζb)), where
e : E[p]×E[p] → µp is the Weil-pairing and ζ is a fixed primitive p-th root of unity. One
regards X(p) as the curve “parameterizing elliptic curves with a symplectic structure on
the p-torsion”. This definition forces X(p) to be absolutely irreducible.

Let H be the Gal(Q/Q)-invariant Borel subgroup of Aut(X(p) ⊗ Q) = SL2(Z/pZ),
which fixes ((E,O), f |Z/pZ×{1}). Denote by X0(p)/Q the curve obtained by taking the
quotient of X(p) under the action of H. The curve X0(p) is a coarse moduli space for
pairs ((E,O), ϕ) where ϕ : E → E ′ is an isogeny of degree p. (See for example [43,
Chapter 2].)

Let R1 ∈ X0(p) be the unramified cusp (classically called ‘infinity’). Let R2 ∈ X0(p)
be the ramified cusp.

Let πi : X(p) → X0(p) be the morphism obtained by mapping (E, f) to (E,ϕi) where
ϕi is the isogeny obtained by dividing out by f(Z/pZ×{1}) when i = 1, and f({0}×µp)
when i = 2. The maps πi are defined over Q.

Let P ∈ X(p) be a point, which is not a cusp. Let EP be the elliptic curve correspond-
ing to P . For i = 1, 2 define the isogeny ϕP,i : EP → E ′

P in such a way that (EP , ϕP,i)
represents the point πi(P ) ∈ X0(p).

Definition 4.3. Let T be a cusp of X(p). We say that T is of type (δ, ǫ) ∈ {1, 2}2 if
π1(T ) = Rδ and π2(T ) = Rǫ.

Being of type (δ, ǫ) is invariant under the action of the absolute Galois group of Q,
since the morphisms πi are defined over Q and the cusps on X0(p) are Q-rational.

Suppose T is a cusp of type (δ, ǫ). Then for all number fields K/Q(ζp) and all points
P ∈ X(p)(K) we have that if p ∤ (p) is a prime of K such that P ≡ T mod p then
p ∈ Sδ(ϕP,1) and p ∈ Sǫ(ϕP,2). This statement can be shown by an easy consideration on
the behavior of the Tate-parameter q of the curve representing the point P ∈ X(p)(K)
and the relation between q and the j-invariant. (Compare the proof of Proposition 2.5.)

Lemma 4.4. X(p) has (p− 1)/2 cusps of each of the types (2, 1) and (1, 2). The other
(p − 1)2/2 cusps are of type (2, 2). All cusps of type (1, 2) are Q-rational.

Proof. A cusp of type (1, 1) would give rise to elliptic curves E/Kp, with multiplica-
tive reduction such that its reduction modulo p has (Z/pZ)2 as a subgroup, but over an
algebraically closed field L of characteristic p, we have #E(L)[p] ≤ p, a contradiction.
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The ramification index of every point in π−1
i (R1) is p, hence there are (p− 1)/2 points

in π−1
i (R1). From this it follows that there exists (p− 1)/2 cusps of type (1, 2) and (2, 1),

respectively. The remaining cusps are of type (2, 2).
An argument as in [57, page 44 and 45] shows that there is a cusp of type (1, 2) that

is Q-rational. From this it follows that all cusps of type (1, 2) are Q-rational. (See [22,
Chapter 4].) ¤

Proof of Theorem 1.1. In this proof the word cusp is used to indicate points P
on X(p) such that j(P ) = ∞ for the usual map j : X(p) → X(1).

Let D be a divisor on X(p) satisfying the following properties:

• D is effective;
• D is invariant under GQ;
• the support of D is contained in the set of cusps of type (1, 2);
• the dimension of the linear system |D| is at least 2;
• the morphism ϕ|D| : X(p) → Pn is injective at almost all geometric points of

X(p).

