
Part 1: P is graded factorial and generated in degree 1

1 Notation and recollections

Let p be a prime number, E/Qp a finite extension, π ∈ OE a uniformiser, q := #(OE/(π)).

Fix an algebraically closed complete non-archimedean extension of Fq whose topology is

defined by a valuation ν : F → R ∪ {∞}.
One is interested in classifying the isomorphism classes of untilts of F (over E) modulo

the Frobenius. Recall that these are automatically algebraically closed, since F is. We will

not consider the trivial untilt of F (so all the untilts will have characteristic 0).

Recall that there is a natural identification

|Y | := {primitive elements of degree 1}/A×
inf → {(non-trivial) untilts of F}/ ∼= (1)

taking (ξy) to a pair (Cy, ι), with Cy = Ainf

(ξy)

[
1
π

]
and ι suitably defined. The map Ainf → Cy

will be denoted by θy.

The inverse of the previous bijection takes (C, ι : O♭
C

∼−−→OF ) to the class of any primitive

element of degree 1 generating

ker

(
Ainf

W (ι−1)−−−−→
∼

WOE
(O♭

C)
♯−→ OC

)
,

where WOE
(O♭

C)
♯−→ OC maps

∑
[ai]π

i to
∑

a♯iπ
i.

Since, given ξy and ξy′ in Ainf primitive of degree 1, ξy′ ∈ ξyAinf if and only if ξy′Ainf =

ξyAinf , we shall often tacitly identify |Y | with the set of ideals of Ainf generated by primitive

elements of degree 1. We shall also sometimes write (a bit sloppily) ξy for (ξy) ∈ |Y |, or also
y ∈ |Y | for (ξy).

Fix a pseudo-uniformiser ϖ ∈ OF and let Bb = Ainf

[
1
π
, 1
[ϖ]

]
; for any interval I ⊆]0,∞[,

let BI be the completion of Bb with respect to the family of Gauss norms {νr}r∈I . Let

d(0,−) : |Y | → R≥0 be the “distance from zero”, given by d(0, y) = ν(a) if y is the untilt

corresponding to the primitive element [a]− uπ; set further |YI | = {y ∈ |Y | | d(0, y) ∈ I}.

Theorem 0.0.1. If I ⊆]0,∞[ is a compact interval, BI is a PID. Moreover, the map

|YI | → SpecmBI ,

ξy 7→ ξyBI is a bijection.

Recall that by definition

B+
dR,y := lim←−

n

Ainf

(ξny )

[
1

π

]
;
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this is an equal-characteristic discrete valuation ring with uniformiser ξy and residue field

Cy. Its valuation will be denoted by

ordy : B
+
dR,y → N ∪ {∞}.

Theorem 0.0.2. For any interval I ⊆]0,∞[ and any ξy, the ξy-adic completion of BI is

canonically identified with B+
dR,y.

Finally, set B = B]0,∞[. Recall that the Frobenius φ : Ainf → Ainf extends to φ : B → B

by continuity. One sets

P =
⊕
d≥0

Bφ=πd

,

X = ProjP .

We shall use the following fact:

Proposition 0.0.3. One has P0 = E, Pn = 0 if n < 0.

The thrust of the first part of this talk will be to prove that P is graded factorial and is

generated in degree 1. This makes use of the theory of divisors.

2 Divisors

Definition 0.0.4. Let I ⊆]0,∞[ be an interval. We let Div+(|YI |) be the monoid of formal

sums
∑

y∈|YI |
ny[y] with non-negative integral coefficients ny ∈ N such that for any compact

interval J ⊆ I, ny = 0 for almost all y ∈ |YJ |.

Notice that Div+(|YI |) is naturally a partially ordered monoid.

For any interval I ⊆]0,∞[, one can associate a divisor div(f) ∈ Div+(|YI |) to any f ∈
BI \ {0} :

Lemma 0.0.5. For any interval I ⊆]0,∞[, taking f ∈ BI \ {0} to
∑

y∈|YI |
ordy(f)[y] defines a

morphism of monoids div : BI \ {0} → Div+(|YI |). Here we regard f as an element of B+
dR,y

via the canonical map BI → B+
dR,y.

