CYCLE CLASSES IN OVERCONVERGENT RIGID COHOMOLOGY AND A SEMISTABLE
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ABSTRACT. In this article we prove a semistable version of the variational Tate conjecture for divisors in
crystalline cohomology, stating that a rational (logarithmic) line bundle on the special fibre of a semistable
scheme over kf[¢] lifts to the total space if and only if its first Chern class does. The proof is elementary, using
standard properties of the logarithmic de Rham—Witt complex. As a corollary, we deduce similar algebraicity
lifting results for cohomology classes on varieties over global function fields. Finally, we give a counter example

to show that the variational Tate conjecture for divisors cannot hold with Q,,-coefficients.

CONTENTS
[ntroduction! 1
[1. Cycle class maps in overconvergent rigid cohomology| 3
[2.  Preliminaries on the de Rham—Witt complex| 4
[3.  Morrow’s variational Tate conjecture for divisors| 8
. A semistable variational Tate conjecture for divisors| 11
B._Global results| 15
[6. A counter-example] 16
[References] 18

INTRODUCTION

Many of the deepest conjectures in arithmetic and algebraic geometry concern the existence of algebraic
cycles on varieties with certain properties. For example, the Hodge and Tate conjectures state, roughly
speaking, that on smooth and projective varieties over C (Hodge) or finitely generated fields (Tate) every
cohomology class which ‘looks like’ the class of a cycle is indeed so. One can also pose variational forms of
these conjectures, giving conditions for extending algebraic classes from one fibre of a smooth, projective
morphism f : X — § to the whole space. For divisors, the Hodge forms of both these conjectures (otherwise
known as the Lefschetz (1, 1) theorem) are relatively straightforward to prove, using the exponential map,
but even for divisors the Tate conjecture remains wide open in general.

Applying the principle that deformation problems in characteristic p should be studied using p-adic
cohomology, Morrow in [Mor14| formulated a crystalline variational Tate conjecture for smooth and proper
families f : X — § of varieties in characteristic p, and proved the conjecture for divisors, at least when f
is projective. The key step of the proof is a version of this result over S = Spec (k[t1,...,f,]), which when
n =1 is a direct equicharacteristic analogue of Berthelot and Ogus’ theorem [BO83| Theorem 3.8] on lifting
line bundles from characteristic 0O to characteristic p.
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Morrow’s proof of the local statement uses some fairly heavy machinery from motivic homotopy theory,
in particular a ‘continuity’ result for topological cyclic homology. In this article we provide a new proof
of the local crystalline variational Tate conjecture for divisors, at least over the base S = Spec (k[t])), which
only uses some fairly basic properties of the de Rham—Witt complex. The point of giving this proof is that
it adapts essentially verbatim to the case of semistable reduction, once the corresponding basic properties
of the logarithmic de Rham—Witt complex are in place.

So let 2 be a semistable, projective scheme over k[¢], with special fibre X and generic fibre X. Then
there is an isomorphism

Hity (X)) 2 Higy i (X5 /KO0

between the horizontal sections of the Robba ring-valued rigid cohomology of X and the part of the log-
crystalline cohomology of X killed by the monodromy operator. The former is defined to be Hrzig X/ENH® ot
%, where Hrzig (X/&T) is the bounded Robba ring-valued rigid cohomology of X constructed in [LP16].
These groups are (¢, V)-modules over % and & respectively. In particular, if .# is a line bundle on Xj,
we can view its first Chern class ¢ (.%) as an element of Hrzig (X /2). Our main result is then the following
semistable version of the local crystalline variational Tate conjecture for divisors.

Theorem li Z lifts to Pic(Z")q if and only if ¢ (ZL) lies in Hrzig(X/é”T) C Hrzig(X/z%’).

There is also a version for logarithmic line bundles on Xj. The general philosophy of p-adic cohomology
over k((¢)) is that the &-structure Hr’;g (x/&N) c Hr"ig (X /) is the equicharactersitic analogue of the Hogde
filtration on the p-adic cohomology of varieties over mixed characteristic local fields. With this in mind,
this is the direct analogue of Yamashita’s semistable Lefschetz (1,1) theorem [Yaml1l1]]. As a corollary,
we can deduce a global result on algebraicity of cohomology class as follow. Let F be a function field
of transcendence degree 1 over k, and X /F a smooth projective variety. Let v be a place of semistable

reduction for X, with reduction X,. Then there is a map
sp, - %Eg (X/K)V:() - Hl%)g—cris (XVX /KVX)
from the second cohomology of X (see §5)) to the log crystalline cohomology of X,,.

Theorem (5.2). A class o € jffg (X /K)V=0 is in the image of Pic(X)q under the Chern class map if and
only if sp, (@) is in the image of Pic(X,)q.

One might wonder whether the analogue of the crystalline variational Tate conjecture holds for line
bundles with QQ,-coefficients (in either the smooth or semistable case). Unfortunately, the answer is no.
Indeed, if it were true, then it follows relatively easily that the analogue of Tate’s isogeny theorem would
hold over k((¢)), in other words for any two abelian varieties A, B over k((t)), the map

Hom(A,B) ® Q, — Hom(A[p~], B[p~]) @z, Q,

would be an isomorphism. That this cannot be true is well-known, and examples can be easily provided
with both A and B elliptic curves.

Let us now summarise the contents of this article. In §1 we show that the cycle class map in rigid
cohomology over k((¢)) descends to the bounded Robba ring. In §2 we recall the relative logarithmic
de Rham-Witt complex, and prove certain basic properties of it that we will need later on. In §3 we reprove
a special case of the key step in Morrow’s article [Mor14], showing the crystalline variational Tate conjec-
ture for smooth and projective schemes over k[¢]. The argument we give is elementary. In §4 we prove
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the semistable version of the crystalline variational Tate conjecture over k[t], more or less copying word
for word the argument in §3. In §5 we translate these results into algebraicity lifting results for varieties
over global function fields. Finally, in §6 we give a counter-example to the analogue of the of crystalline
variational Tate conjecture for line bundles with Q,-coefficients.
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by a Marie Curie fellowship of the Istituto Nazionale di Alta Matematica “F. Severi”. Both authors would
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Notations and convenions. Throughout we will let k be a perfect field of characteristic p > 0, W its ring
of Witt vectors and K = W[l /p]. In general we will let F = k((¢)) be the field of Laurent series over k,
and R = k[t] its ring of integers (although this will not be the case in . We will denote by &, %,&
respectively the bounded Robba ring, the Robba ring, and the Amice ring over K, and we will also write
&+ =W|[t] @w K. For any of the rings &+, &7, %, & we will denote by @X) the corresponding category
of (¢, V)-modules, i.e. finite free modules with connection and horizontal Frobenius. A variety over a given
Noetherian base scheme will always mean a separated scheme of finite type. For any abelian group A and
any ring S we will let Ag denote A ®z, S.

