Generalised Theta Operators on Unitary Shimura Varieties

Lorenzo La Porta

 $29^{\rm th}$ November 2022

Motivation

- The theory of the classical theta operator (mod p) was used in the proof of the weight part of Serre's modularity conjecture.
- Edixhoven's proof relied, in particular, on the study of the θ -cycles of Tate and Jochnowitz.
- The construction of the classical θ has been extended to more general settings (Hilbert and Siegel modular varieties, certain PEL Shimura varieties).
- Many questions remain open, in particular, a clear generalisation of the theory of θ -cycles.

Modular Curves & Modular Forms

- Fix p a prime and $N \ge 5$ an integer prime to p. Write \mathbb{F} for an algebraic closure of \mathbb{F}_p .
- Consider the modular curve $Y = Y_1(N)$ of level $\Gamma_1(N)$ over \mathbb{F} and its compactification $X = X_1(N)$.
- Over X we have $\underline{\omega}$, the Hodge sheaf. It is an invertible sheaf and on Y we can define it as $\pi_*\Omega^1_{E/Y}$, where $\pi: E \to Y$ is the universal elliptic curve.
- ► The elements of $M_k(N) = H^0(X, \underline{\omega}^k)$ are modular forms of level $\Gamma_1(N)$ weight k with coefficients in \mathbb{F} . They form a \mathbb{Z} -graded algebra $M(N) = \bigoplus_k M_k(N)$.

The Hasse Invariant

- ▶ In characteristic p > 0, we have a special modular form $h \in H^0(X, \underline{\omega}^{p-1})$, called the *(classical) Hasse invariant.*
- ► The Hasse invariant vanishes with simple zeroes on the supersingular locus Y^{ss} ⊂ Y ⊂ X. The complement X^{ord} = X \ Y^{ss} is called the ordinary locus.

de Rham Cohomology

- ► We can consider the (relative) de Rham cohomology $H^i_{dR}(E/Y) := R^i \pi_*(\Omega^{\bullet}_{E/Y})$ of E over Y. This is a finite locally free \mathcal{O}_Y -sheaf.
- ▶ On $H = H^1_{dR}(E/Y)$ we have the Gauss-Manin connection

$$\nabla \colon H \longrightarrow H \otimes_{\mathcal{O}_Y} \Omega^1_{Y/\mathbb{F}}.$$

► We also have the *Hodge filtration*

$$0 \longrightarrow \underline{\omega} \longrightarrow H \longrightarrow \underline{\omega}^{\vee} \longrightarrow 0. \tag{H}$$

► Combining (H) with the GM connection we get a morphism

$$\underline{\omega} \longrightarrow H \xrightarrow{\nabla} H \otimes \Omega^1_{Y/\mathbb{F}} \longrightarrow \underline{\omega}^{\vee} \otimes \Omega^1_{Y/\mathbb{F}}.$$

The corresponding map $\underline{\mathrm{ks}} \colon \underline{\omega}^2 \to \Omega^1_{Y/\mathbb{F}}$ is the Kodaira-Spencer isomorphism.

▶ Over the dense open Y^{ord} we can split (H) naturally, using a cosection

$$p_{\mathrm{ur}} \colon H \longrightarrow \underline{\omega}.$$

called the *unit-root splitting*.

▶ This splitting cannot be extended to Y "naturally" (there are poles along Y^{ss}).

Unit-Root Splitting II

▶ We can also consider

$$h \cdot p_{\mathrm{ur}} \colon H \longrightarrow \underline{\omega}^p,$$

which is well defined over all of Y.

► On Sym^k(H) there is a natural filtration F[•] coming from (H), defined by

 $F^{i}(\operatorname{Sym}^{k}(H)) = \operatorname{im}(\underline{\omega}^{i} \otimes \operatorname{Sym}^{k-i}(H) \to \operatorname{Sym}^{k}(H)).$

▶ One can also extend uniquely

 $h \cdot \operatorname{Sym}^{k}(p_{\operatorname{ur}})|_{F^{k-1}(\operatorname{Sym}^{k}(H))} \colon F^{k-1}(\operatorname{Sym}^{k}(H)) \longrightarrow \underline{\omega}^{k+p-1}$

from Y^{ord} to Y.

The Theta Operator I

• The GM connection induces a connection on $\text{Sym}^k(H)$, still denoted ∇ . By construction, we have the transversality property

 $\nabla(F^i(\operatorname{Sym}^k(H))) \subseteq F^{i-1}(\operatorname{Sym}^k(H)) \otimes \Omega^1_{Y/\mathbb{F}}.$

▶ We can finally consider the composition

$$\theta \colon \underline{\omega}^k \xrightarrow{\nabla} F^{k-1}(\operatorname{Sym}^k(H)) \otimes \Omega^1_{Y/\mathbb{F}} \longrightarrow \underline{\omega}^{k+p+1}$$

where the second map is $(h \cdot \text{Sym}^k(p_{\text{ur}})) \otimes \underline{\text{ks}}^{-1}$. This is the (classical) theta operator.