Proof. One has to prove that the map is well-defined, i.e. that for any compact interval

J ⊆ I and any f ∈ BI \ {0}, ordy(f) = 0 for almost all y ∈ |YJ |. The canonical map

BI → B+
dR,y factors through BJ → B+

dR,y, so the assertion follows from the next remark.
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Remark 0.0.6. Let J ⊆]0,∞[ be a compact interval. By Theorem 0.0.1 and since every non-

zero non-invertible element in a PID is a product of irreducible elements, for any f ∈ BJ

one can write f = uξe1y1 × · · · × ξenyn for some u ∈ B×
J , ξyi ∈ |YJ | with ξyi /∈ A×

infξyj if i ̸= j

and positive integers e1, . . . , en. Then for any y ∈ |YJ |, ordy(f) = ei if y ∈ ξyiA×
inf and 0

otherwise: indeed, by Theorem 0.0.2 BJ → B+
dR,y is the adic comlpetion, which induces, for

each non-negative integer n, an isomorphism

BJ

(ξny )

∼−−→
B+

dR,y

ξnyB
+
dR,y

;

since the exponent of ξy in the factorisation of f in BJ is the highest n for which f ∈ (ξny )

and, similarly, ordy(f) is the highest m for which f ∈ ξmy B+
dR,y, the assertion follows.

Theorem 0.0.7 (FF 2.7.4). Let I ⊆]0,∞[ be an interval.

1. For f, g ∈ BI \ {0}, one has div(f) ≥ div(g) if and only if f ∈ gBI .

2. The morphism div : (BI \ {0})/B×
I → Div+(|YI |) is injective.

Proof. Notice that the first point implies the second one because BI = lim←−
J⊆Icompact

BJ is a

domain.

The first point follows from the previous remark if I is compact; if not, write it as a

union of compact intervals Jn and let ρn : BI → BJn be canonical maps. It is clear that

div(f) ≥ div(g) if f ∈ gBI ; conversely, if div(f) ≥ div(g), then for each n there exits a

unique hn ∈ BJn with ρn(f) = hnρn(g). By uniqueness, the hn define a compatible sequence

h := (hn)n ∈ lim←−
J⊆Icompact

BJ = BI satisfying f = hg.

The next step is defining a Frobenius action on Div+(|Y |) (i.e. a (Z,+)-action via the

Frobenius map). For an untilt y defined by a primitive element of degree 1 ξy = [a] + uπ,

define φ∗(y) to be the untilt corresponding to φ(ξy). First, a preliminary

Remark 0.0.8. For any y = ([a] − uπ) ∈ |Y | one has d(0, φ∗(y)) = ν(aq) = qν(a) =

qd(0, y); hence for any interval I ⊆]0,∞[ the operation φ∗ just defined produces a bijec-

tion |YI |
∼−−→|YqI |.

Lemma 0.0.9. The mapping φ∗ : |Y | → |Y | y 7→ φ∗(y) on |Y | extends to a (Z,+)-action

on Div+(|Y |).

Notation 0.0.10. For any integer n, we write

(φ∗)n : Div+(|Y |)→ Div+(|Y |)

for the action by n on Div+(|Y |); in particular φ∗([(ξy)]) = [(φ(ξy))].
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Proof. One has to prove that the condition on the support of divisors is respected. This

follows from the previous remark: indeed, for any

D =
∑
y∈|Y |

ny[y] ∈ Div+(|Y |)

and compact interval J ⊆]0,∞[,

Supp(φ∗(D)) ∩ |YJ | = {φ∗(y) ∈ |YJ | | ny ̸= 0};

this set is in bijection with {y ∈ |Y 1
q
J | | ny ̸= 0} = Supp(D) ∩ |Y 1

q
J |, which is finite.

Remark 0.0.11. Anschuetz adopts a different convention, defining φ∗ to be what I have called

(φ∗)−1; it seems to me that, contrary to what he writes, the equation (2) below is not valid

for his choice of notation, and one would have to write (φ∗)−1 where I wrote φ∗. Fargues and

Fontaine do not make their choice explicit, though their notation seems to suggest that they

adopt the same convention as above. This is ultimately inconsequential, as one is interested

in Frobenius-invariant elements.

Notation 0.0.12. We denote by Div+(|Y |/φZ) the set Div+(|Y |)φ of divisors D which are

invariant under the action above (i.e. such that φ∗(D) = D).

Remark 0.0.8 also implies that for any y ∈ |Y |, the formal sum∑
n∈Z

φ∗n[y]

defines an element of Div+(|Y |), which clearly belongs to Div+(|Y |/φZ). This immediately

implies the following important

Lemma 0.0.13. The monoid Div+(|Y |/φZ) is the free abelian monoid over |Y |/φZ via the

injection

|Y |/φZ ↪→ Div+(|Y |/φZ),

y mod φ 7→
∑
n∈Z

φ∗n[y].