Let L be a 2-dimensional linear subsystem of |D| containing D and such that the cor-
responding morphism is injective at almost all geometric points. Let C ⊂ P2 be the
image of X(p) given by L. We may assume that the intersection of the line X = 0
with C is precisely D. An automorphism ψ of P2 fixing the line X = 0, is of the form
[X,Y, Z] 7→ [a1X, b1X + b2Y + b3Z, c1X + c2Y + c3Z]. It is easy to see that we can choose
a1, bi, ci in such a way that none of the cusps is on the line Z = 0, and the function
x = X/Z takes distinct values at any pair of cusps with x 6= 0. So we may assume that
we have a fixed (possibly singular) model C/Q for X(p) in P2, such that the line X = 0
intersects C only in cusps of type (1, 2) and no other points, all x-coordinates of other
the cusps are distinct and finite, and all y-coordinates of the cusps are finite. Denote
H ∈ Z[X,Y, Z] a defining polynomial of C. Set h(x, y) := H(X,Y, 1).

Let fδ,ǫ ∈ Z[X] be the square-free polynomial with roots all x-coordinates of the cusps
of type (δ, ǫ) of X(p) and content 1. After a simultaneous transformation of the fδ,ǫ of the
form x 7→ cx, we may assume that f2,1(0) = 1 and f2,1 ∈ Z[X]. Let n denote the constant
of Theorem 4.1 for the polynomial f2,1. The discriminant of f1,2f2,1f2,2 is non-zero, since
every cusp has only one type and all cusps have distinct x-coordinate.

Let B consist of p, all primes ℓ dividing the leading coefficient or the discriminant of

f1,2f2,1f2,2,

all primes ℓ smaller than the degree of f2,1 and all primes dividing the leading coefficient
of res(h, f2,2, x), the resultant of h and f2,2 with respect to x.

Let P2 be the set of primes ℓ not in B such that every irreducible factor of f2,1(x)(xp−
1) mod ℓ and every irreducible factor of res(h, f2,1, x) mod ℓ has degree 1. Note that by
Frobenius’ Theorem ([77]) the set P2 is infinite. The condition mentioned here, implies
that if we take a triple (x0, ℓ, y0) with x0 ∈ Z, the prime ℓ ∈ P2 divides f2,1(x0) and y0 is
a zero of h(x0, y) then every prime q of Q(ζp, y0) over ℓ satisfies f(q/ℓ) = 1, where f(q/ℓ)
denotes the degree of the extension of the residue fields.

Fix S1 and S2 two finite, disjoint sets of primes, not containing a archimedean prime
such that

m(S1,S2) ≥ 2k + 2(n + 5) deg(h)(p − 1) + 2,
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S1 ∩ B = ∅ and S2 ⊂ P2, with m(S1,S2) as defined in Section 3. (The existence of such
sets follows from Dirichlet’s theorem on primes in arithmetic progression and the fact that
ℓ ∈ S2 implies ℓ ≡ 1 mod p.)

Lemma 4.5. There exists an x0 ∈ Z such that

• x0 ≡ 0 mod ℓ, for all primes ℓ smaller than the degree of f2,1 and all ℓ dividing
the leading coefficient of f2,1.

• x0 ≡ 0 mod ℓ, for all ℓ ∈ S1,
• f2,2(x0) ≡ 0 mod ℓ, for all ℓ ∈ S2,
• f2,1(x0) has at most n prime divisors.
• h(x0, y) is irreducible.

Proof. The existence of such an x0 can be proven as follows. Take an a ∈ Z satisfying
the above three congruence relations. Take b to be the product of all primes mentioned
in the above congruence relations. Define f̃(Z) = f2,1(a+ bZ). We claim that the content

of f̃ is one. Suppose ℓ divides this content. Then ℓ divides the leading coefficient of f̃ .
From this one deduces that ℓ divides b. We distinguish several cases:

• If ℓ ∈ Si then fi,2(a) ≡ 0 mod ℓ and ℓ does not divide the discriminant of the

product of the fδ,ǫ, so we have f̃(0) ≡ f2,1(a) 6≡ 0 mod ℓ.

• If ℓ divides b and ℓ is not in S1 ∪ S2 then f̃(0) ≡ f2,1(0) ≡ 1 mod ℓ.

So for all primes ℓ dividing b we have that f̃ 6≡ 0 mod ℓ. This proves the claim on the
content of f̃ .