1. CYCLE CLASS MAPS IN OVERCONVERGENT RIGID COHOMOLOGY

Recall that for varieties X /F over the field of Laurent series F = k((¢)) the rigid cohomology groups
Hlfig(X /&) are naturally (¢,V)-modules over the Amice ring &. In the book [LP16] we showed how
to canonically descend these cohomology groups to obtain ‘overconvergent’ (¢, V)-modules Hr’lg (X/&T)
over the bounded Robba ring &7, these groups satisfy all the expected properties of an ‘extended’ Weil

cohomology theory. In particular, there exist versions H;, i ng (X/&), X /&T) with compact support.

c rlg(
Definition 1.1. Define the (overconvergent) rigid homology of a variety X /F by

H{®(X /&) = Hijy(X /)", H*(X/&7) = Hi,(X/&T)
and the (overconvergent) Borel-Moore homology by

HM (X&) = Hi 5y (X/8)", B (X/ET) = HL 3y (X )67

In [PetO3] the author constructs cycle class maps in rigid cohomology, which can be viewed as homo-
morphisms

Aq(X) = Hyy (X /6)
from the group of d-dimensional cycles modulo rational equivalence. Our goal in this section is the follow-

ing entirely straightforward result.

Proposition 1.2. The cycle class map descends to a homomorphism
Ag(X) — HEMIE (x 161 V=0.0=p"
Proof. Note that since HBM rig X/& "')VZO*‘P:"d C Hf dM’rig (X/&) it suffices to show that for every integral

closed subscheme Z C X of dimension d, the cycle class 1(Z) € H,, SMorig (X /&) actually lies in the subspace
HBM rlg(x/gT)V 0,0=p4
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By construction, 17(Z) is the image of the fundamental class of Z (i.e. the trace map Trz : H*¢ (Z/&) —

c,rig
&(—d)) under the map
H?dM’rig(Z/g) — HfdM’rig (X/&)

(X/&) — H*.

: 2d
induced by the natural map H crig

crig

(Z/&) in compactly supported cohomology. Hence it
suffices to simply observe that both this map and the trace map descend to horizontal, Frobenius equivariant
(X/&) —
(Z/&) and Tryz are horizontal and Frobenius equivariant at the level of &-valued cohomology, which

maps on the level of &-valued cohomology. Alternatively, we could observe that both H2%,

Hhy

gives
A(X) = Hyg (X /8) 007,

then applying Kedlaya’s full faithfulness theorem [Ked04, Theorem 5.1] gives an isomorphism

BM,ri V=0,0=p? ~ yyBMi V=0,p=p¢
HZd rlg(X/@fo) o=p :sz ﬂg(X/(gﬂ‘) P=pr"

2. PRELIMINARIES ON THE DE RHAM—WITT COMPLEX

The purpose of this section is to gather together some results we will need on the various de Rham—Witt
complexes that will be used throughout the article. These are all generalisations to the logarithmic case
of well-known results from [I1179]], and should therefore present no surprises. The reader will not lose too
much by skimming this section on first reading and referring back to the results as needed.

We will, as throughout, fix a perfect ground field k of characteristic p > 0, all (log)-schemes will be
considered over k. Given a morphism (Y,N) — (S,L) of fine log schemes over k, Matsuue in [Matl6]
constructed a relative logarithmic de Rham—Witt complex W, a)(*Y’ N)/(S.L)? denoted W.AZ‘Y’ N)/(S.L) in [Mat16].
This is an étale sheaf on Y equipped with operators F,V satisfying all the usual relations (see for example

[Mat16l Definition 3.4(v)]) and which specialises to various previous constructions in particular cases.

(1) When S = Spec (k) and the log structures L and N are trivial, then this gives the (canonical extension
of the) classical de Rham—Witt complex W,Qy (to an étale sheaf on Y).

(2) More generally, when the morphism (Y,N) — (S, L) is strict, we recover the relative de Rham—Witt
complex W,Qy, /s of Langer and Zink [LZ04].

(3) When the base (S, L) is the scheme Spec (k) with the log structure of the punctured point, and (Y, N)
is of semistable type (i.e. étale locally étale over k[xi,...,x441]/(x1---x;) with the canonical log
structure) then we obtain the logarithmic de Rham—-Witt complex W ey studied in [HK94].

(4) If we take (Y,N) semistable but instead equip Spec (k) with the trivial log structure, the resulting
complex is isomorphic to the one denoted W @y in [HK94].

If we are given a morphism of log schemes (Y,N) — (S,L) over k, then as in [Mat16, §2.2] we can lift the

log structure N — Oy to a log structure W.N — W,.Oy, where by definition W,.N = N @ker (W, 0y)* — Oy)

and the map N — W, 0y is the Techmiiller lift of N — Oy. Since Wrw(ly.m J(S,L) is a quotient of the

*

pd-log de Rham complex (Z)(W,Y,W,N) Jowswry (see [Matlo, §3.4]) there is a natural map dlog : W,N —
Wrw(lle) J(S,L) and hence we obtain maps

dlog: N — WrCO(IY’N)/(S,L)

which are compatible as r varies. We let W,a)(ly‘N) / denote the image.

S.L),log
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When both log structures are trivial, and ¥ — Spec (k) is smooth, then [I1179} Proposition 1.3.23.2] says
that dlog induces an exact sequence

0= p Oy = Oy = W, Qy 1oy — 0

and our first task in this section to obtain an analogue of this result for semistable log schemes over k. In
fact, since we will really only be interested in the case when Y arises as the special fibre of a semistable
scheme over k[[t],, we will only treat this special case.

We will therefore let 2" denote a semistable scheme over R = k[¢] (not necessarily proper). We will let
L denote the log structure given by the closed point of Spec (R), and write R* = (R,L). We will denote by
L, the inverse image log structure on R, = k[[t]/(t"*!), and write R’ = (R,,,L,). We will also write k* =
(k,Lo). We will denote by M the log structure on 2~ given by the special fibre, and write 2 = (2", M).
Similarly we have log structures M, on X, = 2" ®g R, and we will write X, = (X,,,M,). Finally, when
considering the logarithmic de Rham—Witt complex relative to k (with the trivial log structure) we will drop

k from the notation, e.g. we will write W, a) . instead of W, a) K
O

Proposition 2.1. The sequence

0— p"M¥ — MS® — W, 0, -0

X, log

is exact.