In particular, any D ∈ Div+(|Y |/φZ) can be written uniquely as

D =
∑

y mod φ∈|Y |/φZ

ny

∑
l∈Z

(φ∗)l[y],

with ny ∈ N for any y mod φ. Let us stress that the sum on the left in the equation above

runs over the equivalence classes of points of |Y | under the Frobenius action.

With this at hand, we can at last define a degree function on the Frobenius-invariant

divisors:
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Definition 0.0.14. Let deg : Div+(|Y |/φZ) → N the morphism of (additive) monoids such

that, for any D as in the previous paragraph,

deg(D) =
∑

y mod φ

ny.

Notice that the previous sum is finite because ny = 0 for almost all y ∈ |Y[a,aq]|, where a

is any positive real number.

3 The main theorem

Since, for each d ≥ 0 and x ∈ Pd,

φ∗(div(x)) = div(φ(x)) = div(πd) + div(φ(x)) = div(φ(x)) (2)

because π is invertible in B+
dR,y, div : BI \ {0} → Div+(|Y |) induces a morphism of monoids

div :
⋃
d≥0

(Pd \ {0})/E× → Div+(|Y |/φZ). (3)

Theorem 0.0.15 (FF 6.2.7). The morphism (3) is an isomorphism of monoids.

Notice that we are not (yet) claiming that div is a graded morphism.

Proof (injectivity): Let x ∈ Pd, x
′ ∈ Pd′ with d′ ≥ d and div(x) = div(x′). By Theorem 0.0.7,

this implies that x = ux′ for some u ∈ B×. Moreover, as

πdux′ = πdx = φ(x) = φ(u)φ(x′) = πd′φ(u)x′,

u ∈ Pd−d′ , which, since d′ ≥ d, is 0 unless d = d′. It ensues that d = d′ and u ∈ P×
0 = E×.

We shall prove surjectivity only in the case when E = Qp, which we assume for the rest

of the section.

We shall need some auxiliary results, which are interesting in their own right.

Construction 0.0.16. Let (C, ι : O♭
C → OF ) be a (non-trivial) untilt of F (recall that C = C̄).

Fix an element ε = (1, ζp, ζp2 , . . .) ∈ O♭
C ,, where ζp is a primitive p-th root of unity (and thus

ζpn is a primitive pn-th root of unity). Associate to (C, ι) the element ι(ε) ∈ (1 +mF ) \ {1}.
We now set to relate ι(ε) to ι(ε′) for a different choice of roots of unity: more precisely,

consider ε′ = (1, ζ ′p, . . .) with ζ ′p a primitive p-th root of 1; for each n there then exists

an ∈
Z

(pn)
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with ζ ′pn = ζanpn , and the an yield an element (1, a1, . . .) ∈ Z×
p . This defines a Z×

p -action on

the subset of O♭
C {(1, ζp, . . .) ∈ O♭

C | ζp is a primitive p-th root of unity} with

a.ε = (1, ζa1p , ζa2p2 , . . .).

Such action corresponds via ι to the Z×
p -action on (1 +mF ) \ {1} given by

a.x =
∞∑
n=0

(
a

n

)
(x− 1)n.

We omit any further details, and just observe that mapping (C, ι) to the class of ι(ε) modulo

Z×
p then defines a map of sets

{untilts of F}
∼=

→ (1 +mF ) \ {1}
Z×

p

: (4)

indeed, by the definition of isomorphism of untilts, changing untilt in the isomorphism class

of (C, ι) produces the same result as taking a different ε ∈ O♭
C .

Remark 0.0.17. Let us observe that, given x ∈ 1+mF \{1}, in order to check that (the class

of) x is the image of some untilt (C, ι : O♭
C → OF ) under the previous map, it is sufficient

(though perhaps not necessary) to show that (ι−1(x)1/p)♯ is a primitive p-th root of 1, since,

unwinding, this amounts precisely to the fact that one can take ε = ι−1(x) (notation as

above).

Proposition 0.0.18. 1. For any x ∈ (1 +mF ) \ {1}, the element

ξx := 1 + [x1/p] + · · ·+ [x(p−1)/p] ∈ Ainf

is primitive of degree 1.

2. The map (4) is bijective; its inverse takes the class of x ∈ (1 +mF ) \ {1} to the untilt

defined by ξx.

Proof sketch: 1: One has to prove that ξx = [a] + up with a ∈ m \ {0} and u invertible.

The image of ξx under Ainf = W (OF ) → W (OF/mF ) = W (k) is p, whereby one can write

ξx = [a] + up with u invertible and a ∈ m. If a were 0, then reducing modulo p one would

get ξx = 0 mod p and thus 0 = 1+ x1/p + · · ·x(p−1)/p; as F has characteristic p, this implies

that 1 + x+ · · ·+ xp−1 = 0, whence x = 1, a contradiction.

