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Almost all material presented during this lecture course can be found in [1].

1. Preliminaries and notation1. Basic facts from the theory of Lp-spaces
in open subsets of RN . Minkowski’s inequality for integrals. Convolution in RN .
Young’s inequality for convolution. Generalized Young’s inequality for convo-
lution (without proof). Mollifiers. Properties of mollifiers: pointwise conver-
gence, uniform convergence, convergence in Lp. Density of C∞c (Ω) in Lp(Ω) for
p ∈ [1,∞[. Fundamental Lemma of the Calculus of Variations.

2. Weak derivatives. Motivation: integration by parts in RN and weak
formulation of a differential problem (the case of the Poisson problem for the
Laplace operator). Definition of weak derivatives via integration by parts. Equiv-
alent definitions: definition of weak derivatives via approximation by means of
regular functions, definition of weak derivatives in R via absolutely continuous
functions. Weak differentiation under integral sign. Weak derivatives and convo-
lution. Existence of intermediate weak derivatives.

3. Sobolev Spaces. Definition of the Sobolev Space W l,p(Ω) and its variants

W̃ l,p(Ω), wl,p(Ω). Completeness. Basic examples: an example of a function in the
Sobolev space W 1,p(Ω) which is unbounded in any neighborhood of any point2.
Equivalent norms. The Nikodym’s domain3. The notion of differential dimension
of a function space and the differential dimension of the Sobolev space wl,p(RN).
Lipschitz continuous functions4: classic derivatives and weak derivatives, exten-
sions of Lipschitz continuous functions, the Rademacher’s Theorem.

4. Approximation theorems. Density of C∞c (RN) in W l,p(RN) for p ∈
[1,∞[. The space W l,p

0 (Ω). Partition of unity and density5 of C∞(Ω)∩W l,p(Ω) in
W l,p(Ω) for p ∈ [1,∞[. Counterexamples to the density of C∞(Ω̄) in W l,p(Ω). An
important consequence: characterization of weak derivatives via functions which
are absolutely continuous in almost all lines parallel to the coordinate axes.

5. Integral representations. Star-shaped domains with respect to a ball
and domains satisfying the cone condition. Taylor’s formula in RN with remain-
der in integral form. Sobolev’s integral representation formula. Consequences:
pointwise estimates for functions and intermediate derivatives.

6. Embedding theorems. The notion of embedding. Continuous em-
beddings between Sobolev spaces are equivalent to the corresponding inclusions.
Sobolev’s embedding Theorem for the space W l,p(Ω) into Cb(Ω) (the case lp > N).

1For this chapter, we refer also to [4]
2For this example, we refer to [2]
3For this example, we refer to [5]
4For this part, we refer to [3]
5For this and the rest of Chapter 4, we have followed the approach presented in [5]
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Sobolev’s embedding Theorem for the space W l,p(Ω) into Lq∗(Ω) where q∗ is the
Sobolev’s exponent (the case lp < N): the argument via Young’s inequality
and the argument via Hardy-Littlewood-Sobolev inequality. The exponent q∗

cannot be improved. Sobolev’s embedding Theorem for the the space W l,p(Ω)
into Lq(Ω) for any q ∈ [p,∞[ (the case lp = N). Gagliardo’s inequality (the case
p = 1 without proof). Example of an open set for which the Sobolev’s embedding
doesn’t hold (outer cusps). The Poincaré’s inequality. Applications: existence,
uniqueness and stability of weak solutions to the Poisson problem for the Laplace
operator.

7. Estimates for intermediate derivatives. Classes of open sets: open
sets with resolved and quasi-resolved boundaries, open sets with continuous and
quasi-continuous boundaries, open sets with Lipschitz boundaries, open sets with
C l-boundaries. Relation between open sets with Lipschitz boundaries and open
sets satisfying the cone condition. Estimates for intermediate derivatives (without
proof). Sobolev’s embedding Theorem in the general case W l,p(Ω) ⊂ Wm,q(Ω).

8. Compact embeddings, extensions, traces, and applications. The
notion of compact operator. The Kolmogorov criterion for compactness in Lp(RN)
(without proof). The Rellich-Kondrakov Theorem (proof in the case of the em-
bedding of W l,p

0 (Ω) into Lp(Ω) when Ω has finite measure). The extension The-
orem (without proof). Application of the Rellich-Kondrakov Theorem to the
Helmholtz equation: existence of the first eigenvalue of the Laplace operator
with Dirichlet boundary conditions. The Trace Theorem6: existence of the trace
operator with values in Lp(∂Ω). Definition of Besov-Nikolskii spaces Bl

p(RN) and
characterization of traces via Besov-Nikolskii spaces Bl

p(∂Ω) (without proof). Ap-
plication of the Trace Theorem to the Dirichlet problem for the Laplace operator:
existence of weak solutions.
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