Proof. The surjectivity of the right hand map and the injectivity of the left hand map are by definition, and
since er,w)I(()XJOg = 0, the sequence is clearly a complex. The key point is then to show exactness in the
middle. So suppose that we are given m € M§’ is such that dlogm = 0. We will show that m € p"M§" by
induction on r.

When r = 1 we note that the claim is étale local, we may therefore assume XOX to be affine, étale and

strict over Spec (M) say Xo = Spec (A). We have

Oy o) EBA dlogx; @ @ A-dx;.
i=c+1

Now suppose that we are given a local section n = u[]5_, x;" of N for u € A* and n; € Z. Write

dlogu—Zadlogxl+ Z a;dx;
i=1 i=c+1

with a; € A, note that since d logu actually comes from an element of Q}\ it follows that a; € x;A for 1 <i<c.
In particular, we have n; = —x;a; for 1 < i < ¢, and passing to A/x;A it therefore follows that n; = 0 in k.
Hence each n; is divisible by p. It follows that [T¢_, x}" is in pN®P, and its dlog vanishes. By dividing by
this element we may therefore assume that n = u € A*. Since semistable schemes are of Cartier type, we
may apply [Kat89, Theorem 4.12], which tells us that (étale locally) u € A(P)* (since dlogu = 0 = du = 0).
Since k is perfect, A(?)* = (A*)? and we may conclude.

When r > 1 and dlogn =0 € W, a)X Tog , then in particular dlogn =0 € W,_ 1a) E ; hence by applying
the induction hypothesis we obtain n = p"~"'n;. But now this implies that p” _1dlogn1 =0ecW, a)XX ,

claim that in fact it follows that dlogn; =0 € a)l Indeed, since a)1 is a locally free ﬁxo-module to
0
prove that a section vanishes it suffices to show that it does so on a dense open subscheme. In particular,

by restricting to the smooth locus of Xy we can assume that X is smooth and the log structure is given by



Cycle classes and Lefschetz (1,1)

ﬁ;;o @®N, (u,m) — u.0™. We now apply [I1179} Proposition 1.3.4] and [Mat16, Lemma 7.4] to conclude that
dlogn; =0 as required. Thus applying the case r = 1 finishes the proof. (|

The following is analogous to [I1179, Corollaire 1.3.27].
Proposition 2.2. The sequences of pro-sheaves

Wb} -0,

r

0— {Wrw}%‘mog}r — W0}
1 1 1-F 1

are exact.

Proof. Let us consider the first sequence. Using Néron—Popescu desingularisation [Pop86, Theorem 1.8]
and the fact that the logarithmic de Rham—Witt complex commutes with filtered colimits, we may reduce
to considering the analogous question for Y smooth over k with log structure N coming from a normal
crossings divisor D C Y. The claim is étale local, we may therefore assume that Y is étale over k[xj, ..., x,]
with D the inverse image of {x; - --x. = 0}. Locally, N is generated by &y and x; for 1 <i < ¢, so in order
to see that the sequence is a complex, or in other words that (1 — F')(dlogn) = 0, it suffices to check that
(1—F)(dlogx;) = 0. This is a straightforward calculation. For the surjectivity of 1 — F we claim in fact
that
L—F :Wo 10y ) = W0y 5

is surjective. For this we note that by [Mat16, §9] there exists an exact sequence

c
0—W,Q — Wrw(ly,zv) — P W, 0p, - dlogx; — 0
i=1
for all r, where D; are the irreducible components of D. Denote the induced map Wra)(ly_ N) — W,.0p, by
Res;. Since (1 — F)(dlogx;) = 0 it follows that we have the commutative diagram

0 —— W1 Qy —— W10y ) — B Wit1Op, —— 0

0 w,Ql W0l ) —— @ WeOp, —— 0

where W,Q}, is the usual (non-logarithmic) de Rham-Witt complex of Y. It therefore suffices to apply
[11179, Propositions 1.3.26, 1.3.28], stating that the left and right vertical maps are surjective. Finally, to

show exactness in the middle, suppose that we are given @ € W,y w(lY.N) such that (1 — F)(®) = 0. Then

applying [I1179] Proposition 1.3.28] we can see that
Res;(®) € Z/p" "' Z+ker (W1 Op, — W, 0p,)

for all i. Hence after subtracting off an element of d1og(N®P) we may assume that in fact
® € Wy 1Q) +ker (WrH w(lylyN) — W,w(IYA’NO .

Now applying [I1179} Corollaire 1.3.27] tells us that
€ dlog(N®) + ker (WrHa)(ly_’N) - W,w(ly_’N))

and hence the given sequence of pro-sheaves is exact in the middle.
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For the second sequence, the surjectivity of 1 — F follows from the corresponding claim for the first
sequence, since sections of W,co)l(X can be lifted locally to W,w'-.. We may also argue étale locally;
0

assuming that X is étale and strict over Spec (N" — w

complex follows again from observing that (1 — F)(dlogx;) = 0 for 1 <i < ¢. To see exactness in the

). The fact that the claimed sequence is a

middle we use the fact that (again working étale locally) we have an exact sequence
0— @W,Q})i - W,co)l(ox/kX - @Wrﬁpij -0
i L
by [Mat16, Lemma 8.4], where D; are the irreducible components of XOX and D;; their intersections. More-

over, this fits into a diagram

00— Do), Mg ®ijLp, —0
dlog dlog

@ Wi O, —— 0

0— P;W, Q) —— Wrco)l(x/kX
! 0

1-F 1-F 1-F

0—— @,»W,_lﬂ})i — W,_la);(

OX//(X E— @i‘er—lﬁDij S O

with exact rows. Exactness of the middle vertical sequence at W,a))l(X e now follows from the classical
0
result [I1179, Corollaire 1.3.27, Proposition 1.3.28] and a simple diagram chase. g
Next, we will need to understand the kernel of W, a)}l(X g W,l, .
o slog Xy /k* log
Lemma 2.3. For all r > 1 the sequence
r 1 1
0—Z/p"Z-dlogt — W,a)xox g W,wXOX/kx,log =0

is exact.

Proof. Note that by [Mat16, Lemma 7.4] it suffices to show that
dlog(Mo) "W, 0%, -dlogt = Z/p"Z - dlogt

inside W, . ., the containment D is clear. For the other, suppose that we are given an element of the form

Xo

g-dlogt € W, which is in the image of dlog. Then we know that g-dlogr = dlogn+c in W, @y .,
0 0

for some ¢ € ker (W,Hco)l(X — W,a))l(x) and § € W, 0y, lifting g. Arguing as in Proposition above
0

we can see that (1 — F)(dlogn) = 0, and again applying [Mat16, Lemma 7.4] we can deduce that in fact

g=F(g)in W,0x,. Hence g € Z/p"Z as claimed. |

Finally, we will need to know that the logarithmic de Rham—Witt complex computes the log crystalline

cohomology of the semistable scheme 2.
Proposition 2.4. There is an isomorphism

Hi

cont

(t%/étaww,%'x )Q = Hll;)g—cris(‘%/'X/K)

foralli> 0.
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Proof. Tt suffices to show that H'( 2, W,@,.) = Hjy, i (2% /W;) where W, = W, (k). Arguing locally
on 2 we may assume in fact that 2" is affine, and in particular admits a closed embedding 2~ — & into
some affine space over W, [t].