Suppose ℓ is a prime smaller than the degree of f̃ , then f̃(0) ≡ 1 mod ℓ holds. If ℓ

is different from these primes, then there is a coefficient of f̃ which is not divisible by
ℓ and the degree of f̃ is smaller than ℓ. So for every prime ℓ there is an zℓ ∈ Z with
f̃(zℓ) 6≡ 0 mod ℓ. From this we deduce that we can apply Theorem 4.1. The constant for

f̃ depends only on the degree of the irreducible factors of f̃ , hence equals n. The set

{x1 ∈ Z : f̃(x1) has at most n prime divisors}
is not a thin set. So

H := {x1 ∈ Z : f̃(x1) has at most n prime divisors and h(a + bx1, y) is irreducible}
is not empty by Hilbert’s Irreducibility Theorem [65, Chapter 9]. Fix such an x1 ∈ H.
Let x0 = a + bx1. This proves the claim on the existence of such an x0. ¤

Fix an x0 satisfying the conditions of Lemma 4.5. Adjoin a root y0 of h(x0, y) to
Q(ζp). Denote the field Q(ζp, y0) by K1. Let P be the point on X(p)(K1) corresponding

to (x0, y0). Let E/K1 be the elliptic curve corresponding to P . Let K = K1(
√

c4(E)).
Then if q is a prime such that E/Kq has multiplicative reduction then E/Kq has split
multiplicative reduction.

For every prime p of K over ℓ ∈ S1 we have that P mod q is a cusp of type (1, 2).
Over every prime ℓ ∈ S2 there exists a prime q such that P mod q is a cusp of type (2, 2).
From our assumptions on x0 it follows that p does not divide f(q/ℓ). Let T1 consists of
the primes of K lying over the primes in S1. Let T2 be the set of primes q such that q lies
over a prime in S2 and P mod q is a cusp of type (2, 2).

Note that the set of primes of K such that P reduces to a cusp of type (2, 1) has at
most n[K : Q] elements.
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We have the following diagram

Q(S1, p) → ⊕ℓ∈S2
Z∗

ℓ/Z
∗p
ℓ

↓ ↓
K(T1, p) → ⊕q∈T2

O∗
Kq

/O∗p
Kq

.

Since p ∤ f(q/ℓ) for all ℓ ∈ S2, the arrow in the right column is injective. This implies

m(ϕP,1/K) ≥ m(T1, T2) ≥ m(S1,S2) = 2k + 4(n + 5) deg(h)(p − 1) + 2.

Since S2(ϕp,2/K) ≤ [K : Q]n and [K : Q] ≤ 2(p− 1) deg(h) we obtain by Lemma 3.15
that for some E ′ isogenous to E we have

dimFp
X(E ′/K)[p] ≥ −#S1(ϕP,2) − 5[K : Q] − 1 +

1

2
m(S1,S2)

≥ −(n + 5)[K : Q] − 1 +
1

2
m(S1,S2) = k.

Note that deg(h) can be bounded by a function of type O(p3), hence [K : Q] can be
bounded by a function of type O(p4). ¤

To finish, we prove Corollary 1.2.

Proof of Corollary 1.2. Let E/K be an elliptic curve such that

dimFp
X(E/K)[p] ≥ kg(p)

and [K : Q] ≤ g(p).
Let R be the [K : Q]-dimensional abelian variety ResK/Q(E) (Weil restriction of

scalars of E). Then by [45, Proof of Theorem 1]

dimFp
X(R/Q)[p] = dimFp

X(E/K)[p] ≥ kg(p).

From this it follows that there is a simple factor A of R, with dimFp
X(A/Q)[p] ≥ k. ¤

Remark 4.6. In this final remark we want to discuss a technical difference be-
tween our strategy and Clark’s strategy [16] to construct elliptic curves E/K such that
#X(E/K)[p] is unbounded. Both strategies use elliptic curves such that #E(K)[p] = p2.
This condition implies that (compare the proof of Lemma 3.11)

dimX(E/K)[p] ≤ dim Sp(E/K) − 2

≤ 3[K : Q] + #{p prime: E/Kp has bad reduction} + 2 dim CK [p].

To produce examples of large Tate-Shafarevich groups with bounded field extension degree
one needs, first of all, either to produce families of elliptic curves in which the number of
bad primes is unbounded or to produce examples of families of fields in which dim CK [p]
is unbounded. We chose to pursue the first strategy, while Clark’s method allows one
to bound the number of bad primes, hence he has to produce families of fields in which
dim CK [p] is unbounded.
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Samenvatting

In dit proefschrift worden elliptische krommen en elliptische oppervlakken bestudeerd.
Een elliptische kromme E over de complexe getallen C wordt beschreven door een verge-
lijking

y2 = x3 + Ax + B

met A,B ∈ C, zodat de bovenstaande vergelijking een gladde kromme definieert. Deze
laatste eis is equivalent met 4A3 +27B2 6= 0. Er zijn verschillende manieren om elliptische
krommen te visualiseren: Een elliptische kromme (over C) is continu te vervormen in een
torus, of in alledaags Nederlands, een fietsband.

