Singularities in the Ekedahl–Oort stratification Joint work with: Jean-Stefan Koskivirta and Stefan Reppen

Lorenzo La Porta

Università degli Studi di Padova

ENTR Workshop '25, Paderborn

 We study the geometry of the Ekedahl-Oort (EO) stratification of abelian type Shimura varieties at primes of good reduction.

- We study the geometry of the Ekedahl-Oort (EO) stratification of abelian type Shimura varieties at primes of good reduction.
- We give criteria for **normality** of **unions of EO strata**.

- We study the geometry of the Ekedahl-Oort (EO) stratification of abelian type Shimura varieties at primes of good reduction.
- We give criteria for **normality** of **unions of EO strata**.
- We work with flag spaces over stacks of *G*-zips.

- We study the geometry of the Ekedahl-Oort (EO) stratification of abelian type Shimura varieties at primes of good reduction.
- We give criteria for **normality** of **unions of EO strata**.
- We work with flag spaces over stacks of *G*-zips.
- Results pull back to Shimura varietes via zip period maps.

Main results

Overview

- We study the geometry of the Ekedahl-Oort (EO) stratification of abelian type Shimura varieties at primes of good reduction.
- We give criteria for **normality** of **unions of EO strata**.
- We work with flag spaces over stacks of G-zips.
- Results pull back to Shimura varietes via zip period maps.
- On the stack G-Zip $^{\mathcal{Z}}$, many results hold also for Shimura-like zip data of **exceptional type**. The zip period map is missing.

Introduction

 Geometric properties, like normality, smoothness and Cohen-Macaulayness, relate to arithmetic information.

- Geometric properties, like normality, smoothness and Cohen–Macaulayness, relate to arithmetic information.
- They are linked to the existence of certain Hasse invariants.

Introduction

- Geometric properties, like normality, smoothness and **Cohen–Macaulayness**, relate to arithmetic information.
- They are linked to the existence of certain Hasse invariants.
- They are linked to extensions of the canonical filtration.

Introduction

- Geometric properties, like normality, smoothness and Cohen-Macaulayness, relate to arithmetic information.
- They are linked to the existence of certain Hasse invariants.
- They are linked to extensions of the canonical filtration.
- The **rigidity** of G-Zip^{\mathcal{Z}} makes these links "tighter".

■ The stack G-Zip $^{\mathcal{Z}}$ is defined over $k = \overline{\mathbb{F}}_p$.

- The stack G-Zip $^{\mathcal{Z}}$ is defined over $k = \overline{\mathbb{F}}_p$.
- G is a connected reductive group over \mathbb{F}_p with $\mathcal{Z} = (G, P, Q, L, M)$ is a zip datum, where:

- lacksquare The stack $G ext{-}{
 m Zip}^{\mathcal Z}$ is defined over $k=\overline{\mathbb F}_p.$
- G is a connected reductive group over \mathbb{F}_p with $\mathcal{Z} = (G, P, Q, L, M)$ is a zip datum, where:
 - $ightharpoonup P, Q \subseteq G_k$ are parabolic subgroups and

- lacksquare The stack $G ext{-}{
 m Zip}^{\mathcal Z}$ is defined over $k=\overline{\mathbb F}_p.$
- G is a connected reductive group over \mathbb{F}_p with $\mathcal{Z} = (G, P, Q, L, M)$ is a zip datum, where:
 - $P, Q \subseteq G_k$ are parabolic subgroups and
 - $L \subseteq P, M \subseteq Q$ are Levi subgroups such that $M = L^{(p)}$.