Now applying Néron—Popescu desingularisation [Pop86, Theorem 1.8] to W, — W,[¢], we may in fact

write 2~ = limgy Xy, as a limit of smooth k-schemes, such that:

o that there exist compatible normal crossings divisors Dy C X, whose inverse image in 2 is pre-
cisely the special fibre Xj;
e there exist compatible closed embeddings X, < P, into smooth W,-schemes such that & =
limg Py
Since both the de Rham—Witt complex and étale cohomology commute with cofiltered limits of schemes, it

suffices to show that the same is true of log-crystalline cohomology, in other words that we have
I{Iiog—cris(‘%/X /WV) = C()lin'lofl—lliog—cris (XO>L< /Wr)a

where X; denotes the scheme X, endowed with the log structure given by Dy. By [Kat89, Theorem 6.4],
Hi

log-cris

(X5 /W) is computed as the de Rham cohomology of the log-PD envelope of X; inside Py. Since
log-PD envelopes commute with cofiltered limits of schemes (i.e. filtered colimits of rings), it suffices to
show that Hy,, i
inside 2.

In other words, what we require a logarithmic analogue of [Kat91, Theorem 1.7], or equivalently a
log-p-basis analogue of [Kat89) Theorem 6.4]. But this follows from Proposition 1.2.18 of [[CV15]. O

(£ /W,) can be computed as the de Rham cohomology of the log-PD envelope of 2"~

3. MORROW’S VARIATIONAL TATE CONJECTURE FOR DIVISORS

The goal of this section is to offer a simpler proof of a special case of [Mor14} Theorem 3.5] for smooth
and proper schemes 2~ over the power series ring R = k[¢]. This result essentially states that a line bundle
on the special fibre of 2 lifts iff its its first Chern class in chm does, and should be viewed as an equichar-
acteristic analogue of Berthelot and Ogus’s theorem [BO83| Theorem 3.8] stating that a line bundle on the
special fibre of a smooth proper scheme over a DVR in mixed characteristic lifts iff its Chern class lies
in the first piece of the Hodge filtration. We will also give a slightly different interpretation of this result
that emphasises the philosophy that in equicharacteristic the ‘correct’ analogue of a Hodge filtration is an
&7 -structure. Our proof is simpler in that it does not depend on any results from topological cyclic homol-
ogy, but only on fairly standard properties of the de Rham—Witt complex. As such, it is far more readily
adaptable to the semistable case, which we shall do in below.

Throughout this section, 2~ will be a smooth and proper R = k[t]-scheme. Let R, denote k[¢] /(#"*!) and
set X, = 2 ®grR,. Write X for the generic fibre of 2~ and X for its formal (z-adic) completion. Since all
schemes in this section will have trivial log structure, we will use the notation W, Q* for the de Rham—Witt
complex instead of W, @*. The key technical calculation we will make is the following.

Lemma 3.1. Fixn > 0, write n = p™ng with (ng,p) = 1, and let r = m+ 1. Then the map
dlog: 1+1"0x, — WrQ)l(,,,log
is injective.

Proof. We may assume that X, = Spec (4,) is affine, moreover étale over Ry[x1,...,xy]. In this case since

deformations of smooth affine schemes are trivial, we have A,, = Ag @ R,,. Hence 1 +¢"A,, = 1 +1t"Ay, and
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our problem therefore reduces to showing that if a € Ay is such that dlog[1 + at"] = 0, then in fact a = 0.
But vanishing of @ may be checked over all closed points of Ag, so by functoriality of the dlog map we may
in fact assume that A is a finite extension of k, enlarging kK we may moreover assume that Ag = k; in other
words we need to show that the map
dlog:1+1"k — WrQ}en

is injective. Since k is perfect, any 14 ar” € 14"k can be written uniquely as (14 £"0b)P" for some b € k,
hence dlog[l + at"] = p™dlog(1 +t"0b). 1t follows that if dlog[l 4 ar"] = 0, then p™nobt™~'dt = 0 in
W,Q}Q”. Since any non-zero such b is invertible, the lemma will follow if we can show that p”’t”o‘ldt is
non-zero in W,Q}en. This can be checked easily using the exact sequence

W (")
W, ((r1)2)
from [LZ05]]. O

d
S WoQ ®w, i) Wikn = W, Qg — 0

From this we deduce the following.

Proposition 3.2. For r > 0 (depending on n) there is a commutative diagram

| —— 1410y, o3 7 1

ldlog ldlog
dlo

1 —— 1410k, o, Wr9>1(n,1og — W,Q}(m

log 0

with exact rows.

Proof. Tt is well-known that the top row is exact, and the diagram is clearly commutative, it therefore
suffices to show that for all n the sequence

1= 1+410x, = WeQy 10g = WrQ 1og — 0

log

is exact for r > 0. From the definition of WrQ)l(,,.log and the exactness of the sequence
1= 1+1t0x, — Oy, — Ox, — 1

it is immediate that W,Q)l(n_log — W, is surjective and the composite 1 +t0y, — W, Q1 is zero.

Xo,log Xo,log

Given o € Oy mapping to 0 in W,Q}(O log» 1t follows from [I1179, Proposition 1.3.23.2] that there exists

B € O, and y € 1 +10x, such that & = B?" +7, and hence dlog o = dlogy in WVQ)l(n,log' The sequence
1410%, — W, Qx, 106 = WrQx; jog — 0

is therefore exact, and it remains to show that

dl
L+10, = WeQk 1o
is injective for r > 0. By induction on n this follows from Lemma [3.T]above. ]
We now set

i T i
Wil 1og := hrrln Wiy 10
as a sheaf on X4 and define

H({ont (:{étﬂ WQ%.log) =H/ (Rh'{n Rr(:{éh Wrgléf,log)) :
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As an essentially immediate corollary of Proposition[3.2] we deduce the key step of Morrow’s proof of the
variational Tate conjecture in this case.