De punten van E met coördinaten in C, dat wil zeggen alle (x, y) ∈ C2, waarvoor
y2 = x3 +Ax+B geldt, tezamen met een ‘punt O op oneindig’, vormen een abelse groep.
Dit laatste betekent dat men punten van E kan optellen: kies als basispunt O ∈ E. De
som van twee punten P,Q kan als volgt worden uitgerekend: laat ℓ1 de lijn zijn die door
P en Q gaat, als P 6= Q, en de raaklijn aan E bij P , als P = Q. De lijn ℓ1 snijdt E in
een derde punt R. Als R verschillend is van O, laat dan ℓ2 de verticale lijn zijn door R.
Als ℓ2 geen raaklijn aan E is, dan is P + Q het snijpunt van ℓ2 ongelijk aan R en O, als
ℓ2 een raaklijn aan E is, dan is P + Q = R. Als R = O, dan is P + Q = O.

P

Q

l2

R

l1

P+Q

Q

P

Figuur 1. Optellen op een elliptische kromme

Hoofdstuk 6 van het proefschrift gaat over een speciale klasse van elliptische krommen.
Stel K is een getallenlichaam (bijvoorbeeld K = Q, de rationale getallen). Neem een
elliptische kromme E/K, dat wil zeggen er is een vergelijking voor E van de vorm y2 =
x3 + Ax + B, met A,B ∈ K. De punten op E met coördinaten in K tezamen met het
punt op oneindig vormen een ondergroep E(K) van de groep van punten op E. Het is
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bekend (Mordell, 1922 en Weil, 1928) dat E(K) het product van een eindige groep en Zr

is. Het getal r wordt de rang van E genoemd.
Om r te bepalen, probeert men vaak een zogenoemde p-Selmer groep Sp(E/K) te

berekenen, waarbij p een willekeurig priemgetal is. Deze eindige groep is relatief gemakke-
lijk uit te rekenen en er geldt pr ≤ #Sp(E/K). In hoofdstuk 6 wordt voor ieder priemgetal
p een rij getallenlichamen Kn en elliptische krommen En/Kn geconstrueerd, met rang van
En(Kn) gelijk aan rn, waarvoor het quotient

#Sp(En/Kn)

prn

onbegrensd is. Dit zijn dus voorbeelden van elliptische krommen waarvoor de bovengrens
op de r gegeven door de p-Selmer groep slecht is. Voor de priemgetallen p = 2 en p = 3
is dit een klassiek resultaat ([11] (p = 2) en [13] (p = 3)) . Het geval p = 5 is recent
bewezen door Fisher ([23]).

De auteur heeft samen met Schaefer ([38]) in 2003 bewezen dat voor ieder priemgetal
p er een rij zoals boven bestaat, waarvoor #Sp(En/Kn) naar oneindig gaat. Het boven-
staande resultaat is hier een verdieping va. Recent heeft Clark een analoog resultaat
bewezen, gebruikmakend van een andere methode en na een eerdere versie van Hoofd-
stuk 6 te hebben gezien.

De overige vijf hoofdstukken gaan over elliptische oppervlakken. Een elliptisch opper-
vlak is een 1-dimensionale familie van elliptische krommen. Iets preciezer: een elliptisch
oppervlak is een oppervlak X waarvoor er een kromme C en een afbeelding π : X → C
bestaan, zodat voor bijna alle punten p ∈ C geldt dat π−1(p) een elliptische kromme is.
Een elliptisch oppervlak kan worden beschreven door een vergelijking

y2 = x3 + Ax + B,

waarbij A en B nu functies op C zijn. Een voorbeeld is

y2 = x3 + t5x + 7t2 + 3,

waarbij π wordt gegeven door (x, y, t) naar t te sturen. Een elliptisch oppervlak kan tegeli-
jkertijd worden beschouwd als oppervlak en als elliptische kromme over het functielichaam
K(C) van C.