- The stack G-Zip $^{\mathcal{Z}}$ is defined over $k = \overline{\mathbb{F}}_p$.
- G is a connected reductive group over \mathbb{F}_p with $\mathcal{Z} = (G, P, Q, L, M)$ is a zip datum, where:
 - $P, Q \subseteq G_k$ are parabolic subgroups and
 - $L \subseteq P, M \subseteq Q$ are Levi subgroups such that $M = L^{(p)}$.
- There is a natural way to:

- lacksquare The stack $G ext{-}{
 m Zip}^{\mathcal Z}$ is defined over $k=\overline{\mathbb F}_p$.
- G is a connected reductive group over \mathbb{F}_p with $\mathcal{Z} = (G, P, Q, L, M)$ is a zip datum, where:
 - $P, Q \subseteq G_k$ are parabolic subgroups and
 - $L \subseteq P, M \subseteq Q$ are Levi subgroups such that $M = L^{(p)}$.
- There is a natural way to:
 - associate a datum $\mathcal Z$ to a **cocharacter** $\mu \colon \mathbb G_{m,k} \to \mathcal G_k$ (think Hodge) and

Lorenzo La Porta

- The stack G-Zip $^{\mathcal{Z}}$ is defined over $k = \overline{\mathbb{F}}_p$.
- G is a connected reductive group over \mathbb{F}_p with $\mathcal{Z} = (G, P, Q, L, M)$ is a zip datum, where:
 - $P, Q \subseteq G_k$ are parabolic subgroups and
 - $L \subseteq P, M \subseteq Q$ are Levi subgroups such that $M = L^{(p)}$.
- There is a natural way to:
 - associate a datum $\mathcal Z$ to a **cocharacter** $\mu \colon \mathbb G_{m,k} \to \mathcal G_k$ (think Hodge) and
 - **a** couple (G, μ) over k to a Shimura datum (G, μ) (over \mathbb{Q} and the reflex field).

■ The zip group is $E_{\mathcal{Z}} = \{(a, b) \in P \times Q \mid \varphi(\overline{a}) = \overline{b}\}.$

- The zip group is $E_{\mathcal{Z}} = \{(a, b) \in P \times Q \mid \varphi(\overline{a}) = \overline{b}\}.$
- We can describe as G-Zip $^{\mathcal{Z}} = [E_{\mathcal{Z}} \setminus G_k]$.

- The zip group is $E_{\mathcal{Z}} = \{(a, b) \in P \times Q \mid \varphi(\overline{a}) = \overline{b}\}.$
- We can describe as G-Zip^{\mathcal{Z}} = $[E_{\mathcal{Z}} \setminus G_k]$.
- G-Zip^{\mathcal{Z}} is a smooth algebraic stack of dimension 0.

- The zip group is $E_{\mathcal{Z}} = \{(a, b) \in P \times Q \mid \varphi(\overline{a}) = \overline{b}\}.$
- We can describe as G-Zip $^{\mathcal{Z}} = [E_{\mathcal{Z}} \setminus G_k]$.
- G-Zip^{\mathcal{Z}} is a smooth algebraic stack of dimension 0.
- The topological space G-Zip $^{\mathcal{Z}}(k) = {}^{I}W$ is finite, its points correspond to zip/EO strata.

- The zip group is $E_{\mathcal{Z}} = \{(a, b) \in P \times Q \mid \varphi(\overline{a}) = \overline{b}\}.$
- We can describe as G-Zip $^{\mathcal{Z}} = [E_{\mathcal{Z}} \setminus G_{k}]$.
- G-Zip^{\mathcal{Z}} is a smooth algebraic stack of dimension 0.
- The topological space G-Zip $^{\mathcal{Z}}(k) = {}^{I}W$ is finite, its points correspond to zip/EO strata.
- G-Zip^{\mathcal{Z}} is also a moduli space of G-zips of type \mathcal{Z} : $\mathcal{I} = (\mathcal{I}, \mathcal{I}_P, \mathcal{I}_Q, \iota), \mathcal{I}$ is a G-torsor, $\mathcal{I}_P, \mathcal{I}_Q \subseteq \mathcal{I}$ are P. Q-torsors. $\iota: (\mathcal{I}_P/R_u)^{(p)} \xrightarrow{\sim} \mathcal{I}_O/R_u$