Corollary 3.3. Let & € Pic(Xy), with first Chern class ¢1(£) € HL(Xo, ehWQXO log)- Then Z lifis to
Pic(2") if and only if ¢ (L) lifts to Cont(%t,WQ}%-Jog)

Proof. One direction is obvious. For the other direction, assume that the first Chern class ¢ (%) lifts to
Hclom(t%%t,WQ}%JOg), in particular it therefore lifts to HY, (Xe, WQL Jog)- Hence by Proposition it
follows that . lifts to Pic(X), and we may conclude using Grothendieck’s algebrisation theorem that it
lifts to Pic(.2"). 0

From this the form (crys-¢) form of the variational Tate conjecture follows as in [Mor14].

Corollary 3.4. Let £ € Pic (Xo)@, with first Chern class c1(£) € H?

5is (X /K)?=P. Then 2 lifts to Pic(Z )q
if and only if ¢ (L) lifts to H-. (2" /K)?=P.

CrlS

Proof. Let us first assume that k is algebraically closed. By [Morl4, Proposition 3.2] the inclusions
WQY- o [—1] = WY | and WOy 1 [—1] = WQ;} 1og Induce an isomorphism

Hon (Xo a1, WQXO log)Q — HZio(Xo/K)?=
and a surjection
H 25, WQL 1) — Ha(2 1K)~
The claim follows. In general, we argue as in [Mor14, Theorem 1.4]: the claim for k algebraically closed
shows that . lifts to Pic(2")g after making the base change k[t] — k[t]. Let k[¢]*" denote the strict
Henselisation of k[¢] inside k[¢], by Néron—Popescu desingularisation there exists some smooth local k[¢]*"-
algebra A such that . lifts to Pic(2")q after making the base change k[f] — A. But the map k[¢[*" — A
has a section, from which it follows that in fact - lifts to Pic(.Z")q after making some finite field extension
k — k'. But now simply taking the pushforward via 2" ®; k' — 2 and dividing by [k’ : k] gives the
result. |

To finish off this section, we wish to give a slightly different formulation of Corollary [3.4] After [LP16]
we can consider the ‘overconvergent’ rigid cohomology r’;g (X/&T) of the generic fibre X, which is a
(¢,V)-module over the bounded Robba ring &7. Set Hr’lg(X/,@) = X/ET) ®e+ %. By combining
Dwork’s trick with smooth and proper base change in crystalline cohomology we have an isomorphism

rlg(X/‘%)V 0= Hrl1g(X0/K)

rlg(

for all i. In particular, for any . € Pic(Xy)g we can consider c;(.Z’) as an element of Hr’lg X/ %)= c

ng (X/2). One of the general philosophies of p-adic cohomology in equicharacteristic is that while the

cohomology groups H’. (X/%) in some sense only depend on the special fibre Xy, the ‘lift’ X of Xp is

rlg
seen in the &-lattice Hr’lg (xX/&) C Hr’lg (X/Z). The correct equicharacteristic analogue of a Hodge filtra-
tion, therefore, is an &¥-structure. With this in mind, then, a statement of the variational Tate conjecture
for divisors which is perhaps slightly more transparently analogous to that in mixed characteristic is the

following.

Theorem 3.5. Assume that 2" is projective over R. Then a line bundle - € Pic(Xo)q lifts to Pic(Z )q if
and only if ¢| (Z) € Hrzlg(X/%) lies in Hrzig(X/éa*).

Proof. This is simply another way of stating the condition (flat) in [Mor14, Theorem 3.5]. ]

10
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Remark 3.6. It seems entirely plausible that the methods of this section can be easily adapted to give a proof
of [Mor14] Theorem 3.5] in general, i.e. over k[ty,...,t,] rather than just k[z].

4. A SEMISTABLE VARIATIONAL TATE CONJECTURE FOR DIVISORS

In this section we will prove a semistable version of Theorem [3.3] or equivalently an equicharacteristic
analogue of [Yam11, Theorem 0.1]. The basic set-up will be to take a proper, semistable scheme 2 /R, as
before we will consider the semistable schemes X, /R, as well as the smooth generic fibre X /F. The special
fibre of 2" defines a log structure M, and pulling back via the immersion X,, — 2~ defines a log structure
M, on each X,,. For each n we will put a log structure L, on R, via N — R, 1 — ¢, note that for n = 0 this
is the log structure of the punctured point on k. We will let L denote the log structure on R defined by the
same formula. As before we will write R* = (R,L), R\ = (R,,L,), Z* = (2, M), X, = (X,,M,) and
k* = (k,Lo). The logarithmic version of Proposition [3.2]is then the following.

Proposition 4.1. For r > 0 (depending on n) there is a commutative diagram

1 —— 1+10%, ﬁ;}n ﬁ;}o 1
1 —— 1410y, Mi? MEP 0
J{ Jdlog Jdlog

1 1
1 Hnr W,a)XnX Jog S W,a)XOX/kXJOg — 0.

with exact rows. Moreover each J¢, , fits into an exact sequence of pro-sheaves on X, g
1= 14+t0x, = {0, }r = {Z/p"Z} — 0
which is split compatibly with varying n.

Proof. We first claim that if we replace W, by W,a);(

% Jog then we obtain an exact sequence
0

1
wXOX /k* log

L= 14+10x, = Wyoy.  — W0y

X, log —0

Jo

for r > 0. Using Proposition the proof of the exactness of

L+10x, = Woog | — Wroy

X, log =0

o

is exactly as in Proposition [3.2] In fact, to check exactness on the left we can even apply Proposition to
check a section of 1+ 0y, vanishes it suffices to do on a dense open subscheme of X,,, we may therefore
étale locally replace X, by the canonical thickening of the smooth locus of the special fibre. But now we
are in the smooth case, so we apply Proposition [3.2](which holds locally).

Applying Lemma 2.3] we know that the kernel of

1 1
WerOX Jlog - VV’wXO>< /k* log

is isomorphic to Z/p"Z, generated by dlogr. The snake lemma then shows that, defining 7, , to be the
1
e W’wXOX /K log

1= 14+t0x, = Hpy > Z/p"Z—0

kernel of W,a))](X , we have the exact sequence
n

Jo

11



Cycle classes and Lefschetz (1,1)

for r > 0. To see that it splits compatibly with r and it therefore suffices to show that there exist compatible

classes @, € W,co;(X whose image in W,col generate the kernel of W, —W, a) Xk log ; as we have
n

* log
already observed the classes of dlogt Will sufﬁce (]

As before, we therefore obtain the following. Let Pic(X;) = H' (X &, M5") and Pic(2 ) = H' (2, M*P).