The Theta Operator II

• We defined θ on Y, but taking global sections one actually obtains

$$\theta \colon M_k(N) \longrightarrow M_{k+p+1}(N),$$

the theta operator on modular forms.

- ► This θ is an \mathbb{F} -linear differential graded operator of degree p+1 of the graded algebra M(N) into itself. Moreover, $\theta(h) = 0$.
- ► We have the relations

$$\theta T_l = l T_l \theta$$

for T_l the Hecke operator at the prime $l \neq p$.

Picard Modular Surfaces I

- ► Let E/\mathbb{Q} be a quadratic imaginary field. We write Hom $(E, \mathbb{C}) = \{\sigma, \overline{\sigma}\}$. Assume p > 2 and that it splits in E.
- We denote by S/\mathbb{F} the geometric special fibre of the *Picard* modular surface. S is a moduli space parametrising $\underline{A} = (A/T, \lambda, \iota, \eta)$, where:
 - 1. A is an abelian scheme of relative dimension 3 over $T \in \underline{\operatorname{Sch}}_{\mathbb{F}}$.
 - 2. λ is a prime-to-p polarisation of A.
 - 3. ι is an \mathcal{O}_E -action on A, of signature (2, 1).
 - 4. η is a (*p*-hyperspecial and neat) level structure on A.
- ► S is smooth, quasi-projective of dimension 2 with universal object $\pi: A \to S$.

Picard Modular Surfaces II

► The Hodge sheaf $\underline{\omega} = \pi_* \Omega^1_{A/S}$ is now locally free of rank 3 with an action of \mathcal{O}_E which splits it as

$$\underline{\omega} = \underline{\omega}_{\sigma} \oplus \underline{\omega}_{\overline{\sigma}}.$$

- The summands $\underline{\omega}_{\sigma}$ and $\underline{\omega}_{\overline{\sigma}}$ are both locally free, with ranks 2 and 1, respectively.
- ▶ The Hodge filtration also splits according to the \mathcal{O}_E -action as

$$0 \longrightarrow \underline{\omega}_{\tau} \longrightarrow H_{\tau} \longrightarrow \underline{\omega}_{\overline{\tau}}^{\vee} \longrightarrow 0, \tag{H'}$$

where $H = H^1_{dR}(A/S), \tau \in \{\sigma, \overline{\sigma}\}.$

Automorphic Weights & Sheaves

- ▶ An automorphic weight will be a couple (\underline{k}, w) , where $\underline{k} = (k_1, k_2) \in \mathbb{Z}^2, w \in \mathbb{Z}$, such that $k_1 \ge k_2$.
- ▶ The automorphic sheaf of weight (\underline{k}, w) will be

$$\underline{\omega}^{\underline{k},w} \coloneqq \operatorname{Sym}^{k_1-k_2}(\underline{\omega}_{\sigma}) \otimes (\wedge^2 \underline{\omega}_{\sigma})^{k_2} \otimes \delta^w,$$

where $\delta = \delta_{\sigma} \coloneqq \det H_{\sigma}$.

► We will also consider

$$H^{\underline{k},w} \coloneqq \operatorname{Sym}^{k_1-k_2}(H_{\sigma}) \otimes \operatorname{Sym}^{k_2}(\wedge^2 H_{\sigma}) \otimes \delta^w,$$

where $k_2 \ge 0$.

The Ekedahl-Oort Stratification

▶ We have 3 EO strata in this case:

- 1. The ordinary locus S^{μ} , open and dense in S.
- 2. The almost ordinary locus S^{ao} , locally closed of dimension 1.
- 3. The core locus S^{core} , closed of dimension 0.

▶ We will work on the *non-ordinary locus*

$$S^{\mathrm{no}} = S \setminus S^{\mu} = S^{\mathrm{ao}} \sqcup S^{\mathrm{core}} = \overline{S^{\mathrm{ao}}}.$$

It is smooth of dimension 1 (this depends on p split!).

The GM Connection & KS Morphism

We have as before a Kodaira-Spencer morphism
 <u>KS</u>: <u>ω</u> ⊗ <u>ω</u> → Ω¹_{S/F}.
<u>KS</u> is not an isomorphism, but its *O_E*-components are:
 <u>ks</u> = <u>KS</u>_σ: <u>ω</u>_σ ⊗ det <u>ω</u>_σ ⊗ δ⁻¹ → Ω¹_{S/F}.

Ordinary Theta

▶ The GM connection induces natural connections

$$\nabla \colon H^{\underline{k},w} \longrightarrow H^{\underline{k},w} \otimes \Omega^1_{S/\mathbb{F}}.$$

► These satisfy a natural transversality property $\nabla(\underline{\omega}^{\underline{k},w}) \subseteq F(H^{\underline{k},w}) \otimes \Omega^1_{S/\mathbb{F}},$

the penultimate step of a natural filtration.▶ Over S we can define

$$\theta_1 \colon \underline{\omega}^{\underline{k}, w} \xrightarrow{\nabla} F(H^{\underline{k}, w}) \otimes \Omega^1_{S/\mathbb{F}} \longrightarrow \underline{\omega}^{\underline{k} + \underline{\Delta}_1, w - 1}$$

where the second arrow is $h_{\sigma} \cdot (p_{\mathrm{ur},\sigma})^{\underline{k},w} \otimes \underline{\mathrm{ks}}^{-1}$ and $\underline{\Delta}_1 = (p+1,p)$. This is the "ordinary" theta operator.