- The zip group is $E_{\mathcal{Z}} = \{(a, b) \in P \times Q \mid \varphi(\overline{a}) = \overline{b}\}.$
- We can describe as G-Zip $^{\mathcal{Z}} = [E_{\mathcal{Z}} \setminus G_{k}]$.
- G-Zip^{\mathcal{Z}} is a smooth algebraic stack of dimension 0.
- The topological space G-Zip $^{\mathcal{Z}}(k) = {}^{I}W$ is finite, its points correspond to zip/EO strata.
- G-Zip^{\mathcal{Z}} is also a moduli space of G-zips of type \mathcal{Z} : $\mathcal{I} = (\mathcal{I}, \mathcal{I}_P, \mathcal{I}_Q, \iota), \mathcal{I}$ is a G-torsor, $\mathcal{I}_P, \mathcal{I}_Q \subseteq \mathcal{I}$ are P. Q-torsors. $\iota: (\mathcal{I}_P/R_u)^{(p)} \xrightarrow{\sim} \mathcal{I}_O/R_u$
- For (G, μ) "Shimura-like", often we can define a **smooth**, **surjective** period map $\zeta: S \to G$ -Zip^{μ}.

Main results

Example (Modular curve)

■ Take $G = GL_2, \mu \colon t \mapsto diag(t, 1)$.

0000000

- Take $G = GL_2, \mu \colon t \mapsto diag(t, 1)$.
- $P = P_{-}(\mu) = \begin{pmatrix} * & 0 \\ * & * \end{pmatrix}$

- Take $G = GL_2, \mu \colon t \mapsto diag(t, 1)$.
- $P = P_{-}(\mu) = {*0 \choose **},$

- Take $G = GL_2, \mu \colon t \mapsto diag(t, 1)$.
- $P = P_{-}(\mu) = (* \ 0),$
- $Q = P_{+}(\mu) = \binom{* *}{0 *}.$
- $\blacksquare L = \operatorname{Cent}(\mu) = M = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}.$

- Take $G = GL_2, \mu \colon t \mapsto diag(t, 1)$.
- $P = P_{-}(\mu) = {*0 \choose **},$
- $Q = P_{+}(\mu) = \binom{* *}{0 *}.$
- $\blacksquare L = \operatorname{Cent}(\mu) = M = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}.$
- $E_{\mathcal{Z}}$ has two orbits in GL_2 :

Example (Modular curve)

- Take $G = GL_2, \mu \colon t \mapsto diag(t, 1)$.
- $P = P_{-}(\mu) = (* 0),$
- $Q = P_{+}(\mu) = \binom{* *}{0 *}.$
- $\blacksquare L = \operatorname{Cent}(\mu) = M = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}.$
- $E_{\mathbb{Z}}$ has two orbits in GL_2 :
 - the **ordinary locus** $\{g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\} \mid a \neq 0\}$, open dense and

Lorenzo La Porta

- Take $G = GL_2, \mu \colon t \mapsto diag(t, 1)$.
- $P = P_{-}(\mu) = {* \ 0 \choose * \ *},$
- $Q = P_{+}(\mu) = \binom{* *}{0 *}.$
- $\blacksquare L = \operatorname{Cent}(\mu) = M = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}.$
- $E_{\mathbb{Z}}$ has two orbits in GL_2 :
 - the **ordinary locus** $\{g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\} \mid a \neq 0\}$, open dense and
 - the supersingular locus.

- Take $G = GL_2, \mu \colon t \mapsto diag(t, 1)$.
- $P = P_{-}(\mu) = {* \ 0 \choose * \ *},$
- $Q = P_{+}(\mu) = \binom{* *}{0 *}.$
- $\blacksquare L = \operatorname{Cent}(\mu) = M = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}.$
- $E_{\mathbb{Z}}$ has two orbits in GL_2 :
 - the **ordinary locus** $\{g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\} \mid a \neq 0\}$, open dense and
 - the supersingular locus.
- $(\mathcal{I}, \mathcal{I}_P, \mathcal{I}_Q, \iota)$ are given by Hodge and conjugate filtrations, with the Cartier isomorphism on $H^1_{dR}(E/X)$.