Corollary 4.2. Let £ € Pic(X;") (resp. Pic(Xo)). Then Z lifts to Pic(Z*) (resp. Pic(Z")) iff c1(Z) €

Hcom(XO etawaX/kx log ) llﬂs fo cont(%tvww,;fx710g)'

Proof. This is similar to the proof of Corollary [3.3] although a little more care is needed in taking the limits
in n and r. Again, one direction is clear, so we assume that we are given a (logarithmic) line bundle whose
Chern class lifts. First we note that we have isomorphisms

PIC(:{) Hcont(XO éty {ﬁXn} ) PIC(:{X) cont(XO éty {M } )

and hence the obstruction to lifting (in either case) can be viewed as an element of HZ (X060, {1 +10x, }n).

The fact that the Chern class lifts implies that this obstruction vanishes in

H.;zont(X07éta {%z,r}n,r) = HZ(RH,Ilani;Il RF(XO,ét» L%/n,r))

and hence the fact that the exact sequence of pro-sheaves
1= 14+1t0x, — {0, Yy > {Z/p"Z}, — 0

splits, compatibly with n, shows that the obstruction must itself vanish in H2 (Xo e, {1 +10x, }n). Fi-
nally, we need to see that we have isomorphisms Pic(X) = Pic(£2") and Pic(X*) = Pic(Z ). The first is
Grothendieck’s algebrization theorem, to see the second we note that Pic(2 ) = Pic(X), the Picard group
of the generic fibre of 2, similarly Pic(X*) 2 Pic(X*"), the Picard group of its analytification. The two
are isomorphic by rigid analytic GAGA. ]

To relate this to log crystalline cohomology, we use the following.

Lemma 4.3. The inclusions W, ', log[ 1] = W0} and W, ! [—1] = W, o8 induce surjec-

o /k* log X; [k*

tions
1 1 2 =
Hcont(%hww%‘x,log)Q - Hlog-cris(%X/K)(p P
2 -
Hcont (Xoets W(D X Jkx log)Q - Hlog-cris (XO>< /KX )(p r
Where @ is the semilinear Frobenius operator. If k is algebraically closed, then the latter is in fact an

isomorphism.

Proof. Let us first consider 2" *. Define the map .% : {W, w Ly = {w, a)dZ .}, to be p'~'F in degree i,
note that in degrees > 1 it is a contracting operator, and hence 1 — .% is invertible on W, a)> !.. Similarly,
the map 1 —V : {W, 04} — {W, 04 } is an isomorphism. From this and Proposition [2.2]it follows that the
triangle

0—>{Wa)]xlog}r—>{Ww }, {Wa) =0

of complexes of pro-sheaves is exact. Since p.# = ¢ on Wra)@X , we deduce an exact sequence

1
0—s Hclont('%éhwwi’x )Q
im(¢ —p)

! 1 >1 \p=
Hcont('%/étvww%xﬁlog)(@ —)Hcom(ﬂfét’Ww%X)(% P 0.

12
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For a complex of K-modules C* with semilinear Frobenius, let Ry—,(C*) denote the mapping cone Cone(C* oy
C*) and by Hy_,(C*) its cohomology groups. Then since 1 —V =1 — pe 1 is invertible on {W, 0},
we deduce that

R¢=P(chont(f%rétaww§flx )Q) = R<P=P(chont(f%%tvww2£’x )Q)

from which we extract the diagram

. >1
Hclont(‘Q’/éhW(D% X )Q

’ me=p) H%:p(chom(z%%t’Wwéflx Jo) — chont(%t7ww52rlx )(521) —0
H(.}()n (%e -,W(Dt % )Q J . J ) )
0 ! im(‘qrpjf/ H(%:p(chont(’%étaww%X Jo) — I‘Iczom(ﬁi”émWa)%X )(‘5 P,

with exact rows, such that the middle vertical arrow is an isomorphism, the left vertical arrow is an injection
and the right vertical arrow is a surjection. Now applying Proposition 2.4 we see that the map

Hclont(‘%étvwwéé"xﬁlog)(@ - Hl%g»cris(%X/K)(p:p

is surjective as claimed. An entirely similar argument works for X,*, replacing Propositionwith [Mat16}
Theorem 7.9], and in fact shows that

1 1
Hcont (XOét7 WwXOX k% log

)@ - Hl%)g—cris (XOX /KX )(P:p
is an isomorphism if and only if (¢ — p) is surjective on Hng—cris (X, /K*). If k is algebraically closed, this

follows from semisimplicity of the category of ¢-modules over K. ]
This enables us to deduce the following.

Corollary 4.4. Let £ € Pic(X()q (resp. Pic(Xo)g). Then Z lifts to Pic(2™*)q (resp. Pic(2")q) iff
c1(L) € HE, uo (XS JKX)O=P lifts to HE., . (27 JK)9=P.

log-cris og-cris
Proof. Exactly as in the proof of Corollary [3.4] O

Let us now rephrase this more closely analogous to Yamashita’s criterion in [Yam11]. Note that thanks

to [LP16l Corollary 5.8] we have an isomorphism
Hriig (X/‘%) = Hliog—cris (XO>< /KX) QA
of (¢, V)-modules over %, which induces an isomorphism
Hrllg(X/‘%) 0 Hllog»cris (X()>< /Kv>< )N ‘.

By [[Yam11| Proposition 2.2] (whose proof does not use the existence of a lift to characteristic 0), the first
Chern class ¢ (.£) of any . in Pic(X,;)g or Pic(Xp)q satisfies N(c{(.Z")) = 0. Hence we may view ¢ ()
(X/2).

as an element of A,

Theorem 4.5. Assume that 2" is projective over R. Then £ lifts to Pic(Z *)q (resp. Pic(Z)q) iff

c1(&) €Hi,(X /&) CH, (X /).

Proof. Note that if ¢, (L) € Hrzig(X /&), it is automatically in the subspace Hrzig(X /ENHV=0:0=r  Now
consider the Leray spectral sequence for log crystalline cohomology
Eg»‘/ — H‘I

log-cris

(Spec (R¥) ,Rpf*ﬁg}i/K> = H' (2 /K).

log-cris

13



Cycle classes and Lefschetz (1,1)

where f: 27 — Spec (R*) denotes the structure map. Since 2" is projective we obtain maps
W RSO 5 RITLOGS

of log-F-isocrystals over R* by cupping with the class of a hyperplane section, we claim that «' is an iso-
morphism. To check this, we note that we can identify the category of log-F-isocrystals over R* with the
category @;iog of log-(@,V)-modules over the ring &+ := W[¢] ®@w K as considered in [LP16, §5.3].
We now note that the functor of ‘passing to the generic fibre’, i.e. tensoring with & := &+ (¢t~!) is fully
faithful, by [Ked04, Theorem 5.1] (together with a simple application of the 5 lemma), and hence by the
hard Lefschetz theorem in rigid cohomology (together with standard comparison theorems in crystalline co-
homology) the isomorphy of u’ follows. Hence applying the formalism of [Mor14, §2] we obtain surjective
maps

[{l%)g-cris(gb}/>< /K) — Hgg_cris (Spec (RX) ,sz* ﬁgi}sx /K)
= L \P=P
Hl%’g'“is(% /KPP = Hl(t)Jg-Cris (Spec (R*),R*f. fo?sx/K)

as the edge maps of degenerate Leray spectral sequences (see in particular [Mor14, Lemma 2.4, Theorem
2.5]). Finally we note that again applying Kedlaya’s full faithfulness theorem, together with the proof
of [LP16, Proposition 5.45], we can see that

L\ 0=p o
Hl(())g—cris (Spec (RX) 7R2f* 9/)?5)(/[() = Hrzlg(x/g' )V—Ovﬁu—ﬁ

and the claim follows. O
We will now give one final reformulation of this result.