Filtrations on S^{no}

• On S^{no} we can consider $\underline{\omega}_0 = \underline{\omega}_{\sigma}[V]$. It is an invertible sheaf and fits into a short exact sequence

$$0 \longrightarrow \underline{\omega}_0 \longrightarrow \underline{\omega}_\sigma \longrightarrow \underline{\omega}_\mu \longrightarrow 0,$$

which defines the invertible sheaf $\underline{\omega}_{\mu}$.

• Moreover, we have that $\underline{\omega}_0 = \ker(V \colon H_\sigma \to H_\sigma^{(p)})$. This also fits in the ses

$$0 \longrightarrow \underline{\omega}_0 \longrightarrow H_\sigma \longrightarrow H_\mu \longrightarrow 0.$$

▶ We have $A_2 \in H^0(S^{\text{no}}, \underline{\omega}_{\mu}^{p-1})$, the *(partial) almost-ordinary* Hasse invariant. It vanishes on S^{core} and nowhere on S^{ao} .

The Generalised Splitting I

• Over S^{ao} we have a natural morphism

$$p_{\mathrm{ur},2} \colon H_{\mu} \longrightarrow \underline{\omega}_{\mu}.$$

▶ The morphism $p_{ur,2}$ splits the ses

$$0 \longrightarrow \underline{\omega}_{\mu} \longrightarrow H_{\mu} \longrightarrow \underline{\omega}_{\overline{\sigma}}^{\vee} \longrightarrow 0.$$
 (H-no)

▶ We cannot extend $p_{ur,2}$ to S^{core} naturally, but we can extend

$$A_2 \cdot p_{\mathrm{ur},2} \colon H_\mu \longrightarrow \underline{\omega}^p_\mu$$

The Generalised Splitting II

▶ Over S^{no} , we can define filtrations on $H^{\underline{k},w}$ and $\underline{\omega}^{\underline{k},w}$, starting from $\underline{\omega}_0 \subseteq \underline{\omega}_\sigma$ and $\underline{\omega}_0 \subseteq H_\sigma$.

▶ We can moreover define a filtration on $\operatorname{gr}^{\bullet}(H^{\underline{k},w})$, starting from (H-no), whose penultimate step we call $F(\operatorname{gr}^{\bullet}(H^{\underline{k},w}))$ and whose last step is $\operatorname{gr}^{\bullet}(\underline{\omega}^{\underline{k},w})$.

Finally, we can define over the whole S^{no} , starting from $p_{ur,2}$ and id_{ω_0} , a morphism

 $A_2 \cdot \operatorname{gr}^{\bullet}(p_{\operatorname{ur},2})^{\underline{k},w}|_F \colon F(\operatorname{gr}^{\bullet}(H^{\underline{k},w})) \longrightarrow \operatorname{gr}^{\bullet}(\underline{\omega}^{\underline{k}+(p-1,0),w}).$

The Generalised Operator I

Since $\underline{\omega}_0 = H_{\sigma}[V]$, the GM connection on S^{no} (which is smooth) has the property

$$\nabla(\underline{\omega}_0) \subseteq \underline{\omega}_0 \otimes \Omega^1_{S^{\mathrm{no}}/\mathbb{F}}.$$

▶ In particular, we also have the induced connection

$$\nabla \colon H_{\mu} \longrightarrow H_{\mu} \otimes \Omega^{1}_{S^{\mathrm{no}}/\mathbb{F}}$$

▶ The Kodaira-Spencer morphism induces on S^{no} an isomorphism

$$\underline{\mathrm{ks}}_{\mu} \colon \underline{\omega}_{\mu} \otimes \det \underline{\omega}_{\sigma} \otimes \delta^{-1} \longrightarrow \Omega^{1}_{S^{\mathrm{no}}/\mathbb{F}}.$$

The Generalised Operator II

▶ Finally, we can consider the composition

$$\theta_2 \colon \operatorname{gr}^{\bullet}(\underline{\omega}^{\underline{k},w}) \xrightarrow{\nabla} F(\operatorname{gr}^{\bullet}(H^{\underline{k},w})) \otimes \Omega^1_{S^{\operatorname{no}}/\mathbb{F}} \longrightarrow \operatorname{gr}^{\bullet}(\underline{\omega}^{\underline{k}+\underline{\Delta}_2,w-1})$$

where the second map is $A_2 \cdot \operatorname{gr}^{\bullet}(p_{\operatorname{ur},2})^{\underline{k},w} \otimes \underline{\operatorname{ks}}_{\mu}^{-1}$ and $\underline{\Delta}_2 = (p+1,1)$. We call this the *almost-ordinary* "generalised" theta operator.

- ▶ The action of θ_2 on global sections is Hecke equivariant.
- ▶ θ_2 is a differential operator and $\theta_2(A_2) = 0$.

Thank you for your attention!

Questions?