2: Letting (Cξx , ι : O♭
Cξx
→ OF ) be the untilt associated to ξx, it suffices to prove that

ε := ι−1(x) = (1, ζp, . . .) for some primitive p-th root of unity ζp (see the previous remark).

6



In other words, one has to check that (ε1/p)♯ is a root of the p-th cyclotomic polynomial. By

the definitions of ξx and θξx , this amounts precisely to the canonical map

θξx : Ainf → Cξx

annihilating ξx, which holds by construction.

Interlude: logarithms

Recall that for a complete non-archimedean field C of mixed characteristic (0, p), the

logarithm is the morphism of monoids

log : (1 +mC , ·)→ (C,+)

with

log(z) =
∞∑
i=1

(−1)n−1 (z − 1)n

n
.

One can similarly define a morphism of monoids

log[−] : (1 +mF , ·)→ (B,+)

with

log[x] =
∞∑
i=1

(−1)n−1 ([x]− 1)n

n
.

It is important to notice that the image of log[−] lies in Bφ=p, because

φ(log[x]) = log[xp] = p log[x].

Lemma 0.0.19. For any untilt (C, ι) of F , the square

1 +mF Bφ=p

1 +mC C

log[−]

(−)♯◦ι−1 θ

log

commutes.

Proof. Notice first that the left vertical map is well-defined since if z ∈ mC♭ , (1 + z)♯ =

lim
n→∞

(1 + zn)
pn .

The commutativity follows at once from the equalities

θ(log[x]) = θ

(∑
n≥1

([x]− 1)n

n

)
=
∑
n≥1

(ε♯ − 1)n

n
= log(ε♯)

for x ∈ 1 +mF and ε = ι−1(x).
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We shall also need the following lemma, which we do not prove.

Lemma 0.0.20. For any complete non-archimedean field C of mixed characteristic (0, p),

the logarithm induces a bijection

{z ∈ C | |z − 1|C < |p|1/pC }
∼−−→{z ∈ C | |z|C < |p|1/pC }.

Corollary 0.0.21. If in addition C is algebraically closed,1 then log : 1 + mC → C is sur-

jective.

Proof. Given z ∈ C, one has |pnz|C < |p|1/pC for n ≫ 0; hence by the previous lemma there

exists x ∈ 1 +mC with log x = pnz. Letting w ∈ 1 +mC be a pn-th root of x, one then has

pn logw = log x = pnz,

whence logw = z.

For any untilt (C, ι), the map (−)♯ is surjective; hence the previous lemma and Lemma

0.0.19 imply the following corollary, which will be used in the second part of the talk:

Corollary 0.0.22. For any untilt (C, ι), the canonical map θ : Bφ=p → C is surjective.

We can finally come back to the proof of the main theorem.

Proof that (3) is surjective (E = Qp): It clearly suffices to show that for each (C̄, ῑ) = ȳ ∈
|Y |, there exists t ∈ Bφ=p with

div(t) =
∑
n∈Z

(φ∗)n[ȳ].

Let x̄ = ῑ(ε̄) (notation as above) correspond to ȳ under the map (4). We claim that one

can take t = log[x̄].

Step 1. For each y ∈ |Y | in the same Frobenius orbit as ȳ, ordy(log[x̄]) = 1.

Observe first that since [x̄1/p] is mapped to a primitive p-th root of unity by

θȳ : Ainf → Cȳ ↪→ B+
dR,ȳ,

[x̄1/p]− 1 is invertible in B+
dR,ȳ; writing

ξȳ = 1 + [x̄1/p] + · · ·+ [x̄(p−1)/p] =
[x̄]− 1

[x̄1/p]− 1
,

1As is always the case for untilts of F .
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this implies that [x̄]− 1 is (mapped to) a uniformiser in B+
dR,ȳ, and since

log[x̄] ≡ [x̄]− 1 mod ([x̄]− 1)2

by definition, one has ordȳ(log[x̄]) = 1.

If y ∈ |Y | corresponds to φn(ξȳ) for some n ∈ Z, then

pn log[x̄] = log[φn(x̄)] ≡ [φn(x̄)]− 1 mod ([φn(x̄)]− 1)2;

since [φn(x̄)] − 1 = φn([x̄] − 1) is (mapped to) a uniformiser in B+
dR,y and p is invertible in

B+
dR,y, one gets ordy(log[x̄]) = 1 as well.