Definition 4.6. (1) We say that a cohomology class in Hrzig (X /&7 is algebraic if it is in the image of
Pic(X)g under the Chern class map.

)
(2) We say that a cohomology class in Higq _cris

(X' /K) is log-algebraic if it is in the image of Pic(X;")g
under the Chern class map.

(3) We say that a cohomology class in H2

log-cris

(X, /K) is algebraic if it is in the image of Pic(Xo)qg
under the Chern class map.
Let
. g2 V=0 2 V=0 ~ g2 N=0 2
Sp: Hrig (X/é(”) — Hrig (X/‘%) - Hlog—cris (XOX /K) — Hlog—cris (XO>< /K)

denote the composite homomorphism.

Theorem 4.7. Assume that 2 is projective, and let a € Hrzig (X/&T). The following are equivalent.
(1) o is algebraic.
(2) V(a) =0and sp() is log-algebraic.
(3) V(a) =0and sp(a) is algebraic.

Proof. Note that since sp is injective, the hypotheses in both (2) and (3) imply that ¢ (o) = pa. It therefore
suffices to observe that the map Pic(2")g — Pic(X)q is surjective, the claim then following immediately
from Theorem O

14
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5. GLOBAL RESULTS

In this section we will deduce some global algebraicity results more closely analogous to the main results
of [Mor14]. We will therefore change notation and let F denote a function field of transcendence degree one
over our perfect field k of characteristic p. We will let v denote a place of F' with completion F; and residue
field k,. Let € denote the unique smooth, proper, geometrically connected curve over k with function field
F. Let F5°P denote a fixed separable closure of F with Galois group Gr.

Definition 5.1. Define F-Isoc(F/K) := 2-colimy F-Isoc(U /K), the colimit being taken over all open sub-
schemes U C €.

Note that by [Ked07, Theorem 5.2.1], for any E € F-Isoc(F/K), defined on some U C &, the zeroeth
cohomology group
EY==H{,(U/K,E)
is a well-defined (i.e. independent of U) F-isocrystal over K. For any smooth and projective variety X /F
we have cohomology groups %fg (X/K) € F-Isoc(F /K) obtained by choosing a smooth proper model over
some U C % and taking the higher direct images and applying [Laz16l Corollary 5.4]. As constructed
in [Pall5] §6] (see in particular Propositions 6.17 and 7.2) there is a p-adic Chern class map

c1 1 Pic(X)g — (X /K)V=0

and we will call elements in the image algebraic.
Assume now that X has semistable reduction at v, denote the associated log smooth scheme over kS by
X Let gVT denote a copy of the bounded Robba ring ‘at v’, so that by [Tsu98, §6.1] there is a functor

i’ : F-Isoc(F/K) — MCDZJ‘

Thanks to the proof of [LP16, Proposition 5.52] this functor sends %’;é (X/K) to Hrzig (Xg,/&F). In particular
we obtain a map

rot g (X/K)Y0 = Hy (Xp, /6)7°
and composing with the specialisation map considered at the end of §4] we obtain a homomorphism

Sp,, - %fg (X/K)V:O - leog»cris (va /KVX)
where K, = W (k,)[1/p].

Theorem 5.2. Assume that X is projective, and let o € %‘;lzg (X/K)V=0. The following are equivalent.
(1) o is algebraic.
(2) sp,(a) is algebraic.
(3) sp,(a) is log-algebraic.

Proof. As before the hypotheses in (2) and (3) imply that ¢(a@) = pa. By Theorem we clearly
have (1) = (2) & (3), and if (2) or (3) hold then there exists a line bundle .Z € Pic(XF,)q such that
(o) =c1(Z) in Hrzig(va/cg’j)V:O. To descend .Z to Pic(X)gp we follow the proof of Corollary
Specifically, applying Néron-Popescu desingularisation to the extension F — F, from the Henselisation to
the completion at v and arguing exactly as before we can in fact assume that .’ descends to X Fhs and hence
to Xp+ for some finite, separable extension F’/F. Again taking the pushforward and dividing by the degree

gives the result. |
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6. A COUNTER-EXAMPLE

A natural question to ask is whether or not the analogue of Corollary or Corollary holds with
Pic(—)q replaced by Pic(—)g,. We will show in the section that when £ is a finite field this cannot be the
case, since it would imply Tate’s isogeny theorem for elliptic curves over k[¢]. Let us return to the previous
notation of writing F = k((¢)) and R = k] for its ring of integers.

We first need to quickly recall some material on Dieudonné modules of abelian varieties over k, R and F'.
As before, we will let W denote the ring of Witt vectors of k, set Q = W[¢] and let I be the p-adic completion
of Q[t~'], so that we have & = I'[1/p]. Fix compatible lifts ¢ of absolute Frobenius to W C Q C T..

By [dJ95| Main Theorem 1] there are covariant equivalences of categories
D:BT; = DMy, D:BTz = DMg, D:BTr = DMr

between p-divisible groups over k (resp. R, F) and finite free Dieudonné modules over W (resp. £,
I'). In particular, if &7 is an abelian variety over any of these rings, we will let D(.2/) denote the (co-
variant) Dieudonné module of its p-divisible group o7 [p™]. It follows essentially from the construction
(see [BBM82]) together with the comparison between crystalline and rigid cohomology that when A/F is
an abelian variety we have D(A) ®r & = Hrlig (A/&)Y(—1) as (¢,V)-modules over &, and from [Ked00, The-
orem 7.0.1] that D(A) ®r & canonically descends to a (¢, V)-module D'(A) = Hrlig (A/ET)V(—1) over &7.
The results of [BBMS2, §5.1] give a canonical isomorphism D(AY) 2 D7(A)Y(—1) of (¢,V)-modules
over &', In particular, if E is an elliptic curve then we have a canonical isomorphism E = EV and hence an
isomorphism D (E) = D (E)Y(—1).