■ Fix a Borel $B \subseteq P$ and consider parabolics $B \subseteq P_0 \subseteq P$.

- Fix a Borel $B \subseteq P$ and consider parabolics $B \subseteq P_0 \subseteq P$.
- Stack of *G*-zip flags: *G*-ZipFlag $_{P_0}^{\mathcal{Z}} = [E_{\mathcal{Z}} \setminus (G_k \times P/P_0)].$

- Fix a Borel $B \subseteq P$ and consider parabolics $B \subseteq P_0 \subseteq P$.
- Stack of *G*-zip flags: G-ZipFlag $_{P_0}^{\mathcal{Z}} = [E_{\mathcal{Z}} \setminus (G_k \times P/P_0)].$
- It parametrises G-zips $\underline{\mathcal{I}}$ with a P_0 -torsor $\mathcal{I}_{P_0} \subseteq \mathcal{I}_P$.

Lorenzo La Porta

- Fix a Borel $B \subseteq P$ and consider parabolics $B \subseteq P_0 \subseteq P$.
- Stack of *G*-zip flags: *G*-ZipFlag $_{P_0}^{\mathcal{Z}} = [E_{\mathcal{Z}} \setminus (G_k \times P/P_0)].$
- It parametrises G-zips $\underline{\mathcal{I}}$ with a P_0 -torsor $\mathcal{I}_{P_0} \subseteq \mathcal{I}_P$.
- For a given $w \in {}^{I}W$, there is a special choice $P_0 = P_w$, the canonical parabolic.

■ From \mathcal{Z} and P_0 we obtain a datum $\mathcal{Z}_0 = (G, P_0, Q_0, L_0, M_0)$.

- From \mathcal{Z} and P_0 we obtain a datum $\mathcal{Z}_0 = (G, P_0, Q_0, L_0, M_0)$.
- lacktriangledown There are morphisms $G ext{-}{
 m ZipFlag}_{P_0}^{\mathcal Z} o G ext{-}{
 m Zip}^{\mathcal Z}, G ext{-}{
 m Zip}^{\mathcal Z_0}.$

- From \mathcal{Z} and P_0 we obtain a datum $\mathcal{Z}_0 = (G, P_0, Q_0, L_0, M_0)$.
- lacksquare There are morphisms $G ext{-}{
 m ZipFlag}_{P_0}^{\mathcal Z} o G ext{-}{
 m Zip}^{\mathcal Z}, G ext{-}{
 m Zip}^{\mathcal Z_0}.$
- Via G-ZipFlag $_{P_0}^{\mathcal{Z}}$ \to G-Zip $^{\mathcal{Z}_0}$ and G-Zip $^{\mathcal{Z}_0}$ \to $[P_0 \backslash G_k / Q_0]$ we obtain stratifications on G-ZipFlag $_{P_0}^{\mathcal{Z}}$.

Lorenzo La Porta

- From \mathcal{Z} and P_0 we obtain a datum $\mathcal{Z}_0 = (G, P_0, Q_0, L_0, M_0)$.
- lacksquare There are morphisms $G ext{-}{
 m ZipFlag}^{\mathcal Z}_{P_0} o G ext{-}{
 m Zip}^{\mathcal Z}, G ext{-}{
 m Zip}^{\mathcal Z_0}.$
- Via G-ZipFlag $_{P_0}^{\mathcal{Z}}$ \to G-Zip $_{Q_0}^{\mathcal{Z}_0}$ and G-Zip $_{Q_0}^{\mathcal{Z}_0}$ \to $[P_0 \setminus G_k / Q_0]$ we obtain stratifications on G-ZipFlag $_{P_0}^{\mathcal{Z}}$.
- We want to compare these stratifications to IW on G-Zip Z via G-ZipFlag ${}^Z_{P_0} \to G$ -Zip Z .