Aan een gegeven elliptisch oppervlak π : X → C wordt een groep NS(X) geassocieerd,
de Néron-Severi groep. Deze groep bevat veel informatie over X. De elementen van
NS(X) zijn formele sommen van irreducibele krommen in X, waarbij twee krommen
gelijk worden gesteld als zij bijna alle andere krommen even vaak snijden. Men kan
aantonen dat NS(X) ∼= Zρ(X), voor een zeker geheel getal ρ(X). Het getal ρ(X) wordt
het Picard getal van X genoemd. De secties (of sneden) van π zijn alle afbeeldingen
σ : C → X, zodat πσ de identiteit op C is.

In de eerste twee hoofdstukken van dit proefschrift bestuderen wij ρ(X) als functie in
X.

Er geldt ρ(X) ≤ h1,1(X), waarbij h1,1(X) de dimensie (over C) van de vectorruimte
van de zogeheten (1, 1) differentiaalvormen op X is. In hoofdstuk 1 worden elliptische
oppervlakken bestudeerd waarvoor deze bovengrens wordt aangenomen, dat wil zeggen
ρ(X) = h1,1, met de extra eis dat er slechts eindig veel secties zijn. Een van de resul-
taten (Stelling 1.6.3 van het proefschrift) van dat hoofdstuk is dat bijna alle voorbeelden
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gëısoleerde voorbeelden zijn, maar er zijn ook een aantal families van dit soort opper-
vlakken (zie Paragraaf 1.3 van het proefschrift). In de literatuur is al een gedeelte van
onze classificatie te vinden (zie [51]). De complete classificatie is evenwel nieuw. Een
onmiddellijk gevolg van onze classificatie (Stelling 1.4.8 van het proefschrift) is al wel in
de literatuur te vinden, maar slechts in een zwakkere ([31], [58]), danwel foutieve ([15],
[10]) vorm.

In hoofdstuk 2 wordt voor ieder geheel getal r de collectie van elliptische oppervlakken
bestudeerd met de eigenschap ρ(X) ≥ r. In het bijzonder geven we aan (Stelling 2.1.1
van het proefschrift) hoe ‘groot’ deze collectie is, voor kleine waarden van r. Dit is een
uitbreiding van het werk van David Cox ([18]) die deze ‘grootte’ kon bepalen in het
speciale geval r = 3.

De secties van een elliptisch oppervlak π : X → C vormen een abelse groep, die de
Mordell-Weil groep wordt genoemd en wordt genoteerd als MW (π). Als we het elliptische
oppervlak beschouwen als elliptische krommen E over K(C), dan is MW (π) hetzelfde als
de punten in E(K(C)). In de hoofdstukken 3 en 4 wordt deze groep MW (π) bestudeerd.

De rang van MW (π) wordt begrensd door ρ(X) − 2. Het bepalen van de rang van
MW (π) is echter even moeilijk als het bepalen van ρ(X). Daarentegen is het eenvoudig
in te zien dat er collecties elliptische oppervlakken bestaan (met C = P1, de projectieve
lijn) waarvoor de rang van NS(X) onbegrensd is. Het is echter onbekend of er soortgelijke
voorbeelden bestaan waarvoor de rang van MW (π) onbegrensd is.

In hoofdstuk 3 worden voortbrengers gevonden voor MW (π) voor een klasse van ellip-
tische oppervlakken, gëıntroduceerd door Kuwata. Kuwata bepaalde voor alle elliptische
oppervlakken in deze klasse de rang van MW (π), maar hij kon geen expliciete voort-
brengers vinden.

In hoofdstuk 4 wordt een voorbeeld van een elliptisch oppervlak π : X → C met
rang MW (π) = 15 gegeven. Dit is een oppervlak van een type waarvoor Kuwata ([41])
al voorbeelden had gegeven met rang MW (π) ∈ {0, 1, . . . , 14, 16, 17, 18}. Een voorbeeld
met rang 15 ontbrak nog in dit rijtje.

In het algemeen heeft een elliptisch oppervlak X een unieke structuur π : X → C.
Uitzondering hierop vormen de zogeheten elliptische K3 oppervlakken. In hoofdstuk 5
worden op een familie van elliptische K3 oppervlakken alle mogelijke structuren π : X →
C gegeven.
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