We can now proceed to the construction of our counter-example. It will be a smooth projective relative
surface 2 over R, obtained as a product & Xg é”zv (= &1 X &) where &; are elliptic curves over R (to be
specified later on). Let X denote the generic fibre of 2" and Xj the special fibre. As a product of elliptic
curves, we know that the Tate conjecture for divisors holds for Xy. Functoriality of Dieudonné modules
induces a homomorphism

D} ;, :Hom(E,E;) ©7,Q, — Homyv (D'(E), D' (E,))

\%
=&t
which is injective by standard results.

Theorem 6.1. Assume that an element £ € Pic(Xo)q, lifts to Pic(Z")q, if its first Chern class ¢1(Z) €
Hrzig (X /%) lies in Hrzig (X /&) (in other words, that the Qp-analogue ofCorollaryholds). Then the map
Dzl B, Isan isomorphism.

Proof. This is essentially well-known. To start with, we note that under the conditions of Theorem [6.1] the
natural map

c1: Pic(X)q, — Hi (X /&T)V=00=r
is surjective, and induces an isomorphism between NS(X)g, and Hr2ig (X /&T)V=0.9=P_ Tt follows from the
Kiinneth formula [LP16| Corollary 3.78] that

Hfig(X/gT) =& (-1 pH]

rlg(El/éaT) ®H1

rlg(Eﬁ//éaT) @5’1‘(_1)

16
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where the terms on either end are H° @ H? and H* @ HO respectively. Since Hrlig( E /@@T) ~ pft (E1) and
Hi,(E; /€%) = D' (E2)Y(—1) we have that

HZ, (X /6770977 —Q, & (D(E)) @4 D' (E2)") " aq,
= Q, @ Homyyy (D'(E1),D'(E2) & Q.

Next, let DCalg(El,Eg/ ) denote the group of divisorial correspondences from Ej to E2v modulo algebraic
equivalence, in other words line bundles on E; x Ey whose restriction to both E; x {0} and {0} x E} is

trivial. Then we have shown that the map

DCag(E1, E5 )q, — Homygv (D'(E1), D" (E2))

et

is an isomorphism, and since DCy (E1, Ey )g = Hom(E|, E;)q, it follows that the map

Hom(E},E»)g, — Hom D'(E)),D'(E,))

MY, (

is also an isomorphism. This completes the proof. (|

In other words, to produce our required counter-example 2 we need to produce elliptic curves &1 and
& as above such that Dzl [, 18 not surjective. So let k = » and let Ey /k be a supersingular elliptic curve
such that Frob ,» = [p] € Endi(Ep) (such elliptic curves exist by Honda-Tate theory). It easily follows that
any k-endomorphism of Eo has to commute with Frob >, and is hence defined over k. By the p-adic version

of Tate’s isogeny theorem the p-divisible group functor induces an isomorphism:
End(Ey) ® Z, — End(Ey[p~]).

Lemma 6.2. There is an isomorphism ¢ : Eo[p™] — Eo[p™] such that the Q),-linear span of ¢ in End(Eo[p™]) ®z,

Q cannot be spanned by an element in
End(Ep) ® Q C End(Ey) ® Q, = End(Eo[p”]) ®z, Qp-

Proof. Since End(Eo[p™]) is an order in a quaternion algebra over Q, by [Sil86, Ch. V, Theorem 3.1],
so its group of invertible elements is a p-adic Lie group of dimension 3. Therefore the Q,-linear spans of
elements of End(Ep[p™])* is uncountable. As End(Ep) ® Q is countable, there is a ¢ € End(Ep[p™])* whose
Q,-linear span cannot be spanned by the left hand side of the inclusion above. ]

Let &7 be an elliptic curve over R whose special fibre is Ey and whose generic fibre Ej over F = k((¢)) is
ordinary. Via the isomorphism ¢ in the lemma above we can consider &} [p™] as a deformation of Ey[p™].
By the Serre-Tate theorem [Mes72], V. Theorem 2.3] there is a deformation & of Ey over R corresponding
to this deformation p-divisible groups. Let E, denote the generic fibre of & over F.

Proposition 6.3. The map

DTEI,EZ : Hom(E,E>) ® Q, — Homy,ev (D(E), D' (E2))

V.
U C:H

is not surjective.

Proof. Assume for contradiction that in fact DEI [, is an isomorphism. By construction & [p~] = &[p™] so
by the functoriality of Dieudonné modules Hom(D(&7),D(&2)) is non-zero, and by pull-back Hom(D(E;),D(E>))
is also non-zero. As

D' (E;) ®4: & =D(E) ®r &,
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we get that Hom(D'(E),D7(E,)) is also non-zero, by Kedlaya’s full faithfullness theorem [Ked04, The-
orem 5.1]. So by our assumptions Hom(E,E,) is also non-zero, and the elliptic curves E; and E; are
isogeneous.

As &7 is generically ordinary but has a supersingular special fibre, it is not constant, that is, the j-
invariant of its generic fibre j(Ey) € F,. Therefore End(Ej) = Z, so by the above Hom(E,E») ® Q,
is one-dimensional. Therefore the same holds for Hom(D(E;),D(E,)), too. We have a commutative
diagram:

Hom(é7,6>) ®Q, ———  Hom(E|,E2) ®Q,

| J

Hom(D(@@l),D(@@z)) ®Zp Qp — Hom(DT(El),DT(Ez)).

The lower horizontal map is an isomorphism by de Jong’s full faithfullness theorem [dJ98]], the upper
horizontal map is an isomorphism, since any abelian scheme is the Néron model of its generic fibre, and
the right vertical map is an isomorphism by assumption. So the left vertical map is an isomorphism, too.
Specialisation furnishes us with another commutative diagram:

Hom(&71,6) ® Q, ———  End(E)p) ®Q,

J J

Hom(D(&1),D(£2)) ®z, Qp —— End(D(Ep)) ®z, Q).
By construction the image of the lower horizontal map in

End(D(Ep)) ®z, Qp = End(Eo[p”]) ®z, Q)

contains the span of ¢. Since the domain of this map is one-dimensional, we get that its image is the span
of ¢. Since the left vertical map is an isomorphism by the above, we get that the span of ¢ is spanned by
the specialisation of any non-zero isogeny & — &>. This is a contradiction. |

We therefore arrive at the following.

Corollary 6.4. There exists a smooth, projective relative surface Z /R with generic fibre X and special
fibre Xo, and a class £ € Pic(Xo)q, whose Chern class ¢\(£) € Hrzig(X/%) lies inside Hrzig(X/cg’T) but
which does not lift to Pic(2)q,,-
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