■ When $P_0 = P_w$, for $w \in {}^I W \subseteq {}^{I_0} W$, two things happen:

- When $P_0 = P_w$, for $w \in {}^I W \subseteq {}^{I_0} W$, two things happen:
 - G-ZipFlag $_{P_w,w}^{\mathcal{Z}} \to G$ -Zip $_w^{\mathcal{Z}}$ is an isomorphism, with inverse the **canonical section** s_w , and

- When $P_0 = P_w$, for $w \in {}^I W \subseteq {}^{I_0} W$, two things happen:
 - G-ZipFlag $_{P_w,w}^{\mathcal{Z}} \to G$ -Zip $_w^{\mathcal{Z}}$ is an isomorphism, with inverse the **canonical section** s_w , and
 - G-ZipFlag $_{P_w,w}^{\mathcal{Z}}$ is the pullback of $[P_w \setminus (P_w w z^{-1} Q_w)/Q_w]$ (we say it is **Bruhat**).

Main results

Flag spaces III

- When $P_0 = P_w$, for $w \in {}^IW \subseteq {}^{I_0}W$, two things happen:
 - G-ZipFlag $_{P_w,w}^{\mathcal{Z}} \to G$ -Zip $_w^{\mathcal{Z}}$ is an isomorphism, with inverse the **canonical section** s_w , and
 - G-ZipFlag $_{P_w,w}^{\mathcal{Z}}$ is the pullback of $[P_w \setminus (P_w w z^{-1} Q_w)/Q_w]$ (we say it is **Bruhat**).
- We want to extend this to $\overline{G\text{-}\mathrm{Zip}}_{w}^{\mathcal{Z}} \subseteq G\text{-}\mathrm{Zip}^{\mathcal{Z}}$.

- When $P_0 = P_w$, for $w \in {}^IW \subseteq {}^{I_0}W$, two things happen:
 - G-ZipFlag $_{P_w,w}^{\mathcal{Z}} \to G$ -Zip $_w^{\mathcal{Z}}$ is an isomorphism, with inverse the **canonical section** s_w , and
 - G-ZipFlag $_{P_w,w}^{\mathcal{Z}}$ is the pullback of $[P_w \setminus (P_w w z^{-1} Q_w)/Q_w]$ (we say it is **Bruhat**).
- We want to extend this to $\overline{G\text{-}\mathrm{Zip}}_w^\mathcal{Z} \subseteq G\text{-}\mathrm{Zip}^\mathcal{Z}$.
- We want to understand the morphism

$$\pi_{P_w} \colon \overline{G ext{-}\mathtt{ZipFlag}}^{\mathcal{Z}}_{P_w,w} o \overline{G ext{-}\mathtt{Zip}}^{\mathcal{Z}}_w.$$

• We say $\mathcal{U} \subseteq G$ - $\mathrm{Zip}^{\mathcal{Z}}$ is w-**open** if it is open in \overline{G} - $\mathrm{Zip}_{w}^{\mathcal{Z}}$. Notice that \mathcal{U} corresponds to $\Gamma_{\mathcal{U}} \subseteq {}^{I}W$.

- We say $\mathcal{U} \subseteq G$ - $\mathrm{Zip}^{\mathcal{Z}}$ is w-open if it is open in \overline{G} - $\mathrm{Zip}_{w}^{\mathcal{Z}}$. Notice that \mathcal{U} corresponds to $\Gamma_{\mathcal{U}} \subseteq {}^{I}W$.
- We call a w-open \mathcal{U} w-bounded if $\forall w' \in \Gamma_{\mathcal{U}}, P_{w'} \subseteq P_w$.

- We say $\mathcal{U} \subseteq G$ -Zip^{\mathcal{Z}} is w-open if it is open in $\overline{G$ -Zip $_{w}^{\mathcal{Z}}$. Notice that \mathcal{U} corresponds to $\Gamma_{\mathcal{U}} \subseteq {}^{I}W$.
- We call a w-open \mathcal{U} w-bounded if $\forall w' \in \Gamma_{\mathcal{U}}, P_{w'} \subseteq P_{w}$.
- \blacksquare A w-open \mathcal{U} admits a canonical cover if $\mathcal{U}^{(P_w)} \coloneqq \bigcup_{w' \in \Gamma_{+}} G\text{-}\mathrm{ZipFlag}_{P_{w,w'}}^{\mathcal{Z}}$ is open in $\overline{G\text{-}\mathrm{ZipFlag}}_{P_{w,w}}^{\mathcal{Z}}$.