Step 2. If y = (C, ι) is an untilt for which ordy(log[x̄]) ≥ 1, then (C, ι) ∼= (C̄, φn ◦ ῑ) for

some n ∈ Z.

Let ε = ι−1(x̄) ∈ O♭
C . If ordy(log[x̄]) ≥ 1, then for any m ∈ Z one has

log
(
(εp

m

)♯
)
= θy(log[x̄

pm ]) = pmθy(log[x̄]) = 0,

where the first equality holds by Lemma 0.0.19. Therefore, by the injectivity part in Lemma

0.0.20, if l ∈ Z is such that |(εpl)♯ − 1|C < |p|1/pC , then (εp
l
)♯ = 1.

Since x̄ ∈ 1+mF \{1}, the set of such integers l is non-empty and has a minimum n. The

equality (εp
n
)♯ = 1 implies that ε is of the form εp

n
= (1, a1, · · · ), and by the minimality of n,

a1 = (εp
n−1

)♯ ̸= 1, whereby a1 is a primitive p-th root of unity in C: consequently, calling F

the map in (4), one has x̄pn = ι(εp
n
) = F ((C, ι)) (see Remark 0.0.17). On the other hand, by

definition one also has F ((C̄, φn ◦ ῑ)) = φn
(
F ((C̄, ῑ))

)
= x̄pn ; as F is injective (Proposition

0.0.18), one obtains that (C̄, φn ◦ ῑ) is isomorphic to (C, ι), which concludes the proof (up to

relating the Frobenius action on the left-hand side of (1) defined above with the one on the

right-hand side determined by (C, ι) 7→ (C,φ ◦ ι), which we will not do).

4 P is graded factorial and generated in degree 1

As an almost immediate consequence of the main theorem, we get the result we were after:

Theorem 0.0.23. The E-algebra P is a graded factorial domain generated in degree 1, i.e.

for any d ≥ 0 and x ∈ Pd \{0} there exist unique - up to multiplication by E× and reordering

- t1, . . . , td ∈ P1 such that x = t1, . . . , td.

More concisely, ⋃
d≥1

(Pd \ {0})/E×
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is the free abelian monoids over P1 \{0}. Notice that the statement makes sense when d = 0:

it just means that x ∈ E×.

Proof. The case d = 0 is part of Proposition 0.0.3. For d ≥ 1 and x ∈ Pd \ {0}, let

y ∈ Supp(div(x)). By the main theorem and its proof, there exists t ∈ P1 such that

div(t) =
∑
n∈Z

(φ∗)n[y],

unique up to multiplication by E×;2 by Theorem 0.0.7, x = x′t for some x′ ∈ Pd−1. We

conclude by induction.

The same proof also yields the following

Corollary 0.0.24. The map div in (3) is graded.

As P is a graded ring generated in degree 1, for each integer n the sheaf of OX-modules

OX(n) associated to the graded P -module P (n) with P (n)d := Pn+d is a line bundle. We

shall prove in the second part that Pic(X) ∼= Z and any line bundle on X us isomorphic to

a (unique) OX(n). For the moment, let us record a consequence of the previous result.

Lemma 0.0.25. For each n ∈ Z, the natural map Pn → Γ(X,OX(n)) is an isomoprhism of

E-modules.

More generally, one has the following:

Lemma 0.0.26. Let R be a graded factorial generated in degree 1, X = ProjR. Then for

any n ∈ Z, the natural map αn : Rn → Γ(X,OX(n)) is an isomorphism of R0-modules.

The proof is the same as for R being a polynomial ring.

Proof. By definition αn(r) = r ∈ Γ(X,OX(n)); more precisely, for any f ∈ R1 one has a

commutative diagram

Rn Γ(X,OX(n))

Γ(D+(f),OX(n))

αn

and Γ(D+(f),OX(n)) = R(n)
[
1
f

]
0
=
{

r
fa | deg(r) = n+ a

}
. Since R is a domain, αn is

then injective.

2Actually, we only showed this for E = Qp, but this is true in general.
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For surjectivity, take two f, g ∈ R1 such that (f) ̸= (g) (if no two such elements exist,

the statement is trivial) and let x ∈ Γ(X,OX(n)). Write x|D+(f)
as r

fa and x|D+(g)
as s

gb
with,

without loss of generality, f̸ | r and g̸ | s. As R is a factorial domain, the equality(
r

fa

)
|D+(fg)

=

(
s

gb

)
|D+(fg)

implies rgb = sfa, whence a = b = 0, r = s and deg(r) = n. Therefore, x ∈ Im(αn).
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