- We say $\mathcal{U} \subseteq G$ - $\mathrm{Zip}^{\mathcal{Z}}$ is w-open if it is open in \overline{G} - $\mathrm{Zip}_{w}^{\mathcal{Z}}$. Notice that \mathcal{U} corresponds to $\Gamma_{\mathcal{U}} \subseteq {}^{I}W$.
- We call a *w*-open \mathcal{U} *w*-bounded if $\forall w' \in \Gamma_{\mathcal{U}}, P_{w'} \subseteq P_w$.
- A w-open $\mathcal U$ admits a canonical cover if $\mathcal U^{(P_w)} := \bigcup_{w' \in \Gamma_{\mathcal U}} G$ -ZipFlag $_{P_w,w'}^{\mathcal Z}$ is open in $\overline{G$ -ZipFlag $_{P_w,w}^{\mathcal Z}$.
- A canonical cover is separating (SCC) if $\mathcal{U}^{(P_w)} = \overline{G\text{-}\mathrm{ZipFlag}}_{P_w,w}^{\mathcal{Z}} \cap \pi_{P_w}^{-1}(\mathcal{U}).$

- We say $\mathcal{U} \subseteq G\text{-}\mathrm{Zip}^{\mathcal{Z}}$ is $w\text{-}\mathrm{open}$ if it is open in $\overline{G\text{-}\mathrm{Zip}_{w}^{\mathcal{Z}}}$. Notice that \mathcal{U} corresponds to $\Gamma_{\mathcal{U}} \subseteq {}^{I}W$.
- We call a w-open \mathcal{U} w-bounded if $\forall w' \in \Gamma_{\mathcal{U}}, P_{w'} \subseteq P_w$.
- A w-open $\mathcal U$ admits a canonical cover if $\mathcal U^{(P_w)} := \bigcup_{w' \in \Gamma_{\mathcal U}} G$ -ZipFlag $_{P_w,w'}^{\mathcal Z}$ is open in $\overline{G$ -ZipFlag $_{P_w,w}^{\mathcal Z}$.
- A canonical cover is separating (SCC) if $\mathcal{U}^{(P_w)} = \overline{G\text{-}\mathsf{ZipFlag}}_{P_w,w}^{\mathcal{Z}} \cap \pi_{P_w}^{-1}(\mathcal{U}).$
- A *w*-open is **elementary** if $\Gamma_{\mathcal{U}} = \{w, w'\}$ and $G\text{-}\mathrm{Zip}_{w'}^{\mathcal{Z}}$ has codimension one in $\overline{G\text{-}\mathrm{Zip}}_{w}^{\mathcal{Z}}$.

Theorem A

Theorem (2025, J.-S. Koskivirta, LLP, S. Reppen)

Let $\mathcal{U} \subseteq G$ -Zip^{\mathcal{Z}} be a w-open, for $w \in {}^{\mathsf{I}}W$. TFAE:

- **1** The map $s_w : G\text{-}\mathrm{Zip}_w^{\mathcal{Z}} \to G\text{-}\mathrm{ZipFlag}_{P_w,w}^{\mathcal{Z}}$ extends to a section $\tilde{s}_w : \mathcal{U} \to G\text{-}\mathrm{ZipFlag}_{P_w}^{\mathcal{Z}}$ of π_{P_w} .
- 2 *U* admits a **SCC** and is **normal**.
- 3 *U* admits a **SCC** and is w-bounded.
- **4** \mathcal{U} admits a **SCC** and $\pi_{P_w}: \mathcal{U}^{(P_w)} \to \mathcal{U}$ is an **isomorphism**.

In that case, \mathcal{U} is Cohen–Macaulay and the extension \tilde{s}_w is unique. If \mathcal{U} is elementary, we **can remove SCC** from 2.

Theorem B

Theorem (2025, J.-S. Koskivirta, LLP, S. Reppen)

Let S be the special fiber of an abelian type Shimura variety with good reduction. For any one-dimensional Ekedahl–Oort stratum S_w , there is a description of the smooth locus of \overline{S}_w .

- In type A, this depends uniquely on the signature.
- **2** In type B, C or D, the smooth locus of \overline{S}_w is always S_w .

Theorem B

Theorem (2025, J.-S. Koskivirta, LLP, S. Reppen)

Let S be the special fiber of an abelian type Shimura variety with good reduction. For any one-dimensional Ekedahl–Oort stratum S_w , there is a description of the smooth locus of \overline{S}_w .

- 1 In type A, this depends uniquely on the signature.
- **2** In type B, C or D, the smooth locus of S_w is always S_w .

Exceptional groups

For G-Zip $^{\mu}$, the cases E₆ and E₇ behave like B, C, D.

Theorem (2025, J.-S. Koskivirta, LLP, S. Reppen)

Let S be the special fiber of an abelian type Shimura variety with good reduction. For any one-dimensional Ekedahl–Oort stratum S_w , there is a description of the smooth locus of \overline{S}_w .

- In type A, this depends uniquely on the signature.
- **2** In type B, C or D, the smooth locus of S_w is always S_w .

Exceptional groups

For G-Zip $^{\mu}$, the cases E₆ and E₇ behave like B, C, D.

Example

For simple type A of signature (r, s), \overline{S}_w is smooth iff gcd(r, s) = 1.

Theorem C

Theorem (2025, J.-S. Koskivirta, LLP, S. Reppen)

Let S be the special fiber of a Shimura variety of simple B_n -type with good reduction. Let $S = \overline{S}_0 \supseteq \overline{S}_1 \supseteq \ldots \supseteq \overline{S}_{2n-1}$ denote the EO-stratification of S.

- **1** For $0 \le j \le n-1$:
 - **The smooth locus** of \overline{S}_j is $\bigcup_{i=j}^{2n-1-j} S_i$.
 - ii The closure \overline{S}_j is **normal** and a **local complete intersection**.
 - iii The closure \overline{S}_j admits a **reduced strata Hasse invariant** of weight $(p^{j+1}-1)\eta_{\omega}$, where η_{ω} is the Hodge character.
- **2** For $j \geq n$, the smooth and normal locus of \overline{S}_j is S_j .

Thank you for your attention!

Questions?

Some applications and developments

Multiplicities of Hasse invariants.

Some applications and developments

- Multiplicities of Hasse invariants.
- Computational aspects: extensions of canonical filtrations and images of flag strata.

Some applications and developments

- Multiplicities of Hasse invariants.
- Computational aspects: extensions of canonical filtrations and images of flag strata.
- Some relations with characteristic zero.

The modular curve II

Example (Modular curve)

To an elliptic scheme A/S/k we can associate the torsors

$$\begin{split} \mathcal{I} &= \mathsf{isom}(H^1_{\mathsf{dR}}(A/S), \mathcal{O}_S^2), \\ \mathcal{I}_P &= \mathsf{isom}(H^1_{\mathsf{dR}}(A/S) \supset \underline{\omega}, \mathcal{O}_S^2 \supset \mathcal{O}_S), \\ \mathcal{I}_Q &= \mathsf{isom}(\mathsf{ker}(V) \subset H^1_{\mathsf{dR}}(A/S), \mathcal{O}_S \subset \mathcal{O}_S^2), \end{split}$$

with the isomorphisms given by Frobenius and Verschiebung:

$$F: (H^1_{dR}(A/S)/\underline{\omega})^{(p)} \to \operatorname{im}(F) = \ker(V),$$

$$V: H^1_{dR}(A/S)/\ker(V) \to \underline{\omega}^{(p)}.$$

Lorenzo La Porta